Transmission and Dispatching Operations Manual

December 2014
Table of Contents

Table of Figures .. vii
Table of Tables .. vii
Revision History .. ix

1. Introduction .. 1
 1.1 References .. 1

2. Overview ... 3
 2.1 Operating Policy .. 3
 2.1.1 Operating States ... 3
 2.1.2 NYISO Objective .. 4
 2.1.3 Emergency Conditions .. 5
 2.1.4 General Reliability Rules ... 5
 2.1.5 Applications of the Reliability Rules .. 5
 2.1.6 NYSRRC Local Reliability Rules .. 7
 2.2 NYISO, Transmission Owner, and Generator Owner Responsibilities and Authorities 8
 2.2.1 Background Definitions ... 8
 2.2.2 General Relationships between NYISO and Transmission Owners 9
 2.2.3 NYISO Responsibilities and Authorities ... 9
 2.2.4 Transmission Owner Responsibilities and Authorities .. 10
 2.2.5 Generator Owner Responsibilities .. 11
 2.3 Normal and Warning Operating States .. 12
 2.3.1 Definition of Normal State ... 12
 2.3.2 Normal State Criteria .. 12
 2.3.3 Definition of Warning State .. 13
 2.3.4 Warning State Criteria .. 13
 2.4 Market Operations Time Line ... 14
 2.5 Operations Functions .. 16
 2.5.1 NYISO Secured Transmission System Monitoring ... 16
 2.5.2 Transmission System Operation .. 16
 2.5.3 Energy Market Overview .. 16
 2.5.4 Energy Market Functions .. 18
 2.5.5 Backup Operations .. 20
 2.6 Communications .. 21
 2.6.1 Hotline Communications .. 21

3. Operations Monitoring .. 23
 3.1 Operations Monitoring Requirements ... 23
 3.1.1 Real-Time Data Monitoring and Alarming .. 23
 3.1.2 Security Assessment ... 24
 3.1.3 Reserve Calculation ... 24
 3.1.4 Regulation Requirement ... 25
 3.1.5 Operations Monitoring Procedures .. 25
 3.1.6 Response to Normal State Conditions .. 26
 3.1.7 Response to Warning State Conditions .. 27
 3.1.8 Reliability Assessment Support .. 29
 3.1.9 Automatic Voltage Regulator / Power System Stabilizer Outages 29
 3.1.10 Communication of New York Control Area Operating Conditions 30
 3.1.11 Hourly Inadvertent Accounting .. 30
 3.2 Daily Operation for Monitoring Operating Reserve ... 31

4. Transmission Operations .. 33
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.5</td>
<td>Re-Sequencing Mode</td>
</tr>
<tr>
<td>6.3</td>
<td>RTC/RTD Solution Process</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Limit Updates</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Status Updates</td>
</tr>
<tr>
<td>6.3.3</td>
<td>NYISO-TO-Power Supplier Communications</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Transmission loss treatment</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Phase Shifter Models</td>
</tr>
<tr>
<td>6.3.6</td>
<td>Demand curves</td>
</tr>
<tr>
<td>6.3.7</td>
<td>Locational Reserves</td>
</tr>
<tr>
<td>6.3.8</td>
<td>Reserve Comparator</td>
</tr>
<tr>
<td>6.3.9</td>
<td>Reserve Calculations</td>
</tr>
<tr>
<td>6.3.10</td>
<td>Simultaneous Activation of Reserves</td>
</tr>
</tbody>
</table>

Attachment A. Transmission Facilities
Attachment B. Operating Criteria
Attachment C. Solar Magnetic Disturbance Form
Attachment D. Generating Unit AVR / PSS Status Log
This page intentionally blank.
Table of Figures

Figure 2-1 Energy Market Operations Timeline ... 14
Figure 2-2 Market Overview ... 17
Figure 2-3 Day-Ahead and Dispatch Day Functions ... 18
Figure 2-4 Backup Operations Configuration ... 21
Figure 2-5 Interregional Communications Network ... 22
Figure 5-1 RTC15 Time Line ... 51
Figure 5-2 RTC15 Time Line ... 62
Figure 5-3 Parallel Impact Test 15 to 30 Minutes ... 62
Figure 6-1 Real-Time Dispatch Time Line ... 92
Figure 6-2 Control Area Constraints ... 97

Table of Tables

Table 4.1 Corrective Control Strategies ... 34
Table 4.2 Conversion from Universal Time ... 47
Table 5.1 Scheduling and Physically Curtailing Firm Bilateral Transactions 67
Table 5.2 NYISO Curtailment Steps ... 69
Table 5.3 Re-Instatement of Curtailed Bilateral Transactions .. 69
Table 5.4 Transaction Conversion Curtailment Notifications Used by NYISO 70
Table 5.5 Scheduling and Dispatching LBMP Suppliers and Loads 71
Table 5.6 Unit Startup Characteristics .. 77
Table 5.7 Resource Categories ... 78
Table 5.8 SRE Replacement Decision ... 84
Table 5.9 Assignment of SRE Replacement Costs ... 88
Table 6.1 Demand Curves ... 99
Table A.1 NYISO Facilities Requiring Coordination and Notification 106
Table A.2 Bus Voltage Limits for NYISO Secured Transmission System 107
Table A.3 Bus Voltage Limits for HQ-NYISO Transfers .. 108
This page intentionally blank.
Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Revisions</th>
</tr>
</thead>
</table>
| 2.4 | 12/01/2014 | **Global**
 - Updated links from individual manuals to the NYISO Manuals webpage
Section 5.1.1
 - Incorporated CTS bids into types of external transaction bids
 - Revisions to reflect scheduling 15-minute external transactions from the first timestep of RTC
 - Revisions to external proxy bus pricing used for settlement
Figure 5.1
 - Revisions to reflect scheduling 15-minute external transactions from the first timestep of RTC
Section 5.1.3
 - Updated to remove information no longer posted by RTC
Table 5.1
 - Revised terms to be inclusive of CTS bids as necessary
Section 5.2.4
 - Clarifications to distinguish CTS bids from other types of external transaction bids
 - Added description of process for creating CTS bid from accepted DAM transactions
Section 6.3.5
 - Update the reference to the 5018 transmission line from "Branchburg-Ramapo Interconnection" to "Hopatcong-Ramapo Interconnection" |
| 2.3 | 10/23/2012 | **Section 2.1**
 - Updated link to NYISO Agreement, NYISO/TO Agreement, and NYSRC Agreement
Section 3.1.4
 - Updated link to NYISO Ancillary Services Manual
 - Added link to NYCA regulation requirements
Section 3.1.11
 - Updated link to Accounting and Billing Manual
Section 5.1.1
 - Updated link to Ancillary Services Manual
Section 5.1.3
 - Revised to reflect posting of both a Regulation Capacity and a Regulation Movement price
 - Clarify that RTC prices are posted separately from RTD prices
Section 5.2.4
 - Corrected formatting error
Section 6.1.1
 - Clarified that Real-Time Market Prices are calculated for Regulation |
<table>
<thead>
<tr>
<th>Section</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.2</td>
<td>Revised to reflect posting of both a Regulation Capacity and a Regulation Movement price. Remove reference to RTD 15-minute look ahead price postings.</td>
</tr>
<tr>
<td>6.2.1/6.2.2</td>
<td>Clarified that Regulation schedules are set to zero during Reserve Pickup and Max Gen Pickups.</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Revised interchange modeling assumptions to match revisions to TB 152.</td>
</tr>
<tr>
<td>6.3.10</td>
<td>Revised reference to NPCC document describing SAR procedure.</td>
</tr>
</tbody>
</table>

Revision History

2.2 02/1/2012 Global

- Reformatted per new template to standardize presentation.
- Implemented minor stylistic changes.
- Standardized labeling and numbering of tabular material.
- Revised external-document links to explicitly cite URLs from which documents may be accessed.

Table of Tables

- Expanded to include tables in attachments.

Revision History Table

- Changed column headings as follows:
 - "Revision" changed to "Version".
 - "Changes" changed to "Revisions".

Section 2.1.5 and 2.1.6

- Switched the order of 2.1.5 and 2.1.6 to better depict the hierarchical relationship between all of the NYS Reliability Rules and the subset of Reliability Rules known as Local Reliability Rules.
- Added material on the evolution and implementation of reliability rules and the NYISO's responsibilities with regard to reliability rules (incorporated Technical Bulletin #159).
- Clarified via a new heading that the process outlined for defining new applications of reliability rules or modifying existing applications of the reliability rules applied to changing the TO application of such rules.

Section 2.2.5

- Added material detailing the conditions under which LESRs will participate in reserve pickups.

Section 2.4

- Modified the Real-time market timelines to reflect 15-minute scheduling and the elimination of pre-scheduling.

Section 4.1.3

- Clarified treatment of Firm Transmission Service for Imports and Exports.

Section 4.2.7

- Clarified that any of the steps outlines may be taken in to relieve the security violation.
Section 4.2.12
- Added new subsection on Status of Transmission and Generation Protection Systems-incorporated TB 167

Section 5.1.1
- Clarified that RTC15 schedules hourly transactions and that all RTC runs establish schedules for 15-minute transactions.
- Added new material on initialization status, startup time, minimum run time, and minimum down time with regard to the Real-Time Commitment process.
- Clarified the timeframe during which customers may submit Real-Time Bids into RTC for real-time evaluation.
- Added new material detailing the need for internal bilateral transactions involving trading hubs to be balanced and defining the meaning of balanced in this context. Incorporated TBs 18, 51, 145

Section 5.1.2
- Removed reference to second impact test.

Section 5.2.3
- Clarified treatment of Firm Bilaterals to align with strategic tariff review updates.

Section 5.2.4
- Incorporated TB #40

Section 6.2
- Added material specifying LESR response in relation to corrective action during Real-Time Dispatch.

Section 6.3
- Added real-time telemetry of energy storage levels for LESRs to the list of the initial conditions that RTC/RTD determines in beginning the commitment and dispatch process.

Section 6.3.6
- Added a footnote to Table 6.1 stating that If the Regulation Demand Curve is active, RTD will not set basepoints for LESR energy management.

Attachment A
- Table A.1, A.2, and A.3 - replaced with links to the external locations where each table is maintained.

Attachment B
- Table B.1, B.2, B.3, B.4, and B.5 - replaced with links to the external locations where each table is maintained.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>09/04/2008</td>
<td>Updated Table B-1 to reflect Exceptions to the NYSRC Reliability Rules</td>
</tr>
<tr>
<td>2.0</td>
<td>11/21/2007</td>
<td>Complete manual rewrite.</td>
</tr>
<tr>
<td>1.0</td>
<td>09/01/1999</td>
<td>Initial Release</td>
</tr>
</tbody>
</table>
This page intentionally blank.
1. INTRODUCTION

The NYISO Transmission & Dispatching Operations Manual is one of a series of manuals within the Operations Manuals. This Manual focuses on describing each of the Transmission & Dispatching Operations with respect to the New York Independent System Operator (NYISO) facilitates and/or controls.

This Manual consists of five sections as follows:

1. Section 1: Introduction
2. Section 2: Overview
3. Section 3: Operations Monitoring
4. Section 4: Transmission Operations
5. Section 5: Scheduling Operations
6. Section 6: Dispatching Operations

1.1 References

The references to other documents that provide background or additional detail directly related to the NYISO Transmission & Dispatching Operations Manual are:

- NYISO Emergency Operations Manual
- NYISO Accounting and Billing Manual
- NYISO Day-Ahead Scheduling Manual
- NYISO Ancillary Services Manual
- NYISO Tariffs
- New York State Reliability Council (NYSRC) Agreement
- Market Participant User’s Guide
2. **OVERVIEW**

This section presents an overview of the following:
- Operating Policy
- NYISO versus Transmission Owner Responsibilities and Authorities
- Normal and Warning Operating States
- Market Operations Time Line
- Operations Functions
- Communications

2.1 **Operating Policy**

Under the authority granted by the Federal Energy Regulatory Commission and the terms of the NYISO Agreement, the NYISO/Transmission Owner Agreement, and the NYSRC Agreement (all of which are available from the NYISO Web site at http://www.nyiso.com/public/markets_operations/documents/legal_regulatory/index.jsp), the NYISO has the authority to direct the operation of the New York State Power System (NYS Power System) to maintain system reliability in accordance with good utility practice and the Reliability Rules. The goal is to anticipate potential problems, apply preventative measures, and to respond quickly to actual problems when they occur.

To meet its obligations under the Reliability Rules with respect to maintaining the security of the NYS Power System, the NYISO shall maintain a list of transmission facilities included within the NYS Transmission System, defined as the NYISO Secured Transmission System. The NYISO is responsible for the following:
- The coordination of the operation of those facilities under its Operational Control with the responsible Transmission Owners (TO)
- The commitment and/or dispatch of supply and demand resources connected to the NYS Transmission system, and/or
- The control and/or coordination of facilities used to provide ancillary services
 - Transmission facilities that are under NYISO operational control and require NYISO notification are listed in Attachment A.1 of this Manual.
 - Transmission facilities that require NYISO notification are listed in Attachment A.1 of this Manual.
 - Bus Voltage Limits for buses included as part of the NYISO Secured Transmission System are listed in [Attachment A.2](#) and [Attachment A.3](#) of this Manual.

2.1.1 **Operating States**

The following five operating states are defined for the NYS Power System:

1. Normal
2. Warning
3. Alert
4. Major Emergency
5. Restoration

The NYISO Shift Supervisor shall determine the state of the NYISO Secured Transmission System by comparing system conditions against certain monitoring criteria. The NYISO Shift Supervisor shall also monitor weather conditions and forecasts.

1. When the NYISO Shift Supervisor determines the state of the NYISO Secured Transmission System is Normal or Warning, the NYISO shall operate the NYS Power System according to the procedures described in this Manual.
2. When the NYISO Shift Supervisor determines the state of the NYISO Secured Transmission System is Alert, Major Emergency, or Restoration, the NYISO shall operate the NYS Power System according to procedures in the *NYISO Emergency Operations Manual* (available from the NYISO Web site at the following URL: http://www.nyiso.com/public/markets_operations/documents/manuals_guides/index.jsp).

2.1.2 NYISO Objective

It is the objective of the NYISO to operate the NYISO Secured Transmission System within the Normal State. Conditions may cause the NYISO Secured Transmission System to depart from the Normal State. Such conditions include, but are not limited to, the following:

1. Capacity deficiencies
2. Energy deficiencies
3. Loss of generation or transmission facilities
4. High voltage
5. Low voltage
6. Environmental episodes
7. Transmission overloads
8. Abnormal power system frequency

When the NYISO Secured Transmission System enters a condition other than the Normal State, the NYISO shall act to return the NYISO Secured Transmission System to the Normal State. When the criteria for the Normal State cannot be achieved, the NYISO shall satisfy as many of the Normal State criteria as possible, and shall minimize the consequences of any single contingency. Should a disturbance occur, the NYISO shall minimize its extent and duration.

When multiple violations occur within the same state, actual violations shall be corrected before predicted violations. Where multiple violations of differing state criteria occur, the most serious violation shall be solved first.
2.1.3 Emergency Conditions

The NYISO Schedule Coordinator, the NYISO Shift Supervisor, or both shall forecast the likelihood of the occurrence of states other than the Normal State as far in advance as possible. If it is predicted that Load Relief, either by Voltage Reduction or Load Shedding, may be necessary during a future period, the NYISO Shift Supervisor shall notify all TOs.

Transmission Owners shall develop the necessary communication policies with Transmission Customers. The specific operating methods used by each TO are not necessarily identical. The NYISO Shift Supervisor shall coordinate such methods to achieve uniform results.

2.1.4 General Reliability Rules

The New York State Reliability Council (NYSRC) has the responsibility to develop, establish, maintain, assure compliance with, and, from time-to-time, update the Reliability Rules, which must be complied with by the NYISO and all entities engaging in electric power transactions on the NYS Power System. The NYSRC relies upon the reliability standards, regulations, criteria, procedures, and rules established or imposed by:

- North American Electric Reliability Corporation (NERC),
- Northeast Power Coordinating Council (NPCC),
- Federal Energy Regulatory Commission (FERC),
- New York State Public Service Commission (PSC),
- Nuclear Regulatory Commission (NRC), and/or
- Any other government agency with jurisdiction over the reliability of the NYS Power System.

The NYISO, a Market Participant, or a member of the NYSRC Executive Committee may petition the NYSRC Executive Committee to seek specific and limited exceptions to NERC and NPCC criteria, provided the intent of the criteria is not compromised. The NYSRC will incorporate all new mandatory compliance rules of NERC and NPCC, unless existing Reliability Rules are more stringent.

2.1.5 Applications of the Reliability Rules

Prior to the NYISO startup, the Applications of the Reliability Rules (Applications) were existing operating procedures and local rules implemented by the Transmission Owners in New York. The Applications of the NYSRC Reliability Rules were assembled from these procedures and acknowledged by the NYSRC. The Applications are implemented through procedures that apply to very specific system locations or conditions in New York.

As a threshold matter, please note that the NYISO’s tariffs implement certain Reliability Rules directly. The implementation of the Applications of the Reliability Rules will continue to require close coordination between the transmission owners and the NYISO in
order to maintain the reliability of the NYS Power System. The Transmission Owners (TO) must continue to coordinate with the NYISO on the implementation of Applications of the Reliability Rules for those portions of the New York State Transmission System ("NYS Transmission System") not included in the NYISO secured transmission system.

The NYISO oversees compliance with the Reliability Rules for the New York State Power System. The NYISO performs periodic compliance reviews to determine whether the TOs are continuing to apply the Applications to a specific local area. The Annual NYSRC Compliance Program determines the frequency and schedule for the compliance reviews.

Transmission Owner Responsibilities

The TOs are responsible for implementing the Applications of the Reliability Rules for those portions of the NYS Power System that are not included in the NYISO Secured Transmission System. Implementation of certain Applications of the Reliability Rules must be coordinated with the NYISO where the NYISO lacks the necessary analysis and/or monitoring capabilities.

The TOs shall maintain procedures to implement the Applications. Any new or revised procedure developed or modified by the TO shall be provided to the NYISO Staff for review and approval.

A Transmission Owner may define new or modified Applications of the Reliability Rules. New or modified Applications of the NYSRC Reliability Rules, proposed by a Transmission Owner are subject to review and approval by the NYISO Staff.

NYISO Responsibilities

The NYISO shall maintain the Applications of NYSRC Reliability Rules and make them in a table posted on the NYISO’s website. The NYISO will review these Applications with the TOs periodically and update the table of Applications as necessary.

The NYISO Staff shall review and approve any modified or newly proposed Applications of the Reliability Rules. Following approval, the NYISO shall notify the NYSRC and revise the table of TO Applications.

The NYISO may also propose revisions to or additional Applications of the Reliability Rules. The NYISO will work closely with the Transmission Owner to develop and implement these Applications.

The NYISO shall also review and approve any new or revised procedures developed by the TO associated with an Application.

Changes to the TO Application of Reliability Rules

The following process will be used to define new Applications of Reliability Rules or modification of existing Applications of the Reliability Rules:

1. The following entities can define new Applications of the Reliability Rules or modify existing Applications of the Reliability Rules:
 - NYISO
 - NY Transmission Owners
2. Applications of the Reliability Rules proposed by the TOs shall be referred to the NYISO for approval.

3. Once the NYISO concurs, it shall take two actions:
 ▶ Include them in the next version of the NYISO Transmission and Dispatching Operations Manual, and
 ▶ Advise the NYSRC.

4. The NYSRC shall post the updated Applications of the Reliability Rules on its web site.

Any incremental uplift costs incurred to meet Applications of the Reliability Rules shall be recovered by the NYISO through a statewide uplift charge if the Application secures a facility within the NYISO Secured Transmission System. Applications of the Reliability Rules may apply to facilities that are not included in the NYISO Secured Transmission System, but are implemented by the NYISO at the TO’s request. Incremental uplift costs associated with such Applications shall generally be borne by the Load Serving Entities in the Zone or Zones of the TO(s) making the request.

The Application of the Reliability Rules and the associated cost allocations are listed in Table B.5 of this Manual.

2.1.6 NYSRC Local Reliability Rules

Local Reliability Rules (LRR) are a specific set of five rules defined in the New York State Reliability Rules and are maintained by the New York State Reliability Council (NYSRC). They apply to New York City (I-R1 through I-R4), and Long Island (I-R5).

I-R1 – Operating Reserves / Unit Commitment (New York City)
I-R2 – Locational Reserves (New York City)
I-R3 – Loss of Generator Gas Supply (New York City)
I-R4 – Thunderstorm Watch (New York City)
I-R5 – Loss of Generator Gas Supply (Long Island)

transmission owner LRR responsibilities

The Transmission Owners are required to maintain procedures to comply with each NYSRC LRR. These procedures shall contain operational parameters that are developed based on studies performed by the TO. The NYSRC Reliability Rules require the NYISO to review and approve any updates to procedures or studies associated with the NYSRC LRRs.

. At times, TOs may propose modifications to the NYSRC LRRs or other Reliability Rules. Any proposed change to a Reliability Rule is required to be presented to the NYSRC for consideration by the NYSRC through the Reliability Rules development process. (See the appropriate NYSRC Policy at http://www.nysrc.org/policies.asp)
NYISO LRR Responsibilities

The NYISO Staff will review any new or revised procedures developed by the TO associated with the NYSRC LRRs.

The NYISO Operating Committee (OC) is responsible for review and approval of any operational parameters necessary to implement the Application associated with NYSRC LRRs.

The OC may require review and approval of any study or analysis that was completed to justify new or modifications of existing operational parameters.

The NYISO will post the Applications associated with all Local Reliability Rules in the table of Applications of the Reliability Rules on the NYISO’s website (see Table B.5).

The LRRs of the New York TOs are listed in Table B.4 of this Manual.

2.2 NYISO, Transmission Owner, and Generator Owner Responsibilities and Authorities

The following defines the responsibilities and authorities assigned to the NYISO, TOs, and Generator Owners.

2.2.1 Background Definitions

New York State Transmission System (NYSTS)

The New York State Transmission System (NYS Transmission System) includes: (1) the Transmission Facilities Under NYISO Operational Control; (2) the Transmission Facilities Requiring NYISO Notification; and (3) all remaining transmission facilities within the NYCA.

Local Area Transmission System Facilities are the Transmission Facilities and the subtransmission facilities that are not included in Table A.1 of this Manual.

New York State Power System (NYSPS)

The New York State Power System includes all facilities of the NYS Transmission System and all those Generators located within New York or outside New York, some of which may be from time-to-time subject to operational control by the NYISO.

Thus,

\[
\text{NYSPS} = \text{NYSTS} + \text{Internal/External Generators Subject to NYISO Operational Control}
\]

Reliability Rules

Those rules, standards, procedures, and protocols developed and promulgated by the NYSRC (in accordance with NERC, NPCC, FERC, PSC, and Nuclear Regulatory Commission (NRC) standards, criteria, rules and regulations, and other criteria) and the LRRs pursuant to the NYSRC Agreement.
NYISO Secured Transmission System

Certain transmission facilities in the NYS Transmission System that the NYISO will be responsible to secure through: (1) the coordination of the operation of those facilities under its Operational Control with the responsible TOs, (2) the commitment and/or dispatch of supply and demand resources connected to the NYS Transmission System, and/or (3) the control and/or coordination of system elements used to provide ancillary services.

All the facilities in the NYISO Secured Transmission System are identified in Table A.1 of this Manual. Bus Voltage Limits for buses included as part of the NYISO Secured Transmission System are listed in Table A.2 of this Manual.

Therefore:

1. A Transmission Facility may be under NYISO Operational Control **but not** part of the NYISO Secured Transmission System.
2. A Transmission Facility may be subject to NYISO Notification (i.e., not under NYISO Operational Control), and yet be part of the NYISO Secured Transmission System.
3. NYISO Secured Transmission System Facilities designated on the NYISO Operational Control and/or NYISO Notification Lists will be secured by the NYISO only in terms of flows on those facilities. NYISO Secured Transmission System Facilities designated on the Bus Voltage Limit list will be secured by the NYISO in terms of voltages at those buses.
4. Maintenance of the Normal State by the NYISO, and declaration of the Alert, Warning, Major Emergency, and Restorative States by the NYISO will pertain to the NYISO Secured Transmission System only.

2.2.2 General Relationships between NYISO and Transmission Owners

Operation of the NYS Power System will be a cooperative effort coordinated by the NYISO Control Center in conjunction with each TO's Control Center, and will require instantaneous exchange of all scheduling information.

In general, the NYISO will have operational control over key transmission facilities and it will be notified of any change in status for other facilities.

The NYISO enforces the Reliability Rules for the NYISO Secured Transmission System. Certain applications of the Reliability Rules, previously implemented by the TOs, will continue to require close coordination between the TOs and the NYISO to maintain the reliability of the NYS Power System.

2.2.3 NYISO Responsibilities and Authorities

The primary responsibilities and authorities of the NYISO are:

1. Control Area operations of the NYS Power System.
2. Perform balancing of generation and load while maintaining the safe, reliable, and efficient operation of the NYS Power System.
3. Mitigate the impact of Constraints on the NYS Transmission System, including nondiscriminatory redispatch and Curtailments.

5. Exercise Operational Control over certain facilities of the NYS Power System under normal operating conditions and system Emergencies to maintain system reliability. For the NYISO Secured Transmission System, maintain appropriate flows and voltage levels during normal operations and order adjustments to be made under emergency conditions.

6. In the event of, or to prevent, a Major Emergency State, Eligible Customers shall comply with all directions from the NYISO concerning the avoidance, management, and alleviation of the Major Emergency and shall comply with all procedures concerning Major Emergencies set out in the NYISO Procedures and the Reliability Rules.

7. Under adverse conditions (as defined above), the NYISO will direct the adjustment of Generator output levels in certain areas of the NYS Power System to reduce power flows across the vulnerable transmission lines to reduce the likelihood of a major power system disturbance. The NYISO shall have the authority to declare that adverse conditions are imminent or present and invoke the appropriate operating procedure(s) affecting the NYS Power Systems under NYISO control in response to those conditions.

10. Approve maintenance schedules for Transmission Facilities under NYISO Operational Control based on approved criteria.

2.2.4 Transmission Owner Responsibilities and Authorities

The primary responsibilities and authorities of each TO are as follows:

1. Implement the Reliability Rules for those portions of the NYS Transmission System not included in the NYISO Secured Transmission System.

2. Coordinate with the NYISO to implement certain applications to the Reliability Rules where the NYISO lacks the necessary expertise and/or monitoring capabilities.

3. Physically maintain and operate Table A.1 facilities under direction and control of the NYISO to assure secure operation of the NYISO Secured Transmission System.

4. Comply with maintenance schedules coordinated by the NYISO for Table A.1 facilities.

5. Recommend activation of applicable procedures for adverse conditions associated with a Local Reliability Rule to the NYISO. The TO and the NYISO shall coordinate implementation of the procedures that impact Table A.1 facilities.
6. Notify NYISO prior to any planned outage and notify the NYISO of any change in status of Table A.1 facilities requiring NYISO notification.

7. Physically maintain and operate Table A.1 facilities requiring NYISO notification.

8. Operate Local Area Transmission System Facilities, provided it does not compromise the reliable and secure operation of the NYS Transmission System.

9. Promptly comply, to the extent practical, with a request from the NYISO to take action with respect to coordination of the operation of its Local Area Transmission System facilities.

10. Take action with respect to the operation of its facilities, as it deems necessary to maintain Safe Operations. Promptly conduct investigations of equipment malfunctions and failures, significant forced transmission outages, and provide a report of such investigations to the System Protection Advisory Subcommittee.

11. Determine the level of resources to be applied to restore facilities to service following a failure, malfunction, or forced transmission outage.

12. Each TO shall continue to receive telemetry from existing Generators in its control center and provide for the receipt of such information from new Generators.

2.2.5 Generator Owner Responsibilities

The responsibilities of the Generator Owners include Generator Response during Reserve Activation as follows:

Dispatchable Generating Units Not Providing Regulation Service

All non-wind units that are NOT “self-committed fixed” or “ISO-committed fixed” are expected to respond to a reserve pickup 10-minute basepoint at its emergency response rate as bid. If the unit exceeds the given basepoint within the reserve pickup, it will be paid for the overgeneration. However, the unit must return to its Real-Time Dispatch (RTD) basepoint, which will be consistent with the LBMP, within three (3) RTD intervals (approximately 15 minutes) following termination of the reserve pickup. The unit will also be paid for overgeneration during that grace period.

Generating Units Providing Regulation Service

A unit providing regulation service is expected to respond to a reserve pickup 10-minute basepoint at its stated response rates as bid. If the unit exceeds the given basepoint within the reserve pickup, it will be paid for the overgeneration. However, the unit must return to its RTD/Automatic Generation Control (AGC) basepoint, within three (3) RTD intervals following termination of the reserve pickup. The unit will be paid for overgeneration during the three (3) RTD interval grace period. Limited Energy Storage Resources (LESRs) do not participate in reserve pickups except as follows:

1. If they are consuming (charging) when the event is called, AGC will move the LESR to a zero output position and
2. If they are injecting (discharging), AGC will maintain their current output subject to any energy limitations.

2.3 Normal and Warning Operating States

This section of the manual discusses the criteria for the Normal and Warning States.

2.3.1 Definition of Normal State

The Normal state exists when all conditions are within their normal boundaries and rating limits or after facilities have returned to within their normal operating limits. Imminent or immediate operator action is not necessary.

2.3.2 Normal State Criteria

All of the following criteria must be met for the NYCA to be operating in the Normal State:

1. Pre Contingency (Actual) Flow Criteria:

 Normal Transfer Criteria: Actual loading of equipment defined as the NYS Transmission System does not exceed their associated Normal ratings.

2. Post Contingency Flow Criteria:

 Single Circuit and Two adjacent circuits on same structure Criteria:
 - Normal Transfer Criteria: Loss of any single generator, single circuit, or adjacent circuits on the same structure, together with other facilities, which will trip at the same time due to pre-set automatic devices, will not cause any portion of the NYS Transmission System to exceed its Long Term Emergency (LTE) rating.

 The following are exceptions to the criteria.
 - The Post-Contingency loading of any underground cable may exceed its LTE rating, but not its Short Term Emergency (STE) rating, provided 10-minute reserve or phase angle control is available to return its post-contingency loading to its LTE rating within 15 minutes, without causing another facility to be loaded beyond its LTE rating.
 - With prior approval of the NYISO, the post-contingency loading of any portion of the NYS Transmission System may exceed its LTE rating, provided sufficient control is available to return the loading on the facility to its LTE rating within 15 minutes, without causing another facility to exceed its LTE rating.
 - Multiple circuit towers used only for station entrance and exit purposes, which do not exceed five towers at each station, are not considered adjacent circuits on the same structure. (For specific exceptions, see Table B.2 of this Manual.)
 - Actual voltages on all buses listed in Table A.2 and Table A.3 of this Manual are within pre-contingency limits.

3. Sufficient Operating Reserve exists to meet the requirements specified by the NYSRC.
4. NYS Power System stability limits and post-contingency flow limits associated with a voltage collapse are not exceeded.
5. Area Control Error is no greater than +/- 100 MW, or not more than +/- 500 MW for more than 10 minutes.
6. Power system frequency is not less than 59.95 Hz or greater than 60.05 Hz.
7. All communications facilities, computers, control, and indication equipment necessary to monitor these criteria are available.
8. All neighboring Control Areas are operating under Normal State conditions.

2.3.3 Definition of Warning State
The Warning state exists when specified limits have transgressed beyond the Normal state but do not severely impact or limit the operation of the NYISO Secured Transmission System unless they remain unchecked. Operator action may be required to return the system to the Normal state.

2.3.4 Warning State Criteria
The Warning State exists when any of the following conditions occur:

1. Pre Contingency (Actual) Flow Criteria:
 Normal Transfer Criteria: The actual loading on any portion of NYISO Secured Transmission System is 105% or more of its associated Normal Rating, but is less than the LTE rating for not more than 30 minutes or exceeds its Normal Rating by less than 5% and corrective actions are not effective within 10 minutes.
 Emergency Transfer Criteria are invoked: The actual loading of any NYISO Secured Transmission System facility does not exceed its associated Normal rating.

2. Post Contingency Flow Criteria:
 Normal Transfer Criteria: A condition exists for not more than 30 minutes and the predicted post-contingency loading of a NYISO Secured Transmission System facility will exceed its associated LTE rating but not its STE rating.
 Emergency Transfer Criteria are invoked: The loss of any single generator or circuit, together with other facilities, which will trip at the same time due to pre-set automatic devices, will not cause any NYS Transmission System facility to exceed its STE rating.

3. Sufficient Operating Reserve exists to meet the requirements specified by the NYSRC, but only using Emergency Transfer Criteria.
4. Area Control Error is greater than +/- 100 MW, but not more than +/- 500 MW for more than 10 minutes.
5. A neighboring Control Area is not operating under Normal State conditions, but has not implemented voltage or load reduction.
6. An Operating Reserve deficiency is predicted for the NYCA peak load forecast and reserve purchases are not available.
2.4 Market Operations Time Line

Operation of the NYCA and the Locational Based Marginal Pricing (LBMP) Market involves many activities that are performed by different operating and technical personnel. These activities occur in parallel on a continuous basis, 24 hours a day. Figure 2-1 summarizes the important events that characterize the day-to-day operation of the NYISO LBMP market. Although this Manual focuses mainly on dispatch day activities, it is important to understand how day-ahead activities can impact real-time operation.

Figure 2-1 Energy Market Operations Timeline

For more information, see the NYISO Day Ahead Scheduling Manual, available from the NYISO Web site at the following URL:

The activities shown by the time line are described briefly as follows:
1. **0500 (D-1):** Closing time of the day-ahead energy market.
2. **0800 (D-1):** The load forecast for the State of New York is posted.
3. **1100 (D-1):** The results of the day-ahead security constrained unit commitment (SCUC) are posted.
4. **1400 (D-1):** Deadline for Capacity Limited Resources (CLRs) to submit requests for derates and for NOX impacted entities to submit requests for steam unit operation.
5. **1600 (D-1):** Day-ahead external interchange transaction checkout has been completed.
6. **2200 (D-1):** Deadline for NERC E-Tags to be submitted for external interchange transactions.
7. **xx45 (H-2):** Closing time of the real-time energy market.
8. **Starting with xx15 (H-1):** The Real-Time Commitment (RTC) application, that executes periodically every 15 minutes. The execution at xx15 posts the upcoming “Dispatch Hour” external interchange transaction schedules for hourly transactions, while every execution posts the interchange transaction schedules for intra-hour transactions according to the scheduling frequency supported at each external proxy.
9. **xxxx (H):** The dispatch hour with locked offers/bids and interchange transactions.

Dispatch Day

The 24-hour period commencing at the beginning of each day (0000 hour).

Dispatch Hour

The 60-minute period commencing at the beginning of each hour of the dispatch day (xx00 hour).

Real-Time

The following applications are said to execute in “real-time”:

- **Real-Time Commitment (RTC)** – executes every 15 minutes as described in this Manual.
- **Real-Time Dispatch (RTD)** – executes every 5 minutes as described in this Manual.
2.5 Operations Functions

The following areas are covered by the operations functions described in this Manual:

- NYISO Secured Transmission System Monitoring
- Transmission System Operation
- Energy Market Overview
- Energy Market Functions
- Backup Operations

2.5.1 NYISO Secured Transmission System Monitoring

The NYISO Secured Transmission System is monitored on a continuous basis to evaluate its current operating state. The first step in this process is to determine which of the five States the NYISO Secured Transmission System is in. This Manual covers the Normal and Warning States.

The monitored conditions of critical concern include:

- System Load and Operating Reserves
- Regulation capability
- NYISO Secured Transmission System flows and voltages
- NYCA Control Error
- This section discusses the power system monitoring requirements and procedures in further detail.

2.5.2 Transmission System Operation

The operation of the NYISO Secured Transmission System reflects the criteria that have been established for existing conditions as well as for anticipated contingency conditions. This Manual defines the secure operation of the NYISO Secured Transmission System as well as the corrective measures that need to be taken to maintain secure operation.

Section 3 of this Manual discusses the transmission system operational requirements and procedures in further detail.

2.5.3 Energy Market Overview

A review of market mechanics is presented in Figure 2-2 as an introduction to the dispatch day functions. Sections 5 and 6 of this Manual provide further detail.
Figure 2-2 Market Overview
2.5.4 Energy Market Functions

Figure 2-3 Day-Ahead and Dispatch Day Functions

The following is a brief summary of each function block in Figure 2-3. The dotted boxes are described in more detail in other NYISO Manuals:

1. **Market Mitigation & Analysis Department (MMA):** The MMA Department is charged with analyzing market participant bids and their impact on energy market prices. MMA applies mitigation measures in the event that it detects conduct that is inconsistent with competition, e.g., physical withholding.

2. **Market Information System (MIS):** The MIS is the primary user interface between market participants and the NYISO. Market information is received
and posted via the MIS. Refer to the NYISO Market Participant User’s Guide for details.

3. **Load Forecaster (LF):** The LF application produces NYCA load forecasts for SCUC, RTC, and RTD. Refer to the NYISO Day-Ahead Scheduling Manual for details.

4. **Day-Ahead Security Constrained Unit Commitment (SCUC):** The SCUC program establishes the outcome of the day-ahead market (DAM) based on forecast conditions and NYS Power System reliability requirements. SCUC executes over a 24-hour load forecast horizon to produce startup, shutdown, and hourly energy schedules for the resources that have bid into the DAM. Refer to the NYISO Day-Ahead Scheduling Manual for details. The SCUC model serves as the basis for deriving the Day-Ahead Market transmission loss and congestion sensitivity coefficients.

5. **Outage Scheduler (OS):** The OS function maintains a record of planned and forced power system facility outages and their scheduled return to service. Outage information is available to the market applications and to the power system analysis applications. Refer to the NYISO Outage Scheduling Manual for details.

6. **Power System Security Monitor:** The power system security monitoring applications assess forecasted and actual power system conditions and the impact of potential contingencies. These applications also establish the list of facilities the operating limits of which must be observed by the market applications.

7. **Real-Time Commitment (RTC) & Real-Time Automated Mitigation Process (RT-AMP):** The RTC and RT-AMP functions execute periodically on a 15-minute basis with a 2¼-hour look-ahead horizon, and post their commitment and scheduling results on the quarter hour (15, 30, 45, 00).

8. **LBMP Calculations:** The RTC and RTD programs produce LBMPs for market advisory and settlement purposes.

9. **Reserve Comparator (RC):** The RC program compares actual NYCA reserves, by category, against their corresponding requirements. Refer to the NYISO Ancillary Services Manual for details.

10. **Real-Time Dispatch (RTD) & RTD-Corrective Action Mode (CAM):** The RTD function executes periodically on a 5-minute basis with a 50, 55, or 60-minute look-ahead horizon, and posts its results on the five-minute clock times. The RTD-CAM functions override the normal RTD executions, as determined by the NYISO Operators, to deal with “off-normal” power system conditions. The RTD model serves as the basis for deriving the Real-Time Market transmission loss and congestion sensitivity coefficients.

11. **Fast Start Unit Management (FSM):** The FSM function provides the facility for the NYISO Operators to coordinate the commitment schedules produced by RTC and RTD-CAM. The FSM is used to approve/disapprove commitment schedules from RTC/RTD-CAM, and to manually commit/decommit other fast-start units.
12. **Thunderstorm Alert (TSA):** TSA is declared by NYISO Operators when severe operating conditions are detected. A predetermined set of pre- and post-contingency constraints are passed to the RTC and RTD programs while TSA is in effect.

13. **Automatic Generation Control (AGC):** The AGC program regulates the generation resources to balance load, generation, and interchange and help to maintain the Eastern Interconnection power system frequency. Refer to the NYISO Ancillary Services Manual for details.

14. **Performance Tracking System (PTS):** The PTS monitors the on/off-line status of generating units and their actual MW output versus their scheduled output. Refer to the NYISO Ancillary Services Manual for details.

15. **State Estimator (SE):** The SE produces an accurate real-time model of the NYS Power System, including a representation (equivalent) of the power system external to the NYISO. The SE is used to verify metered data and to estimate data values that are not metered.

16. **Supervisory Control & Data Acquisition (SCADA) System:** The SCADA system provides direct communications between the NYISO Control Center and the remote transmission owner and power plant control centers. The NYISO transmits (telemeters) desired control actions to the remote control centers and receives current operational feedback data from these control centers.

17. **Billing & Accounting System (BAS):** The BAS itemizes those data elements that are stored or produced by the various subsystems so that line item settlement statements can be calculated after-the-fact on a monthly basis. Refer to the NYISO Accounting & Billing Manual for details.

2.5.5 Backup Operations

The Backup Operations is a comprehensive set of procedures that address the possible loss of functionality of the NYISO Control Center, TOs’ Control Centers, and NYISO/TO communications facilities. Backup Operations is comprised of the following principle components and procedures:

- Manual Dispatch Systems – NYISO Power Control Center (PCC) & NYISO Alternate Control Center (ACC)
- Market Suspension Criteria
- Interim NYCA Operation – Transition period between PCC and ACC operation
- NYISO Alternate Control Center

Figure 2-4 illustrates the components that comprise backup operations. For details, refer to the *NYISO Backup Operations Manual* (available from the NYISO Web site at http://www.nyiso.com/public/markets_operations/documents/manuals_guides/index.jsp).
2.6 Communications

This subsection describes the NYISO hotline and interregional communications systems.

2.6.1 Hotline Communications

The NYISO Hotline can be operated in two ways:

- Initiated by the NYISO
- Initiated by a Local TO Control Center

Initiated by the NYISO Shift Supervisor

A single pushbutton is used by the NYISO Shift Supervisor to ring a hotline phone in each local TO Control Center. The communications is two-way broadcast. That is, if a local TO Control Center operator speaks, it is heard by all the hotline phones.

Initiated by a Local Control Center System Operator

A local TO Control Center System Operator can call the NYISO Shift Supervisor on the hotline. In this situation, the NYISO Shift Supervisor hotline is the only hotline phone that
rings. TOs’ Control Center System Operators should only use this method of communication with the NYISO Shift Supervisor under urgent conditions.

Interregional Communications Network

When the NYISO receives information via the NERC conference feature, it is relayed to Ontario, Hydro-Quebec, and New England by means of automatic ringdown leased lines. If the information is of an emergency nature, those three locations may be conferenced together for one announcement. ISO-NE relays the information to the Maritimes via an automatic ring-down leased line to New Brunswick. **Figure 2-5** illustrates the interregional communications network.

![Interregional Communications Network](image-url)

Figure 2-5 Interregional Communications Network
3. **Operations Monitoring**

This section describes the NYS Power System operations monitoring requirements and procedures.

3.1 Operations Monitoring Requirements

This section identifies the requirements for monitoring the operation of the NYCA. The conditions that are monitored include the following:

- Current Operating State
- System Load
- Operating Reserve
- Regulation
- NYISO Secured Transmission System
- Ancillary Services
- Communications
- Weather Conditions
- Telemetered Data

Reliability Assessment

The NYISO performs a Real-Time assessment of the reliability of the NYISO Secured Power System periodically upon status change, and upon operator demand. The main functions that are performed are:

- Real-Time Data Monitoring and Alarming
- DC Thermal Security Analysis
- Reserve Calculation
- Regulation Requirement

3.1.1 Real-Time Data Monitoring and Alarming

This function is executed, nominally every six (6) seconds for SCADA data and thirty (30) seconds for state estimated values.

NYISO Actions

The following are performed:

1. Determines whether to use: (1) metered values (2) state estimated values or (3) NYISO override/substitution values for:
 a. Switch status data
 b. Analog data
2. Checks the analog data against limits for voltage, flows on lines and transformer banks, and interface flows.
3. Finds and opens “modeled” breakers corresponding to non-metered outaged facilities, based on NYISO activation.
4. Executes the network configuration function, which processes the user switch data from (1) and (3) above.
5. Derives confirmation page alarms for NYISO review and validation.
6. Produces the following results:
 a. User analog data
 b. Audible alarms, text alarms, mimic board outputs
 c. Confirmed switch status
 d. Updated outage schedules

3.1.2 Security Assessment

The security assessment is triggered to execute on:
- Network configuration status change
- Periodic, nominally every 30 seconds
- Operator demand

NYISO Actions

The following are performed:
1. Executes the network configurator and state estimator functions based on confirmed switch status
2. Performs a contingency analysis based on the state estimator solution of the NYS Transmission System, using:
 a. Pre-defined single and multiple contingencies
 b. Facility Line ratings and interface transfer limits
 c. Active RTD constraints
3. Produces a list of potential transmission system violations for NYISO Operations review based on actual SCADA (actual violations only) or state-estimated values (contingency violations only).

3.1.3 Reserve Calculation

The NYISO monitors NYCA reserve every five minutes (Reserve Monitor Program using actual generation). These reserve calculations indicate the reserve available for the NYCA. Corrective action is taken by the NYISO only if the NYCA is deficient in reserve. Reserve calculations and constraints are also performed by RTC and RTD.

Minimum Operating Reserve Requirement

The Minimum Operating Reserve Requirement of the NYCA is defined as:

1. Sufficient Synchronized Reserve Available in 10 minutes to replace one-half of the operating capability loss caused by the most severe contingency observed
under Normal Transfer Criteria multiplied by the contingency reserve adjustment factor.

2. Sufficient Reserve Available in 10 minutes (which includes synchronous reserve available in 10 minutes) to replace the operating capability loss caused by the most severe contingency observed under Normal Transfer Criteria multiplied by the contingency reserve adjustment factor.

3. Sufficient Reserve Available in 30 minutes (which includes reserve available in 10 minutes) equal to one and one-half times the operating capability loss caused by the most severe contingency observed under Normal Transfer Criteria.

4. Sufficient Reserve in 10 minutes to return the system to a Normal State following the most severe transmission contingency multiplied by the contingency reserve adjustment factor.

At all times sufficient 10 Minute Reserve shall be maintained to cover 1) the energy loss due to the most severe Normal Transfer Criteria contingency within NYCA or 2) the energy loss associated with recallable import transactions from another control area, whichever is greater.

3.1.4 Regulation Requirement

The NYCA Regulation requirements, in MW/minute, are established by analyzing NYCA daily load patterns and actual operating conditions. The NYISO establishes the regulation and frequency response requirements consistent with criteria established by NERC, which may vary by hour and season.

This Manual describes the process by which the NYCA regulation requirement is allocated to the generating units.

The NYISO will determine the amount of regulation required for different time periods and load conditions in accordance with procedures defined in the NYISO Ancillary Services Manual (available from the NYISO Web site at the following URL: http://www.nyiso.com/public/markets_operations/documents/manuals_guides/index.jsp). The amount of Regulation Service required varies on an hourly and seasonal basis. The NYCA regulation requirements are posted on the NYISO website at the following URL: http://www.nyiso.com/public/webdocs/market_data/reports_info/nyiso_regulation_req.pdf

3.1.5 Operations Monitoring Procedures

This section describes the procedures associated with monitoring the operation of the NYS Power System. General procedures dealing with the Normal State and Warning State are given first, followed by specific procedures to be carried out under Normal and Warning State conditions.

Specific procedures cover the following:

- Response to Normal State Conditions
- Response to Warning State Conditions
• Reliability Assessment Support
• Automatic Voltage Regulators / Power System Stabilizer Outages
• Communication of NYCA Operating Conditions
• Hourly Inadvertent Accounting
• Local Reliability Rules
• Applications of the NYSRC Reliability Rules
• Daily Operation for Monitoring Operating Reserve

3.1.6 Response to Normal State Conditions

NYISO Actions

The NYISO shall monitor NYS Power System conditions at all times, and determine and apply the applicable actions listed below that are necessary to remain in the Normal State:

1. Coordinate actions with TOs and other Control Areas.
2. Initiate one or more of the following actions:
 a. Adjust phase angle regulators.
 b. Shift or start generation by NYISO request to obtain additional reactive power (MVAr) control.
 c. Activate reserves.
 d. Adjust reactive sources and transformer taps.
 e. Perform Generation shifts.
 f. Modify Interchange Schedules.
 g. Request NYS Transmission System facilities that are out of service for maintenance to be returned to service.
 h. For high voltage conditions only, request NYS Transmission System facilities that are in service to be removed from service where appropriate.
 i. Implement manual voltage reduction.
 j. May call for a reserve pickup to return to schedule if the NYISO Area Control Error exceeds 100 MW.
 k. Take actions to maintain operating reserve, in accordance with the procedures described in this Manual.

Transmission Owner Actions

NYISO operational contact is generally with the TO. The TOs are responsible for controlling or coordinating the operation of Generators connected to their systems, as follows:

1. Coordinate and implement corrective actions, as requested by the NYISO Shift Supervisor.
2. Monitor conditions with respect to their own systems.
3. Perform the following actions when the NYCA is operating in the Normal State and Normal State Criteria are not met:
a. Notify the NYISO Shift Supervisor.
b. Request assistance from the NYISO Shift Supervisor, as required.
c. Initiate unilateral corrective action, if the violation is severe enough to require immediate action.

Other Considerations

1. All schedule changes should be analyzed in advance of implementation in an effort to avoid violation of the Normal State criteria.
2. The NYISO shall dispatch the system such that the removal of any facility for scheduled work will not result in the violation of these criteria in the Normal State. Transmission Owners are responsible for providing appropriate advance notice of such switching.
3. During periods when adverse conditions such as tornadoes or hurricanes exist, or are forecast to occur within the service area of the NYISO Systems, it may be necessary to take steps in addition to those procedures normally followed to maintain system security.
4. It is the responsibility of the NYISO to monitor weather conditions and forecasts issued by the National Weather Bureau. Should local adverse conditions occur or if they are predicted to occur, it is the responsibility of the TO to inform the NYISO. If a situation involving impending severe weather exists, the NYISO shall notify all TOs and consider declaration of the Alert State.
5. The actual voltage on all busses listed in Table A.2 and Table A.3 shall be monitored by the NYISO and TOs. It shall be the TO responsibility to maintain voltage levels within limits specified in Table A.2 and Table A.3 and to coordinate actions, which would affect voltage levels on busses of other TOs or Neighboring Systems.

If the NYISO anticipates conditions, which would cause the voltage at any bus listed in Table A.2 and Table A.3 to violate Normal State Criteria, the NYISO shall notify the TOs, and together they shall formulate a corrective strategy. If implementation of the corrective strategy does not produce the desired result, and the NYISO determines that further corrective action is necessary to remain in the Normal State, the NYISO shall request such actions in accordance with Normal State Responses. TOs must coordinate and implement corrective actions as requested by the NYISO.
6. It may be necessary to schedule energy transactions from neighboring control areas for reliability reasons in accordance with Interconnection Agreements.

3.1.7 Response to Warning State Conditions

NYISO Actions

The NYISO shall monitor system conditions at all times and determine the action(s) listed below that are necessary to return the system to the Normal State:

1. Coordinate actions with TOs and other Control Areas.
2. Initiate one or more of the following actions:
 a. Adjust phase angle regulators.
 b. Shift or start generation by NYISO request to obtain additional reactive power (MVAr) control.
 c. Activate reserves.
 d. Adjust reactive sources and transformer taps.
 e. Perform Generation shifts.
 f. Modify Interchange Schedules.
 g. Request NYS Transmission System facilities that are out of service for maintenance to be returned to service.
 h. For high voltage conditions only, request NYS Transmission System facilities that are in service to be removed from service where appropriate.
 i. Implement manual Voltage Reduction.
 j. May call for a reserve pickup to return to schedule if the NYISO Area Control Error (ACE) exceeds 100 MW.
 k. Take actions to maintain operating reserve, in accordance with the procedures described in this Manual.
 l. Curtail non-essential TO and Generation Owner load.
 m. Order Generation to full operating capability.

3. Take the following actions if the above measures are insufficient to comply with Normal Transfer Criteria within 30 minutes or Operating Reserve cannot be delivered due to transmission limitations for 30 minutes:
 a. Notify all TOs, via the Hotline communications system, that Emergency Transfer Criteria are in effect for the facility (ies) involved.
 b. Take actions, as required, to stay within Emergency Transfer Criteria.
 c. Confer with TOs that will have Post-Contingency loading or voltage conditions that exceed allowable limits. Jointly develop strategies to be followed in the event a contingency occurs, including preparation for a rapid Voltage Reduction and/or Load Shedding.

4. If following the implementation of the actions listed above all Normal State criteria cannot be achieved, satisfy as many of the Normal State criteria as possible.

Transmission Owner Actions

Transmission Owners shall perform the following actions:

 a. Coordinate and implement corrective actions, as requested by the NYISO Shift Supervisor.
 b. Monitor conditions with respect to their own systems.
 c. Perform the following actions when the NYCA is operating in the Warning State and Warning State Criteria are not met:
 d. Notify the NYISO.
 e. Request assistance from the NYISO, as required.
f. Initiate unilateral corrective action, if the violation is severe enough to require immediate action.

Other Considerations

1. For all contingencies that would result in a violation of the Warning State criteria, corrective action that would be necessary if the contingency occurs shall be determined through coordination between the NYISO and the affected TO.

2. If the NYISO foresees an extended period of operation in the Warning State, a canvass of the TO Systems shall be made to determine if assistance can be provided.

3. If the situation involving impending adverse conditions exists, the NYISO shall notify all TOs and consider declaration of the Alert State.

3.1.8 Reliability Assessment Support

NYISO Actions

The NYISO shall perform the following actions in support of the Reliability Assessment function:

1. Execute the Reliability Assessment function on demand following a power system disturbance.

2. Override and substitute SCADA analog and status data that is incorrect or missing.

3. Activate outages in the network model by “opening” the appropriate breakers or switches in the model.

4. Review and acknowledge any alarm messages.

5. Review the “Confirmation” display and make any necessary corrections or adjustments to the incoming data.

6. Review and acknowledge potential transmission system violations produced by the state estimator and Security Analysis functions.

3.1.9 Automatic Voltage Regulator / Power System Stabilizer Outages

NYISO Actions

The NYISO shall perform the following actions:

1. Coordination of generating unit Automatic Voltage Regulator (AVR) and Power System Stabilizer (PSS) outage requests provided the following criteria have been met:

 a. No more than six AVRs shall be allowed out-of-service simultaneously throughout the NYCA, with a limit of three in the Area east of the Central/East Interface, and three more west of the Central/East Interface.
b. No more than one generating unit PSS shall be allowed out-of-service throughout the NYCA. If a generating unit PSS is out-of-service, then ensure all applicable system transmission limits have been adjusted to account for such outages.

2. Maintain a log of the AVR s and PSSs taken out-of-service and their return to service. The form is shown in Attachment D and shall be included with the daily transmission outage summary sheets.

Generator Owner Actions

Generator Owners shall coordinate the outage of AVR s and PSSs on generating units with 40 MW capability or larger with the NYISO.

3.1.10 Communication of New York Control Area Operating Conditions

NYISO Actions

The NYISO shall perform the following actions:

1. Obtain the following data for the NYCA Report, prior to 0530 hours:
 - Generator anticipated operating capability for the NYCA peak hour, including all purchases and sales.
 - Forecast NYCA load requirements.
2. Determine the following information for the NY Control Capacity Report display, using the acquired data:
 - NYCA forecast peak hour load
 - NYCA reserve requirements
 - NYCA generation available capability
 - Interchange summary and peak hour Desired Net Interchange (DNI)
 - Total anticipated reserve for the NYCA peak hour
 - Previous day’s peak load and hour
4. Immediately report any critical change in the status of the NYCA, either via the emergency telephone system or the NYCA Status Report.
5. Report all NYCA disturbances, e.g., loss of a major generator, when appropriate.
6. Notify the NYISO designated media contact (or the designated alternate) when system conditions exist that would result in general public awareness of an actual or impending situation.

3.1.11 Hourly Inadvertent Accounting

The following procedures apply only to the NYISO. The NYISO Accounting and Billing Manual (available from the NYISO Web site at the following URL: [NYISO Web site URL].)

NYISO Actions

The NYISO shall perform the following checks on an hourly basis:

1. *Prior to each hour* – The sum of External transaction schedules should be equal to the NYCA DNI schedule.
2. *After each hour* – The sum of the interconnection readings should be equal to the NYCA Actual Net Interchange (ANI).
3. *After each hour* – The NYCA Inadvertent Interchange should be equal to the difference between the DNI and ANI.
4. *After each hour* – Reconcile any inadvertent variances with neighboring Control Areas.
5. *After each day* – Reconcile any inadvertent variances with neighboring Control Areas.

3.2 Daily Operation for Monitoring Operating Reserve

The NYISO Shift Supervisor will monitor the Operating Reserve both as forecast for the expected system peak each day and under actual conditions as the day progresses.

Peak Load Forecast

The NYISO Shift Supervisor (or designee) shall prepare the NYISO daily status report twice daily, in anticipation of the morning peak and evening peak as indicated in this Manual.

If a shortage of energy, reserves, or Ancillary Services is projected, the NYISO will take actions as directed in the *NYISO Emergency Operations Manual*, available from the NYISO Web site at the following URL:

4. TRANSMISSION OPERATIONS

This section describes the NYS Transmission System operations requirements and procedures.

4.1 Transmission Operations Requirements

This section addresses the operation of the NYISO Secured Transmission System when it is in the Normal State or Warning State. The following requirements and guidelines are discussed:

- NYISO Secured Transmission System Operating Limits
- Corrective Control Strategies
- Transmission Service Reduction & Curtailment
- Solar Magnetic Disturbances

The Transmission Facilities Under NYISO Operational Control and subject to Orders from the NYISO are identified in Table A.1 of this Manual. The Transmission Facilities Requiring NYISO Notification are also identified in Table A.1.

4.1.1 NYISO Secured Transmission System Operating Limits

Limits that are used in the operation of the NYCA are classified as follows:

1. **Thermal (Summer/Winter):** MW
 - **Normal:** Continuous
 - **Long Term Emergency (LTE):** 4-hours within 24-hour period
 - **Short term Emergency (STE):** 15-minutes

2. **Voltage:** kV
 - Pre-contingency High/Low
 - Post-contingency High/Low

3. **Frequency:** Hz
 - Normal High
 - Normal Low

4. **Interface Transfer:** MW
 - Stability
 - Voltage Collapse

4.1.2 Corrective Control Strategies

The major electrical network problems that can occur in the NYCA and the primary (or most effective) means of overcoming these problems are identified in Table 4.1. The major problems are:

- Facility overloads and excessive transfers
- NYISO Secured Transmission System low voltage conditions
- NYISO Secured Transmission System high voltage conditions
- System low frequency conditions
- System high frequency conditions

Table 4.1 Corrective Control Strategies

<table>
<thead>
<tr>
<th>NY Control Area Problems</th>
<th>Overloads & Excess Transfer</th>
<th>Low Trans. Voltage</th>
<th>High Trans. Voltage</th>
<th>Low Frequency</th>
<th>High Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator MW</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Phase Angle Regulator (PAR)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Area Interchange</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generator MVar (AVR)</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformer Tap (LTC)</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shunt Capacitor</td>
<td>IN</td>
<td>OUT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shunt Inductor</td>
<td>OUT</td>
<td>IN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synchronous Condenser MVar (AVR)</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static Var Compensation (SVC)</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmission Lines</td>
<td>✓</td>
<td></td>
<td>OUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circuit Breaker</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PS Pump Operation</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS Generator Operation</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>Voltage Reduction</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load Curtailment</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load Shed</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Some of the controls listed in Table 4.1 are automatically applied by local closed-loop control while other controls are acted on by the TOs upon NYISO request. The NYISO has no direct means (via SCADA) of controlling the generation, transmission, and distribution systems.
4.1.3 Transmission Service Reduction and Curtailment

Firm Transmission Service

If a Transmission Customer's Firm Transmission Service is supporting a Bilateral Transaction supplied by an Internal Generator and that Generator is dispatched downward, the NYISO shall not curtail the Transmission Service. The NYISO shall continue to supply the Load or Transmission Customer in an Export with Energy from the Real-Time LBMP Market provided however, the NYISO shall reduce Transmission Service supporting a Export bilateral if the amount of Energy scheduled to be exported is reduced. The NYISO shall not reduce Transmission Service scheduled to support an Import with a non-reference bus sink even if the amount of Energy scheduled to be imported is reduced.

Non-Firm Transmission Service

If the Transmission Customer was receiving non-Firm Transmission Service and its Transmission Service was Reduced or Curtailed, the replacement Energy will be purchased in the Real-Time LBMP Market by the Internal Load. An Internal Generator supplying Energy for such a Transmission Service that is Reduced or Curtailed will sell its Energy in the Real-Time LBMP Market.

The NYISO will not automatically reinstate non-Firm Transmission Service that was Reduced or Curtailed. Transmission Customers need to submit new schedules to restore the Transmission Service associated with their Transaction in the next RTC execution.

Negative Congestion

The following rules apply to negative congestion and non-firm transmission service:

1. Non-Firm transmission service that encounters negative congestion will not be curtailed. The rationale for this is that any transaction that relieves congestion should not be curtailed.

2. Non-Firm transmission service that encounters negative congestion will not be paid for the negative congestion. The rationale for this is as follows:

A non-firm transaction is not willing to pay positive congestion (and thereby reduce overall transmission costs); therefore, it should not be entitled to receive negative congestion costs. Furthermore, a payout of negative congestion to non-firms would increase overall uplift.

A transaction wishing to receive a payment for negative congestion can request firm transmission service for that transaction.

4.2 Transmission Operations Procedures

These procedures apply mainly to the operation of the NYISO Secured Transmission System network facilities. Procedures for the following are covered:

- Developing & Approving Operating Limits
- Voltage Control
- Guidelines for Leeds and Fraser SVCs to Control Voltage
- Phase Angle Regulators – ConEd/PSE&G
• Phase Angle Regulators Operations
• Implementing Special Multiple Contingencies
• Exceptions to the NYSRC Reliability Rules
• Security Violation Relief
• Operating Under Adverse Conditions
• Solar Magnetic Disturbances

4.2.1 Developing & Approving Operating Limits

Procedures have been established for the following:

1. The approval and implementation of operating limits developed from off-line computer studies conducted by the NYISO.
2. The collection of operating data required to determine voltage limits for selected buses in the NYCA.

NYISO Actions

The NYISO shall perform the following actions:

1. Prepare Seasonal studies of thermal transfer limits for the “all-lines in” condition.
2. Prepare stability transfer limits for the “all-lines in” condition. These limits will be used for the secure operation of the NYISO Secured Transmission System.
3. Prepare pre-contingency (high/low) and post-contingency (high/low) voltage limits for the “all-lines in” and prevailing conditions. These limits will be used for the secure operation of the NYISO Secured Transmission System.
4. Review and update the data maintained by the NYISO Data Bank program. This data will be used for network, stability and voltage control parameters, in preparation of seasonal, and/or for specific operating studies base cases.

NYISO Operating Committee Actions

The NYISO Operating Committee shall review and approve the recommended limits developed by the NYISO staff.

4.2.2 Voltage Control

These procedures are for coordinating and controlling the voltage of the NYISO Secured Transmission System and define the respective actions to be taken by the NYISO and the TOs. The purpose is to provide adequate voltages necessary to maintain power transfer capabilities and to keep voltages within prescribed limits to avoid damage to equipment.

NYISO Actions – General

The NYISO shall perform the following actions:

1. Anticipate the effects, voltage levels, and trends in the NYCA and adjacent Control Areas.
2. Determine and request corrective actions that need to be taken to remain in the Normal State.
3. Coordinate requests for corrective actions with the TOs and adjacent Control Areas that can assist in adjusting voltage on the buses being corrected.
4. Inform the affected TOs of anticipated changes in reactive support from pumped hydro units, Static Var Compensators, or neighboring Control Areas.
5. Request Generators (via their TOs) to adjust machine excitation as required to maintain desired NYISO Secured Transmission System voltages within limits.

Transmission Owner Actions – General

The TO shall perform the following actions:

1. Observe the status and availability of major reactive resources on its system and determine any restrictions on those sources.
2. Control the voltage on its transmission system to be within its internal limits. Under normal conditions, maintain reactive power flows on tie lines with adjacent Control Areas in accordance with mutually agreed upon schedules and NPCC Inter-Control Area Voltage Control Procedures.
3. Provide assistance (consistent with its internal limits) to other TOs as requested by the NYISO.
4. Coordinate and notify the operation (prior to execution) of the following devices with the NYISO and TOs: (1) switching of shunt capacitors and inductors and (2) changing of SVC mode or state. Under Emergency conditions a TO may perform the control actions prior to notification of the NYISO TO and affected TOs, but shall inform them as soon as possible.

NYISO Actions – High-Voltage Conditions

The NYISO shall request the TOs to perform the following normal steps to alleviate high voltage conditions:

1. Switch out shunt capacitors
2. Switch in shunt inductors
3. Request that machine excitation be decreased to decrease the reactive power output
4. Adjust load tap changing (LTC) transformer tap positions
5. Reschedule pumped hydro units to pump
6. Adjust SVC output
7. Start fast response units with reactive power absorption capability
8. Switch out lines, as a last resort, without dropping load or generation

NYISO Actions – Low-Voltage Conditions

The NYISO shall request the TOs to perform the following normal steps to alleviate low voltage conditions:

1. Switch in shunt capacitors
2. Switch out shunt inductors
3. Request that machine excitation be increased to increase the reactive power output
4. Adjust load tap changing (LTC) transformer tap positions
5. Reschedule pumped hydro units to generate
6. Motor pumped hydro units to produce reactive power
7. Adjust SVC output
8. Start fast response units with reactive power export capability to help raise the system voltage
9. Switch in lines where available

Transmission Owners Actions – SVC Operation

Static Var Compensators (SVCs) are intended to be used for mitigating post-contingency voltage oscillations and voltage control when the power system is loaded close to the transfer limits. SVCs are not intended for steady state pre-contingency voltage support. The TO shall perform the following actions:

1. Maintain the SVC in the automatic mode and in the minimum output state within a deadband around zero reactive power output, under normal conditions.
2. Return the SVC to its minimum output state, after a disturbance has been cleared.
3. Coordinate the use of the SVC for bus voltage regulation with the NYISO and other affected TOs.

4.2.3 Guidelines for Leeds and Fraser SVCs to Control High Voltage

The guidelines for the operation of the Leeds and Fraser SVCs to control high voltage are given as follows:

1. **General Requirements:**
 - The HQ/NY Import/Export on the Chateauguay – Massena 7040 line is at or below 1000 MW.
 - Central – East and Total – East transfers are at or below transfer limits that assume the SVCs are unavailable.
 - All appropriate switchable shunt capacitors have been taken out-of-service. All appropriate switchable inductors have been placed in-service.
 - The maximum reactive capability of any Gilboa units or pumps currently in-service is being used. The effect of a Gilboa unit or pump to go in-service should be taken into account.
 - The SVCs must be able to automatically respond to contingencies.
2. Specific Conditions to Use the Fraser SVC:
Subject to the above general requirements, the inductive capability of the Fraser SVC may be used to control high voltage in the area of the Marcy-South transmission lines subject to the following specific conditions:

- The capacitors at Marcy, Fraser, Coopers Corners, and Rock Tavern are out-of-service.
- The Marcy inductor is in-service.
- The capacitors at Gilboa should also be switched out-of-service, and any Gilboa units/pumps currently in-service should be absorbing maximum reactive power, provided that this does not cause unacceptably low voltage at Gilboa, New Scotland, or Leeds.
- The Oakdale 345 kV bus voltage is maintained above its pre-contingency low voltage limit.

3. Specific Conditions to Use the Leeds SVC:
Subject to the above general requirements, the inductive capability of the Leeds SVC may be used to control high voltage on the Eastern New York 345 kV Transmission System where it would be effective subject to the following specific conditions:

- The Marcy inductor is in-service.

The Fraser capacitors should be switched out-of-service, provided this does not cause unacceptably low voltage at Fraser, Oakdale, Marcy, Edic, or Coopers Corners.

4. Specific Conditions for the 7040 Line Out-of-Service:
Subject to the above requirements and conditions, the inductive capability of the Leeds and/or Fraser SVCs may be used to control high voltage when the 7040 line is out-of-service, with the additional provision that either both shunt reactors on the Massena-Marcy MSU-1 line are in-service, or the MSU-1 line is out-of-service.

4.2.4 Phase Angle Regulators Operations

Normal Operating Conditions
Under normal operating conditions, TOs shall determine power flows on PAR controlled lines and normally will implement PAR adjustments to avoid the need for generation redispatch if NYISO Secured transmission constraints can be mitigated by such adjustments. Significant schedule changes (100 MW or more) on inter-Control Area or inter-company tie lines shall be coordinated with the NYISO. However, small changes of 1 or 2 taps during changing load conditions, such as morning load pickup or evening load drop, that are within operating guidelines on inter-Control Area or inter-company ties may be coordinated between the affected companies.

The maximum loading of overhead lines controlled by PARs shall be the lesser of the normal rating or a level such that the post-contingency flow will not exceed its LTE rating. The post-contingency loading of any underground cable may exceed its LTE rating, but not its STE rating, provided 10-minute reserve or phase angle control is available to return its
post-contingency loading to its LTE rating within 15 minutes without causing another facility to be loaded beyond its LTE rating.

Power flows on PAR controlled lines that are within a TO’s system shall be monitored and controlled by that TO. Power flows on other PAR controlled lines shall be monitored by the NYISO and appropriate action shall be coordinated with the TOs.

The following PAR actions apply to normal conditions.

NYISO Actions

The NYISO shall perform the following actions:

1. Coordinate the operation of the PARs that affect the transfer of power between the NYCA and adjacent Control Areas.
2. Request the TOs and adjacent Control Areas to adjust PAR taps.

Transmission Owner Actions

Transmission Owners shall perform the following actions:

1. Set the PAR taps and normally implement PAR adjustments to avoid the need for generation redispatch if NYISO-secured transmission constraints can be mitigated by such PAR adjustments.

4.2.5 Phase Angle Regulators – Con Ed/PSE&G Systems

Con Edison and PSE&G are interconnected at several locations with the following Phase Angle Regulators (PARs) to control the transfer of power over the circuits connecting the two companies:

1. A 345 kV phase angle regulating transformer with a range of ± 25° installed at the Con Edison Goethals substation.
2. Two 345 kV phase angle regulating transformers each with a range of ± 30°, installed at the Con Edison Farragut substation.
3. A 230 kV phase angle regulating transformer with a range of ± 25°, installed in the Waldwick-Hillsdale-New Milford Circuit located at the PSE&G Waldwick Switching Station.
4. A 230 kV phase angle regulating transformer with a range of ± 25°, installed in the Waldwick-Fair Lawn Circuit located at the PSE&G Waldwick Switching Station.
5. A 230 kV phase angle regulating transformer with a range of ± 25°, installed in the Waldwick-Hawthorne Circuit located at the PSE&G Waldwick Switching Station.

A FERC approved Operating Protocol (NYISO Market Service Tariff Attachment M-1) has been developed that is used by the NYISO and the Pennsylvania, New Jersey, Maryland Interconnection (PJM) in preparing to operate, and operating in real-time, the hourly flow of energy over the Consolidated Edison (ConEd) and Public Service Electric & Gas Company (PSEG) interconnections.
4.2.6 Implementing Special Multiple Contingencies

The SCUC and RTC/RTD programs normally incorporate the contingencies that are applicable to the power system as it is being operated. These procedures apply to special operating conditions when additional contingencies are required due to certain maintenance outage conditions.

NYISO Actions

The NYISO shall perform the following actions:

1. Validate the need for special multiple contingencies and request the TOs to submit the required information as defined.
2. Following notification by the TO to the NYISO Outage Scheduling Department and Transmission System Operator, the NYISO will implement the special multiple contingency for the Day-Ahead and Real-Time Market operation.

Transmission Owner Actions

The TO shall perform the following actions:

1. Notify the NYISO and request the need for monitoring of special contingencies.
2. Supply a description of the special operating maintenance condition, a list of the components making up the multiple contingency, the limiting element(s) the date/time to initiate the monitoring and the date/time to terminate the monitoring.
3. Observe the following lead times to implement such a contingency:
 - The necessary data must be provided to the NYISO Outage Scheduling Department at least by the morning of the previous working day, prior to the closing of the Day-Ahead Market.
 - Notification must be provided to the Transmission System Operator at least one hour in advance of the special operating condition.
4. Provide special contingency data when required and requested by the NYISO.

4.2.7 Security Violation Relief

When a security violation occurs or is anticipated to occur on the NYISO Secured Transmission System, the NYISO shall attempt to relieve the violation by using any one or more of the following procedures, typically in this order:

3. Re-dispatch internal Generators, based on Incremental and Decremental Bids.
4. Adjust the NYCA’s DNI by manually curtailing Firm Transmission Service associated with Transactions supplied by External Generators. The NYISO shall decide which Transmission Service is to be curtailed based on the Decremental Bids in conjunction with NERC procedures, and shall curtail...
Transmission Service until the transmission violation is relieved or all such Transmission Service has been curtailed.

5. Request Internal Generators to voluntarily operate in manual mode below minimum dispatchable levels.

6. Decommit Internal Generators based on their minimum generation Bid rate in descending order.

7. Attempt to purchase emergency energy from other control areas that will provide relief to the security violation.

4.2.8 Procedure for Relief of Potential Overloads on Non-ISO Secured Facilities

The NYISO Security Analysis Program identifies and alerts the dispatchers to actual and potential overloads on the NYISO-secured transmission system. Occasionally actual or post-contingency potential overloads on non-secured facilities occur which, if uncorrected, could lead to cascading outages and subsequent overloads on NYISO secured transmission facilities.

This section defines actions to be taken by the NYISO Shift Supervisor (NYISO SS) when such conditions exist to coordinate an appropriate action plan.

1. During normal operation, the NYISO shall monitor the state of the system utilizing the Security Analysis Program. Whenever the actual or predicted post-contingency power flow on a monitored facility that is not secured by the NYISO exceeds its applicable rating, the NYISO shall notify the affected TO (rating authority).

2. If the predicted post-contingency loading is greater than LTE, but less than or equal to the STE rating of the facility, an action plan should be formulated, or refer to previously agreed upon operating practice for implementation by the TO.

3. If the predicted post-contingency flow exceeds the STE rating of the facility, the NYISO shall determine if the loss of the facility would cause other facilities to exceed their STE post-contingency ratings. If the affected facility’s loss would cause other non-secured facilities to exceed their STE rating or any Secured facilities to exceed their LTE rating the NYISO shall inform the TO (rating authority) and they shall jointly develop a strategy for correcting the condition. The TO shall carry out the corrective action to relieve the condition within 30 minutes, excluding voltage reduction and load shedding.

4. If the TO cannot relieve the problem using its own resources, the TO shall request the NYISO to obtain assistance from other systems.

5. If the condition cannot be corrected within 30 minutes of the initial violation the NYISO shall, through coordination with the TO and neighboring systems,

* Except where post-contingency flows up to STE ratings are permitted by exceptions noted in Table A.2 of the NYISO Emergency Operations Manual (available from the NYISO Web site at the following URL: http://www.nyiso.com/public/markets_operations/documents/manuals_guides/index.jsp).
determine and request the actions necessary to provide relief. Such actions shall include:

- Modifications of energy transactions
- Phase angle regulator adjustments
- Generation Shift
- Reserve activation

Generation may be ordered to full operating capability and transmission facilities that are out of service for maintenance may be ordered restored to service.

6. If these measures are insufficient to comply with Normal Transfer Criteria on secured facilities or Emergency Transfer Criteria for facilities that are not secured by the NYISO within 30 minutes of the initial violation or Operating Reserve cannot be delivered due to transmission limitations for 30 minutes, the NYISO shall take the following actions:

- Notify all TOs Systems via the Emergency Alarm System (Hot Line) that Emergency Transfer Criteria are in effect, for the facility(ies) involved.
- Take action as required to stay within Emergency Transfer Criteria.
- The NYISO shall confer with affected TOs. They shall jointly develop strategies to be followed in the event a contingency occurs. Strategies may include preparation for rapid voltage reduction and/or load shedding.

Scheduling

The NYISO Outage Scheduling Department shall attempt to avoid scheduling outages which might result in conditions that may jeopardize the security of the non-BPS Facilities.

4.2.9 Operating Under Adverse Conditions

The NYISO shall operate the NYISO secured transmission system during adverse conditions, including but not limited to peak load system conditions, thunderstorms alerts, hurricanes, tornadoes, solar magnetic flares and threat of terrorist activities, in accordance with the Reliability Rules, inclusive of LRRs and related PSC orders. Consistent with such Rules, the NYISO shall maintain reliability of the NYISO Secured Transmission System by directing the adjustment of the Generator output levels in certain areas of the system to reduce power flows across transmission lines vulnerable to outages due to these adverse conditions, thereby reducing the likelihood of major power system disturbances.

The NYISO shall have the sole authority to declare that adverse conditions are imminent or present and invoke the appropriate operating procedure(s) affecting the NYISO secured transmission system in response to those conditions. Activation of a procedure in compliance with a LRR shall involve a two step process. The TO, directly involved with such LRR, such as Storm Watch shall advise the NYISO that adverse conditions are imminent or present and recommend to the NYISO the activation of applicable procedures in support of that rule. Consistent with the LRR, the NYISO shall declare the activation of the appropriate procedures. The TO and the NYISO shall coordinate the implementation of the applicable procedures to the extent that NYISO secured transmission system facilities are impacted. Records pertaining to the activation of such procedures and the response in accordance with those procedures shall be maintained and made available upon request.
Adjusted generation levels in response to activation of these procedures shall set the real
time LBMPs. Revenue shortfalls may occur if the redispatch of the system curtails energy
scheduled Day-Ahead and more expensive energy is dispatched subsequent to the Day-
Ahead settlement. These revenue shortfalls shall be recovered through the NYISO’s
Scheduling, System Control, and Dispatch Service (Ancillary Service) charges.

4.2.10 Adverse Operating Conditions

NYISO Actions

The NYISO may perform the following actions under adverse operating conditions:

1. Notify all TOs and NPCC Control Areas.
2. Reduce RTC/RTD Stability Transfer Limits and RTC/RTD Central East Voltage Transfer Limits to 90% of the Stability Transfer Limit and Central East Voltage Transfer Limits where appropriate.
3. Reduce flows on inter-area and internal NYISO Secured Transmission System transmission lines to a maximum of 90% of the Normal Rating.
4. Cancel in-service relay and hot line work on A-1 transmission facilities. Recommend TO cancel in-service relay and hot line work on A-2 transmission facilities.
6. Request TOs to implement appropriate emergency procedures when a contingency occurs.

Transmission Owner Actions

1. Implement NYISO requests to cancel in-service relay and hot line work on A-1 transmission facilities. Evaluate cancellation in-service relay and hot line work on A-2 transmission facilities.
3. Notify the NYISO of all actions taken related to this section.
4. Implement Emergency procedures, as requested by the NYISO.

4.2.11 Solar Magnetic Disturbances

Background

The sun emits streams of charged protons and electrons known as the solar wind. The
intensity of the solar wind is determined by sunspot activities (solar flares, disappearing
filaments, and coronal holes). The solar wind interacts with the earth's magnetic field
producing auroral currents at altitudes of 100 kilometers that follow circular paths around
the earth's geomagnetic poles. These non-uniform currents then cause time-varying
fluctuations in the earth's magnetic field, which in turn induce a potential difference on the
surface of the earth. This Earth-Surface Potential (ESP) is measured in volts per kilometer.
and its magnitude and direction are functions of the change in magnetic field, earth resistivity, and geographic latitude. ESP increases with increasing latitudes and its gradient is highest on facilities having an east-west orientation. ESP is highest in igneous rock areas. The resulting ESP appears as an ideal voltage source applied between grounded neutrals of wye-connected transformers in a power system, causing Geomagnetically Induced Current (GIC) to flow between grounded neutrals via transmission lines.

During a severe Solar Magnetic Disturbance (SMD), the quasi-dc ground induced current superimposed on the normal 60 Hertz power flow can result in half-cycle saturation of the cores of grounded, wye-connected power transformers. This over-excitation may cause the following power system problems:

1. Transformer overheating resulting in premature transformer failure
2. Increased system reactive losses resulting in the depletion of MVAr reserve
3. Decreased bus voltages resulting in a possible system voltage collapse
4. Increased 60 Hertz harmonics resulting in overheating and eventual tripping of static var compensators (SVCs) and shunt capacitors, protective relay misoperations, and interference with communication systems
5. Saturation of current transformers resulting in metering errors and relay misoperations
6. System voltage distortions resulting in improper operation of generator automatic voltage regulators and commutation failures in HVDC terminals and SVCs.

Monitoring

The NYISO receives SMD forecasts and alerts from three agencies:

1. Electronically, via the Solar Terrestrial Dispatch Geomagnetic Storm Mitigation System (STD GSMS).
2. National Oceanic and Atmospheric Administration (NOAA), Space Environment Services Center (SESC) in Boulder, Colorado via the NERC Time Error Channel Network (TECN) in accordance with NERC Operating Guide No. 12, Appendix 12D.

In event of failure of the STD GSMS, the Space Environment Center (SEC) in Boulder, Colorado will verbally contact the NYISO to relay the SMD information.

An SMD forecast indicates that the condition is expected. An SMD alert indicates that the condition has occurred.

These agencies measure the disruption in the horizontal component of the earth's magnetic flux with magnetometer. The STD GSMS is kept continuously up to date by Solar Weather Specialists located at www.spacew.com. SESC measures the geomagnetic activity in Boulder, Colorado and EMR measures the geomagnetic activity from 13 observatories in the Canadian Automatic Magnetic Observation System (AMOS). This information is quantified into A and K indices for forecasting and alerting purposes. The impact of an SMD on the power system increases with the intensity of the storm.
Information pertaining to Solar Magnetic Disturbances and the level of the disturbance will be disseminated by means of the STD GSMS.

SMD Forecasts

STD through the GSMS allows for continuous updating on current Solar Magnetic Disturbance activity, as well as 24-, 48- and 72-hour predictions on SMD activity. Currently, the STD uses a Kp Index, but does not specify by level what Forecast or an Alert is issued, merely they are issued depending on the activity seen by their satellite in regards to predicted SMD activity vs. actual observed SMD activity.

SESC (Boulder) issues forecasts in the form of a daily "A" index for up to three days in advance. The "A" index is a measure of the expected geomagnetic activity at Fredericksburg, Virginia. SESC (Boulder) transmits forecasts of the following two classifications of geomagnetic activity to the NYISO:

1. Minor Storm ("A" index 30-49)
2. Major Storm ("A" index above 50)

EMR (Ottawa) issues forecasts based on daily range predictions for up to three days in advance in the sub-auroral zone in which most of the NPCC Areas are located. Ontario and Hydro Quebec receive forecasts for the auroral zones separately. EMR (Ottawa) transmits forecasts of the following two classifications of geomagnetic activity to the NYISO:

1. Active Conditions (approximate "K" index of 5 or 6)
2. Major Storm Conditions (approximate "K" index of 7, 8 or 9)

SMD Alerts

STD through the GSMS allows for continuous updating on current Solar Magnetic Disturbance activity, as well as 24-, 48- and 72-hour predictions on SMD activity. Currently, the STD uses a Kp Index, but does not specify by level what Forecast or an Alert is issued, merely they are issued depending on the activity seen by their satellite in regards to predicted SMD activity vs. actual observed SMD activity.

SESC (Boulder) issues alerts in the form of a three-hour "K" index that is based on the average of the last three hours of disruption in the horizontal component of the earth's magnetic flux measured in Boulder, Colorado. SESC (Boulder) transmits alerts of the following classification of geomagnetic activity to the NYISO:

"K" index of K5 or greater

EMR (Ottawa) issues alerts based on a three hour average range index for the last three hours of disruption in the X (geographical northward) component of the earth's magnetic flux measured by the AMOS system. EMR (Ottawa) issues alerts for the following two classifications of geomagnetic activity to the NYISO:

1. Active Conditions (approximate "K" index of 5 or 6)
2. Major Storm Conditions (approximate "K" index of 7, 8 or 9)

All time references in SMD Forecasts and SMD Alerts received from SESC (Boulder) and EMR (Ottawa) are to Universal Time (which is the same as Greenwich Mean Time), a constant scientific time reference. Eastern Standard Time lags Universal Time by 5 hours.
The NYISO converts all time references to prevailing Eastern Time (Standard Time or Daylight Saving Time) as shown in Table 4.2.

Table 4.2 Conversion from Universal Time

<table>
<thead>
<tr>
<th>If the prevailing Eastern time is:</th>
<th>Then 0600 UTC (GMT) converts to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Time</td>
<td>0100 EST</td>
</tr>
<tr>
<td>Daylight Savings Time</td>
<td>0200 EDT</td>
</tr>
</tbody>
</table>

No NYISO actions are required if:
- SMD Forecast of an A-index is equal to or less than 29 and
- SMD Alert is equal to K4 or less

Minor storm active conditions exist when:
- A-index is greater than 29 but less than or equal to 50 and
- Alert is greater than K4 but less than or equal to K6

NYISO Actions

The NYISO shall perform the following actions:

1. Complete the Solar Magnetic Disturbance Form shown in Attachment C of this Manual, upon notification of an SMD Forecast of an A-index greater than 50 or an SMD Alert of K6 or greater.
2. Notify all TOs and NPCC Control Areas.
3. If an Alert of K7 or greater has been issued on the STD with significant GIC (Ground Induced Currents) activity observed by a neighboring Control Area or a Transmission Owner, the NYSIO shall initiate the following actions:

Declare Alert State

1. Notify TOs to reduce normal limits on inter-area and internal NYS Power System transmission lines and transformers to a maximum of 90% of the normal rating where appropriate.
2. Request generators (via their TOs) to adjust machine excitation, to maintain the NYISO Secured Transmission System voltages within acceptable operating ranges to protect against voltage swings.
3. Reduce RTC/RTD Stability Transfer Limits and RTC/RTD Central East Voltage Contingency Limits to 90% of the Stability Transfer Limit and Central East Voltage Contingency Limits where appropriate.
4. Request TOs to implement appropriate emergency procedures, when a contingency occurs.
5. Reduce flows on inter-area and internal NYISO Secured Transmission System transmission lines to a maximum of 90% of the Normal Rating.
6. Activate Thunder Storm Warning cases (TSW) when an alert of K9 has been issued and significant GIC activity has been observed.
Transmission Owner Actions

TOs shall perform the following actions upon notification of an SMD Alert of a Major Storm Condition (K7-K9) or prior to the forecasted arrival of the storm upon notification of an SMD Forecast of a Major Storm Condition (K7-K9):

1. Restore out-of-service transmission facilities, where possible, and avoid taking long transmission lines out of service.
2. Review all in-service work, evaluate the impact of the loss of these facilities on the NYISO Secured Transmission System, and cancel in-service work on critical facilities.
3. Monitor the MVAr and voltage displays on their SCADA systems for unusual voltage and/or MVAr variations.
4. Keep area substation capacitor banks in service, where possible, and evaluate the impact of the loss of transmission shunt capacitor banks.
5. Notify the NYISO of all actions taken related to this section.

Implement Emergency procedures, as requested by the NYISO.

4.2.12 Status of Transmission and Generation Protection Systems

Background

NERC reliability standards require the NYISO to be cognizant of the status of transmission and generation special protection systems affecting the New York bulk power system.

Details

In order to assist the NYISO in performing its responsibilities as a Reliability Coordinator, Transmission and Generation Owners and Operators in the NYISO Reliability Coordination Area are required to perform the following:

1. **Coordination.** Coordinate protection systems and changes in generation, transmission, load, or operating conditions that could require changes in the protection systems of others. This coordination shall take place between the affected facility owners.

2. **Operational Status.** Notify the NYISO of changes in the operational status of all Special Protection Systems. This reporting will be to the NYISO Grid Operations Shift Supervisor via the affected Transmission Owner’s control center. NYISO will notify neighboring Balancing Authorities as noted in the New York Protection Memos.

3. **Failures.** Notify the NYISO of relay or protective system operational failures which reduce system reliability. Failures should be reported immediately to the NYISO Grid Operations Shift Supervisor via the affected Transmission Owner’s control center. NYISO will notify neighboring Balancing Authorities as noted in the New York Protection Memos.

References for this Section 4.2.12:

This page intentionally blank.
5. **Scheduling Operations**

This section describes the Dispatch Day scheduling process, covering the following:

- Real-Time Commitment
- Scheduling Operations Requirements
- Scheduling Operations Procedures
- Supplemental Resource Evaluation Procedures

5.1 **Real-Time Commitment**

Real-Time Commitment (RTC) is a multi-period security constrained unit commitment and dispatch process that co-optimizes to solve simultaneously for Load, Operating Reserves, and Regulation Service on a least as-bid production cost basis over a two-hour and fifteen-minute optimization period. The optimization evaluates the next ten points in time separated by fifteen-minute intervals. Each RTC run within an hour shall have a designation indicating the time at which its results are posted; “RTC00,” RTC15,” RTC30,” and RTC45” post on the hour, and at fifteen, thirty, and forty-five minutes after the hour, respectively. Each RTC run will produce binding commitment instructions for the periods beginning at fifteen and thirty minutes after its scheduled posting time, and will produce advisory commitment guidance for the remainder of the optimization period. RTC15 will also establish External Transaction schedules for hourly transactions. Figure 5-1 presents the timeline for RTC15.

![Figure 5-1 RTC15 Time Line](image-url)
5.1.1 Real-Time Commitment Process

RTC will make binding unit commitment and de-commitment decisions for the periods beginning fifteen minutes (in the case of Resources that can respond in ten minutes) and thirty minutes (in the case of Resources that can respond in thirty minutes) after the scheduled posting time of each RTC run, will provide advisory commitment information for the remainder of the two and a half hour optimization period, and will produce binding schedules for External Transactions to begin at the start of each quarter hour. RTC will co-optimize to solve simultaneously for all Load, Operating Reserves and Regulation Service requirements and to minimize the total as-bid production costs over its optimization timeframe. RTC will consider SCUC’s Resource commitment for the day, load forecasts from the load forecasting program and loss forecasts that RTC itself will produce each quarter hour, binding transmission constraints, and all Real-Time Bids and Bid parameters.

Initialization Status

RTC honors all day-ahead commitments of internal generation resulting from SCUC, except for 10 and 30 minute start gas turbines. The unit statuses at the time of initialization are based on the current operating mode at the time of initialization, modified to include projected changes from the previous quarter hour’s evaluation.

Startup Time

RTC can commit units with a startup time of 30 minutes or less. For instance, units that submit a 30-minute startup time will receive a binding startup notification from the RTC that posts its results 30 minutes before the scheduled start of the unit. Units that submit a 10 to 15-minute startup time will receive a binding startup notification from the RTC that posts its results 15 minutes before the scheduled start of the unit.

Minimum Down Time

The minimum down time is honored by RTC unless a unit has a Day-Ahead Market commitment included as part of the 2 ½ hour RTC evaluation window. In this situation, RTC will automatically reset the bid minimum down time parameter at the start of its evaluation to honor the Day-Ahead commitment.

Minimum Run Time

The minimum run time values allowed in RTC can be as little as 15 minutes. The longest Minimum Run Time allowed for generators that are economically committed by RTC in the Real-Time Market shall be one hour, unless the generator is a Real-Time Minimum Run Qualified Gas Turbine. For Real-Time Minimum Run Qualified Gas Turbines, the Minimum Run Time assigned by RTC for economic commitment shall be two hours.

In addition, a Real-Time Minimum Run Qualified Gas Turbine HAM bid shall be subject to restricted updates up to 135 minutes prior to the dispatch hour. These restrictions prevent a Real-Time Minimum Run Qualified Gas Turbine from increasing the cost of any Validation Passed HAM bid or deleting any Validation Passed HAM bid if the update is attempted within 135 minutes of the dispatch hour.
Qualification for a Real-Time Minimum Run Qualified Gas Turbine

Market Participant must first qualify its unit(s) with the NYISO by submitting a completed Real-Time Minimum Run Qualified registration form. This form can be found on the NYISO web-site under Services/NYISO Registration.

The Real-Time Minimum Run qualification is intended to more appropriately represent the physical operating characteristics of a combined cycle unit. Characteristics that qualify combined cycle units for this treatment include using waste heat from the gas turbine exhaust to make steam for the generation of additional electricity via a steam turbine.

All bidding points of a Generator must qualify if that Generator is to qualify for Real-Time Minimum Run treatment. See the definition of Generator in the Market Services Tariff. If the unit is approved, the Real-Time Minimum Run Qualified parameter will be applied by NYISO Customer Relations in the NYISO Market Information System (MIS).

Real-Time Bids to Supply Energy and Ancillary Services

After the Day-Ahead schedule is published and no later than 75 minutes before each hour, Customers may submit Real-Time Bids into RTC for real-time evaluation. Eligible Customers may submit new or revised Bids to supply Energy, Operating Reserves and/or Regulation Service. Customers that submit such Bids may specify different Bid parameters in RTC than they did Day-Ahead. Incremental Energy Bids may be submitted by Suppliers bidding Resources using ISO-Committed Fixed, ISO-Committed Flexible, and Self-Committed Flexible bid modes that exceed the Incremental Energy Bids submitted in the Day-Ahead Market or the mitigated Day-Ahead Incremental Energy Bids where appropriate, for portions of the Capacity of such Resources that were scheduled in the Day-Ahead Market, if not otherwise prohibited. Minimum Generation Bids and Start-Up Bids for any hour in which such Resources received a Day-Ahead Energy schedule may not exceed the Minimum Generation Bids and Start-up Bids submitted for those Resources in the Day-Ahead Market. Additionally, Real-Time Minimum Run Qualified Gas Turbine Customers shall not increase their previously submitted Real-Time Incremental Energy Bids, Minimum Generation Bids, or Start-Up Bids within 135 minutes of the dispatch hour. Bids to supply Energy or Ancillary Services shall be subject to the rules set forth in the NYISO Ancillary Services Manual (available from the NYISO Web site at the following URL: http://www.nyiso.com/public/markets_operations/documents/manuals Guides/index.jsp).

Generators that did not submit a Day-Ahead Bid for a given hour may offer to be NYISO-Committed Flexible, Self-Committed Flexible, or Self-Committed Fixed in real-time or ISO-Committed Fixed (with ISO approval). Generators that submitted a Day-Ahead Bid but did not receive a Day-Ahead schedule for a given hour may change their bidding mode for that hour in real-time without restriction except for ISO-Committed Fixed which requires ISO approval. Generators that received a Day-Ahead schedule for a given hour may change their bidding mode between Day-Ahead and real-time subject to the following restrictions:

1. Generators that were scheduled Day-Ahead in NYISO-Committed Flexible mode may not switch to NYISO-Committed Fixed or Self-Committed Fixed mode unless a real-time physical operating problem makes it impossible for them to bid in any other mode.
2. Generators that were scheduled Day-Ahead in Self-Committed Flexible mode may not switch to NYISO-Committed Fixed or NYISO-Committed Flexible mode and may only switch to Self-Committed Fixed mode if a real-time physical operating problem makes it impossible for them to bid in any other mode.

3. Generators that were scheduled Day-Ahead in NYISO-Committed Fixed mode must be in Self-Committed Fixed mode in real-time unless ISO approves a request to operate in ISO-Committed Fixed mode in real-time.

4. Generators that were scheduled Day-Ahead in Self-Committed Fixed mode may not switch to a different bidding mode in real-time except that they can switch to ISO-Committed Fixed mode in real-time with ISO approval.

Generators may not submit separate Operating Reserves Availability Bids in real-time and will instead automatically be assigned a real-time Operating Reserves Availability Bid of zero for the amount of Operating Reserves they are capable of providing in light of their response rate (as determined under Rate Schedule 4 of the Services Tariff, available from the NYISO Web site at the following URL: http://www.nyiso.com/public/documents/tariffs/market_services.jsp.

Dispatch Options for 10-Minute Start and 30-Minute Start Generators

For units that can only operate at a single fixed point (on or off, historically GTs), special modeling has been done to allow these units to participate in setting the LBMP, when marginal, and included in the idealized dispatch by RTC and RTD/RTD-CAM if the unit can pass the qualifications. Units that desire to operate in this fashion will have their bid options limited to a model that SCUC, RTC, and RTD/RTD-CAM can support.

Any unit that qualifies as a 10-Minute Start Generator can then participate in the idealized dispatch performed in real time by RTC and RTD-CAM. These units will receive forward commitments from SCUC and may be committed by RTC just like any other unit. These units may also be committed by RTD-CAM when needed in real time. When started, they will be ramped to their upper operating limit and will be used in setting the LBMP when they are the marginal unit in the idealized dispatch.

Any unit that can be started within 30 minutes has the option of being qualified as a 30-Minute Start Generator. These units may receive forward commitments from SCUC and may be committed by RTC and scheduled at a fixed operating point in real time just like a unit that can operate over a range of values. These units may also be committed by RTD-CAM operating in maximum gen pickup mode. These units will be used in setting the LBMP when they are the marginal unit in the idealized dispatch.

10-Minute Start Generators

Units utilizing this flexibility to participate in the markets need to be aware of the bidding requirements placed on them when deciding to qualify a unit in this fashion. Because of the special modeling requirements in Real-Time Commitment (RTC) and Real-Time Dispatch (RTD)/Real-Time Dispatch-Corrective Action Mode (RTD-CAM) for 10-minute start units, units that are qualified for this option will need to coordinate with the NYISO if they wish to be treated as a 10-minute start generator.
A unit that is designated as a 10-minute start unit will be considered Flexible in real time, but Off-Line until either RTC or RTD-CAM dispatches the unit. When RTC/RTD-CAM decides the unit should be started, the unit will be turned on and ramped over a nominal 10-minute interval to the upper operating limit. The unit will remain on for as long as needed or for a minimum period. Because RTD-CAM is making an instantaneous decision on starting the unit versus looking at the need for the unit over some longer time period, the NYISO has set and will guarantee the minimum run time for one hour. 10-minute start units will also be allowed to bid a start up and energy price in the Day-Ahead Market.

Requirements:
- Pre-qualified as 10-Minute Generator
- Check Flexible in Real Time
- Start-up time = 0 minutes
- Start-up cost = per bidder in DAM
- Minimum Generation level = 0 MWs
- Minimum Generation cost = $0.00
- Minimum Run Time <= 1 hour

Units have the flexibility to bid start-up costs on an hourly basis, for each hour of the day, or by a curve that relates the start-up cost to the elapsed time since shutdown. Hourly startup costs, if bid, take precedence over the startup cost versus hours off-line curve.

All programs determine if the unit is a marginal unit, where the desired operating point would be between zero and the upper limit, and allow the unit to set the LBMP. The programs then pin the unit to its upper limit and re-dispatch the system. All bids are passed to RTC and RTD/RTD-CAM regardless of whether they are actually scheduled by SCUC.

In addition to energy, 10-minute start generators can bid only 10-minute non-synchronous reserve. 10-minute start units may not bid the other types of reserve or regulation.

30-Minute Generators

Generators utilizing this flexibility to participate in the markets need to be aware of the bidding requirements placed on them when deciding to qualify a unit in this fashion. Because of the special modeling requirements in RTC/RTD-CAM for 30-Minute Generators, units that may qualify for this option will need to coordinate with the NYISO on how they would like to be treated.

A unit that is designated as a 30-Minute Generator will only be scheduled by RTD or RTD-CAM if it has been selected by RTC or RTD-CAM (operating in the max gen pickup mode). The difference between a normal fixed unit bid and a 30-minute generator is the 30-minute generator provides a dispatch bid for RTD or RTD-CAM to determine if the unit is marginal in an idealized dispatch and thus set the LBMP. The unit will remain on for as long as RTC or RTD-CAM (operating in the max gen pickup mode) has committed the unit.

Requirements:
- Pre-qualified as 30-Minute Generator
• Check ISO-Committed Flexible in Real Time
• Start-up time <= 30 minutes
• Start-up cost = per bidder
• Minimum Generation level = 0 MWs
• Minimum Generation cost = $0.00

As with 10-minute start units, these units will be evaluated based on the bid curve between zero and upper operating limit. SCUC, RTC, RTD and RTD-CAM determine if the unit is a marginal unit in the idealized dispatch, where its operating point would be between zero and the upper limit, and, if so, allow the unit to set the LBMP. They then pin the unit to its upper limit, re-dispatch the system, and send the unit a base point equal to its upper limit. Only RTC-scheduled units are passed to RTD.

15 Minute Scheduling of Internal Generation

NYISO qualified non-flexible generators have an option in the Real-Time Market to bid economically using the ISO-Committed Fixed mode. Market Participants using this option must convert to ISO-Committed Fixed their Day-Ahead Market bids (if any), that have rolled into the Real-time Market in the default Self-Committed Fixed mode. These bids will be evaluated by RTC so its schedule will better follow Real-Time energy prices. If these bids are accepted they will receive a market-based schedule that is fixed for each 15-minute segment of the hour and will be honored in RTD.

Generator Qualification

A Market Participant must first qualify its unit(s) with the NYISO via its Customer Representative.

15-minute scheduling is intended to provide economic scheduling opportunities for units that are currently operating at pre-specified fixed output schedules. Qualification for 15-minute scheduling includes, but is not limited to, having submitted 100% of available bid opportunities as either Self-Committed-Fixed, or ISO Committed-Fixed, in the Day-Ahead Market (which converts to Self-Committed Fixed in real-time) for a period of at least six (6) contiguous months.

Generators that do not have the communications systems, operational control mechanisms or hardware to be able to respond to five-minute dispatch basepoints may also be eligible for 15 minute scheduling.

Temporary equipment problems affecting Generators that do not meet the above standards do not make them eligible for 15-minute scheduling.

If the unit is approved, its 15-minute scheduling parameter, also known as a “qualified-to-bid” flag, will be set to Y (Yes) by the Customer Representative in the NYISO Market Information System (MIS). The term used for such approved and flagged units are “15-minute generators/units.”

Bidding and Scheduling Rules

It follows from the qualification constraints mentioned above that for both the Day-Ahead (DAM) and Real-Time (RT) Markets, 15-minute generators must submit either ISO-
Committed Fixed or Self-Committed Fixed bids. In the RT Market these units may still self-schedule in 15-minute blocks using the Self-Committed Fixed mode, but to be scheduled economically by the NYISO they must bid in, and be accepted, as ISO-Committed Fixed. Again, ISO-Committed Flexible and Self-Committed Flexible bids will not pass MIS bid validation in either market for 15-minute units. No DAM schedule is necessary to bid in the RT Market for 15-minute generators. The table below summarizes the allowed combinations of DAM and subsequent RT bids:

<table>
<thead>
<tr>
<th>Day-Ahead Mkt 15m gens.</th>
<th>Real-Time Market - 15-minute generators</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ISO-Committed Flexible</td>
</tr>
<tr>
<td>ISO-Committed Fixed</td>
<td>No</td>
</tr>
<tr>
<td>Self-Committed Fixed</td>
<td>No</td>
</tr>
<tr>
<td>15m units with No Day-Ahead Schedule</td>
<td>No</td>
</tr>
</tbody>
</table>

Note:
Upon posting of the Day-Ahead market, the Day-Ahead schedule for each 15-minute generator (like other fixed generators) is used to pre-populate (initialize) its Real-Time bids in the Self-Committed Fixed mode, no matter which of the two fixed modes is used in the DAM.

Therefore:
If a 15-minute generator with a DAM schedule intends to bid in RT as ISO-Committed Fixed, it must, for each hour desired, convert its Self-Committed Fixed RT bids in the MIS using the radio buttons in the “Unit Operations” box on the Generator Bid screen. Initial bids and bid modifications may be entered in the MIS through the upload process.

Consistent with all RT bidding rules, this may be done from when the DAM schedule has posted until 75 minutes before the operating hour.

This conversion option is available only to 15-minute generators and will be subject to the standard RT Market validation rules for adjusting DAM bids that have rolled into the RT market:

1. The Minimum Generation MW must be equal to bid Min Gen MW from the accepted DAM bid.
2. The Upper Operating Limit-Normal (UOLn) must be greater than or equal to the UOLn from the accepted DAM bid.
3. The UOLn must be greater than or equal to the sum of DAM accepted energy, reserves, and regulation schedules.
4. The Upper Operating Limit-Emergency (UOLE) must be greater than or equal to the sum of the DAM accepted energy, reserves, and regulation schedules.
5. Incremental Energy Bids may exceed the Incremental Energy Bids submitted in the Day-Ahead Market, or the mitigated Day-Ahead Incremental Energy Bids where appropriate, for portions of the Capacity of such Resources that were scheduled in the Day-Ahead Market, if not otherwise prohibited.
6. Real-Time Minimum Run Qualified Gas Turbine Customers must submit increased bids at least 135 minutes before the dispatch hour.
7. The RT Startup Cost must be less than or equal to the accepted DAM bid startup cost.
8. The RT bid Minimum Generation Dollars must be less than or equal to the accepted DAM bid minimum generation cost.

9. RT bids must not have any dollar value, including $0, in the reserve or regulation fields. Only null dollar amounts are acceptable. In other words, no reserve or regulation will be awarded to 15-minute scheduled units.

Note: Please see the Market Participant User’s Guide, Section 6, for bid rules on generator operating modes for those units not qualified to bid 15-minute scheduling.

Bids Associated with Internal and External Transactions

Customers may seek to modify Transactions that were previously scheduled Day-Ahead or propose new Transactions, including External Transactions, for economic evaluation by RTC. Bids associated with Internal Bilateral Transactions shall be subject to the rules set forth in this Manual.

Sink Price Cap Bids, Decremental Bids and CTS Interface Bids to schedule External Transactions may be submitted into RTC up to 75 minutes before the hour in which the External Transaction would flow. External Transaction Bids must cover a one-hour period and must start and stop on the hour. Intra-hour modifications to External Transaction Bids will not be accommodated. Schedules associated with External Transactions will be established based on the schedule type indicated on the submitted bid (Hourly vs Intra-hour), as well as on the scheduling frequency supported by the associated Proxy Generator Buses, as outlined in the tariff.

Internal Bilateral Transactions involving Trading Hubs must be part of a balanced set for the Trading Hub Energy Owner by the time the respective market closes. In order for a Trading Hub Energy Owner to have a balanced set, that Trading Hub Energy Owner must source the same amount of megawatts as it sinks at that zonal Trading Hub in a given market and hour. If an Internal Bilateral Transaction involving a Trading Hub is not part of a balanced set, it will not be scheduled.

Self-Commitment Requests

Self-Committed Flexible Resources must provide the NYISO with schedules of their expected minimum operating points in quarter hour increments. Self-Committed Fixed Resources must provide their expected actual operating points in quarter hour increments.

External Transaction Scheduling

RTC will schedule External Transactions based on the schedule type indicated on the submitted bid (Hourly vs Intra-hour), as well as on the scheduling frequency supported by the associated Proxy Generator Buses, as outlined in the tariff. RTC_{15} will establish binding schedules for hourly transactions for the next hour and each RTC run will establish binding schedules for intra-hour transactions for the period beginning fifteen minutes after the scheduled posting time of each RTC run as part of its development of a co-optimized least-bid cost real-time commitment. The RTC evaluation includes a limitation for top-of-the-hour scheduling changes. The change at the top of the hour is limited to 700 MWs for the NYCA interchange to maintain system reliability.
Posting Commitment/De-Commitment and External Transaction Scheduling Decisions

RTC will also produce advisory commitment information and advisory real-time prices. RTC will make decisions and post information in a series of fifteen-minute “runs” which are described below.

RTC_{15}

RTC_{15} will begin at the start of the first hour of the RTC co-optimization period and will post its commitment, de-commitment, and External Transaction scheduling decisions no later than fifteen minutes after the start of that hour. During the RTC_{15} run, RTC will:

1. Commit Resources with 10-minute start-up times that should be synchronized by the time that the results of the next RTC run are posted so that they will be synchronized and running at their minimum generation levels by that time.
2. Commit Resources with 30-minute start-up times that should be synchronized by the time that the results of the RTC run following the next RTC run are posted so that they will be synchronized and running at their minimum generation levels by that time.
3. De-commit Resources that should be disconnected from the network by the time that the results of the next RTC run are posted so that they will be disconnected by that time.
4. Issue advisory commitment and de-commitment guidance for periods more than thirty minutes in the future and advisory dispatch information.
5. Schedule economic hourly External Transactions to run during the entirety of the next hour.
6. Schedule economic 15-minute External Transactions, for the quarter hour for which the results of the next RTC run are posted, at Variably Scheduled Proxy Generator Buses other than a CTS Enabled Proxy Generator Bus.
7. Schedule economic 15 minute External Transactions, for the quarter hour for which the results of the next RTC run are posted, at a CTS Enabled Proxy Generator Bus; and
8. Issue real-time schedules for resources in ISO-Committed Fixed mode.

Subsequent RTC Runs

All subsequent RTC runs in the hour, i.e., RTC_{30}, RTC_{45}, and RTC_{60} will begin executing at fifteen minutes before their designated posting times (for example, RTC_{30} will begin in the 15th minute of the hour), and will take the following steps:

1. Commit Resources with 10-minute start-up times that should be synchronized by the time that the results of the next RTC run are posted so that they will be synchronized and running at that time.
2. Commit Resources with 30-minute start-up times that should be synchronized by the time that the results of the RTC run following the next RTC run are posted so that they will be synchronized and running at that time.
3. De-commit Resources that should be disconnected from the network by the time that the results of the next RTC run are posted so that they will be disconnected at that time.

4. Issue advisory commitment, de-commitment, and dispatching guidance for the period from 30 minutes in the future until the end of the RTC co-optimization period.

5. Either reaffirm that the hourly External Transactions scheduled by RTC to flow in the next hour should flow, or inform the NYISO that hourly External Transactions may need to be reduced.

6. Schedule economic 15-minute External Transactions, for the quarter hour for which the results of the next RTC run are posted, at Variably Scheduled Proxy Generator Buses other than a CTS Enabled Proxy Generator Bus.

7. Schedule economic 15 minute External Transactions, for the quarter hour for which the results of the next RTC run are posted, at CTS Enabled Proxy Generator Buses; and

8. Issue real-time schedules for resources in ISO-Committed Fixed mode.

External Transaction Settlements

RTC will calculate the External Interface Congestion component of the Real-Time LBMP for all External Transactions if constraints at the interface associated with that External Transaction are binding. In addition, RTC will calculate the External Interface Congestion component of the Real-Time LBMPs at Proxy Generator Buses for any hour in which:

1. Proposed economic Transactions over the Interface between the NYCA and the External Control Area that the Proxy Generator Bus is associated with would exceed the Available Transfer Capability for that Interface.
2. Proposed interchange schedule changes pertaining to the NYCA as a whole would exceed any Ramp Capacity limits in place for the NYCA as a whole.
3. Proposed interchange schedule changes pertaining to the Interface between the NYCA and the External Control Area that the Proxy Generator Bus is associated with would exceed any Ramp Capacity limit imposed by the NYISO for that Interface.

Finally, RTC will also calculate the External Interface Congestion component of the Real-Time LBMPs at certain times at Non-Competitive Proxy Generator Buses.

Any External Interface Congestion calculated by RTC will be added to the Marginal Cost of Internal Congestion calculated by RTD to determine the total Marginal Cost of Congestion that will be reflected in the RTD LBMP at a Proxy Generator Bus that is not a Non-Competitive Proxy Generator Bus or a Proxy Generator Buses associated with a designated Scheduled Line. Additional detail regarding the calculation of real-time prices at Proxy Generator Buses appears in Section 17.1.6 of the Services Tariff.

5.1.2 Real-Time Automated Mitigation Process

The real-time automated mitigation process (RT-AMP) incorporates both conduct tests (performed in the MIS) and impact tests (performed in RTC-AMP sequence). The conduct
test compares the price of each energy offer, including start-up and minimum generation costs, to references. When reference prices have been exceeded by an amount specified by the Market Mitigation Measures (defined in Attachment H of the NYISO Services Tariff, available from the NYISO Web site at the following URL: http://www.nyiso.com/public/documents/tariffs/market_services.jsp), the conduct test is said to have “tripped.”

The AMP LBMP impact test examines the change in prices that would prevail if conduct-failing offer prices were mitigated. This test “trips” if mitigation of conduct-failing offers would change prices by an amount specified by the Market Mitigation Measures (defined in Attachment H of the NYISO Services Tariff. A variation of the first impact test applies to designated “Constrained Areas” when the transmission system is congested and “trips” if the change in LBMP exceeds an amount specified by the Market Mitigation Measures (defined in Attachment H of the NYISO Services Tariff. This first impact test will be performed following a full recommitment and dispatch.

There are many rules, parameters, limits, and thresholds that have been defined associated with the automated mitigation process. These include:

1. Definition of super-zones in the NYCA and load pockets in constrained areas.
2. Definition of a threshold values for each load pocket of a constrained area.
3. Arming the automated mitigation process.
4. Portfolio exclusion that may be applied to super-zones and load pockets.
5. Definition of the specific units subject to the automated mitigation process.

RT-AMP Process

Automated mitigation relies on a second unit commitment evaluation to assess the impact of mitigation. Thus, two unit commitment executions are required at each time step. The first determines the prices and schedules that would occur with the original set (Base-Set) of offers. The second determines the prices and schedules that would occur with a mitigated set (Ref-Set) of offers. The combined execution times of the unit commitments needed to evaluate both Base-Set and Ref-Set is likely longer than the RTC interval (15 minutes). However, each commitment is executed as a separate process so they can be run in parallel as shown in figure **Figure 5-2**. The advantage is that a full RTC cycle (15 minutes) can be used to evaluate impact; hence, timing concerns are minimized. The possibility of mitigation is tested for the next RTC cycle (15 minutes) in the future. RTC$_{15}$ and RT-AMP$_{15}$ perform unit commitment evaluations simultaneously. Results of RTC$_{15}$ and RT-AMP$_{15}$ are then evaluated for impact and, if mitigation is necessary, mitigated offers are sent to RTC$_{30}$.

Mitigation of offers for RTC$_{15}$ (if any) was determined previously by RT-AMP$_{00}$.
A third unit commitment is required to assure that prices and schedules are consistent with the final set of offers, some of which may be mitigated. Because the test is conducted in parallel, only one, instead of two, additional unit commitment is required in each RTC cycle. As shown in Figure 5-3, for the time period 15 to 30, Base-Set and Mit-Set are identical. RTC15 provides the base case unit commitment. Simultaneously RT-AMP15 calculates the reference unit commitment, conducts the impact test, and determines the actual set of resources whose offers are to be mitigated (Mit-Set). Finally, RTC30 ensures that the commitment is consistent with the set of mitigated offers. Subsequently the Mit-Set is used as the Base-Set and RTC30 would provide the base case for RT-AMP30.
Conduct Test

The conduct tests compare offers of suppliers for start-up, minimum generation, and incremental energy with reference levels for each of those bids. Differences are compared to the thresholds set forth in Attachment H of the NYISO Services Tariff to determine whether conduct suggests the possible economic withholding of resources or a possible attempt to exercise market power. A subsequent impact test determines if conduct-failing bids (or bid components) had the requisite market impact, and should be mitigated.

An energy resource may be associated with several load pockets, each of which has a threshold value. In such a case, conduct is tested using the threshold value(s) for all load pockets in which the resource is located. The arming test later selects the appropriate conduct test results to use to determine if mitigation is appropriate.

Arming

The arming test makes an initial determination of whether mitigation is likely to result in a material price impact. Subsequently the impact test verifies a material price impact, whether on LBMP or on a portion of the congestion component of LBMP.

Price Impact

The impact test compares prices (or local congestion) determined with two sets of offers:

1. An original set called the Base-Set and
2. A set resulting from the mitigation of offers tripping the conduct test (subject to the arming criteria), called the Ref-Set.

The price impact test is evaluated at each time interval. The test will trip for an interval if the difference in energy price (or local congestion) exceeds an amount specified by the Market Mitigation Measures (defined in Attachment H of the NYISO Services Tariff).

Mitigation Duration

For purposes of settlement, Mitigation is applied for whole hours, when impact is determined for any interval of that hour. For dispatch purposes, mitigation is applied for the remainder of the current hour and/or all of the next hour, following a determination of impact. For dispatch purposes both RT-AMP15 and RT-AMP30 are able to mitigate offers for all or part of 2 hours. RT-AMP45 is able to mitigate offers for the “next” hour. RT-AMP00 is able to mitigate offers for part of an hour. Mitigated offers are used by both RTC and RTD.

5.1.3 Real-Time Commitment Information Posting

The public information and secure Market Participant data to be posted from the execution of RTC is described in this subsection.

Public Information

The following information will be produced and posted by RTC:

1. Updated ATCs and TTCs for each hour.
2. Advisory prices for Zones and Generators.
Secure Data to Market Participant

The following information will be produced by RTC and will be made available to authorized MPs:

1. Economically Evaluated External Transaction MW schedules for the binding interval.
2. Advisory MW commitment schedules for generators for each RTC 15-minute increment beyond the time frame covered by RTD.

5.2 Scheduling Operations Requirements

This subsection describes the requirements for the Dispatch Day scheduling of generation, transactions, load, and Ancillary Services. The principal functions are:

- Dispatch Day Scheduling Changes
- Interchange Scheduling
- Scheduling and Curtailment of Bilateral Transactions
- Scheduling and Dispatching LBMP Suppliers and Loads
- Capacity Limited and Energy Limited Resources
- Inter-Control Area ICAP Energy
- Emergency Demand Response Program and Special Case Resources.

5.2.1 Dispatch Day Scheduling Changes

After the Day-Ahead schedule is published, the NYISO evaluates any events, including but not limited to the loss of significant Generators or transmission facilities that may cause the NYCA dispatch to be inadequate to meet the requirements established in the Reliability Rules. When a supplier on forced outage becomes available for service again, it may submit a new bid in the dispatch day for potential commitment by RTC or SRE or day ahead for potential commitment by SCUC.

The NYISO may augment, as necessary, the Day-Ahead commitment schedules to achieve a reliable next-day schedule by performing a Supplemental Resource Evaluation (SRE). The NYISO may use the following resources:

1. Bids submitted to the NYISO that were not previously accepted but were designated by the bidder as continuing to be available for emergency needs
2. New Bids from all Suppliers, including those in neighboring systems
3. Cancellation of/or rescheduling of transmission facility maintenance outages where RTC/RTD is not expected to solve security constraints.

Actions taken by the NYISO in performing Supplemental Resource Evaluation (SRE) will not change any financial commitments that resulted from the Day-Ahead SCUC. The procedures for supplemental resource evaluation for energy and ancillary services are covered in this Manual.
5.2.2 Interchange Scheduling

The Interchange Scheduling (IS+) function allows NYISO personnel to monitor ongoing energy transactions. These transactions are bids accepted in either the Day-Ahead scheduling process or the RTC scheduling/dispatch process. The IS+ program provides facilities for entering transactions and reviewing existing transaction information. The following basic calculations are performed:

1. **Desired Net Interchange (DNI):** This calculation provides the net interchange schedule between the NYCA and each of the External Control Areas.

2. **Instantaneous ANI:** This is the metered control area interchange between the NYCA and each of the External Control Areas.

DNIs that reflect scheduled energy interchanges between the NYCA and neighboring Control Areas will need to be coordinated and verified by neighboring Control Areas as specified in interconnection agreements between the NYISO and other Control Areas.

5.2.3 Scheduling and Curtailment of Bilateral Transactions

Bilateral transactions may be requested as Firm or Non-Firm. A Firm transaction is willing to pay congestion, so that an accepted Day-Ahead Firm transaction receives a forward commitment for its schedule and is charged a Transmission Usage Charge (TUC = Congestion Price + Incremental Losses). A Non-Firm transaction is unwilling to pay congestion, so its schedule is advisory only and subject to curtailment if congestion appears.

Firm transactions into or out of the NYCA will be scheduled based on economics and Available Transmission Capacity. A load being supplied by a Firm Import transaction or from an internal generator will have a financial schedule equal to the amount of transmission service scheduled. If the Import is curtailed, or the internal Generator is dispatched below the amount of the transaction, the Load will be supplied with Energy from the LBMP Market. A generator supplying a Firm bilateral transaction, either internally or for export, will have an operational physical schedule based upon its Energy offer. Thus, a load being served by a Firm bilateral transaction will have a financial transaction schedule; but the generator supplying that transaction will have a separate operational physical schedule.

In general, under NYISO/LBMP operation, if a Firm bilateral transaction is physically cut or curtailed, its financial schedule will remain intact. Thus, generation may be dispatched down, and DNI schedules may be reduced (as is currently done to cut transactions), but the financial obligations will remain. Financial schedules that differ in real-time from those scheduled Day-Ahead will balance the differences in the real-time LBMP Market (*i.e.* the balancing market).

If a Non-Firm transaction is physically cut or curtailed, the transaction is eliminated. As a default, except in the case of wheel-throughs, a generator previously supplying a cut Non-Firm transaction will bid into the LBMP Energy Market, and a load previously being supplied by a Non-Firm transaction will be served by the LBMP Energy Market.
Self Cancellation (Withdrawal) of Bilateral Transactions

A supplier and load may agree to reduce or eliminate a bilateral transaction previously scheduled in the Day-Ahead Market. In this case, they must submit a revised schedule through RTC. The full Day-Ahead Transmission Usage Charge (TUC) will still accrue. The change in schedule will be settled with Real-Time LBMP Energy and/or the Real-Time TUC.

The following tables will describe the conditions listed below:

- **Table 5.1**: Scheduling and Physically Curtailing Firm Bilateral Transactions
- **Table 5.2**: NYISO Curtailment Steps
- **Table 5.3**: Re-Instatement of Curtailed Bilateral Transactions
- **Table 5.4**: Transaction Conversion and Curtailment Notifications Required by NYISO
- **Table 5.5**: Scheduling and Dispatching LBMP Suppliers and Loads
Table 5.1 Scheduling and Physically Curtailing Firm Bilateral Transactions

Summary Table: Scheduling and Physically Curtailing Firm Bilateral Transactions

<table>
<thead>
<tr>
<th>Internal Source</th>
<th>External Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Load</td>
<td>External Load</td>
</tr>
<tr>
<td>(Export)</td>
<td>(Import)</td>
</tr>
<tr>
<td>(1) Transmission Service: Financial Transaction Schedule</td>
<td>(2) Transmission Service: Operational Physical Schedule</td>
</tr>
</tbody>
</table>

A. Day-Ahead
- Set to full Requested MW Amount submitted in transaction bid
- Source: Scheduled economically based on submitted energy offer Supplier buys in LBMP market for shortfall
- Up to Full Requested MW based on submitted energy offer Supplier buys in LBMP market for shortfall
- Source: Scheduled economically based on submitted energy offer Supplier buys in LBMP market for shortfall
- Full Requested MW Amount submitted on transaction bid
- Up to Full Requested MW based upon Source’s Day-Ahead Wheel-Through Dec. Bid with Total Imports and Exports Limited to Applicable ATC.
- Same as Financial Transaction Schedule

B. Hour-Ahead
- Same as above for comparable Day-Ahead case except using Hour-Ahead bilateral schedule requests and no Forward Commitment is issued.

C. Day-Ahead or Hour-Ahead Schedule Supplier is Un-economic in Real-Time
- Day-Ahead Schedule and TUC are Fixed; Hour-Ahead Schedule is Fixed
- Supplier Dispatched Down in Real-Time. Supplier buys in LBMP market for shortfall
- Day-Ahead Schedule and TUC are Fixed; Real-Time Schedule is Fixed
- External Suppliers re-evaluated in Real-Time; change in DNI may take place. Real-Time un-economic Suppliers not scheduled; Transmission Customer balances any day-ahead TUC charges at real-time LBMP prices
- No Re-Dispatch of Supplier and no change in DNI takes place Real-Time, un-economic Suppliers not scheduled; Transmission Customer balances any day-ahead TUC charges at real-time LBMP prices

NYISO Energy Market Operations
Version 2.4 12/02/2014
D. Security Violation Occurs in Real-Time

| Source: Day-Ahead Schedule and TUC are Fixed; Hour-Ahead Schedule is Fixed | Supplier: Dispatched Down and/or decommitted in Real-Time if Needed. No Change takes place in Load Schedule in Real-Time unless Load Curtailment is invoked under Emergency Procedures | Day-Ahead Schedule and TUC are Fixed; Hour-Ahead Schedule is Fixed. | Supplier: Dispatched Down and/or decommitted in Real-Time if Needed. No Change takes place in Load Schedule and DNI in Real-Time unless Energy Transaction is curtailed under Emergency Procedures | Day-Ahead Schedule and TUC are Fixed; Hour-Ahead Schedule is Fixed. | Supplier: Re-Scheduled Down ("Curtailed") in Real-Time if Needed; DNI also changed. No Change in Load Schedule in Real-Time unless Load Curtailment is invoked under Emergency Procedures | Day-Ahead TUC balanced at RT TUC prices if curtailed | Supplier: Re-Scheduled Down ("Curtailed") and Energy Transaction is curtailed in Real-Time if Needed; DNI changed to reflect both curtailments. |

E. A scheduled Day-Ahead Transaction is Self Canceled (Withdraw n) by Supplier (Source) or LSE (Sink) Prior to HAM evaluation

| Source: Day-Ahead Schedule and TUC are Fixed; transaction cannot be withdrawn | Economic bid of source may be modified and the source will be scheduled based on the economics of the revised bid | Day-Ahead Schedule and Price are Fixed; Real-Time Schedule is set to 0. | Source and Sink update schedule in RTC. DNI is changed (in Real-Time). | Day-Ahead Schedule and Price are Fixed; Real-Time Schedule is set = 0. | Source and Sink update schedule in RTC. DNI is changed. | Day-Ahead Schedule and Price are Fixed; Real-Time Schedule is set = 0 | Source and Sink update schedule in RTC. DNI is changed. to reflect both curtailments. |

* Financial Transaction Schedule must result in a physically feasible flow-based solution in SCUC or RTC; determination of Firm transactions that cannot be scheduled will be based on the Sources’ Decremental Bids.

ATC = Available Transfer Capability of applicable transmission flow-gate.

In general, Day-Ahead supplier scheduled for less than its scheduled transactions buys replacement energy at its bus at Day-Ahead LBMP (transaction pays Day-Ahead TUC).

Day-Ahead supplier that is off-schedule in supporting a scheduled transaction settles up with Real-Time Energy LBMP.

Day-Ahead Transmission Customer load that is off-schedule in its scheduled transaction settles up with Real-Time TUC.

Both SCUC and RTC perform a screening function by looking ahead and not "scheduling" a Non-Firm Bilateral Transaction if it is anticipated to contribute to positive congestion.
Table 5.2 NYISO Curtailment Steps

<table>
<thead>
<tr>
<th>Corresponding TLR Level</th>
<th>Minimum NERC Required Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLR 1</td>
<td>Notify Reliability Coordinators of potential SOL or IROL Violations</td>
</tr>
<tr>
<td>TLR 2</td>
<td>Hold transfers at present level to prevent SOL or IROL Violations</td>
</tr>
<tr>
<td>TLR 3a</td>
<td>Reallocation of Transmission Service by curtailing Interchange Transactions using Non-firm Point-to-Point Transmission Service to allow Interchange Transactions using higher priority Transmission Service</td>
</tr>
<tr>
<td>TLR 3b</td>
<td>Curtail Interchange Transactions using Non-firm Transmission Service Arrangements to mitigate a SOL or IROL Violation</td>
</tr>
<tr>
<td>TLR 4</td>
<td>Reconfigure Transmission</td>
</tr>
<tr>
<td>TLR 5a</td>
<td>Reallocation of Transmission Service by curtailing Interchange Transactions using Firm Point-to-Point Transmission Service on a pro rata basis to allow additional Interchange Transactions using Firm Point-to-Point Transmission Service</td>
</tr>
<tr>
<td>TLR 5b</td>
<td>Curtail Interchange Transactions using Firm Point-to-Point Transmission Service to mitigate a SOL or IROL violation</td>
</tr>
<tr>
<td>TLR 6</td>
<td>Emergency Procedures</td>
</tr>
<tr>
<td>TLR 0</td>
<td>TLR concluded</td>
</tr>
</tbody>
</table>

Table 5.3 Re-Instatement of Curtailed Bilateral Transactions

<table>
<thead>
<tr>
<th>Type of Curtailment</th>
<th>Re-Instatement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Firm transaction previously "scheduled" (on advisory basis) by SCUC or RTC that is curtailed in Real-Time</td>
<td>Must Re-Submit Schedule Request thru RTC (may already be in queue)</td>
</tr>
<tr>
<td>Firm Inter-Control Area transaction previously scheduled by SCUC that is physically curtailed (DNI schedule change) by RTC or in Real-Time to solve a security violation</td>
<td>May Re-Submit Schedule Request thru RTC (may already be in queue)</td>
</tr>
<tr>
<td>Firm Inter-Control Area transaction previously scheduled by RTC that is physically curtailed (DNI schedule change) in Real-Time to solve a security violation</td>
<td>May Re-Submit Schedule Request thru RTC (may already be in queue)</td>
</tr>
<tr>
<td>Transaction previously scheduled by SCUC or RTC is self canceled by Supplier or LSE</td>
<td>May Re-Submit Schedule Request thru RTC (may already be in queue)</td>
</tr>
</tbody>
</table>
Table 5.4 Transaction Conversion Curtailment Notifications Used by NYISO

<table>
<thead>
<tr>
<th>Action</th>
<th>Notification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversion of generators and loads associated with Internal, Import and/or Export Non-Firms to LBMP Energy market participants (TLR).</td>
<td>Automatic E-Mail to financially responsible party.</td>
</tr>
<tr>
<td>Physical curtailment (through DNI schedule change) of Inter-Control Area Non-Firm transactions (TLR 2c)</td>
<td>Automatic E-Mail to financially responsible party; Phone call to the affected Control Areas (which in turn should notify the Source and Sink); Phone call to affected Transmission Provider(s) for exports; otherwise E-Mail to affected Transmission Providers</td>
</tr>
<tr>
<td>Physical curtailment (through DNI schedule change) of unscheduled loop-flow Non-Firm transactions (TLR 3)</td>
<td>Phone call to the affected Control Areas (which in turn should notify the Source and Sink)</td>
</tr>
<tr>
<td>Physical curtailment (through DNI schedule change) of Firm External Source to Internal Sink Transaction (Import)</td>
<td>Automatic E-Mail to financially responsible party. Phone call to affected Control Area (which in turn should notify the Source), and E-Mail to affected Transmission Provider(s) and the Sink</td>
</tr>
<tr>
<td>Physical curtailment (through DNI schedule change) of Firm Internal Source to External Sink Transaction (Export)</td>
<td>Automatic E-Mail to financially responsible party. Phone call to affected Control Area (which in turn should notify the Sink), and phone call to affected Transmission Provider (which in turn should notify the Source)</td>
</tr>
<tr>
<td>Physical curtailment (through DNI schedule change) of Firm External Source to External Sink Transaction (Wheel-Through)</td>
<td>Automatic E-Mail to financially responsible party. Phone call to the affected Control Areas (which in turn should notify the Source and Sink), and E-Mail to affected Transmission Provider(s)</td>
</tr>
</tbody>
</table>

Source = Supplier at Point of Injection (POI)
Sink = Load at Point of Withdrawal (POW)
Table 5.5 Scheduling and Dispatching LBMP Suppliers and Loads

<table>
<thead>
<tr>
<th></th>
<th>Internal Suppliers</th>
<th>Internal Loads</th>
<th>External Suppliers (Import with Marcy as Point-of-Withdrawal – POW)</th>
<th>External Loads (Export with Marcy as Point-of-Injection – POI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) Financial Schedule</td>
<td>(2) Operational Schedule</td>
<td>(3) Financial Schedule</td>
<td>(4) Operational Schedule</td>
</tr>
<tr>
<td>A. Day-Ahead</td>
<td>Based on Day-Ahead Bids</td>
<td>Same as Day-Ahead Financial Schedule</td>
<td>Full Requested Amount for Fixed MW Loads; or Based on Day-Ahead Bids for Price Capped Loads</td>
<td>Same as Day-Ahead Financial Schedule</td>
</tr>
<tr>
<td>B. Hour-Ahead</td>
<td>Based on Hour-Ahead Incremental Bids</td>
<td>Dispatched in Real-Time</td>
<td>Not Available</td>
<td>Based on Hour-Ahead Incremental Bids with Total Imports Limited to ATC</td>
</tr>
<tr>
<td>C. Day-Ahead or Hour-Ahead Supplier is Uneconomical in Real-Time</td>
<td>Day-Ahead Schedule and Price are Fixed; differences settled in real-time</td>
<td>Supplier Dispatched Down in Real-Time; settled in Real-Time</td>
<td>Day-Ahead Schedule and Price are Fixed</td>
<td>Day-Ahead DNI Schedule and Price are Fixed</td>
</tr>
<tr>
<td>D. Security Violation Occurs in Real-Time</td>
<td>Day-Ahead Schedule and Price are Fixed</td>
<td>Supplier Dispatched Down and/or de-committed in Real-Time if Needed</td>
<td>Day-Ahead Schedule and Price are Fixed</td>
<td>No Change takes place in Load Schedule in Real-Time unless Load Curtailment is invoked under Emergency Procedures</td>
</tr>
</tbody>
</table>
Scheduling and Dispatching LBMP Suppliers and Loads

<table>
<thead>
<tr>
<th></th>
<th>Internal Suppliers</th>
<th>Internal Loads</th>
<th>External Suppliers (Import with Marcy as Point-of-Withdrawal – POW)</th>
<th>External Loads (Export with Marcy as Point-of-Injection – POI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Financial Schedule</td>
<td>Day-Ahead Schedule and Price are Fixed</td>
<td>Supplier updates schedule in RTC; NYISO updates RTD or Outage Scheduler</td>
<td>Day-Ahead Schedule and Price are Fixed</td>
<td>Supplier updates schedule in RTC; NYISO updates DNI and RTD or Outage Scheduler</td>
</tr>
<tr>
<td>(2) Operational Schedule</td>
<td>Supplier updates schedule in RTC; NYISO updates RTD or Outage Scheduler</td>
<td>Day-Ahead Schedule and Price are Fixed</td>
<td>Supplier updates schedule in RTC; NYISO updates DNI and RTD or Outage Scheduler</td>
<td>LSE updates schedule in RTC; NYISO updates DNI</td>
</tr>
</tbody>
</table>

* Financial Schedule must result in a physically feasible flow-based solution in SCUC or RTC.

ATC = Available Transfer Capability of applicable transmission flow-gate.

Internal Suppliers are dispatchable in Real-Time.

External Suppliers are pre-schedulable Day-Ahead or Hour-Ahead, but not dispatchable in Real-Time.

Marcy is used as a reference bus where noted.

5.2.4 Dispatch Day Scheduling Priority for Day-Ahead External Transactions

For Real-Time Import and Wheel-Through transactions, not using a CTS Interface Bid, a “Decremental Bid” (Dec Bid) amount is used in the RTC. The highest economic scheduling priority that can be supplied by Market Participants is -$1000.00 for RT Dec Bids. A Dec Bid reflects the minimum the MP is willing to accept to import energy into the NYCA.

For Real-Time Export transactions, not using a CTS Interface Bid, Market Participants supply a “Sink Price Cap” amount up to $1000.00. A Sink Price Cap Bid reflects the maximum the MP is willing to pay to get its energy export scheduled.

For Import or Export transactions using a CTS Interface Bid, Market Participants supply a Bid Price which indicates the bidder’s willingness to be scheduled so long as the forecasted CTS Sink Price minus the forecasted CTS Source Price is greater than or equal to the dollar value specified in the Bid. The highest economic scheduling priority than can be supplied by Market Participant using a CTS Interface Bid is -$1000.00.

Decremental Bids (Imports)

An accepted, Day-Ahead Import that is not designated as a CTS Interface Bid for the Real-Time Market will be converted to a Real-Time Market bid using the “RTM Bid Price” provided in the Market Participant’s DAM bid. If the Market Participant does not provide a “RTM Bid Price” when submitting its DAM bid, a default economic scheduling priority of -$0.01 will be used when the DAM bid is converted to a bid for the Real-Time Market.
Decremental Bids (Wheels)

A Wheel-Through that is accepted in the DAM will be converted to a bid for the Real-Time Market using the “RTM Bid Price” provided in the Market Participant’s DAM bid. If the Market Participant does not provide a “RTM Bid Price” when submitting its DAM bid, a default economic scheduling priority of - $1000.00 will be used when the DAM bid is converted to a bid for the Real-Time Market.

Sink Price Cap Bids (Exports)

An accepted, Day-Ahead Export that is not designated as a CTS Interface Bid for the Real-Time Market will be converted to a Real-Time Market bid using the “RTM Bid Price” provided in the Market Participant’s DAM bid. If the Market Participant does not provide a “RTM Bid Price” when submitting its DAM bid, a default economic scheduling priority of + $1000.00 will be used when the DAM bid is converted to a bid for the Real-Time Market.

CTS Interface Bids (Imports and Exports)

An accepted, Day-Ahead Import or Export that is designated as a CTS Interface Bid for the Real-Time Market will be converted to a bid for the Real-Time Market using the “RTM Bid Price” provided in the Market Participant’s DAM bid. Market Participants must specify a “RTM Bid Price” when submitting an Import or Export designated as a CTS Interface Bid for the Real-Time Market, whereas this field is optional for Decremental bids and Sink Price Cap Bids.

A Market Participant also has the option of modifying its Real-Time Market Bid, regardless of whether the Bid has an MP-specified “RTM Bid Price,” or the Bid was adjusted by the MIS to the applicable default economic scheduling priority, as outlined above. After the Day-Ahead checkout process with neighboring Control Areas, the Real-Time Market Bid can be adjusted for megawatts and/or price by the MP before the close of each hourly RT Market. In this instance the entire megawatt amount of the transaction will be evaluated by the RTC with this new price.

5.3 Capacity Limited and Energy Limited Resources

Many generating units have limitations on their ability to operate for a period of time over all, or a portion, of their operating range. Classification as a Capacity Limited Resource (CLR) or the sub-classification of Energy Limited Resource (ELR) may qualify such generating units for special balancing energy and Installed Capacity (ICAP) consideration while making energy and/or capacity limited MWs available to the Day-Ahead, In-Day, and Real-Time Markets. Additional information on CLR and ELR usage can be found in Attachment M of the NYISO Installed Capacity Manual (available from the NYISO Web site at the following URL: http://www.nyiso.com/public/markets_operations/documents/manuals_guides/index.jsp)
5.4 Normal and Emergency Upper Operating Limits (UOLN and UOLE)

All energy Suppliers are required to specify both a Normal Upper Operating Limit (UOLN) and an Emergency Upper Operating Limit (UOLE) in their Day-Ahead ("DA") and Real-Time ("RT") offers. The UOLN defines the unit’s operating limit under normal system conditions; the UOLE defines the unit’s operating limit achievable at the request of the NYISO during extraordinary conditions. Both limits should reflect the unit’s achievable capacity. The specified value of UOLE in the DA and RT offers must be greater than or equal to value specified for UOLN. Additional information on Upper Operating Limits for CLR and ELR resources can be found in Attachment M of the NYISO Installed Capacity Manual (available from the NYISO Web site at the following URL: http://www.nyiso.com/public/markets_operations/documents/manuals_guides/index.jsp).

5.5 Inter-Control Area ICAP Energy

With few exceptions, all NYISO ICAP providers have an obligation to submit bids into the NYISO Day-Ahead Market on a daily basis. This obligation applies to ICAP providers located both within and external to the NYCA. Rules governing the obligations associated with NYISO ICAP contracts are defined in the NYISO Installed Capacity Manual (available from the NYISO Web site at the following URL: http://www.nyiso.com/public/markets_operations/documents/manuals_guides/index.jsp).

PJM, ISO-NE, and the NYISO have agreed to a number of “General Principles” to facilitate access to the energy associated with ICAP contracts with suppliers located in external control areas in the event of a capacity shortage within a control area.

NYISO ICAP Suppliers Located in PJM or New England

In the event that energy from a NYISO ICAP resource located in PJM or New England is required to resolve a capacity deficiency in the NYCA, the NYISO dispatcher will contact the ICAP resource’s designated contact. The NYISO dispatcher will instruct the designated contact to ensure that all necessary measures are taken to facilitate delivery of the ICAP backed energy to the NYCA in response to a Supplemental Resource Evaluation (SRE) request, or through the next Real-Time Commitment (RTC).

Resources from Quebec

In the event that NYISO ICAP backed energy is required from Quebec, the NYISO Dispatcher will contact the designated resource contact and instruct the contact to take the actions necessary to facilitate the delivery of the ICAP backed energy in response to an SRE request, or through the next RTC.

Resources from NYISO

The NYISO is committed to a high level of deliverability for energy from the NYCA that supports an ICAP contract in an external control area. In the event that a neighboring control area has an in-day forecasted or actual reserve shortage (e.g. a PJM Maximum Generation Emergency), the affected control area dispatcher will contact their ICAP
resource(s) located within the NYCA to request their ICAP contract energy. They will also notify the NYISO dispatcher of the situation. The ICAP resource is expected to follow the NYISO bidding rules required to get the ICAP backed energy scheduled for export. In the event that the export transaction(s) is not accepted by RTC due to a NYISO reserve shortage, the NYISO dispatcher will input the transaction using IS+.

Interface Limit Reductions

System transmission conditions at times may require a reduction in the external interface limits for a specific control area. In the event that the ICAP entitlement associated with a specific external control area is less than or equal to the reduced interface limit, then the external control area will be entitled to the contracted ICAP amount. In the event that the ICAP entitlement for an external control area is greater than the reduced interface limit, then the NYISO will schedule the deliverable quantity based on the RTC where time permits. In real time, the external control area dispatcher may contact the NYISO dispatcher and identify the specific external ICAP transactions that they wish to curtail. If the external control area dispatcher does not specify the ICAP transactions to be curtailed, then the NYISO dispatcher will perform curtailments based upon existing operational procedures for locational curtailment. In either event, the export transactions will be scheduled or curtailed to a level consistent with the reduced interface limits.

5.6 Emergency Demand Response Program and Special Case Resources

The Emergency Demand Response Program (EDRP) provides a mechanism for load reduction during emergency conditions, thereby facilitating the reliability of the New York State bulk power system. Forecast reserve shortages may be shortages for the NYCA statewide region, locational shortages within the NYCA region due to transmission constraints, or inter-regional locational shortages between NYCA and neighboring Control Areas due to transmission constraints. A complete description can be found in the *NYISO Emergency Demand Response Manual* (available from the NYISO Web site at the following URL: http://www.nyiso.com/public/markets_operations/documents/manuals_guides/index.jsp).

Retail end users who agree to participate in the EDRP can be accommodated through one of four types of Curtailment Service Providers (CSPs):

1. Load Serving Entities (LSEs), either that currently serving the load or another LSE
2. Through NYISO-approved Curtailment Customer Aggregators
3. As a Direct Customer of the NYISO
4. As a NYISO-approved Curtailment Program End Use Customer.
5. Curtailment Customer Aggregators and Curtailment Program End Use Customers must register with the NYISO as Limited Customers.
Voluntary Participation

Participation in the EDRP is voluntary and no penalties are applied if a CSP fails to respond to a NYISO notice to reduce load.

Retail end users participating in the EDRP cannot participate in the NYISO’s Special Case Resources (SCR) Program. SCRs that have registered with the NYISO but not sold their capacity will be added to the list of EDRP participants for that period of time when their capacity is unsold, and will be called with EDRP participants if an EDRP event is activated.

The NYISO will allow participation by aggregations of smaller customers, the curtailed usage of which will be determined by using an alternative to the basic provisions regarding the metering and measurement of performance. Distributed Generation (DG) and self-generation resources are not eligible. Direct serve customers are also prohibited from operating under alternative performance measures.

NYISO Notification

It is the NYISO’s intention to provide CSPs notice no less than two hours in advance of the time specified to reduce load, pursuant to NYISO emergency operations procedures. However, instructions may be issued requesting an immediate start.

Special Case Resources

Special Case Resources are Loads capable of being interrupted upon demand, and distributed generators that are not visible to the NYISO’s Market Information System. The Unforced Capacity of a Special Case Resource corresponds to its pledged amount of Load reduction as adjusted by historical performance factors and as increased by the Transmission District loss factor. For details, refer to the NYISO Installed Capacity Manual, available from the NYISO Web site at the following URL:

5.7 Scheduling Operations Procedures

The following procedures are intended for the scheduling operations that occur during the Dispatch Day, but prior to operations, which occur during the Dispatch Hour:

- Interaction with Real-Time Commitment
- Interaction with Real-Time Automated Mitigation Process
- Interaction with Fast Start Management
- Anticipated Operating Reserve Shortages
- Out-of-Merit Generation
- Supplemental Commitment Process

5.7.1 Interaction with Real-Time Commitment

Hour-ahead scheduling is performed on a periodic basis and is completed at least 45 minutes prior to the beginning of the dispatch hour.
NYISO Actions

The NYISO performs the following:

1. Updates the power system grid model based on the latest transmission outage schedules, including forced outages.
2. Updates the load forecast based on the latest load information.
3. Accepts any updated reserve requirements.
4. Accepts the day-ahead schedules and firm transaction schedules.
5. Accepts the hour-ahead generation bids and firm transaction bids.
6. Accepts the telemetered phase shifter and tap settings from SCADA with adjustments made for known schedule changes.
7. Executes the Real-Time Commitment (RTC) using SCUC with a 2½ hour horizon.
8. Selects feasible non-firm transactions from the day-ahead and hour-ahead bids, based on the updated ATCs from the RTC.

Posts the following results:

1. Approved hour-ahead non-firm transactions.
2. Revised generator schedules for the next hour.
3. Revised firm transaction schedules for the next hour.
5. Market Participants shall request the NYISO for any changes in generation, load, and transactions schedules.

5.7.2 Interaction with Fast Start Management

The fast start management (FSM) function allows NYISO operations staff to start or stop, or delay the turning on or turning off of specified “fast start” generators (typically, gas turbines). The FSM function will normally operate in a mode where all first time fast start unit basepoints are held back until the system operators give an explicit approval for the basepoints to be sent to the unit.

Additionally, all fast start units’ startups and shut downs must be first approved by system operators. There will be messages to the operators indicating when a fast start unit has met its minimum run time and is not economic to run.

In the Reserve Pickup and Maximum Generation Pickup (RTD-CAM) modes, the default will be for fast start units’ schedules to be sent out without system operator approval.

Table 5.6 summarizes the startup characteristics for real-time commitment.

<table>
<thead>
<tr>
<th>Unit Classification</th>
<th>Startup Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast Start Units*</td>
<td>10-15 minute startup notice starts by RTC on the quarter hour On-Demand starts by RTD-CAM</td>
</tr>
</tbody>
</table>
5.7.3 Anticipated Operating Reserve Shortages

The NYISO prepares the NYISO daily status report twice daily, in anticipation of the morning peak and the evening peak. Forecasted loads and operating capacity, including maximum generation capability and all firm transactions for the hours of the expected peak are provided by the Eligible Customers of the NYISO. The NYISO also provides a forecasted peak load based on NYISO data for comparison to that supplied by the TOs.

Resource Categories

There are ten Resource Categories as shown by Table 5.7

<table>
<thead>
<tr>
<th>Resource Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R1) Energy</td>
</tr>
<tr>
<td>(R2) AGC Regulation Reserve</td>
</tr>
<tr>
<td>(R3) 10 Min Spin Reserve</td>
</tr>
<tr>
<td>(R4) 10 Min Non-Synch Reserve</td>
</tr>
<tr>
<td>(R5) 30 Min Reserve (Internal or External Reserve Activation)</td>
</tr>
<tr>
<td>(R6) FRED*</td>
</tr>
<tr>
<td>(R7) Simultaneous Active of Reserves and/or External Emergency Purchases</td>
</tr>
<tr>
<td>(R8) Unexpired Un-accepted Day-Ahead Bids</td>
</tr>
<tr>
<td>(R9) Unexpired Un-accepted Hour-Ahead Bids</td>
</tr>
<tr>
<td>(R10) Involuntary Load Curtaliment</td>
</tr>
</tbody>
</table>

FRED = Forecast Required Energy for Dispatch; the capacity to supply energy to meet NYISO forecasted load that is in excess of the sum total of Day-Ahead load bids.

Existing Real-Time Non-SRE Resource Adjustments are listed as follows:

1. AGC moves regulating resources from (R2) to (R1) and from (R1) to (R2) to maintain regulation.
2. RTD moves "Dispatchable" (On-Line or Off-Line) resources between (R1), (R2), (R3), (R4), (R5) and (R6) to balance load with generation and maintain reserves.
3. If RTD can't solve rapidly enough for an energy deficiency, Reserve Pickup is invoked to move some "Dispatchable" and "Non-Dispatchable" resources from (R2), (R3), and (R4) at emergency response rates (and from Internal (R5) and (R6) at normal response rates or faster) into (R1) to rapidly eliminate the deficiency.
Note: LESRs will not respond to reserve pickups except to either maintain any injection or terminate any consumption of energy.

4. During a Reserve Pickup – RTD-CAM is used to convert 10-Minute Operating Reserve to energy using emergency response rates for some or all suppliers providing operating reserve and normal response rates for some or all other suppliers if needed. Reserve Pickup, which only dispatches suppliers upwards, looks at control error and load trending approximately 10 minutes ahead, and allows approximately 10 minutes for the reserve pickup to occur.

Reserve pickup may occur if energy becomes deficient due to the loss of a large generator; to return schedules if the ACE exceeds 100 MWs; or if a faster ramp rate is required to solve a transmission security violation.

During Reserve Pickup, no regulation penalty is invoked for generators that exceed their RTD basepoint (i.e., over-generation is encouraged and rewarded). Reserve Pickup will be terminated by the Operator when a sufficient level of energy has been replaced. Upon this termination, generator basepoints will be initialized at their ending actual levels.

Locational Reserve Pickup may be invoked to solve a specific locational energy deficiency or transmission violation.

5. For losses of large generators, Simultaneous Activation of Reserves may be invoked to move resources from (R7) into (R1) to rapidly eliminate the energy deficiency.

Simultaneous Activation of Reserves is utilized for a condition in which a number of neighboring control areas performs a Reserve Pickup to replace energy on a regional basis. The control area that required the replacement of energy will ultimately pay back the energy to neighboring control areas as an inadvertent energy payback.

6. If steps 2, 3, and/or 4 are insufficient, External Reserve Activation may be invoked to move resources from External (R5) and (R6) into (R1) to rapidly eliminate the energy deficiency.

Upon an External Reserve Activation, Interchange Scheduler Plus (IS+) is used to perform an evaluation to change DNIs with neighboring control areas to allow interruptible exports to be cut, and to allow externally procured operating reserves to be converted to energy and imported.

7. If Reserve Pickup is (or is expected to be) insufficient, Max Gen Pickup may be invoked manually through phone notifications to TOs to move "Dispatchable" and "Non-Dispatchable" resources (R2), (R3), and (R4) at emergency response rates (and Internal (R5) and (R6) at normal response rates or faster) into (R1) to rapidly eliminate the energy deficiency.

Note: LESRs will not respond to reserve pickups except to either maintain any injection or terminate any consumption of energy.

A Maximum Generation Pickup is an emergency energy pickup as directed by the NYISO outside a normal RTD run. At the NYISO's judgment, generators will be instructed via voice communication to increase output to their upper operating
limits as soon as possible until directed otherwise. This is typically invoked to relieve a transmission violation rapidly.

8. If a reliability violation continues to occur, prescribed corrective actions should be taken which may include postponement or cancellation of scheduled transmission outages according to procedures defined in the NYISO Outage Scheduling Manual (available from the NYISO Web site at the following URL: http://www.nyiso.com/public/markets_operations/documents/manuals_guides/index.jsp). This may also include curtailment of external transactions.

9. If a reliability violation continues, External Emergency Purchases may be invoked to move resources from (R7) to (R1).

10. If other steps are insufficient in quantity and/or speed, Involuntary Load Curtailment (including possibly Load Shedding) may be invoked according to prescribed procedures to move (R10) into (R1) to rapidly eliminate the energy deficiency.

11. As a follow-up to the above steps, subsequent RTD runs will move Internal "Dispatchable" resources (R5) and (R6) into (R1) to replenish diminished regulation and 10 minute reserves.

If the data indicates that the NYCA will be short of Operating Reserve, the NYISO shall perform the actions described for supplemental commitment and scheduling.

5.7.4 Out-of-Merit Generation

From time to time, generators must be operated out of economic order or at levels that are inconsistent with the calculated schedules. Any NYISO-authorized deviation from the schedule is considered Out-of-Merit (OOM) Generation and is not subject to regulation penalties. A unit that is out-of-merit is balanced at actual output and may be eligible for a supplemental payment if its bid production cost is not met.

NYISO Requests for Out-of-Merit Generation

Out-of-Merit Generation, either up or down, can be requested by the NYISO for security of the bulk power system, during communication failures, or because the Real-Time Commitment does not successfully run. The energy provided during the out-of-merit condition will be paid at the Real-Time Market Locational Based Marginal Pricing (LBMP) rates, but out-of-merit units may not set LBMP rates. The unit will be provided a supplemental payment, if required to recover its bid cost, consistent with the rules for bid production cost guarantees.

Any supplemental payments will be charged to all NYISO Loads through the Schedule 1 Ancillary Service. The generator will be put back in merit by the NYISO when conditions warrant.

Transmission Owner Requests for Out-of-Merit Generation

Transmission Owners in the NYISO system can request that a generator be run out-of-merit, either up or down, for local reliability. The specific generator and reason for the request must be identified by the TO at the time of the request. The energy provided by the generator will be paid at the Real-Time Market LBMP rates, but OOM units may not set
LBMP rates. The unit will be provided a supplemental payment, if required to recover its bid cost, consistent with the rules for bid production cost guarantees. Any supplemental payments will be charged to the Loads within the TO’s area. The generator will remain out-of-merit until the TO requests that the NYISO put it back in merit.

Generator Operator Requests for Out-of-Merit Generation

Generator operator requests for OOM Generation must be made through the TO. The specific reason for the request is required at the time the request is relayed by the TO to the NYISO. The generator will remain out-of-merit until the generator operator requests, via the TO, that the NYISO put it back in merit.

Derated generation can also be requested by a generator operator for extenuating circumstances that require reduced operation or shutdown. This includes equipment failure or pollution episodes. The generator remains responsible for balancing energy.

5.7.5 Supplemental Commitment Process

The NYISO may use the SRE process to commit additional resources outside of the SCUC and RTC processes to meet NYISO reliability or local reliability requirements. Transmission Owners (TOs) may request the commitment of additional generators to ensure local reliability in accordance with the local reliability rules. The NYISO will use SREs to fill these requests by TOs. In addition, Generator Owners may request the operation of a specific steam unit if certain combustion turbines have an energy or a non-synchronous reserve schedule that necessitates operation of the steam unit due to 24-hour NOx Averaging Period requirements.

When the NYISO requests that generators submit bids in response to an SRE, ICAP suppliers must offer their available capacity unless an offer is pending in the Real Time market when the SRE request is made or the unit is unable to run due to an outage, operational issues or temperature derates. Special Case Resources are not required to respond to SRE requests by section 5.12.1 of the Market Services Tariff. However, the NYISO may request SCR and EDRP resources to respond to SRE requests on a voluntary basis.

Since SREs are only performed to address reliability concerns, it is intended that units committed by the SRE process fulfill their obligation by physically operating.

NYISO Requests for SREs

The NYISO may perform SREs in response to the following three conditions:
1. When Day-Ahead reliability criteria violations are forecast after SCUC has begun or completed its Day-Ahead evaluation (i.e.: too late for additional day-ahead commitments).

2. When In-Day reliability criteria violations are anticipated more than 75 minutes ahead (i.e.: too early for RTC commit additional resources).

Transmission Owner Requests for SREs

TOs may request the NYISO to issue an SRE to commit additional resources for reliability purposes in a local area. TO requests for SREs are subject to the same conditions and the same time frame as the NYISO's use of the SRE process – after SCUC has run. Any requests by TOs to commit generators not otherwise committed by the NYISO in the Day-Ahead Market will be posted to the OASIS.

When requesting an SRE, TOs must give the NYISO the reliability reason for the request, the expected duration of the SRE, and the specific facility or constraint affected. NYISO dispatchers will log all such TO requests for SREs. Within 5 business days the TO requesting the SRE commitment shall provide detailed written justification for the SRE to SREinfo@nyiso.com. The NYISO will review all SRE requests to ensure that practices being followed are consistent with NYISO tariffs and NYS Reliability Rules.

The TOs written justification must detail the system conditions that resulted in the need for the SRE commitment such that the NYISO can independently verify the request. The following system conditions should be identified when applicable: TO local area or regional load levels; identification of thermal transmission facility or substation voltage constraint, identification of whether the constraint represents a predicted actual or post-contingency violation; identification of significant transmission or generating unit outages affecting such constraint; and identification of special local reliability criteria. Other local area system conditions that resulted in the need for the SRE commitment should also be identified.

Generator Owner Requests for SREs

If certain combustion turbines have an energy or a non-synchronous reserve schedule that necessitates the operation of a specific steam unit operated by the turbine owner due to 24-hour NOX Averaging Period requirements, the NYISO may commit the steam unit if the generator owner takes the following actions:

- The generator owner shall notify the NYISO and the TO of this operational requirement. The generator owner must notify the NYISO via the TO after the DAM posts, but no later than Hour Beginning (HB) 14 of the day prior to the operating day. In addition, throughout the operating day, the generator owner must communicate to the NYISO via the TO any changes in run-time limitations that may result from the combustion turbine’s actual energy schedule or availability.

- The generator owner may request of the NYISO and inform the TO that a specific steam unit be operated, as required, to satisfy the NOx averaging requirements for the selected combustion turbine’s energy or non-synchronous reserve DAM schedule given the 24-hour NOX Averaging Period requirements for the operating day. The generator owner request should identify the steam unit, the required additional hours of operation, and the specific generation levels necessary to meet the 24-hour NOx Averaging Period requirement.
If the combustion turbines are not required for either NYISO or local TO reliability, and the associated steam units are not committed in the DAM, then the NYISO will mark the combustion turbines as unavailable in the generation outage scheduler, such that they are not committed in real-time operation. The combustion turbines will be identified as Energy Limited Resources (ELR), since the generator owner will be unable to fulfill the DAM energy or non-synchronous reserve schedule as determined by the NYISO. Combustion turbines subject to the 24-hour NOx Averaging Period requirement must be registered as Energy Limited Resources.

5.7.6 Supplemental Resource Evaluation Procedures

SRE commitment refers to the NYISO scheduling a generator to start-up to run at, or above, its minimum generation level. SCUC commits resources for the next day, and RTC can commit resources in the Dispatch Day. RTC begins with SCUC Day-Ahead generator and load schedules, non-expired/non-accepted/non-updated (but not SCUC) bids, updated or new bids, updated transaction requests, updated load forecasts, updated outage schedules, and updated status changes. It then evaluates conditions for the next 2 ½ hours, performs a supplemental commitment (if needed) optimized for the next dispatch hour, and schedules newly requested transactions for the next dispatch hour.

The objective function of SCUC is not intended to evaluate energy costs and/or start-up/min gen costs for Day-Ahead capacity forward commitments for non-synchronized reserves. However, RTC will consider start-up costs. A generator started by RTC will be assumed to run at least one hour, so that its start-up bid price will be spread over one hour and added to its bid energy price in RTC. For the purposes of setting LBMP, only the generator's energy price bid will be used. As with other start-ups, these generators will be eligible for supplemental payments to insure their start-up and minimum generation (for the remainder of the dispatch day) price bids are recovered.

Resource Monitoring Procedures

1. Monitor Regulation/Reserve Levels – The NYISO shall monitor the level of regulation and reserve resources available to meet anticipated NYCA requirements.

2. Monitor Adequacy of Bids – The NYISO shall also track the level of unexpired/unaccepted resource bids (R8 and R9) by location as potential replacements for Resources (R1), (R2), (R3), (R4), (R5), and (R6). If certain bid categories are deemed insufficient, the NYISO shall post an announcement to market participants to solicit additional bids.

5.7.7 General SRE Commitment

SRE shall only be used to address resource deficiencies; it shall not be used to reduce costs. The general SRE commitment procedure is as follows:

1. Initiate SRE – The NYISO shall proceed with an SRE:
 - If a resource deficiency occurs (or is anticipated to occur), and
If the Existing Real-Time Non-SRE Resource Adjustments steps 1 through 7 are (or are anticipated to be) inadequate, and

If the problem is outside the windows of evaluation for both SCUC and RTC.

2. **Resource Deficiency** – The resource deficiency may be a result of:

- The subsequent loss of an energy, regulation, or reserve resource;
- The loss of a transmission facility;
- A load forecasting anomaly; and/or
- A resource deficiency forecast but not evaluated by RTC.

More detailed steps are subsequently listed below to specifically describe Day-Ahead and Dispatch Day SRE procedures.

3. **Define Replacement Required** – Based on the deficiency, the NYISO will determine:

- Type of replacement required (i.e., regulation capability, operating reserve capability, or energy resource). In general, as shown in Table 5.8, the replacement to be selected should match the resource lost.
- Location that the replacement is needed
- How soon the replacement is required
- Amount in MW needed by hour
- How long the replacement will be required.

<table>
<thead>
<tr>
<th>Type of Resource Deficiency</th>
<th>Type of Replacement Required (To be Selected from Resources R8 or R9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R1) Energy Resource Deficiency</td>
<td>(R1) Energy in Acceptable Location</td>
</tr>
<tr>
<td>(R2) Regulation Resource Deficiency</td>
<td>(R2) Regulation in Acceptable Location</td>
</tr>
<tr>
<td>(R3)/(R4)/(R5) Operating Reserve Deficiency</td>
<td>(R3)/(R4)/(R5) Same Kind Replacement of Operating Reserves in Acceptable Location</td>
</tr>
<tr>
<td>(R6) FRED Deficiency</td>
<td>(R6) FRED – Acceptable Location</td>
</tr>
</tbody>
</table>

4. **Select Replacement Resources** – Based on the requirements determined above, the NYISO will select replacement resources from the pre-calculated SRE charts for available unexpired/unaccepted resources (see example chart further below).

Note Exceptions – If the NYISO's selection for supplemental resources diverges from the merit order indicated on the applicable chart, the NYISO will need to formally justify and log the exception.

5. **Solve Dispatch Day (First) and Day-Ahead Deficiencies (Second)** – In the case in which SCUC has begun or already completed its execution, and a combination of Dispatch Day and/or Day-Ahead resource deficiencies are subsequently anticipated, SRE shall be used to solve any Dispatch Day problems independently first. This shall be followed, if necessary, by another re-evaluation and a second SRE to solve any remaining Day-Ahead problems.
6. **Allow, but Do not Guarantee "Self"-Replacement by Resource Suppliers** – A resource that is financially obligated to serve a bilateral transaction or the LBMP spot market may wish to procure its own replacement if possible. In this case, it would need to arrange a Contract-For-Differences (CFD) contract with another resource that would agree to bid into the LBMP market. If that replacement resource were selected through SRE, the original resource would reach a side settlement with it. While the NYISO will not interfere with this type of arrangement, it will also be under no obligation to help facilitate this arrangement by delaying the implementation of an SRE. Alternately, the SRE may select another source for the replacement, presumably, because it is a more economical and/or more effective replacement choice.

5.7.8 Two- to Seven-Day Ahead SRE

A two- to seven-day ahead SRE shall be performed if operating capacity deficiencies are anticipated two to seven days ahead which will require long lead time generators to start-up in advance, i.e., too early for SCUC.

1. **Post Announcement** – If a Pre-SCUC SRE is anticipated, and if time permits, the NYISO shall post an announcement to market participants that a Supplemental Resource Evaluation is planned, and that additional resource bids are being solicited.

2. **Two to Seven Day-Ahead Operating Capacity** – If any deficiencies in Operating Capacity Resources are expected to exist that require long lead-time start-ups (longer than Day-Ahead):
 - Determine the amount, location and type of Supplemental Resources required. Type should be the same kind of resource that is deficient.
 - Determine how soon the Supplemental Resource will be needed.
 - Determine how long, i.e., the Supplemental Commitment Period (SCP) in hours up to the end of the Dispatch Day the Supplemental Resource is likely to be needed.
 - Select and schedule the move of Supplemental Resources from available Resource Category (R8) to Category (R6) on a least cost basis where least cost equals lowest composite start-up and minimum generation costs (if start-up will be required) spread over the SCP for resources that will be available soon enough to meet the need. In cases in which all other factors are equal, the bid energy price will be used as a tie-breaker.

5.7.9 Post-SCUC Day-Ahead SRE

A SRE to address a Day-Ahead deficiency would be performed after SCUC has begun its Day-Ahead evaluation.

1. **Post Announcement** – If a SRE to address a Day-Ahead deficiency is anticipated, and if time permits, the NYISO shall post an announcement to market participants that a Supplemental Resource Evaluation is planned, and that additional resource bids are being solicited.
2. **Day-Ahead Regulation or Reserve Deficiency** – If any deficiencies in Resources (R2), (R3), (R4), (R5), and/or (R6) are expected to exist Day-Ahead after SCUC execution begins and after allowing for Regular Real-Time Non-SRE Resource Adjustment steps 2 through 7:
 - Determine the amount, location and type of Supplemental Resources required. Type should be the same kind of resource that is deficient.
 - Determine how soon the Supplemental Resource will be needed.
 - Determine how long, i.e., the SCP in hours up to the end of the Dispatch Day, the Supplemental Resource is likely to be needed.
Select and schedule the move of Supplemental Resources from Resource Category (R8) to Categories (R2), (R3), (R4), (R5) and/or (R6) on a least cost basis where least cost equals lowest composite availability, and start-up costs and minimum generation costs (if start-up will be required) spread over the SCP for resources that will be available soon enough to meet the need. In cases in which all other factors are equal, the bid energy price will be used as a tie breaker.

3. **Day-Ahead Energy Deficiency** – If an energy deficiency (R1) is expected to exist Day-Ahead (after SCUC executes) which would result in a reserve deficiency after allowing for Existing Real-Time Non-SRE Resource Adjustments:
 - Determine the amount and location of Supplemental Resource(s) required to eliminate the energy deficiency.
 - Determine how soon the Supplemental Resource(s) will be needed.
 - Determine how long, i.e., the SCP in hours up to the end of the Dispatch Day, the Supplemental Resource(s) are likely to be needed.
Select and schedule the move of Supplemental Resource(s) from Resource Category (R8) to (R1) on a least cost basis where least cost equals lowest composite energy and start-up costs (if start-up is required) spread over the SCP for resources that will be available soon enough to meet the need.

4. **RTC Re-Adjustment** – Following steps 2 and/or 3 above, subsequent RTC runs may re-adjust resources.

5.7.10 **Dispatch Day SRE**

A Dispatch Day SRE would be performed as follows:

1. **Post Announcement** – If a Dispatch Day SRE is anticipated, and if time permits, the NYISO shall post an announcement to market participants that a SRE is planned, and that additional resource bids are being solicited.

2. **Dispatch-Day Regulation or Reserve Deficiency** – If any deficiencies in Resources (R2), (R3), (R4), (R5), and/or (R6) are expected to exist in the Dispatch Day after allowing for Regular Real-Time Non-SRE Resource Adjustments:
 - Determine the amount, location and type of Supplemental Resource(s) required. Type should be the same kind of resource that is deficient.
Determine how soon the Supplemental Resource(s) will be needed.
Determine how long, i.e., the SCP in hours up to the end of the Dispatch Day, the Supplemental Resource(s) are likely to be needed.

Select and schedule the move of Supplemental Resources from Resource Category (R8) to Categories (R2), (R3), (R4), (R5) and/or (R6) on a least cost basis where least cost equals lowest composite availability, and start-up costs and minimum generation costs (if start-up is required) spread over the SCP for resources that will be available soon enough to meet the need. In cases in which all other factors are equal, the bid energy price will be used as a tie-breaker.

3. **Dispatch Day Energy Deficiency** – If an energy deficiency (R1) is expected to exist in the Dispatch Day, which would result in a reserve deficiency after allowing for Regular Real-Time Resource Adjustments:
 - Determine the amount and location of Supplemental Resource(s) required to eliminate the energy deficiency.
 - Determine how soon the Supplemental Resource(s) will be needed.
 - Determine how long, i.e., the SCP in hours up to the end of the Dispatch Day the Supplemental Resource(s) are likely to be needed.

Select and schedule the move of Supplemental Resource(s) from Resource Category (R8) to (R1) on a least cost basis where least cost equals lowest composite energy and start-up costs (if start-up is required) spread over the SCP for resources that will be available soon enough to meet the need.

4. **RTC Re-Adjustment** – Following steps 2 and/or 3 above, subsequent RTC runs may re-adjust resources.

5.7.11 **Real-Time SRE**
A Real-Time SRE would be performed as follows:

1. **Post Announcement** – If a Real-Time SRE is needed, and time permits, the NYISO shall post, an announcement to market participants that a SRE is being invoked.

2. **Real-Time Regulation or Reserve Deficiency** – If any deficiencies in Resources (R2), (R3), (R4), and/or (R6) are expected to exist in Real-Time after Non-SRE Resource adjustments steps 1 through 7 have been invoked:
 - Determine the amount, location, and type of Supplemental Resources required. Type should be the same kind of resource that is deficient.
 - Select and move Supplemental Resources from Category (R9) to Categories (R2), (R3), (R4), (R5), and/or (R6) or a least cost basis where least cost equals lowest composite availability, and start-up and minimum generation costs (if start-up is required) are spread over one hour (in cases in which all other factors are equal, the bid energy price will be used as a tie breaker) as follows:
 - 1st – Least cost Supplemental Resources available in 10 minutes
 - 2nd – Least cost Supplemental Resources available in 30 minutes if additional Supplemental Resources are still needed.
3rd – Least cost Supplemental Resources available in greater than 30 minutes if additional Supplemental Resources are still needed.

3. **Real-Time Energy Deficiency** – If an energy deficiency (R1) continues (or is expected to continue) to exist in Real-Time even with RTC Resource Adjustments:
 ◦ Determine the amount and location of Supplemental Resources required.
 ◦ Select and move Supplemental Resources from category (R9) to (R1) on a least cost basis where start-up costs (if start-up is required) are spread over one hour as follows:
 ◦ 1st – Least cost Supplemental Resources available in 10 minutes
 ◦ 2nd – Least cost Supplemental Resources available in 30 minutes if additional Supplemental Resources are still needed.
 ◦ 3rd – Least cost Supplemental Resources available in greater than 30 minutes if additional Supplemental Resources are still needed.

4. **RTC Re-Adjustment** – Following steps 2 and/or 3 above, subsequent RTC runs may re-adjust resources.

5.7.12 **SRE Pricing and Cost Allocations**

Energy Payments

Resources committed by SRE will be paid the real time LBMP for Energy and may be guaranteed recovery of start up and minimum generation bid costs (†) pursuant to Sections 4.1.7 and 4.10 and Attachment C of the Services Tariff. As previously stated, a resource committed by SRE cannot raise (but may lower) its price bid for the duration of time it was committed.

Cost Allocation

Assignment of replacement costs that result from a SRE will be as given as shown in Table 5.9.

<table>
<thead>
<tr>
<th>Assignment of SRE Replacement Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause for SRE</td>
</tr>
<tr>
<td>Loss of SCUC Day-Ahead Committed Resource</td>
</tr>
<tr>
<td>Loss of RTC, RTD-CAM, and/or SRE Committed Resource</td>
</tr>
</tbody>
</table>

† Bids submitted by generators are subject to conduct and impact testing, and may be mitigated pursuant to the provisions of Attachment H to the Services Tariff. If the Bid has been mitigated, the Bids used to evaluate BPCG eligibility will reflect the mitigation.
Assignment of SRE Replacement Costs

<table>
<thead>
<tr>
<th>Cause for SRE</th>
<th>Impact of Replacing Energy, Operating Reserves and/or Regulation</th>
<th>Cost Assignment for Supplemental Payments for Start-Up and Minimum Generation (if any)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss of Transmission that Results in Locational Resource Deficiency</td>
<td>Affects Real-Time Energy LBMP and/or Marginal Clearing Prices for Ancillary Services</td>
<td>Schedule 1 Uplift</td>
</tr>
<tr>
<td>Unexpected Load Increase</td>
<td>Affects Real-Time Energy LBMP and/or Marginal Clearing Prices for Ancillary Services</td>
<td>Schedule 1 Uplift</td>
</tr>
</tbody>
</table>

If combustion turbines have an energy or a non-synchronous reserve schedule in the DAM that necessitates the SRE operation of a specific steam unit operated by the turbine owner due to 24-hour NO\(_x\) Averaging Period requirements, then the following cost allocation applies:

If the combustion turbines are required for NYISO reliability purposes, the NYISO shall operate the selected steam unit as required via the Supplemental Resource Evaluation (SRE) process. Any real-time uplift costs associated with the operation of the steam unit will be allocated on a statewide basis.

If the combustion turbines are required only for local TO reliability purposes, then the TO shall notify the NYISO of this requirement and the NYISO shall operate the required company steam unit via the SRE process for local TO reliability. Any real-time uplift costs associated with the required steam unit will be allocated to the LSEs in the LBMP zone that had the reliability requirement.
This page intentionally blank.
6. Dispatching Operations

This section describes the real-time dispatching operations and covers the following:

- Real-Time Dispatch
- Real-Time Dispatch – Corrective Action
- Dispatching Operations Requirements
- Dispatching Operations Procedures.

6.1 Real-Time Dispatch

Real-Time Dispatch (RTD) is a multi-period security constrained dispatch model that co-optimizes to solve simultaneously for Load, Operating Reserves, and Regulation Service on a least-as-bid production cost basis. Real-Time Dispatch runs will normally occur every five minutes. Figure 6-1 presents the RTD time line for a period of one hour.
6.1.1 Real-Time Dispatch Process

The Real-Time Dispatch will make dispatching decisions, send Base Point Signals to Internal Generators and, to the extent that the NYISO’s software can support their participation, Demand Side Resources, calculate Real-Time Market clearing prices for Energy, Operating Reserves, and Real-Time Market Prices for Regulation Service, and establish real-time schedules for those products on a five-minute basis, starting at the beginning of each hour. The Real-Time Dispatch will not make commitment decisions and will not consider start-up costs in any of its dispatching or pricing decisions. Each Real-Time Dispatch run will co-optimize to solve simultaneously for Load, Operating Reserves, and Regulation Service and to minimize the total cost of production over its bid optimization horizon. In addition to producing a binding schedule for the next five minutes, each Real-Time Dispatch run will produce advisory schedules for the remaining four time steps of its bid-optimization horizon. RTD will use the most recent system information and the same set of Bids and constraints that are considered by RTC.
6.1.2 Real-Time Dispatch Information Posting

The public information and secure Market Participant data to be posted from the execution of RTD is described in this subsection.

Public Information

The following information will be produced by RTD and is posted:

1. 5-minute look ahead zonal and generator prices from the first increment of RTD.
2. Ancillary Services prices for the 5-min look-ahead interval of RTD. The following incremental prices are posted:
 - 10-min Spinning Reserve (West and East)
 - 10-min Non-Spinning Reserve (West and East)
 - 30-min Spin/Non-Spin Reserve (West and East)
 - Regulation Capacity (West and East)
 - Regulation Movement (NYCA only)
3. The following additional information will be posted as required:
 - Phase Angle Regulator (PAR) schedules for all PARs
 - Limiting Constraints on transmission network MW flows (Constraint Type [Base/Contingency] and Shadow Price).
 - Transmission Interface Flows
4. A set of real-time prices produced by the MIS will also be posted periodically at a NYISO specified time. These prices may be corrected and reposted as required.
5. Zonal and Generator Time Weighted/Integrated LBMP information will be produced by the MIS, using the 5-minute real-time prices, also from the MIS. The time weighted/integrated LBMPs will be posted on an hourly basis within 10-minutes after top-of-hour.

Secure Data to Market Participant

The following information will be produced by RTD and will need to be made available to authorized MPs:

- MW base points for each look-ahead interval of RTD. The first base point from RTD is a 5-minute look-ahead and is immediately passed on to the Automatic Generation Control (AGC) program. The remaining base points are considered to be advisory, and are given at 15-minute intervals.

Market Participants must examine the RTD 15-minute advisory base points to get advance notice of upcoming Unit Startups and Shut Downs. The beginning and end of a Startup period or Shutdown period always occurs at the 15-minute clock times as established by RTC.

Note: This does not apply for RTD-CAM functions such as Reserve Pickup Max Gen Pickup and Base Points ASAP- Commit as Necessary.
Startup of quick start units is also communicated via Inter-Control Center Communications Protocol (ICCP) telemetered signals, when scheduled on by RTC, by setting a "startup flag" approximately 15 or 30 minutes ahead, depending on the unit's startup time.

6.2 Real-Time Dispatch – Corrective Action Modes

When the NYISO needs to respond to system conditions that were not anticipated by RTC or the regular Real-Time Dispatch, e.g., the unexpected loss of a major Generator or Transmission line, it will activate the specialized RTD-CAM program. RTD-CAM runs will be nominally either five or ten minutes long, as is described below. Unlike the Real-Time Dispatch, RTD-CAM will have the ability to commit certain Resources. When RTD-CAM is activated, the NYISO will have discretion to implement various measures to restore normal operating conditions. These RTD-CAM measures are described below.

- The NYISO shall have discretion to determine which specific RTD-CAM mode should be activated in particular situations. In addition, RTD-CAM may require all Resources to run above their normal UOLs, up to the level of their emergency UOLs. Self-Scheduled Fixed Resources will not be expected to move in response to RTD-CAM Base Point Signals except when a maximum generation pickup is activated.
- Except as expressly noted in this Section, RTD-CAM will dispatch the system in the same manner as the normal Real-Time Dispatch.
- LESRs will not respond to either reserve or max gen pickups. If it is in the supply mode they will maintain its current output level subject to available energy. If consuming, AGC will set the LESR to zero. RTD-CAM modes will solve assuming a net zero position for LESRs.

6.2.1 Reserve Pickup Mode

The NYISO may enter this RTD-CAM mode when necessary to re-establish schedules if the ACE is greater than 100 MW. When in this mode, RTD-CAM will send 10-minute Base Point Signals and produce schedules for the next ten minutes. RTD-CAM may also commit, or if necessary de-commit, Resources capable of starting or stopping within 10-minutes. The NYISO will continue to optimize for Energy and Operating Reserves, and will recognize locational Operating Reserve requirements, but will set all Regulation Service schedules to zero. If Resources are committed or de-committed in this RTD-CAM mode, the schedules for them will be passed to RTC and the Real-Time Dispatch for their next execution.

The NYISO will have discretion to classify a reserve pickup as a “large event” or a “small event.” In a small event, RTD-CAM may reduce Base Point Signals to reduce transmission line loadings. In a large event, RTD-CAM will not reduce Base Point Signals.

6.2.2 Maximum Generation Pickup

The NYISO will enter this RTD-CAM mode when an Emergency makes it necessary to maximize Energy production in one or more location(s), i.e., Long Island, New York City, East of Total East, and/or NYCA-wide. RTD-CAM will produce schedules directing all
Generators located in a targeted location to increase production at their emergency response rate up to their emergency UOL level and to stay at that level until instructed otherwise. Security constraints will be obeyed to the extent possible. The NYISO will continue to optimize for Energy and Operating Reserves, will recognize locational Operating Reserve requirements, but will set all its Regulation Service schedules to zero.

6.2.3 Base Points ASAP – No Commitments

The NYISO will enter this RTD-CAM mode when changed circumstances make it necessary to issue an updated set of Base Point Signals. Examples of changed circumstances that could necessitate taking this step include correcting line, contingency, or transfer overloads and/or voltage problems caused by unexpected system events. When operating in this mode, RTD-CAM will produce schedules and Base Point Signals for the next five minutes but will only redispatch Generators that are capable of responding within five minutes. RTD-CAM will not commit or de-commit Resources in this mode.

6.2.4 Base Points ASAP – Commit As Needed

This operating mode is identical to Base Points ASAP – No Commitments, except that it also allows the NYISO to commit Generators that are capable of starting within 10 minutes when doing so is necessary to respond to changed system conditions.

6.2.5 Re-Sequencing Mode

When the NYISO is ready to de-activate RTD-CAM, it will often need to transition back to normal Real-Time Dispatch operation. In this mode, RTD-CAM will calculate normal five-minute Base Point Signals and establish five minute schedules. Unlike the normal RTD-Dispatch, however, RTD-CAM will only look ahead 10-minutes. Basepoints issued in the RTD-CAM re-sequencing mode are updated as soon as a normal Real-Time Dispatch run has executed and produced Base Point signals thus completing the transition back to normal RTD execution intervals and optimization horizons.

6.3 RTC/RTD Solution Process

RTC/RTD calculates a short-term generation schedule, referred to as a “base point,” for each of the generating units designated as flexible or “on-dispatch.” RTC/RTD retrieves the information it needs to perform the calculation from data maintained in the NYCA databases. This information includes incremental bid cost curves of the generating units, telemetry data, and other data needed to model each of the constraints.

RTC/RTD determines the initial conditions to begin the commitment and dispatch process. These initial conditions include:

a. Real-time telemetry values for generation output, which represents the initial generation MW values.

b. Forecasted values of zonal, load, and the last RTD powerflow transmission zonal losses.
c. Real-time telemetry values for phase angle regulator flows, which represent their initial power schedule if optimized; otherwise the real-time telemetry represents their final power schedule.

d. Real-Time telemetry values to model unscheduled transmission system powerflows such as Lake Erie Circulation.

e. Current facility outage schedules, including forced and scheduled outages and any outages that affect system transfer limits.

f. For LESRs real-time telemetry of energy storage levels.

RTC/RTD performs a unit commitment and dispatch and a corresponding powerflow solution to ensure that all actual and contingency transmission constraints are secured to applicable limits. Generation delivery factors are calculated from the RTD powerflow solution and are used to approximate the effects of changes in generation on system transmission losses.

If there are unsecured transmission constraints, then RTC/RTD performs additional network constrained unit commitment and dispatch solutions and corresponding powerflow solutions until all actual and contingency transmission constraints are secured.

The allowable dispatch range (maximum and minimum limits) of the dispatchable generating units for the five-minute period are determined considering maximum and minimum limits specified by the Market Participants, regulation constraints, and the response rates of the units.
6.3.1 Limit Updates

All generator-operating limits are taken from generator bid information. The only changes that are made to unit operating limits are via the OOM package. This is done by a NYISO operator using information received from the TO or the Generator.

At the top of each hour, the real-time upper operating limit will be compared with the projected upper operating limit, which is based on the accepted bid parameters. The OOM limit will be used by RTD. A text alarm will be sent to the TO and to the NYISO alarm screen. Any discrepancy will be resolved with the appropriate generator.

If the unit requires a modification to real-time limits which results in a derating of the unit due to operational problems, the NYISO can lower the upper operating limit. The corresponding RTD high limit will be adjusted.

6.3.2 Status Updates

At the top of each hour, the real-time unit status will be compared with the projected status, which is based on the accepted bid parameters. The unit status will be set from existing real time or projected status, which will be used by RTD and AGC. Additionally:

1. A unit that has not bid for regulation cannot be placed ‘On Control’

2. If a supplier can provide 10-minute non-synchronized reserve but is not scheduled to do so in the DAM and wishes not to be dispatched or started in
real-time by RTD-CAM to provide energy then the supplier must update the real time status to ‘unavailable’

3. Suppliers that do not update the limits and or status to equal the projected status or limits as bid and accepted are subject to reserve and regulation balancing payments.

6.3.3 NYISO-TO-Power Supplier Communications

Units that bid such that they will be scheduled at fixed ¼ hour points can obtain their schedules from the MIS posting in addition to the base points that will be transmitted to the TO by the NYISO.

Units that are dispatchable and non-synchronous units that can be committed by RTD-CAM must be prepared to receive real-time schedule changes. The unit schedules (base points) that are sent to the TOs as a result of a reserve pick up or locational reserve pick up will be tagged to indicate that the base points were calculated based on the higher of normal or emergency response criteria. This is an indication that the dispatchable and Non-synchronous units may be receiving a RTD-CAM schedule change and that the base points may reflect emergency response rate criteria.

6.3.4 Transmission loss treatment

The day-ahead and real-time scheduling programs each employ the same treatment of physical transmission losses. The day-ahead software is the Security-Constrained Unit Commitment (SCUC) program, and the real-time software is the Real-Time Commitment (RTC) and Real-time Dispatch (RTD) programs. Transmission losses are calculated as part of the power flow solution for each time interval simulated by these programs for each of the eleven load zones in the NYCA.

The short-term real-time load forecast provides a forecast of the eleven zonal loads for each interval. The load forecast does not include an estimate of zonal transmission losses. The loss estimates for the load zones are determined from the network power flow solutions of the corresponding RTC/RTD intervals. The load forecast for the real-time market operation is determined for demand only and the calculation of losses within RTC and RTD are added to the forecast for total scheduling or dispatching requirements. Generating resources and external import transactions are scheduled in RTC/RTD to meet (i) the forecast of the zonal loads and (ii) the RTC/RTD zonal loss determinations and external export transactions.

6.3.5 Phase Shifter Models

The RTC/RTD programs assume that the pre-contingency active power flows on phase shifter controlled transmission lines are fixed at their telemetered values observed at the start of the dispatch interval except for those PARs listed below, i.e., phase shifter controlled lines are said to be "block loaded". However, for contingency case security constraints, the post-contingency flows on phase shifter controlled lines varies as a function of the pre-contingency values of the facilities described in the contingency and forecast system topology. For contingency analysis, phase shifter controlled lines are said to be allowed to "free-flow."
The desired flows will be established for the ABC, JK, 5018 and 1385 interconnections based on the following:

- the ABC interconnection will be the current level of ABC power flows (based on PAR MW telemetry values) plus 0% (13% prior to May 1, 2012) of the expected schedule changes to the PJM-NYISO interchange
- the JK interconnection will be the current level of JK power flows (based on PAR MW telemetry values) plus 0% (-13% prior to May 1, 2012) of the expected schedule changes to the PJM-NYISO interchange
- the Hopatcong-Ramapo interconnection will be the current level of 5018 power flows (based on PAR MW telemetry values) plus 40% of the expected schedule changes to the PJM-NYISO interchange. The Hopatcong-Ramapo 500kV Operating agreement allows for the assumption that up to 61% of PJM-NY transaction schedules at the Keystone Proxy Bus flow over the 5018 interconnection. However, flows over the 5018 interconnection will be conservatively modeled at 40% to ensure feasible operating schedules.
- the 1385 Northport-Norwalk Harbor interconnection will be determined by transaction bid evaluation on the NPX 1385 proxy bus.

6.3.6 Demand curves

The unit commitment and dispatch module used in both the SCUC and RTS systems was given additional functionality of demand curves. The demand curve allows the program to relax the requirements if the shadow cost needed to supply the requirement exceeds a preset value. The demand curve functionality is used for the reserve and regulation requirements and for transmission constraints. The demand curves shown in Table 6.1 are implemented:

<table>
<thead>
<tr>
<th>Type</th>
<th>NY Region</th>
<th>Demand Curve (MW)</th>
<th>Demand Curve Price ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulation*</td>
<td>NYCA</td>
<td>25.0</td>
<td>$80.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80.0</td>
<td>$180.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>remainder</td>
<td>$400.00</td>
</tr>
<tr>
<td>Spinning Reserve</td>
<td>NYCA</td>
<td>All</td>
<td>$500.00</td>
</tr>
<tr>
<td>10 Minute Reserve</td>
<td>NYCA</td>
<td>All</td>
<td>$450.00</td>
</tr>
<tr>
<td>30 Minute Reserve</td>
<td>NYCA</td>
<td>200.0</td>
<td>$50.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>400.0</td>
<td>$100.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>remainder</td>
<td>$200.00</td>
</tr>
<tr>
<td>Spinning Reserve</td>
<td>Eastern NY</td>
<td>All</td>
<td>$25.00</td>
</tr>
<tr>
<td>10 Minute Reserve</td>
<td>Eastern NY</td>
<td>All</td>
<td>$500.00</td>
</tr>
<tr>
<td>30 Minute Reserve</td>
<td>Eastern NY</td>
<td>All</td>
<td>$25.00</td>
</tr>
<tr>
<td>Spinning Reserve</td>
<td>Long Island</td>
<td>All</td>
<td>$25.00</td>
</tr>
<tr>
<td>10 Minute Reserve</td>
<td>Long Island</td>
<td>All</td>
<td>$25.00</td>
</tr>
<tr>
<td>30 Minute Reserve</td>
<td>Long Island</td>
<td>All</td>
<td>$25.00</td>
</tr>
</tbody>
</table>
6.3.7 Locational Reserves

Operating reserves will be locationally priced and the locational reserve requirements will be determined by the NYISO. There are locational reserve requirements for the NYCA, the Eastern New York area, and the Long Island area.

Reserves are scheduled as part of each RTD run and are co-optimized, nominally every five minutes, along with energy and regulation schedules. These reserves may be converted to energy in any normal dispatch or during a Reserve Pickup and replacement reserves scheduled on other available resources. During a reserve pickup event, dispatchable suppliers will be dispatched upward at the higher of their normal response rate curve or their emergency response rates. During a Reserve Pickup, the NYISO will notify the TOs, who in turn will notify dispatchable resources that a Reserve Pickup is taking place. A RPU “flag” will be sent with the basepoints via ICCP.

With respect to 30-minute Reserves, Reserve Pickup will dispatch 30-minute Spinning Reserve Upward but not 30-minute non-synchronized Reserve. This would be done at the next RTC execution or through a Supplemental Resource Evaluation (SRE).

6.3.8 Reserve Comparator

The Reserve Comparator (RC) function executes nominally every five minutes and resides on the on-line EMS to track actual system reserves and system reserve requirements. The purpose of the RC program is to monitor the locational reserves and capability in the real time system and for interchange evaluation in the NYCA. RC monitors NYCA reserves in three categories: 10-minute synchronous reserve, total 10-minute reserve, and total 30-minute reserve. Currently it also calculates the reserves and capability from units and transactions for each Zone and the NYCA.

6.3.9 Reserve Calculations

The following reserve calculations are implemented for the LBMP Market:

1. Reserves are calculated on a locational basis.
2. There are reserve requirements for each of the locational reserve areas with the appropriate alarming.
3. Non-synchronous reserve can only be counted on units that have an accepted bid and have been committed for non-synchronous reserve. This applies for both 10-minute and Operating Reserve.

All dispatchable (on-line) units are counted towards 10-minute synchronous reserve, whether or not they have an accepted reserve availability bid.

* If the Regulation Demand Curve is active, RTD will not set basepoints for LESR energy management.
6.3.10 Simultaneous Activation of Reserves

The Simultaneous Activation of Reserves (SAR) is a mutual agreement among the following participating areas to provide 10-minute reserve assistance:

- Ontario
- New England/New Brunswick
- NYISO
- PJM

The NYISO acts as the central coordinator for the SAR procedure and will ensure that SAR allocations assigned to the participating areas are within their response capabilities. The SAR allocation for an area is the additional amount of energy it is assigned to provide in response to a SAR request.

Procedure

The following is a summary of the SAR procedure, which is described in greater detail in the NPCC Regional Reliability Directory#5 Section 5.8 and Appendix#4 (December 2, 2010).

1. **Preliminary Reserve Assignment:** On a continuing basis, Maritimes, ISO-NE, Ontario, and PJM dispatchers shall keep the NYISO informed of the largest, single generation or energy purchase contingency on their respective system and changes thereof.

 Information pertaining to an Area's inability to participate, reserve limitations (such as "bottled" reserve or reserves used to deliver economy energy sales) and transmission limitations shall be reported to Maritimes, ISO-NE, Ontario, and PJM by the NYISO Shift Supervisor as those conditions arise.

2. **Notification of Contingency:** Immediately following a sudden loss of generation or energy purchase in the Maritimes, ISO-NE, NYISO, Ontario, or PJM, the Area experiencing the loss (Contingency Area) shall indicate whether SAR is being requested and report the following information to the NYISO via the interregional direct telephone lines:

 ✷ Name of generation or purchase lost.
 ✷ Total number of megawatts lost.
 ✷ Time that contingency occurred (time zero T+0).
 ✷ Any transmission or security problems within the Contingency Area that affect SAR allocations to Assisting Areas.

3. **Activation of Reserve:** After receiving notification of the SAR request and the specific contingency, the NYISO Shift Supervisor shall:

 ✷ Determine each Area's SAR allocation in accordance with NPCC Procedure C-12.
 ✷ By the direct inter-Area telephone lines, immediately inform each Area of its SAR allocation, the time that the schedule change is effective, and the time that the contingency occurred.
The SAR allocation shall become part of the interchange schedule and shall be implemented immediately following notification.

4. **Provision of Reserve Assistance:** Assisting Areas shall respond as quickly as possible, assuming the same obligation as if the contingency occurred within its Area. Assisting Areas shall complete a report that documents the Reserve Assistance provided.

The Contingency Area shall initiate immediate action to provide its share of reserve to recover from the generation or energy purchase loss, prepare for the replacement of the reserve assistance assigned to assisting Areas, and proceed to re-establish 10-minute reserve at least equal to its next largest contingency.

5. **Termination of Simultaneous Reserve:** As soon as the Contingency Area has provided its SAR allocation, it will notify the NYISO. The NYISO shall establish a conference call between all participating Areas and confirm the time that the assistance shall be terminated. Revised interchange schedules will be mutually established as required to ensure that the Assisting Areas properly recall assistance. The Contingency Area shall replace the reserve assistance assigned to assisting Areas in a manner consistent with mutually established interchange schedules.

In the event that a Contingency Area is not prepared to replace the remaining portion of its reserve obligation within time zero + 30 minutes, the Contingency Area shall arrange for additional assistance in accordance with applicable policies and agreements covering interchange and emergency assistance.

In the event that the security of an Assisting Area becomes jeopardized, that Area may cancel all or part of its allocation by notifying the NYISO, which will then request the Contingency Area to pick up the required additional amounts of reserve. The Contingency Area shall complete a report that documents the recovery provided for the contingency.

6. **Subsequent Contingencies:** In the event that a subsequent loss of generation or energy purchase, regardless of the size of the contingency, occurs during the period when a reserve pick-up is in progress, the second Contingency Area may, at its discretion, withdraw assistance and request the NYISO to reallocate the assistance in accordance with the provisions of this simultaneous activation of reserve procedure.

Upon such notification, the NYISO will notify the first Contingency Area of the amount of withdrawal. Both Contingency Areas will immediately enter new interchange schedules that reflect the loss of the assistance, using a zero time ramp.

In the event that the second Contingency Area experiences a contingency that qualifies for simultaneous activation of reserve, the NYISO will allocate assistance from the remaining Assisting Areas in accordance with this procedure, upon the request of that Area.

If the second contingency occurs in the Area that has incurred the first contingency, that Area may request assistance, in accordance with this procedure, regardless of the size of the contingency.

7. **Disturbance Control Standard (DCS) Reporting of Simultaneous Activation Reserve Events:** The evaluation of DCS compliance for an Area shall utilize
the NERC Disturbance Recovery Period applicable at the time of the reportable event (15 minutes). The evaluation of compliance for the purpose of determining Area synchronized reserve requirements shall utilize a recovery period established by the NPCC (15 minutes).

NYISO Operator Action

The NYISO Operator interacts with SAR as follows:

1. The NYISO Operator calls up the SAR display and enters the following information:
 - Neighboring SAR area
 - MW amount of SAR
 - Activation (Immediate) or Termination (Immediate or Scheduled Time)

2. When a SAR is activated, the SAR MW value shall immediately take on the Operator entered SAR MW amount, regardless of any existing SAR value or if termination was already in progress,

3. When a SAR is terminated, the current (or scheduled) SAR value shall be ramped to zero over a 10-minute period, even if termination was already in progress.

4. SAR MW values are automatically converted to 1-minute values for input to the RTD/RTD-CAM and AGC programs.
 - RTC will not have a direct SAR MW input.
 - AGC will record the application of the SAR MW inputs.
This page intentionally blank.
Attachment A. Transmission Facilities

- Table A.1 lists NYISO Facilities Requiring Coordination and Notification.
- Table A.2 lists Bus Voltage Limits for NYISO Secured Transmission System.
- Table A.3 lists Bus Voltage Limits for HQ-NYISO transfers.
Table A.1 NYISO Facilities Requiring Coordination and Notification

The NYISO Facilities Requiring Coordination and Notification can be found in the Outage Scheduling Manual (available from the NYISO Web site at the following URL: http://www.nyiso.com/public/markets_operations/documents/manuals_guides/index.jsp).
Table A.2 Bus Voltage Limits for NYISO Secured Transmission System

The Bus Voltage Limits for NYISO Secured Transmission system can be found in the Emergency Operations Manual (available from the NYISO Web site at the following URL: http://www.nyiso.com/public/markets_operations/documents/manuals_guides/index.jsp)
Table A.3 Bus Voltage Limits for HQ-NYISO Transfers

The Bus Voltage Limits for HQ-NYISO Transfers can be found in the Emergency Operations Manual (available from the NYISO Web site at the following URL: http://www.nyiso.com/public/markets_operations/documents/manuals_guides/index.jsp)
Attachment B. Operating Criteria

- Table B.1 lists exceptions to operating criteria for pre-contingency and post-contingency transmission facility flows and voltages.
- Table B.2 lists multiple circuit tower lines in the NYCA [MP 29-1, A].
- Table B.3 lists the NYISO thunderstorm multiple contingencies [MP 29-1, B].
- Table B.4 lists the local reliability rules of the New York Transmission Owners.
- Table B.5 displays the applications of reliability rules and cost allocation responsibility.
Table B.1 Exceptions to the NYSRC Reliability Rules

The exceptions to the NYSRC Reliability Rules are approved by the NYSRC. The current set of exception can be found at:

Table B.2 Multiple Circuit Tower Lines in NY Control Area

Table B.3 Thunderstorm Multiple Contingencies Cases

The Thunderstorm Multiple Contingencies Cases can be found in the Emergency Operations Manual (available from the NYISO Web site at the following URL: http://www.nyiso.com/public/markets_operations/documents/manuals_guides/index.jsp)
Table B.4 Local Reliability Rules of the New York Transmission Owners

The Local Reliability Rules are more stringent than the other NYSRC Reliability Rules because of the need to protect delivery in certain zones. The current set of Local Reliability Rules can be found in Section I of the NYSRC Reliability Rules Manual at:

Table B.5 Applications of Reliability Rules and Cost Allocation Responsibility

The current version of the ARR Table is posted at:

Attachment C. Solar Magnetic Disturbance Form

This form is used to record Solar Magnetic Disturbance (SMD) Forecasts and Alerts from the Space Environment Services Center (SESC) in Boulder, Colorado and from Energy, Mines, and Resources (EMR) in Ottawa, Ontario.

<table>
<thead>
<tr>
<th>SESC</th>
<th>Intensity</th>
<th>Date/Time: ____________________________</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Alert Received By: _____________________</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Duration of Forecast or Alert</td>
</tr>
<tr>
<td></td>
<td></td>
<td>From: _________________________________</td>
</tr>
<tr>
<td></td>
<td></td>
<td>To: ___________________________________</td>
</tr>
</tbody>
</table>

Forecasts

<table>
<thead>
<tr>
<th></th>
<th>Valid Period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Date, Time, Duration)</td>
</tr>
<tr>
<td></td>
<td>From: ________________________________</td>
</tr>
<tr>
<td></td>
<td>To: ___________________________________</td>
</tr>
</tbody>
</table>

Alerts

<table>
<thead>
<tr>
<th></th>
<th>Valid Period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Date, Time, Duration)</td>
</tr>
<tr>
<td></td>
<td>From: ________________________________</td>
</tr>
<tr>
<td></td>
<td>To: ___________________________________</td>
</tr>
</tbody>
</table>

Other Comments

<table>
<thead>
<tr>
<th></th>
<th>__</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>EMR</th>
<th>Intensity</th>
<th>Date/Time: ____________________________</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Alert Received By: _____________________</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Duration of Forecast or Alert</td>
</tr>
<tr>
<td></td>
<td></td>
<td>From: _________________________________</td>
</tr>
<tr>
<td></td>
<td></td>
<td>To: ___________________________________</td>
</tr>
</tbody>
</table>

Forecasts

<table>
<thead>
<tr>
<th></th>
<th>Valid Period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Date, Time, Duration)</td>
</tr>
<tr>
<td></td>
<td>From: ________________________________</td>
</tr>
<tr>
<td></td>
<td>To: ___________________________________</td>
</tr>
</tbody>
</table>

Alerts

<table>
<thead>
<tr>
<th></th>
<th>Valid Period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Date, Time, Duration)</td>
</tr>
<tr>
<td></td>
<td>From: ________________________________</td>
</tr>
<tr>
<td></td>
<td>To: ___________________________________</td>
</tr>
</tbody>
</table>

Other Comments

<table>
<thead>
<tr>
<th></th>
<th>__</th>
</tr>
</thead>
</table>
This page intentionally blank.
Attachment D. Generating Unit AVR / PSS Status Log

This form is used by the NYISO to record the status of Automatic Voltage Regulators and Power System Stabilizers in the New York Control Area.

<table>
<thead>
<tr>
<th>Unit Name & Identification</th>
<th>Out-of-Service Date</th>
<th>Out-of-Service Time</th>
<th>Return-to-Service Date</th>
<th>Return-to-Service Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This page intentionally blank.