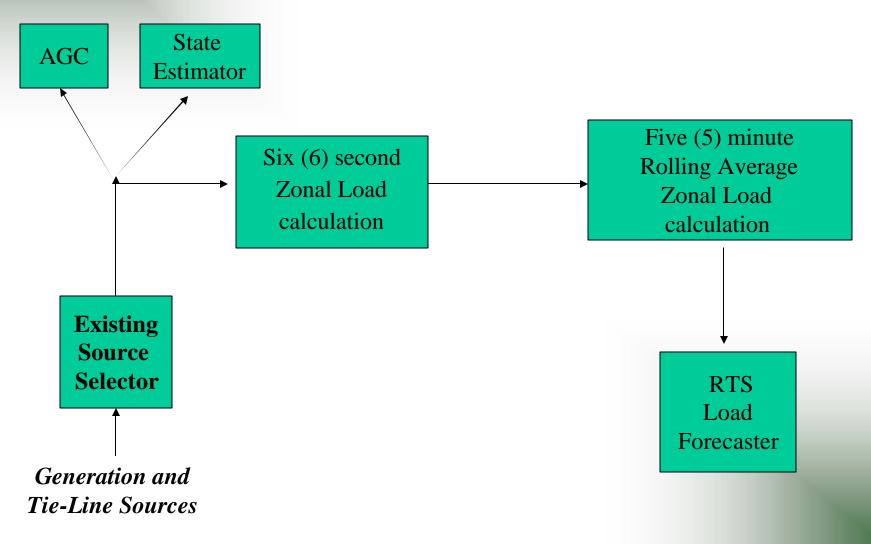


Real Time Market Zonal Load Filter and Intelligent Selection of Generation and Tie-line Metering


Billing and Price Correction Task Force April 24, 2006

Energy Market Operations

Outline

- Review of Current Implementation
- Problem Definition / Issues
- Basis of New Approach
- > New Approach Implementation
- Zone Load Filter and Monitor
- Generator and Tie-Line Monitor
- > Intelligent Source Selection
- > Summary

Initial SMD2 Implementation

Count of Zonal Load Telemetry Sources

Zone	Generators	Inter-Zonal Ties	External Zones Ties	Count
A West	25	10	8	43
B Genesee	13	18	0	31
C Central	39	25	4	68
D North	11	7	4	22
E Mohawk Val	28	32	0	60
F Capital	30	15	4	49
G Hudson Val	26	20	15	61
H Millwood	4	15	0	19
I Dunwoodie	1	16	0	17
J NYC	50	10	3	63
K Long Island	72	4	2	78
Total	299	172	40	425

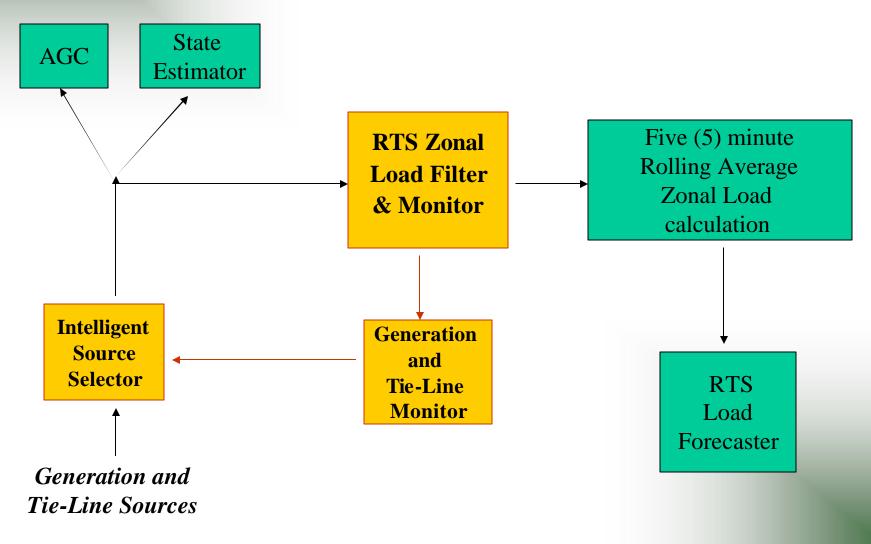
Problem Definition / Issues (I)

- Incorrect telemetry corrupts Zonal Load Calculations used by Real Time Market Applications (RTS Load Forecaster) and impacts EMS Functions (AGC, State Estimator)
- Large number of telemetry sources are used and at any given time some data may be incorrect
- Multiple real reasons are responsible Transient bad metering, ICCP metering non-simultaneity (time skew), incorrect or stale manually maintained data values, meter calibration work, etc.
- > Errors may last from a few six (6) second scans to potentially longer and depends exclusively on operator actions to identify and resolve

Problem Definition / Issues (II)

- Conventional Energy Management System (EMS) telemetry processing is not sufficient
 - Data smoothing (1st Degree Filter) not useful as in most instances this simply results in a delay of the telemetry error
 - Reasonability Checks not effective as in most instances telemetry data is reasonable but incorrect
 - Existing source switching –not a reliable indicator of most telemetry errors since it is based only on telemetry failure status
- By the time a telemetry error is identified and corrected, the rolling average Zonal Load determination for RTS Load Forecaster has been impacted and Real-Time Market operation is often affected
- While the load averaging process reduces the impact of short duration telemetry errors it does not address the real telemetry problem

Basis of New Approach

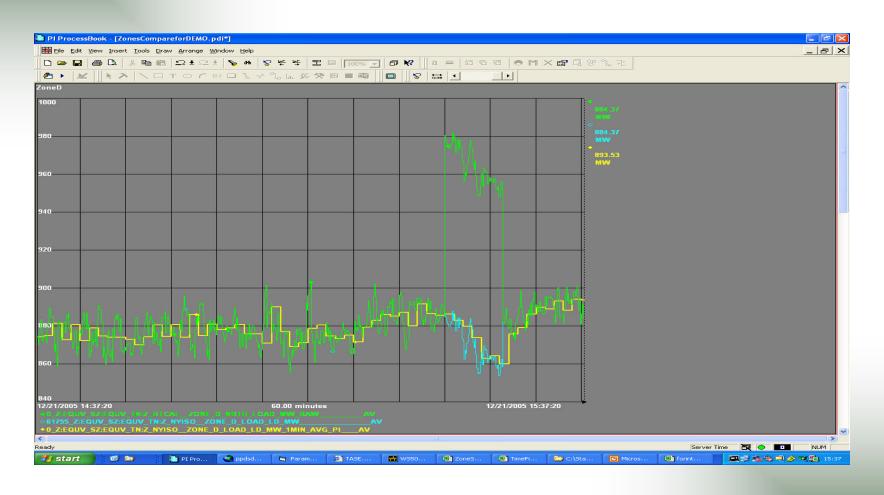

- Step (i.e. Sudden, Fast) changes in Generation or Tie-line source data can be the result of either correct or incorrect telemetry.
- Step (i.e. Sudden, Fast) changes in Zonal Load values are nearly <u>exclusively</u> the result of incorrect telemetry *.
- Zonal Load changes from one six second scan to the next are the result of random metering noise and not the result of actual load changes.
- Zonal Load changes from one six second scan to the next normally have a zero average and a standard deviation (STD) that is quasi-independent of day-type and quasi-constant over a 24 hour period. Zonal Load changes greater than a multiple (k) of the STD indicates an outlier condition resulting from a generation or tie-line telemetry error.
- Generation or Tie-line source data problems can be identified timely and <u>automatically</u> <u>corrected</u> via two basic approaches:
 - (a) State Estimation or SE-like techniques based on redundancy
 - (b) Simultaneous source data changes and Zonal Load changes outside k*STD
- Slow Zonal Load corruption is often the result of stale Generation or Tie-line source data

^{*} One "Normal" Exception (Alcoa smelter load in Zone D); "Exceptional" Case: Load Shedding

Standard Deviation of Zonal Load Changes

	A	В	С	D	E	F	G	Н	1	J	К
16-Jan-06 00:00:00	10.9	4.6	6.7	5.7	7.4	12.1	14.2	12.6	11.3	10.0	7.2
16-Jan-06 01:00:00	11.5	4.9	7.2	6.7	7.0	13.7	13.0	8.2	5.5	10.4	4.5
16-Jan-06 02:00:00	9.8	4.7	6.4	8.3	6.1	13.5	12.1	7.5	5.5	9.8	4.0
16-Jan-06 03:00:00	10.3	4.7	7.5	8.2	7.9	12.6	13.3	8.9	5.9	10.8	5.4
16-Jan-06 04:00:00	10.1	5.1	7.1	5.9	7.7	12.2	12.1	7.4	5.1	9.8	4.5
16-Jan-06 05:00:00	10.7	5.5	8.2	6.1	8.2	16.3	12.7	8.9	6.2	12.7	5.8
16-Jan-06 06:00:00	10.2	4.7	7.3	6.5	7.4	15.1	12.2	8.1	5.5	11.0	5.6
16-Jan-06 17:00:00	9.9	5.0	7.4	6.1	6.3	12.4	13.4	9.0	6.9	12.5	5.6
16-Jan-06 18:00:00	10.9	4.4	7.1	6.0	6.8	12.0	14.2	8.2	6.0	11.2	6.1
16-Jan-06 19:00:00	8.8	4.5	6.6	5.2	6.7	13.4	13.4	7.6	5.6	10.8	5.6
16-Jan-06 20:00:00	12.0	4.9	6.7	6.3	6.8	12.1	12.9	8.6	5.5	10.9	4.8
16-Jan-06 21:00:00	10.5	4.3	6.5	6.3	6.7	11.0	12.1	7.9	6.0	9.8	4.8
16-Jan-06 22:00:00	13.9	4.6	9.5	6.5	8.3	10.0	15.2	8.7	8.1	12.4	5.9
16-Jan-06 23:00:00	10.9	4.9	6.6	7.1	7.4	12.6	13.4	8.1	5.6	10.8	4.4
Average STD	10.5	4.5	6.8	6.9	6.9	12.6	13.3	8.4	6.3	11.3	5.4
3*SIGMA	31.6	13.6	20.4	20.6	20.7	37.8	39.9	25.3	18.9	33.9	16.2

New Approach Implementation


RTS Zonal Load Filter and Monitor

- Detects Zonal Load step changes and conceptually "freezes" the incorrect telemetry value to its prior good value (last scan value)
- Handles multiple telemetry source errors, either occurring in same or subsequent scans
- Provides intelligent alarming for affected Zone(s)
- ➤ Eliminates short duration errors due to transient telemetry steps or delayed source data with no operator intervention
- Provides a timeframe for longer duration errors to either self-correct, to allow the Intelligent Source Switching to correct the error, or, as a last resort, to allow the System Operator to correct the error.

Zone Load Monitor Display

Zonal Load Filtering Example

Generation and Tie-Line Monitor

- Detects stale generation and/or tie-line telemetry value(s)
- Detects step changes in generation and/or tie-line telemetry values correlated with Zonal Load changes and identifies the affected telemetry component
- Provides intelligent alarming for affected stale or step change telemetry value(s) and the affected telemetry component
- Applies to all telemetry components of Zonal Load
- > Sets a stale criteria different for tie-lines and generators

Tie Line MW Monitor Display

Intelligent Source Selector (End-State Operation)

- Will automatically select an alternate generation or tie-line telemetery source based on errors identified either 1) by source redundancy or 2) by correlating Zonal Load step changes with current source step changes
- > Will provide intelligent alarming for telemetery source switch changes
- Will apply to all telemetry components of Zonal Load

Intelligent Source Selector (End-State Operation)

Generator/ Tie-Line Component Type	Alarm for Stale and Step	Automatic Source Change Methodology	Automatic Source Change Source switches to	Example
2plus1	YES	Redundancy	Other source at same location	tie line with two sources at same end and one at opposite end
2plus0	YES	Simultaneous Zonal Load change	Other source at same location	tie line with two sources at same end
1plus1	YES	Simultaneous Zonal Load change	Opposite end source	tie line metered at both ends
1plus0	YES	Simultaneous Zonal Load change	Prior Good Value	tie line metered at one end

Zonal Load Telemetry Source Update

	Auto Source Select Approach					
Metering for	Total	Total Implemented	2+1	2+0	1+1	1+0
Generation >= 200 MW	52	41	19	19	0	3
Generation < 200MW	232	15	3	12	0	0
External Tie Lines	40	39	25	13	1	0
Zonal Tie Lines >= 230	44	26	26	0	0	0
Zonal Tie Lines <= 138	42	5	5	0	0	0
Totals	410	126	78	44	1	3

Summary

- The Zonal Load Filter eliminates short duration errors with no operator intervention and provides a timeframe without corruption for longer duration errors to either self-correct, to allow the Intelligent Source Switching to correct the error, or, as a last resort, to allow the System Operator to correct the error.
- The Generator and Tie-Line Line Monitor identifies stale and incorrect step changes in generation and/or tie-line telemetry values and identifies the affected telemetry component
- ➤ The Intelligent Source Selector will automatically select an alternate generation or tie-line telemetery source based on errors identified either 1) by source redundancy or 2) by correlating zonal load step changes with current source step changes
- These three functions comprising this new approach will act in a complementary and coordinated manner to minimize the impact of telemetery errors on the ISO Real-Time Market functions as well as improve other ISO Energy Management System functions.