Master Plan

May Draft

Ethan Avallone

TECHNICAL SPECIALIST, ENERGY MARKET DESIGN

ICAPWG/MIWG

May 19, 2020 Rensselaer NY

Agenda

- Background
- May Draft Updates
- Timeline
- Appendix I
 - 2020 Master Plan Process
- Appendix II
 - 2020 Master Plan Strategic Initiatives and Key Themes
- Appendix III
 - 2020 Master Plan Proposed Project Timelines

Background

Background

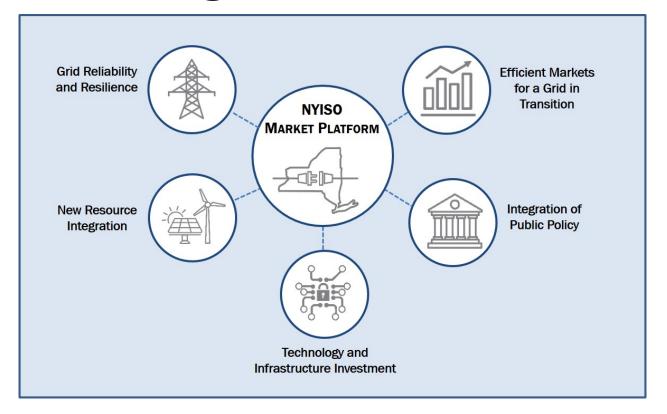
- The Master Plan was first developed in 2018 and is updated annually
- The Master Plan provides a multi-year vision for future NYISO enhancements

- It is intended to provide a comprehensive 5-year plan that will enable the NYISO to prepare for anticipated changes to the bulk power system
- The document serves multiple purposes including providing valuable information for the NYISO's project prioritization and strategic planning processes


Background

- In response to stakeholder feedback on prior plans, the 2020 Master Plan includes a number of features to improve readability and clarity
 - The NYISO will provide a cohesive narrative, while avoiding reiteration of unnecessary project information that is already included within project candidate descriptions
 - Describe how each individual project will support grid reliability and market efficiency
 - Compare and contrast the projects in terms of the level of effort, and the benefit that each will provide for the grid
 - Provide a potential timeline for stakeholders
- Today, the NYISO will discuss the updated draft of the Master Plan posted with today's meeting materials

2020 Master Plan Structure


- The 2020 Master Plan derives the strategic initiatives discussed from the NYISO's 2020-2024 Strategic Plan*
 - The projects discussed in the 2020 Master Plan are grouped under the applicable strategic initiatives

*Link to the Strategic Plan: https://www.nyiso.com/documents/20142/2225883/2020-Strategic-Plan.pdf/e282579c-9988-3ff6-5164-dfea1abfbc13?t=1576765917219

NYISO Strategic Initiatives

2020 Master Plan Structure

- Strategic Initiatives and Key Themes
 - Grid Reliability and Resilience
 - Efficient Markets for a Grid in Transition
 - New Resource Integration
 - Integration of Public Policy
 - Technology and Infrastructure Investment
- Proposed project timelines
- Potential grid benefits, NYISO effort, and project dependencies

May Draft Updates

May Draft Updates

Throughout the paper

 The terms "Operating Reserve" and "Ancillary Services" were capitalized throughout to reflect that these are tariff-defined terms.

Introduction

• Include that the initiatives featured in this document will prepare the NYISO for the grid transition to increased weather dependent generation between now and 2030.

Strategic Initiatives and Key Themes

- Include that the Short Term Reliability Process ("STRP") was accepted by FERC in April.
- Edits to remove reference to the phrase "front-of-the-meter generation," and instead use the phrase "wholesale market generation."

May Draft Updates

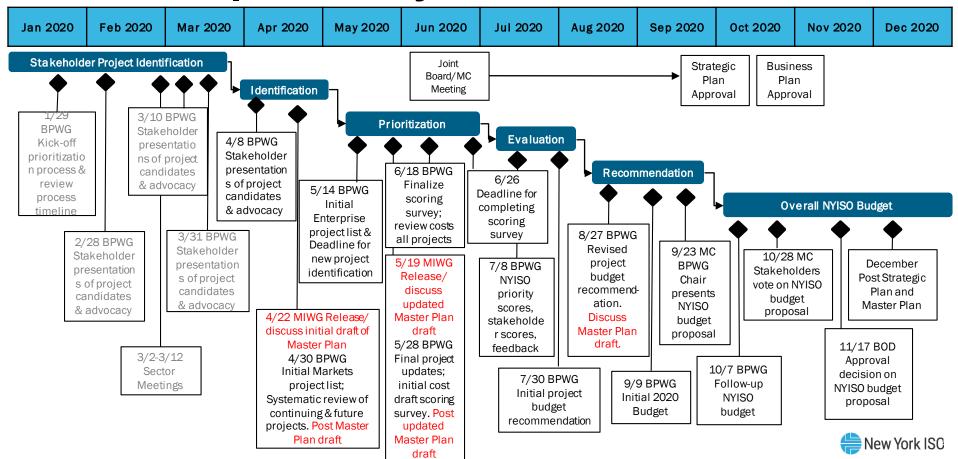
Potential Grid Benefits, NYISO Effort, and Project Dependencies

- Clarify that there is a medium-low level of effort anticipated for Reserves for Resource Flexibility, though the level of effort may change depending on the market design ultimately approved by stakeholders.
- Note that the timeline for Large-Scale Solar on Dispatch is accelerated due to an uptick in the number of solar projects in the NYISO interconnection queue.
- Clarify that there is no dependency between More Granular Operating Reserves and the Ancillary Services Shortage Pricing, Reserves for Resource Flexibility, and Reserve Enhancements for Constrained Areas projects.
- Clarify that the Reserve Enhancements for Constrained Areas project will require a high level of effort to complete, with a long development and testing period before deployment.

May Draft Updates

- Potential Grid Benefits, NYISO Effort, and Project Dependencies (continued)
 - Include that the next Demand Curve Reset may have other project dependencies, such as Capacity Demand Curve Adjustments.
 - Clarify that each subsequent study that is part of Expanding Capacity Eligibility/ Capacity Value Study will have a high effort level, and that this study is combined with the recurring study established as part of the Tailored Availability Metric project.
 - Update the Tailored Availability description in this section to note that the 2020 milestone of Market Design Complete was achieved. Include that initial values proposed will be updated every four years as part of a recurring study.
 - Expand upon the description of Engaging the Demand Side.
 - Clarify that the NYISO expects a medium-high effort to complete Hybrid Storage Model because this design will affect multiple NYISO systems and processes.

Timeline

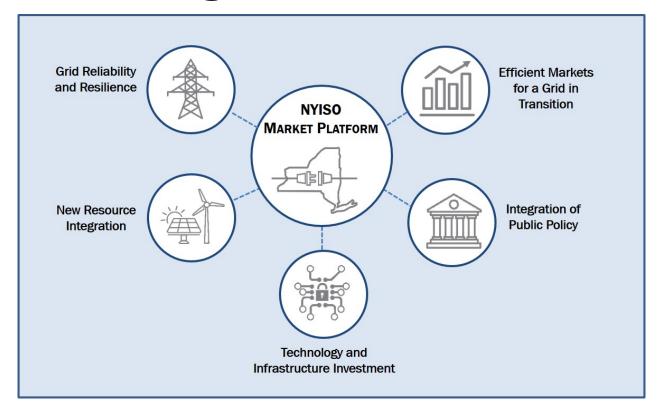

Master Plan Timeline

- ✓ March 2020 Meet with each governance sector to get initial feedback
- ✓ April 22, 2020 (MIWG) Release and discuss the initial draft of the Master Plan
- April 30, 2020 (BPWG) Release the initial draft of the Master Plan (no discussion)
- May 19, 2020 (MIWG) Release and discuss updated draft
- May 28, 2020 (BPWG) Release updated draft (no discussion)
- August 27, 2020 (BPWG) Release and discuss near final draft of the Master Plan
- December 2020 Release final Master Plan

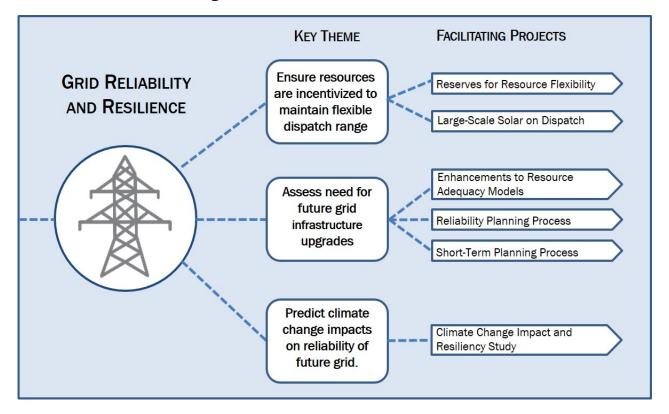
All updates to the Master Plan will be coordinated with the overall project prioritization process

2021 Proposed Project Prioritization Timeline

Appendix I: 2020 Master Plan Process

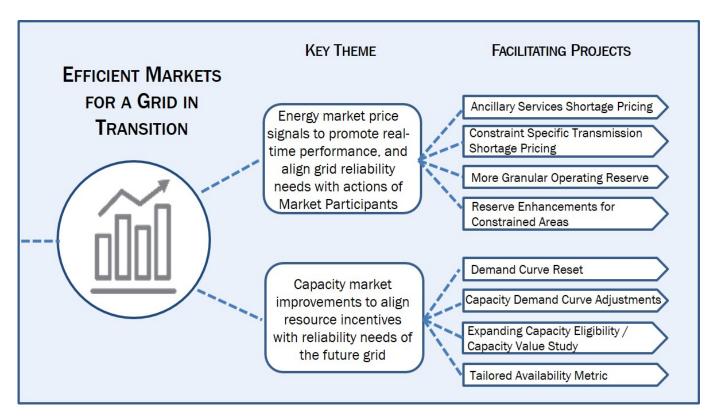

Master Plan Process

- The Master Plan starts with receiving feedback at each of the Sector Meetings
- An initial draft of the Master Plan will be produced in mid-April
 - This draft is intended to share NYISO's initial thoughts based on Sector Meeting feedback
- An updated draft of the Master Plan will be produced near the end of May
 - This draft will incorporate additional feedback and identify costs and benefits
- A near final draft of the Master Plan will be produced near the end of August
 - This draft will incorporate any changes as a result of the project prioritization and the budget process
- A final Master Plan will be produced near the end of the year
 - This final version will incorporate any changes from the final approved budget


Appendix II: 2020 Master Plan -Strategic Initiatives and Key Themes

NYISO Strategic Initiatives

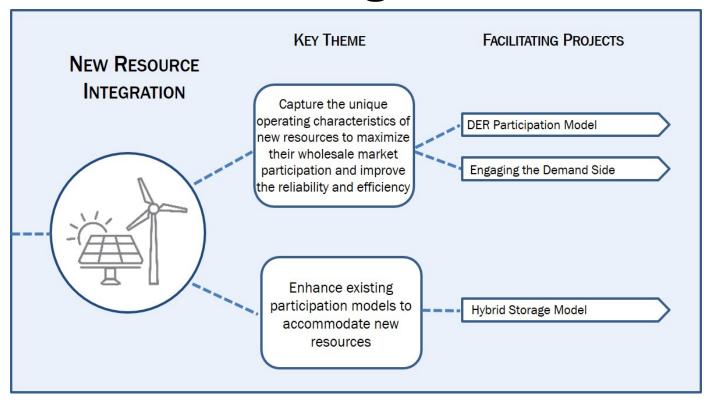
Grid Reliability and Resilience



Grid Reliability and Resilience

Grid	Reliability and Resilience	Description
	Incentives for Flexible Dispatch	Description
		Proposes to expand the procurement of operating reserves in the Southeastern New York
1	Reserves for Resource Flexibility	(SENY) reserve region
		The NYISO recommends that wholesale market solar resources be treated similarly to wind
		resources. This would require solar plants to submit flexible offers that indicate their willingness
		to generate at various price levels, and to receive and respond to economic dispatch instructions
2	Large-Scale Solar On Dispatch	to curtail output.
	Future Infrastructure Upgrades	
		Evaluate the robustness of the probabilistic reliability models used to support NYCA reliability
	Enhancements to Resource Adequacy	and in the NYISO markets, and making updates as needed to reflect emerging technologies and
3	Models	changing system dynamics.
		The Reliability Planning Process ("RPP") is the NYISO's biennial process to identify reliability
		needs and, if necessary, select solutions to resolve the needs. The first phase of the RPP is the
		Reliability Needs Assessment ("RNA") that assesses future resource adequacy and transmission
		security needs for the New York State Bulk Power Transmission Facilities ("BPTF") in
		accordance with applicable Reliability Criteria. If the BPTF does not meet the applicable
4	Reliability Planning Process	Reliability Criteria, then Reliability Needs would be identified.
		A new Short Term Reliability Process ("STRP") was developed and approved as part of the
		2019 stakeholder process. The STRP was approved by the NYISO Board in January 2020 and
		filed with FERC in February. The STRP builds on the existing Generator Deactivation process
		by evaluating and addressing Reliability Needs on the BPTF resulting from Generator
		Deactivations as well as resulting from other changes on the electric grid, such as load and
5	Short-Term Planning Process	transmission changes.

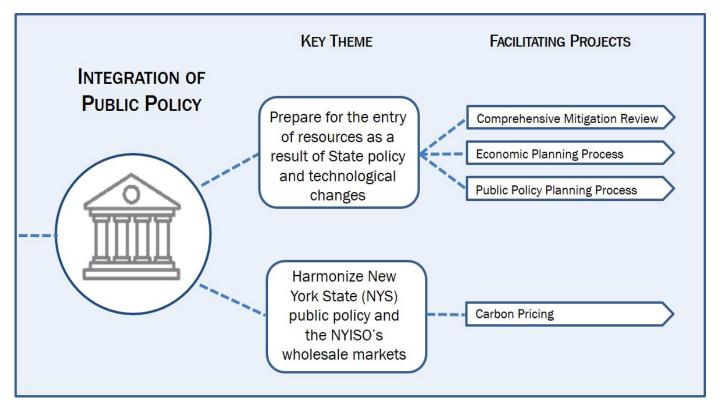
Efficient Markets for a Grid in Transition



Efficient Markets for a Grid in Transition

Effici	ient Markets for a Grid in Transition	Description	
	Performance and Alignment	Description	
		The purpose of this project is to evaluate the NYISO's Ancillary Services shortage pricing	7
		values, considering the operator actions taken to maintain operating reserve requirements,	
		market incentives necessary to maintain flexibility, and payment incentives in neighboring	
7	Ancillary Services Shortage Pricing	markets, especially pay-for-performance capacity market designs.	
	Constraint Specific Transmission	Improve resource scheduling efficiency and investment signals by enhancing the way that	1
8	Shortage Pricing	constraints on the transmission system are priced in the NYISO's energy markets.	
		Implementing reserve requirements within certain New York City load pockets that would	1
9	More Granular Operating Reserve	better represent the value of short-notice responsive resources in desirable locations.	
	Reserve Enhamcements for Constrained	Dynamically procure Operating Reserves based on system needs and transmission capabilities,	1
10	Areas	which will enable Operating Reserves to be scheduled more efficiently in constrained areas.	
	Capacity Markets and Alignment		
		Every four years, the NYISO, along with its stakeholder community, conducts this	
		comprehensive review to determine the parameters used in establishing the Installed Capacity	
11	Demand Curve Reset	(ICAP) Demand Curves.	
		This effort includes exploring alternative slopes and shapes of the ICAP Demand Curves that	7
		may help stabilize capacity market pricing outcomes and improve the predictability of future	
		market revenues as large quantities of new resources are deployed across New York State in the	•
12	Capacity Demand Curve Adjustments	coming years.	
	Expanding Capacity Eligibility/Capacity	Assess the changes to the reliability benefit of resources in the grid through time to continue to	
13	Value Study	support reliable grid operations.	
		This project will help the NYISO to maintain the availability and incentivize performance of	1
		capacity suppliers during peak operating conditions. The Tailored Availability Metric project	
		addresses this by incentivizing resources to be available and perform during these critical	
14	Tailored Availability Metric	operating periods.	

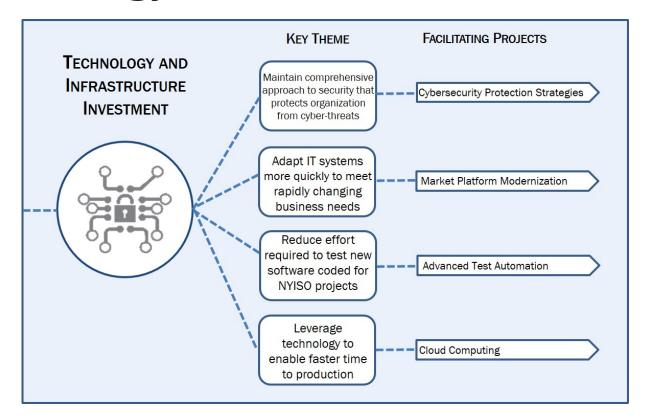
New Resource Integration



New Resource Integration

New	Resource Integration	Description					
	Wholesale Market Participation	Description					
		Harmonize New York's REV goals and compliance with FERC Order Nos. 719, 745 and 841,					
		while simplifying the operational matrix of rule sets for product offerings of both demand					
15	DER Participation Model	response and distributed resources, for all stakeholders involved.					
		Controllable and flexible load can help to balance inflexible/intermittent supply and provide					
16	Engaging the Demand-Side	Ancillary Services.					
	Participation Model Enhancement						
17	Hybrid Storage Model	Develop market participation rules for front-of-the-meter resources co-located with ESRs.					

Integration of Public Policy



Integration of Public Policy

Integ	ration of Public Policy	Description					
	New Resource Entry	Description					
		Will allow the NYISO to further prepare for the entry of resources as a result of State policy					
18	Comprehensive Mitigation Review	and technological changes.					
		The purpose of the CARIS studies is to identify whether transmission build-out or the					
		introduction of other resources is economic based on forecasted congestion costs within the					
19	Economic Planning Process	NYISO market.					
	Public Policy Transmission Planning	The NYISO's Public Policy Transmission Planning Process is the means by which the NYISO					
20	Process	addresses transmission needs that are driven by Public Policy Requirements					
	Public Policy and Market Harmonization						
		Seeks to harmonize New York State (NYS) public policy and the NYISO's wholesale markets					
		by incorporating the social cost of carbon dioxide ("carbon") emissions when scheduling					
21	Carbon Pricing	resources through the energy markets.					

Technology and Infrastructure Investment

Technology and Infrastructure Investment

Tech	nology and Infrastructure Investment	Description
		The NYISO views cyber and physical security as a crucial component of its strategic plan, and
		invests significant time and resources to maintain a comprehensive approach to security that
		protects the organization and allows it to fulfill its mission to reliably operate the electric grid
22	Cybersecurity Protection Strategies	and wholesale electricity markets in New York State.
		The goal of this IT strategic initiative is to optimize the market platform to be adapted quickly
		and safely to enable the NYISO to be responsive to the emerging business needs of a grid in
23	Market Platform Modernization	transition.
		The goal of this IT strategic initiative is to reduce the time and effort required to validate
24	Advanced Test Modernization	software changes
		This IT strategic initiative focuses on building capabilities that will allow the NYISO to
25	Cloud Computing	effectively manage the cost, risk, and efficiency of cloud based services.

Appendix III: 2020 Master Plan Proposed Project Timelines

Grid Reliability and Resilience

Grid	Reliability and Resilience	2020	2021	2022	2023	2024	2025
	Incentives for Flexible Dispatch						
1	Reserves for Resource Flexibility	MDC	DC	DEP			
2	Large-Scale Solar On Dispatch		DEP				
	Future Infrastructure Upgrades						
3	Enhancements to Resource Adequacy Models		Ongoing				
4	Reliability Planning Process	Ongoing					
5	Short-Term Planning Process	DEP	Ongoing				
	Climate Change Impacts						
6	Climate Change Impact and Resiliency Study	sc	СР				

Efficient Markets for a Grid in Transition

Effici	ent Markets for a Grid in Transition	2020	2021	2022	2023	2024	2025
	Performance and Alignment						
7	Ancillary Services Shortage Pricing	MDC	DC	DEP			
8	Constraint Specific Transmission Shortage Pricing	MDC	DC	DEP			
9	More Granular Operating Reserve	MDC	DEP				
10	Reserve Enhamcements for Constrained Areas		sc	FR	DC	DEP	
	Capacity Markets and Alignment						
11	Demand Curve Reset	sc	DEP		SD	sc	DEP
12	Capacity Demand Curve Adjustments		sc	MDC	DC		
13	Expanding Capacity Eligibility/Capacity Value Study	DC	DEP	SD	sc		DEP
14	Tailored Availability Metric	MDC	DEP	SD	sc		DEP

New Resource Integration

New	Resource Integration	2020	2021	2022	2023	2024	2025
	Wholesale Market Participation						
15	DER Participation Model	SD	DEP				
16	Engaging the Demand-Side		ID	SD	sc	СР	СР
	Participation Model Enhancement						
17	Hybrid Storage Model	MDC	DC	DEP			

Integration of Public Policy

Integ	Integration of Public Policy		2021	2022	2023	2024	2025
	New Resource Entry						
18	Comprehensive Mitigation Review	MDC/DEP	MDC/DEP				
19	Economic Planning Process	Ongoing					
20	Public Policy Transmission Planning Process	Ongoing					
	Public Policy and Market Harmonization						
21	Carbon Pricing	FR	SD				

Technology and Infrastructure Investment

Tech	nology and Infrastructure Investment	2020	2021	2022	2023	2024	2025
22	Cybersecurity Protection Strategies	Ongoing					
23	Market Platform Modernization	Ongoing					
24	Advanced Test Modernization	Ongoing					
25	Cloud Computing	Ongoing					

Our mission, in collaboration with our stakeholders, is to serve the public interest and provide benefit to consumers by:

- Maintaining and enhancing regional reliability
- Operating open, fair and competitive wholesale electricity markets
- Planning the power system for the future
- Providing factual information to policymakers, stakeholders and investors in the power system

