Building the Energy Markets of Tomorrow ... Today

-

DAMAP Computation

P

Draft – for discussion purposes only July 23, 2004

Introduction

- Current DAMAP calculation will be modified to include Reserve and Regulation, as well as Energy
- Calculation includes the concept of an Economic Operating Point (EOP)
- ✓ Unit de-rates will need to account for modifications to the DAM Energy, Reserve and Regulation schedules

Eligibility for DAMAP

✓ Units bid as the following shall be eligible for DAMAP:

- ISO Committed Flexible
- Self Committed Flexible
- All current DAMAP eligibility rules that apply to today's On-Dispatch units shall apply

 Self and ISO Committed Fixed units are not eligible for DAMAP unless scheduled by the ISO or TO out of economic order in response to a system security need.

Calculation Procedure

- ✓ Step 1: Determine the EOP
- Step 2: Calculate the DAM schedule reductions in the event of a de-rate
- ✓ Step 3: Calculate adjusted DAM schedules
- Step 4: Determine the lower and upper limits used in the Energy contribution calculation
- ✓ Step 5: Calculate the Energy contribution to DAMAP
- ✓ Step 6: Calculate the Reserve products contribution to DAMAP
- ✓ Step 7: Calculate the Regulation contribution to DAMAP
- Step 8: Calculate the contribution to DAMAP from interval *i* to hour *h*
- ✓ Step 9: Calculate the DAMAP for hour *h*

Step 1: Determine the EOP

Definition: The EOP is defined as the point where the LBMP intersects the Supplier's bid cost curve.

What if....

- The LBMP intersects at a horizontal portion of the curve?
- \checkmark The rule is as follows:
 - If the RTD basepoint is at a point on the curve that is equal to the LBMP intersect, the EOP shall be the same as the RTD basepoint.
 - If the RTD basepoint is at a point on the curve that is higher than the LBMP intersect, the EOP shall be at the maximum of the horizontal step.
 - If the RTD basepoint is at a point on the curve that is lower than the LBMP intersect, the EOP shall be at the minimum of the horizontal step.

Building the Energy Markets of Tomorrow . . . Today

RTD Basepoint = LBMP Intersect

RTD Basepoint > LBMP Intersect

RTD Basepoint < LBMP Intersect

Step 2: Calculate DAM Schedule Reductions in the Event of a De-rate

- ✓ 2A: Calculate the total DAM schedule reduction for RTD interval *i*.
- ✓ 2B: Calculate the **potential** reduction for **each product** for RTD interval i.
- ✓ 2C: Calculate the actual reduction for each product for RTD interval i.

Step 2A: Total Reduction

 $REDtot_i = Max(DASen_h + DASreg_h + \sum_p DASres_{hp} - RTuol_i, 0)$

Where:

 $REDtot_i$ = Total MW reduction of DAM schedules for interval *i*. $DASen_h$ = DAM schedule for Energy for hour *h* containing interval *i* $DASreg_h$ = DAM schedule for Regulation for hour *h* containing interval *i*.

DASres_{hp} = DAM schedule for Reserve product p for hour h containing interval i

Step 2B: Calculate Potential Product Reduction

 $POTREDen_{i} = Max(DASen_{h} - RTSen_{i}, 0)$ $POTREDreg_{i} = Max(DASreg_{h} - RTSreg_{i}, 0)$ $POTREDres_{ip} = Max(DASres_{hp} - RTSres_{ip}, 0)$

Where:

- *POTREDen*_{*i*} = Potential reduction in the DAM Energy schedule for interval *i*.
- $RTSen_i$ = Real time schedule for Energy for interval *i*.
- *POTREDreg*_{*i*} = Potential reduction in the DAM Regulation schedule for interval *i*.
- $RTSreg_i$ = Real time schedule for Regulation for interval *i*.
- *POTREDres_{ip}* = Potential reduction in the DAM Reserve, product *p* schedule for interval *i*.

 $RTSres_{ip}$ = Real time schedule for Reserve, product *p*, for interval *i*.

Step 2C: Calculate Actual Reductions

If: *REDtot* = 0

 $REDen_i = 0$

Where *REDen_i* = Actual reduction in the DAM Energy schedule for interval *i*.

 $REDreg_i = 0$

Where $REDreg_i$ = Potential reduction in the DAM Regulation schedule for interval *i*.

REDres_{ip} = 0
Where REDres_{ip} = Potential reduction in the DAM Reserve,
product p schedule for interval *i*.

Step 2C, Cont.

Else:

 $REDen_i = [POTREDen_i / (POTREDen_i + POTREDreg_i + \sum_p POTREDres_{ip})] X REDtot_i$

 $REDreg_i = [POTREDreg_i / (POTREDen_i + POTREDreg_i + \sum_p POTREDres_{ip})] X REDtot_i$

 $REDres_{ip} = [POTREDres_{ip} / (POTREDen_i + POTREDreg_i + \sum_p POTREDres_{ip})] X REDtot_i$

Step 3: Calculate Adjusted DAM Schedules

AdjDASen_i = DASen_h - REDen_i
Where AdjDASen_i = Adjusted DAM Energy schedule for interval
i.

AdjDASreg_i = DASreg_h - REDreg_i
Where AdjDASreg_i = Adjusted DAM Regulation schedule for
interval i.

 $AdjDASres_{ip} = DASres_{hp} - REDres_{ip}$ **Where** $AdjDASres_{ip} = Adjusted DAM$ Reserve, product *p*, schedule for interval *i*.

Step 4A: Determine Lower Limits used in the Energy Contribution Calculation

- **If:** $RTSen_i < EOP_i$,
- *LL_i* = *Max*[*RTSen_i*, *Min*(*Act_i*, *EOP_i*)], but not more than *AdjDASen_h*

Else:

LL_i = *Min*[*RTSen_i*, *Max*(*Act_i*, *EOP_i*)], but not more than *AdjDASen_h*

Where:

 LL_i = Lower Limit to be used in the Energy contribution calculation for interval *i*. EOP_i = The EOP for interval *i*.

Step 4B: Determine Upper Limits used in the Energy Contribution Calculation

- **If:** $RTSen_i \ge EOP_i \ge AdjDASen_h$,
- *UL_i* = *Min*[*RTSen_i*, *Max*(*Act_i*, *EOP_i*)], but not less than *AdjDASen_h*

Else:

UL_i = *Max*[*RTSen_i*, *Min*(*Act_i*, *EOP_i*)], but not less than *AdjDASen_h*

Where:

 UL_i = Upper Limit to be used used in the Energy contribution calculation for interval *i*.

Step 5: Calculate the Energy Contribution to DAMAP

If: $RTSen_i < AdjDASen_h$

$$CDMAPen_{i} = \left\{ (AdjDASen_{h} - Max[RTSen_{i}, Min(Act_{i}, LL_{i})]) \times LBMP_{RT_{i}} - \int_{Max\{RTSen_{i}, Min(Act_{i}, LL_{i})\}}^{AdjDASen_{h}} DABen_{h} \right\}$$

Else:

$$CDMAPen_{i} = Min \left\{ AdjDASen_{h} - UL_{i} \right\} \times LBMP_{RT_{i}} + \int_{AdjDASen_{h}}^{UL_{i}} RTBen_{h}, 0$$

Where:

LBMP_{RT*i*} = Real-time LBMP at the generator bus for interval *i*. RTBen_h = Real-Time bid for Energy for hour *h* containing interval *i*. CDMAPen_i = Energy contribution to DAMAP for interval *i*.

Step 6: Calculate the Reserve Products Contribution to DAMAP

If: $RTSres_{ip} < AdjDASres_{hp}$ $CDMAPres_{ip} = (AdjDASres_{hp} - RTSres_{ip}) X (RTPres_{ip} - DABres_{hp})$

Else:

CDMAPres_{ip} = (AdjDASres_{hp} – RTSres_{ip}) X RTPres_{ip}

Where:

RTPres_{ip} = Real-time price for Reserve product p for interval i. CDMAPres_{ip} = Reserve product p contribution to DAMAP for interval i.

Step 7: Calculate the Regulation Contribution to DAMAP

If: RTSres_{ip} < AdjDASres_{hp} CDMAPreg_i = (AdjDASreg_h – RTSreg_i) X (RTPreg_i – DABreg_h)

Else:

CDMAPreg_i = (AdjDASreg_h – RTSreg_i) X Max[(RTPreg_i – RTBreg_h),0]

Where:

RTPreg_i = Real-time price for Regulation for interval *i*. RTBreg_h = Real-time bid for Regualtion for hour *h* containing interval *i*. CDMAPreg_i = Regulation contribution to DAMAP for interval *i*.

Step 8: Calculate the Contribution to DAMAP from Interval *i to Hour* h

 $CDMAP_{i} = (CDMAPen_{i} + \sum CDMAPres_{ip} + CDMAPreg_{i}) X (Int_{i}/3600)$

Where:

Int = Length of RTD interval *i* in seconds

 $CDMAP_i = RTD$ interval *i* contribution to DAMAP for hour *h*

Step 9: Calculate the DAMAP for Hour *h*

Finally,

$DMAP_h = Max(0, \sum CDMAP_i)$

Note, that as today, the DAMAP has a floor of zero.