

PEV Integration Project NYISO – Markets Issues Working Group

August 20th, 2009

Ken Fell: Project Manager and ITC Director Ralph Masiello: Technical lead - KEMA

Project Charter

- IRC Sponsor: Gordon Van Welie, Chief Executive Officer, ISO New England
- Responsible Oversight Committee: Information Technology Committee
- Project Manager: Ken Fell, New York ISO
- Project Budget: (shared equally by 10 ISO/RTOs)

\$223,000

PHEV Project Organization

Project Purpose

Identify products and services that PHEVs could provide under existing market and reliability structures within the ISO/RTO markets, including recommendations and analysis of requirements that address:

- Reliability, Market Products and Services, Demand Response and Alternative Energy opportunities
- Technology, Communications, Security and protocol requirements, issues, constraints, costs and the accountable parties (vendors, regulatory, ISO/RTO staff, standard setting agencies (i.e. NAESB, NERC, NIST, etc.)
- Performance, Operability and Observability requirements and recommendation
- Requirements for ISO/RTOs to be the integrators of the aforementioned products and services
- Recommendations appropriate for the ISO/RTOs to have a consistent view, standards, and how the products and services would play across all of the markets.
- Project Plan including budget, timelines, schedule, resources, and organization

Project Goal

Provide specific conclusions and recommendations as follows:

- Proposed market design and operational requirements
- Recommendations for the operational and market infrastructure development considering V2G, Demand Response and alternative Energy
- Results of detailed modeling and analysis as appropriate to demonstrate feasibility of recommendations and time lines
- Recommendations for development of operational and market infrastructure that provided for visibility to the system operator in real time and integration with EMS systems and pricing algorithms.
- Address Cyber Security, Field Safety, Vehicle Plug and Play Requirements, and the Uniform Grid Code

PHEV/EV Integration Project Scope of Work

Scope of work

- 1. Characterization of the PHEV / EV as grid storage devices assessment of technical capabilities.
- 2. Identification services that a PHEV / EV is capable of performing.
- 3. Mapping of possible services to ISO market products and adaptations required.
- 4. Identification of Possible new PHEV / EV products.
- 5. Identifying likely modes of EV / PHEV interaction with the ISO.
- 6. Identifying Communications / IT Infrastructure needs.
- 7. Identifying Settlements and Scheduling Issues associated with Vehicle to Grid products and services.
- 8. Identifying commonality and variations across the different ISO markets today and how these may affect Vehicle to Grid products and services.
- 9. Assessing the integration capabilities of currently proposed SAE and IEEE standards.
- 10. Identifying integration technology requirements.
- 11. Developing recommended first stage products and services for implementation.
- 12. Developing requirements for first stage infrastructure implementation.
- 13. Development of high level cost estimates of first stage infrastructure.
- 14. Development of potential timelines and participation levels.
- 15. Final Report and Presentation.

PHEV/EV Integration Project High Level Project Schedule

		Fe	bruary		March	۱	Α	pril		N	lay			Ju	une			July				Aug	just		Se	pter	nber	00	ctobe	ər		Noven
	Status	6	13 20	27	6 13	20	27 3	10	17	24	1 8	15	22 2	9 5	5 12	19	26	3 1	0 17	7 24	31	7	14 2	1 28	4	11	18 2	52	9	16 2	23 30	6 13
PHEV/EV Integration Project																																
Initiate The Project																																
Form the Market, Operation and IT team	Completed		\diamond																													
Project launch at ITC Meeting (San Deigo)	In progress			\diamond																												
Hold Project Team Kick-off Meeting	Not Started				\diamond																											
Project Tasks																																
I-Characterization of PHEV / EV as Grid Stor	Not Started						>																									
II- Services that a PHEV / EV is capable of p	Not Started							\langle	>																							
III-Mapping of Possible Services to ISO Mar	Not Started									\diamond																						
IV-Investigate Possible Completely New PH	Not Started										<	\rightarrow																				
V-Likely modes of EV / PHEV Interaction	Not Started													>																		
VI-Communications / IT Infrastructure	Not Started														\diamond																	1
VII-Settlements & Scheduling Issues	Not Started															\diamond	,															
VIII-Commonality across ISO Markets	Not Started																	\diamond														
IX-Integration capabilities of currently propos	Not Started																			\diamond]
X-Integration Technology Requirements	Not Started																					>										
XI-Recommended First Stage Products	Not Started																						\diamond									
XII-Infrastructure Required for First Stage Pr	Not Started																								$\left \right\rangle$	\geq						
XIII-Cost Estimates of Infrastructure (High Lo	Not Started																										\diamond					
XIV-Timelines and participation levels foreca	Not Started																													>		
XV-Final Report	Not Started																												\square			<u>ا</u>

Project Management and Team

Project manager is Ken Fell and the overall technical lead is Ralph Masiello, who will report to Ken. Ken and Ralph will meet with the team leads every two weeks (at minimum, more frequently if necessary).

The project manager will

- Provide overall guidance and reporting for the project
- Hold oversight meetings with the project team members on a regular basis (at minimum monthly project meetings, with every alternate meeting being in person).
- Provide monthly progress reports to the IRC, which will include a dashboard that speaks to progress (schedule, scope and budget) and risks/opportunities. This is the mechanism to highlight issues to the IRC.
- Work with the team leads and the Chairs of the Markets and IT Committee to ensure that there is consensus on the findings and recommendations in the report.

The overall technical lead will

- Provide overall technical guidance
- Provide the integration function amongst the teams and ensure technical consistency in the work product from the teams.

Project Structure

Project Structure

- The Project will consist of three teams, each reporting to the project manager. These teams include a Markets team, a PHEV Operations team and an IT team.
- Each participating ISO is expected to assign someone to each of the teams one person may be on more than one team)
- The Markets team will have a team lead assigned from one of the ISOs by the Chair of the Markets Committee, after consultation with the Markets Committee members.
- The PHEV Operations team lead is (R. Gonzales from the ISOs; Ed Ungar from Taratec for the project)
- The IT team lead will be assigned by the Chair of the ITC, after consultation with the ITC members.

Completed Task Summary

- <u>Task 1</u> Market Development & Characteristics of PEVs
- <u>Task 2</u> Description of services a PEV can provide to the grid acting as a controllable load
- <u>Task 3</u> Mapping possible services to existing ISO/RTO products and adoptions required
- Task 4 Potentially new PEV services
- <u>Task 5</u> Likely modes of PEV interactions
- Task 6 Communication / IT infrastructure

Task 7 Impact on Settlements

Task 14^{*} PEV market penetration study

* Note: Task 14 also considers accelerated market penetration

11

Task 8 Commonality acoss ISO Markets

Task 9 Integration capabilities of currently proposed SAE / IEEE Standards

* Note: Task 14 also considers accelerated market penetration

External Linkages

- EPRI Infrastructure Working Group
 - Dave Hackett / Ken Huber are supporting / reporting
- NIST Smart Grid Standards
 - Many linkages; Ken Huber especially
 - Meeting with George Arnold at NIST (Ken, Tom O'Brien, Ralph Masiello) will lead to formalizing interaction and a formal role for IRC / ITC in NIST advisory committee
- FERC
 - Gordon / Tom have briefed Jamie Simler @ FERC
- EU Initiatives
 - Several; KEMA providing cross-fertilization to efforts in the NL and Germany

Additional Stakeholder Input

- Google announced PEV control software demo'd at KEMA conference last month
- IBM working in NL and Denmark on PEV integration with renewables
- Better Place promoting charging infrastructure and different business model
- Process: informal meetings for data gathering and feedback on an ongoing basis

USA Developing PEV Standards

- SAE Standards (evolving standards)
 - J1772 Definition of the PHEV or EV standard connector
 - J2836 Definition of the PEV interaction between Vehicle and charger/utility
 - J2847 Definition of the messaging (format and content); tightly associated with J2836
- Opportunities to test connector (expecting UL approval in May 09 for level 1-2) and EVSE (charger)

IEC Standards / J1772 Harmonization

- Committee entertained 3 connectors from the international community (1 was withdrawn). Candidates are
 - US SAE J1772 (Single phase, 32 Amp, 230 VAC, 5 pins)
 - Germany/Several Europe countries want single and three phase connectors (70 Amp (single phase) and 63 Amp (three phase), 500 VAC, 7 pins)
 - Italy (Single phase, 16 Amp, 230 VAC, 4-5 pins)
- Agreed to enter all three connector and vote on all at same time. Need at least 18 yes votes to be approved (out of 24 voting countries)
- Best case time frame for an international standard is March 2010; June – distributed
- Opportunity Test the connector, charger and batteries

Task 4 Potential New Products

New Product	Acronym	Definition	Categorization	Duration	Technical	Market Issues	Operational Issues
					Requirements		
Timed Energy	TED	target total energy over time	overall a new	diurnal at most;	new clearing algorithms;	How to establish pricing viz	
Delivery		period is scheduled but	energy product;	possibly as short as	command and control	other energy products and	
-		hourly energy is at ISO	In some ISO/RTOs,	3-4 hours	infrastrucucture to	load; determining location of	
		discretion	the pump storage		PEV;infrastructure to	PEV	
			optimization		allow PEV		
			techniques may be		interconnection at various		
			used to		locations		
			accommodate this				
			service				
Fast Reserves	FR	High speed DR response by	new ancillary	some time frame < 1	communications and	availability varies by hour - is	verification and
		PEV charging interruption	product could be	hour	control: aggregation and	sufficient available during	certainty.
			locational	lioui	validation: infrastructure to	peak hours to make this a	management of the
			looutional		allow PEV	useful product	restoration of PEV
					interconnection at various		charging
					locations		onarging
Dynamic Pricing	DP	PEV respond directly to	new market product	bourly	price broadcast	what price to broadcast:	forecasting effects
Dynamic i noing	DI	market price	new market product	nouny	locationally and metering	calculating uplifts: how to	loreedsting circets
		manter price			infrastructure to isolate	forecast price responsive load	
					PEV load infrastructure to	in day ahead clearing:	
						determining location of PEV	
					interconnection at various	determining location of t EV	
Demand as	DRR	Varving PEV charging up and	Ancillary service	< hour	command and control	price impact on market when	must still deliver net
Regulation	DIXIX	down ranidly from a baseline	Anomary Service		infrastructure to	sufficient PEV penetration	
Resource		in response to regulation			PEV/infrastructure to	evists: ensuring sufficient	energy
Resource		in response to regulation				regulation when PEV not	
		anorgy change from					
		schodulo:				charging	
		Typically bid with a conico			locations		
		rippically bld with a service					
		price and the price needs to					
Green Charging	GC	Controlling the charging of	New kind of energy-	diumal	monitoring of linked	new paradiam that links load	
Croch Charging	~~	PEV to match production	load combination	alamai	renewables: market /	to resources directly instead	
		from linked renewable			scheduling sw to	of through market	
		resources	Maybe a signal to		establish linkage:	or through market	
		lesources	the market rather		command and control		
			than a conico		infractructure to REV		
			India a service				
PEV Emergency	FLC	First step in load reduction by	new product could	as required normally	communications and	determining the value point	Provides a first step
Load Curtailment		reducing PEV charging when	he locational	the outage would not	control: addredation and	where the PEV Owner/	hefore emergency load
Load Ourtainfiell		energy capacity approaching		exceed a few hours	validation infrastructure to	Addregator will volunteer to be	shed
		the minimum reliability limit		ENCEED & IEW HOUIS	allow PEV	the first in line when	31160
					interconnection at various	amergency load shad is	
	1	1	1	1	Interconnection at valious	emergency load Sheu IS	
					locations	needed: determining location	

Task 14: Objective

The objective of Task 14:

Develop projections of the market penetration of PEVs among the ISOs and RTOs, including their locations, to provide an understanding of the amount of PEV charging loads

- (a) overall, among the individual ISOs and RTOs
- (b) in concentrations that provide the opportunity for ISO and RTO demand response management

Agenda: A Preliminary Report

- Introduction: Our approach
 - Analogy to the Prius development pattern
 - Three PEV scenarios
- The Prius experience:
 - Where did the Prius deployment happen
 - What were the drivers
 - What do we learn for PEV projections at the ISO/RTO level
- Given the Prius data, where are the PEVs likely to be concentrated
 - Individual ISO/RTO views
- Moving from vehicles to available MWs
 - Key assumptions
 - Implications for urban areas
- Next steps

Reminder – Task 1: PEV Introduction "Windows"

We have defined three "windows" for PEV market development

- 1. Initial market entry: 2009-2012
 - Most major manufacturers introduce PEV vehicles
 - Very limited production

2. Market development and growth: 2013-2017

- Additional vehicles introduced
- Second generation vehicles introduced
- 3. Mature market development and expansion: 2018-1030 and beyond
 - Additional models, additional manufacturers enter the market
 - Third generation vehicles introduced
 - New technologies, advanced features, new charging capabilities

Reminder – Task 1: OEM PEV Introductions

OEM PEV Announcements									
Year	OEM	Vehicle Type	Vehicle	Battery Size	All-Electric Range	Expected Volume			
2009	Tesla	BEV	Roadster		250 miles	Very limited production			
	Fisker	PHEV	Karma (sedan)		50 miles	Planned to reach 15,000/yr			
	Toyota	PHEV	Prius	?	10 miles	Introduction, limited 2010 sales			
2010	GM EREV		Chevy Volt	16 kWh	40 miles	Limited sales, expected to be initially 10,000/yr.			
	GM	PHEV	Saturn View	8 kWh	TBD miles	Limited sales, TBD			
	Ford	PHEV	Escape		30 miles	Electric utility PHEV demo			
	Ford	BEV	Transit Connect (BEV Van)			Battery EV commercial van			
	Chrysler	BEV	Dodge Circuit	30 kWh	150-200 miles	2-passenger, high performance			
	BYD (China)	PHEV	F3DM	25-35 kWh	60 miles	First release in China, US in 2010			
	BYD (China)	BEV	E6		180 miles	Release in Chna			
	Think	BEV	Urban runabout (2- seater)		112 miles	First year in US- 2,500 cars; eventual plan is 60,000/year			
2011	Nissan	BEV	Small car	25-30 kWh	100 miles	40,000 vehicles for each of 1st 2 years			
	Ford	BEV	Not defined		~100 miles (TBD)				
	Tesla	BEV	Model S (sedan)		150-300 miles				
2012	Ford	PHEV	TBD	TBD	TBD				

Taratec Methodology

The challenge

 How to project development of a PEV technology that has yet to be introduced?

The two issues

- Market size: How many, total
- Market distribution: How many, where

Approach - Market size

– Use Obama administration "1 million PEVs in 5 years" target

Approach - Market distribution

- Consumer choice: use Prius sales as a proxy for early adopter behavior and scale Prius choices to the "1 million vehicles" target
- *Fleet vehicles:* use major urban areas as "sweet spot" for BEV fleets
- BEVs: assume 85% of BEVs will be deployed in the largest urban areas, generally by fleet operators

Note: All Prius data provided by R. L. Polk

The Historical Data: The Pace of Prius Market Penetration

Prius sales illustrate the introduction of a new vehicle technology

- Market introduction: first generation, limited capacity, high prices
- Market development: second generation, improved technology, expanded capacity, growing consumer interest and acceptance

When Will They Matter: The Pace of Market Development

We have assumed three scenarios for PEV market development

- Base case: Obama administration "1 million in five years"
- Slow case: Much slower consumer demand growth (1 million in eight years)
- Fast case: Much more rapid acceptance (1 million in four years)

PEV Growth Rates - Scenarios

Overview: What have we learned about Prius distribution?

Where have the Prius sales gone?

What can we learn about *possible differences in consumer preferences* among the states and cities in the US, and among the ISO/RTO regions?

What can we learn about the possible *overall size of PEV concentrations* in the ISO/RTO regions and cities?

What have we learned about Prius early adopters?

Prius Registrations – Total Prius Sales, 2000-2007*

* Prius data provided by R. L. Polk

What have we learned about early Prius consumers?

Prius Registrations – New Registrations Per Capita, 2000-2007*

* Prius data provided by R. L. Polk

Buyer Demographics: Locations of New Registrations

Sales of the Prius were generally concentrated in states with the highest population – but the demographics of the Prius customer has a strong "coastal" character

States With Highest Prius Sales								
Rank	State	Total New Registrations						
1	CA	123,989						
2	FL	20,596						
3	ТΧ	18,297						
4	NY	18,033						
5	VA	17,828						
6	WA	16,459						
7	PA	14,791						
8	IL	14,660						
9	MA	13,723						
10	MD	12,040						

States Where Prius Was Most Popular

Rank	State	Registrations per 1000 Residents
1	CA	3.37
2	VT	3.21
3	OR	3.04
4	NH	2.54
5	WA	2.51
6	DC	2.46
7	VA	2.29
8	MD	2.14
9	MA	2.11
10	ME	2.03

Buyer Demographics: Urban Concentrations

The distribution of the Prius sales and new registrations was heavily concentrated in the largest urban areas, which account for 31.6% of total U.S. sales

States	With High	nest Prius Sales		Metro	Areas Where P	rius Was Most F	Popular
			Γ				
Rank	State	Total New Registrations		Rank	Metro Area	Total New Registrations	% of US
1	CA	123,989		1	New York	18,622	3.7%
2	FL	20,596		2	Los Angeles	52,700	10.4%
3	ТΧ	18,297		3	Chicago	9,400	1.9%
4	NY	18,033		4	Wash., DC	15,100	8.4%
5	VA	17,828		5	San Francisco	42,900	8.4%
6	WA	16,459		6	Philadelphia	6,300	1.2%
7	PA	14,791		7	Boston	13,200	2.6%
8	IL	14,660		8	Detroit	3,000	0.6%
9	MA	13,723		9	Dallas	3,200	0.6%
10	MD	12,040		10	Houston	3,900	0.8%

The "Take-aways" From the Prius Review

- 1. Early adopters were *NOT proportional* to population size
 - Significant *differences in per capita sales* between states and regions
 - Some strong preferences, some distinct disinterest
- 2. TOTAL numbers driven by overall *population size*
- 3. The *"Coastal" phenomenon* for this class of vehicle among early adopters is very clear in both the per capita numbers and in the overall sales numbers

Conclusions

- Early adopters have a clear demographic *locational component*
 - The so-called "coastal effect" appears valid
- BUT from an *ISO/RTO perspective*, where clusters of significant size are needed to provide a useful level of MW of connected PEVs, *POPULATION SIZE* matters more than almost any other criteria

PEVs: Where will they land?

- Where are *PEVs likely to be concentrated in significant numbers* from an ISO/RTO perspective?
- Key to an ISO/RTO perspective
 - MW concentrations of PEVs
 - One vehicle here and there doesn't count
- Where will PEVs wind up?
 - *The consumer model:* PHEVs and EREVs (and some BEVs)
 - The Prius analogy
 - The "fleet" model: BEVs
 - An "urban center" model

NE ISO

PJM

PEV Market: The ISO/RTO Share of PEV Market

Based on market share of US Prius registrations (new)

	Total Prius Registrations	% of Total US Registrations	ISO PEVs (Prius x 2)
ISO NE	25,390	4.99%	50,780
NY ISO	14,097	2.77%	28,194
PJM	51,562	10.14%	103,124
MISO	32,511	6.39%	65,022
SPP	9,233	1.82%	18,466
ERCOT	13,638	2.68%	27,276
<u>CA ISO</u>	118,849	23.37%	237,698
ISO/RTO Total	239,890	47.16%	479,780

Total US Prius registrations in sample: 508,658