CC Modeling

MSWG April 12, 2005 Robert de Mello

CC Modeling Plan

- Seek input from CC owner/operators to fully understand characteristics and limitations of units.
 1.a Report results of (1) to MPs
- 2. Develop Feasible alternatives in conjunction with ABB
 - Scheduling (optimizing) the operating state and/or
 - Detecting the operating state and making allowances for physical limitations.

we are here \rightarrow 2.a Report results of (2) to MPs.

CC Modeling Plan

- 3. Select model characteristics in conjunction with MPs. (These may be obvious choices)
- 4. Implementation, tariff filing, testing and deployment.

Topics

- The Mod-and-Transition model
- Day-Ahead Scheduling
- Real-Time Tracking
- Real-Time Scheduling
- Your feedback is important:
 - Can this approach be applied to your plant?
 - What are the market or individual benefits of changes to the unit commitment process?
 - Are the benefits of major changes to the scheduling systems worth the cost of the changes?

Recap: Operating States

- Startup / Warming HRSG and possibly ST
 - No control capability
 - Synchronized and producing energy at a fairly low level
 - May take several hours
 - Must warm HRSG and ST slowly
- Normal Operation
 - Able to control output
 - Control range approximately top 30 % of unit capability (Varies)
 - Fairly responsive within its control range

Recap: Current System

- Day-Ahead characteristics that must be accommodated:
 - Hourly bids/offers for a one-day period
 - One-day optimization period
 - One-hour commitment/scheduling decisions
- Real-Time characteristics that must be accommodated:
 - Hourly bids/offers for a one-hour period
 - ~2.5 hour (RTC) or ~1 hour (RTD) optimization period
 - 15-minute (RTC) commitment/scheduling decisions
 - 5-minute scheduling decisions (RTD)

Mod-and-Transition Model

- A **MOD** is a particular configuration or operating state of a plant, for example:
 - 1st CT starting (and HRSG/ST warming)
 - 2nd CT starting (and HRSG warming)
 - Normal operation with 1 CT
 - Normal operation with 2 CTs
- A **TRANSITION** is the switch from one Mod to another.

Mod's Information

Information Describing a Mod			
Symbol	Description Units		
FD _m	Flag indicating whether plant is dispatchable in	nether plant is dispatchable in Y/N	
	mod "m"		
FRm	Flag indicating whether plant is able to supply	Y/N	
	regulation in mod "m"		
FSm	Flag indicating whether plant is able to supply	Y/N	
	spinning reserve in mod "m"		
h	Index of hour of the day (0, 1, 2, 3,)	0,1,2,	
IE _{m,h}	Incremental energy offer curve of plant in mod "m"	\$/MWH vs MW	
	for the hour beginning "h"		
m	Index of the plant and its mod (operating	-	
	configuration)		
$MGC_{m,h}$	Hourly cost for plant in mod "m" to operate at its	\$/hr	
	minimum generation level for the hour beginning		
	"h"		
$MGL_{m,h}$	Minimum generation level of plant in mod "m" for	MW	
	the hour beginning "h"		
MNRUN _m	Minimum run time of the plant in mod "m."	hr	
	Perhaps minimum run time can be expressed as a		
	function elapsed time since another transition		
	occurred.		
M X R U N _m	Maximum run time of the plant in mod "m."	hr	
	Perhaps maximum run time can be expressed as a		
	function elapsed time since another transition		
DE	occurred.		
RE _m	Emergency ramp rate of the plant in mod "m"	M W /m in	
RN _m	Normal ramp rate of plant in mod "m"	MW/min	
KK _m	Regulation ramp rate of plant in mod "m"	M W /m in	
UOLE _{m,h}	Emergency upper operating limit of plant in mod	MW	
HOLM	"m" for the hour beginning "h"		
UOLN _{m,h}	Normal upper operating limit of plant in mod "m"	M W	
	for the hour beginning "h"		

Transition's Information

Information Describing a Transition		
Symbol	Description	Units
h	Index of hour of the day $(0, 1, 2, 3,)$	0,1,2,
m	Index of the plant and its mod (operating	-
	configuration)	
m1	Prior mod (the configuration prior to the transition)	-
m2	After mod (the configuration after to the transition)	-
TC _{m1,m2,h}	Cost of the transition from mod "m1" to mod "m2"	\$
	for the hour beginning "h." Perhaps cost of a	
	transition can be expressed as a function elapsed	
	time since another transition occurred.	

Other Information

Other Information		
Symbol	Description	Units
MXSTOP _p	Maximum stops per day for plant "p"	0,1,2,
MNDOWN _p	Minimum down time before plant "p" can be	hr
	started again.	
MNRUN _p	Minimum run time of the plant "p." A plant's	hr
_	minimum run time can be assured by careful	
	selection of mods and transitions. This is	
	illustrated below for a two-on-one plant.	

Day-Ahead Scheduling Feedback Needed

- What quantifiable market or individual benefits would justify major modifications to the dayahead scheduling systems?
- Could your plant adequately be represented by start-up and running states?
- Is this model too simple to accurately represent your plant for day-ahead scheduling?
- Will you be able to adequately represent your plant's minimum run time?
- Is this model too complicated to use?
 Would you ever figure out how to bid the plant?

Day-Ahead Scheduling Two Mod Plant

In the mod-and-transition terminology, all power plants are currently represented with an "OFF" and a "RUNNING" mod. Transitions are called "START-UP" and "SHUT DOWN."

Day-Ahead Scheduling One-on-One CC Plant

Mod: Running		
FD	Yes (typical)	
FR	Yes (typical)	
FS	Yes (typical)	
IE	Reflects plant's marginal cost	
MGC	Reflects plant's cost	
MGL	70% of plant capacity (typical)	
MNRUN	8 hours (typical).	
MXRUN	∞ (typical)	
RE	1% MW/min (typical)	
RN	1% MW/min (typical)	
RR	1% MW/min (typical)	
UOLE	100% of plant capacity (typical)	
UOLN	100% of plant capacity (typical)	

Transition: Off-to-Starting		
m1	"Off" mod	
m2	"Starting" mod	
TC	Plant's start-up cost. Typically this should not include expected payments for energy produced during the "starting" mod. Start-up cost may depend on the elapsed time since the CT-HRSG was shut down.	

Transition: Starting-to-Running	
ml	"Starting" mod
m2	"Running" mod
TC	\$0.00 (likely)

Transition: Running-to-Off		
ml	"Running" mod	
m2	"Off" mod	
TC	\$0.00 (likely)	

Mod: Starting		
FD	No (likely)	
FR	No (likely)	
FS	No (likely)	
IE	Reflects plant's marginal cost	
MGC	Reflects plant's cost at the specified minimum generation level	
MGL	10% of plant capacity (typical)	
MNRUN	Start up takes 1, 2, or 3 hours (typical).	
MXRUN	The plant must leave the "starting" mod after 1, 2, or 3 hours	
	(typical).	
RE	0.5 MW/min (typical)	
RN	0.5 MW/min (typical)	
RR	0.5 MW/min (typical)	
UOLE	10% of plant capacity (typical)	
UOLN	10% of plant capacity (typical)	

Off-to-Starting

For discussion on Fransition

Starting 13 Tra

Day-Ahead Scheduling One-on-One CC Plant

For discussion only

Day-Ahead Scheduling Two-on-One Plant

Day-Ahead Scheduling Two-on-One Plant with 8-Hour Minimum Run Time

Day-Ahead Scheduling Non-Monotonic Incremental Cost

Real-Time Tracking Feedback Needed

- Should the NYISO infer the state of your plant from measurements; or should your plant's operator notify the NYISO of your plant's current operating state?
- Can the current operating state of your plant be inferred solely from measurement of its generators' real power?
- Will additional plant instrumentation be needed?
- What are the benefits of automating the detection of a plant's operating state?
 - Are benefits enough to justify implementation costs?
- Will something this simple work for your plant?

Real-Time Tracking

- Automatically detect the current operating state of a plant
- Dispatch the plant only when it is able to respond, treat the plant as self-scheduled otherwise
- Schedule ancillary services only when plant is able to provide those services
- Cannot easily predict a plant's capabilities in the near future

- Measure output of the CT generator
- Assume the plant will not run for any length of time as simplecycle CT

	Condition	Mod
CT1off	$CTGen < T_1$	"Off" mod. The first threshold represents some
		inininum generation level, perhaps 276 of the CT s
		capacity
CT1start	$T_1 \leq CTGen \leq T_2$	"Starting" mod
CT1run	$CTGen > T_2$	"Running" mod. The second threshold might be 65%
		or 70% of the CT's capacity, a value that represents
		the minimum continuous operating level of the CT.

Real-Time Tracking Two-on-One CC Plant

CT1 State	CT2 State	Plant Mod
CT1off	CT2off	"Off"
CT1off	CT2start	"First CT-HRSG starting"
CT1off	CT2run	"First CT-HRSG running"
CT1start	CT2off	"First CT-HRSG starting"
CT1start	CT2start	Impossible state – two CT-HRSGs cannot start
		simultaneously
CT1start	CT2run	"Second CT-HRSG starting"
CT1run	CT2off	"First CT-HRSG running"
CT1run	CT2start	"Second CT-HRSG starting"
CT1run	CT2run	"Second CT-HRSG running"

Real-Time Commitment Feedback Needed

- What are the benefits of having RTS schedule transitions among valid operating states in real-time?
- Does the mod-and-transition model adequately represent your plant for RT operation?
- Is the mod-and-transition model too difficult to use?

Real-Time Scheduling

 In real-time, the NYISO would schedule each transition from one operating state to another

- 15 minutes (or more) advanced notification

- RTS optimization windows are too short to adequately accommodate minimum and maximum run times
 - Some type of auxiliary optimization process is needed.

- Initial state could be measured
- Auxiliary optimization would set RTC & RTD "end states"
- DA schedule might be an acceptable auxiliary optimization
 - RT conditions might be enough different from DA conditions that deviations from DA results are warranter TC
 - Auxiliary optimization might have to be rerun periodically .
 Optimization

For discussion only

Issues & Options

Interim –

Relief from performance penalties

- Longer term
 - DA Schedule
 - RT tracking of plants' operating states
 - RT Scheduling