

Fuel Constrained Bidding

Cristy Sanada,

Associate Market Design Specialist, Energy Market Design New York Independent System Operator

MIWG March 23, 2016 Krey Corporate Center

Purpose of today's discussion

- The purpose of today's discussion is to:
 - Review bidding designs and design functionalities
 - Review timelines for implementation
 - *Review Fuel Cost and Efficiency Curve research outcomes*
 - Review Limited Energy and Level Schedule Bidding
 - Next steps

Terminology

- Total Energy Curve Qualified Resource (TEC Resource) – a single resource registered with NYISO to use the Total Energy Curve Bidding functionality
- Total Energy Curve Group (TEC Group) = portfolio of resources (multiple PTID) bidding a shared Total Energy Curve

Fuel Constrained Bidding Designs and Sub-functionalities

Designs:

- Total Energy Curve (BIC Approved)
- Fuel Cost and Efficiency Curve

Sub-functionalities:

- Limited Energy Bidding can be used with both designs above
- Level Schedule Request could be used with or without both designs above

All functionalities described above apply to DAM bidding only, are optional, and available year-round

Review of Market Rules from 2/23 MIWG

- NYISO must approve TEC resources and groups
- Resources in TEC groups must belong to the same bidding and billing entity
- A single resource can be a part of only one approved TEC entity in a single electric day
- NYC resources can only be grouped with other NYC resources; if in NYC the resources must exist within the same load pockets and sub load pockets
- Under the TEC design, no single, or combination of cost offers shall exceed the energy offer cap or be below the negative offer cap
- Bid validation will ensure that the TEC reflects the total available capability reflected in hourly bids*
- Base DAM bids (no adders) will be converted to RT bids MPs will be responsible for updating RT bids
- BPCG and DAMAP will be netted over constraint hours/resources under the constraint
 - BPCG and DAMAP for reliability-committed resources will be calculated independently with TEC costs prorated over reliability MWs in a methodology to be discussed at a later MIWG
 - Example calculations and formula revisions to be discussed at a later MIWG

*Note: We will discuss Limited Energy Bidding in subsequent slides where this would not apply

Total Energy Curve (BIC Approved Design; MWh Constraint)

Total Energy Curve Design

- This design would allow the MP to submit for the electric day or subset of hours in the electric day:
 - Hourly three-part bids for a TEC resource or TEC Group
 - A cost curve reflecting total energy capability in the timeframe (MWh) and cost to produce those MWhs (\$/MWh) for the TEC resource or TEC Group

Total Energy Curve Example

Example Total Energy Curve

Note: Existing bid features will not change. Hourly three-part bids for each generator are still submitted in conjunction with this offer

Total Energy Curve Development Timeline

- The NYISO expects that implementation of this design could be achieved by 2019 at the earliest
 - This design requires extensive bid to bill impacts detailed on the following slide
 - A large share of resources necessary for this implementation, especially in 2018, will be dedicated to the EMS/BMS upgrade project
- The NYISO estimates following timeline until implementation for this design:

Target Date	Estimated Time to Complete	Activity		
December 2016	9 months	Tariff and Functional Requirements		
April 2017	4 months	FERC Filing		
October 2017	6 months	Draft Use Cases		
Spring 2019	10 - 16 months	Development		
Fall 2019 - Winter 2019	6 - 10 months	Testing/Deployment		

 The NYISO also anticipates the Total Energy Curve design (MWh constraint) will be leveraged to implement a storage optimization bidding design to be addressed through the Energy Storage Optimization project

Total Energy Curve Development Timeline

 Initial list of system and interface changes associated with implementation of this design

Description of Changes	Details
	· Bidding interface for select TEC resource or TEC
New bid screens	group
New bld screens	 Funtionality to specify constraint hours and
	associated price-quantity pairs
	· Resource can belong to only one TEC entity in
Additional bid validations	the market day
	 Offer cap validations
	· Hourly Offers v. capability reflected on TEC
New tables for mapping TEC Resources and TEC Groups to generators	
New tools for users to administer mappings of TEC Resources and TEC Groups to	
generators	
New tables for TEC offers	
Revised MIS conduct testing (data fed to SCUC and Billing software for automated	Additional conduct test for the TEC
mitigation processes)	Additional conduct test for the TEC
Revised reliability committed unit mitigation processes	
Revised logic to pull MIS bids into OISR	
Logic revision to account for TEC offers in objective function	
Revised Automated Mitigation logic	
	A single TEC reference for each TEC resource or
New multi-hour, multi-unit references for each TEC resource or group	group
Revise BPCG/DAMAP eligibility coding	
Revise BPCG/DAMAP calculation coding	
Additonal logic to account for reliability committed resource make-whole payments	3
Revise automated guarantee payment mitigation coding	
New displays for multi-unit/multi-hour settlement components	
New masked bid report structure to accomodate TEC offers	

Fuel Cost and Efficiency Curve

Fuel Cost and Efficiency Curve Design

- NYISO committed to researching this design further at BIC
- This design would break down cost components of hourly offers that vary with resource heat rate and fuel burn into separate offers
- The optimization would select the least cost solution by evaluating the interaction of costs and resource efficiencies at different operating points for a single resource or group of resources

Fuel Cost and Efficiency Curve Design

- This design would allow the MP to submit:
 - Hourly three-part bids for a generator or each generator in a portfolio
 - A cost curve reflecting incremental fuel purchases (eg. MMBtu) and cost to procure incremental volumes of fuel (\$/MMBtu) for the generator or portfolio*
 - Fuel input at Minimum Generation (eg. MMBtu/Hour) for each generator*
 - Incremental heat rate curve reflecting the conversion between fuel (eg. BTU/KWh) and output (MW) for the generator or each generator in the portfolio*

(*) Separate cost curves, heat rate curves, and fuel input at Min Gen would be submitted for each cost parameter that is variable with heat rate (eg. each fuel type). If heat rates vary over the course of the day due to temperature or humidity, the incremental heat rate curves and fuel input at Min Gen may vary by hour

Fuel Cost and Efficiency Curve Example

Note: Existing bid features will not change. Hourly three-part bids for each generator are still submitted in conjunction with this offer

Fuel Cost and Efficiency Curve Design Research – Numerical Example

- We compared Fuel Cost and Efficiency Curve simulation outcomes to Total Energy Curve outcomes in two different scenarios*
 - Gen 1 with UOL of 300MW has a fuel constraint and is gas-only
 - Natural gas is \$7.50/MMBtu in the two hour period
 - Heat input at Min Gen (50MW) is 430MMBtu/h
 - Assume Gen 1's Incremental Heat Rate Curve and Fuel Cost curves are as depicted below (these are submitted inputs)
 - Gen 1's Fuel Cost and Efficiency Curves are uniform for a two hour period (based on running on gas)
 - The fuel cost curve reflects cost adders above a base gas cost

*TEC assumptions are based on the results of Appendix A: Examples 1 and 2 in the BIC Fuel Constrained Bidding presentation 11/13/2015 but with an added Min Gen Cost assumption; TEC assumptions and outcomes can also be found in Appendix 2 and 3 of this presentation

Fuel Cost and Efficiency Curve Design Research – comparison to TEC

 Based on the resource's incremental heat rate offer and calculated efficiency at different operating points, we can construct what a Total Energy Curve would look like subject to different operating efficiencies (detailed conversions are in Appendix 1):

• Different efficiency assumptions may translate to different breakpoints and costs reflected on the TEC

Ex 1 -- 68% Efficiency Conversion

- Suppose Gen 1 bids reflecting 68% efficiency in a Total Energy Curve (corresponds with a \$5 adder on any MWh scheduled beyond 300MWh)
- In both the TEC and Fuel Cost and Efficiency curve outcomes, the resource was scheduled to 450MWh. At this schedule, the resource actually incurs a \$8.33 fuel adder (schedule requires 2327 MMBtu) as reflected in its Fuel Cost and Efficiency Curve offers
- We compare the Total Energy Curve outcome of reflecting 68% efficiency in the TEC offer to the Fuel Cost and Efficiency Curve outcomes:
 - No differences in gen schedules or actual production costs in both scenarios (bid production costs do increase in the Fuel Cost and Efficiency Curve scenario)
 - This example shows a higher net revenue for Gen 1 using the Fuel Cost and Efficiency Curve. This is because the resource reflects the wrong efficiency in the TEC (chooses efficiency associated with a \$5/MWh adder) rather than the actual outcome (\$8.33/MWh). Actual efficiency is captured by the Fuel Cost and Efficiency Curve scenario.
 - Load payments increased under the Fuel Cost and Efficiency Curve outcome. This is because Gen 1 was marginal in HB1 and set price with a \$8.33 adder rather than the \$5 under the TEC scenario

Gen 1 Strategy	Gen 1	Total System	Load Payment	Gen 1	Gen 2 Net	
Gen i Strategy	Actual Production Cos	Production Cost	Load rayment	Net Revenue	Revenue	
Adder in Total Energy Curve	\$ 18,490	\$ 25,490	\$ 31,250	\$ 5,260	\$ 500	
Adder in Fuel Cost Curve	\$ 18,490	\$ 25,490	\$ 32,083	\$ 6,093	\$ 500	
Delta (Fuel Cost - Total Energy)	\$-	\$ -	\$ 833	\$ 833	\$-	

Ex 2 -- 62% Efficiency Conversion

- Suppose the resource bids reflecting 62% efficiency in its Total Energy Curve (corresponds with a \$8.33 adder on any MWh scheduled beyond 270MWh)
- In both the TEC and Fuel Cost and Efficiency curve outcomes, the resource was scheduled to 310MWh. At this schedule, the resource actually incurs a \$5 fuel adder (associated with 68% efficiency) as reflected in its Fuel Cost and Efficiency Curve offers
- We compare the Total Energy Curve outcome of reflecting 62% efficiency in the TEC offer to the Fuel Cost and Efficiency Curve outcomes
 - There were no differences in gen schedules or production costs in both scenarios (bid production costs were higher in the TEC scenario)
 - This example shows a higher net revenue for Gen 1 in HB1 in the TEC scenario. This is because the resource reflects the wrong efficiency (chooses efficiency associated with a \$8.33/MWh adder) in the TEC rather than the actual outcome (\$5/MWh) but is still scheduled as the lowest cost resource. Actual efficiency is captured by the Fuel Cost and Efficiency Curve scenario.
 - Gen 1 earns higher net revenues in the TEC scenario, but the resource's bid costs and thus costs reflected in LBMP are higher than actual. This could be inefficient for the resource owner if their higher offers prevented a schedule or resulted in a lower schedule
 - Load payments decreased under the Fuel Cost and Efficiency Curve outcome. This is because Gen 1 was marginal in HB1 and set price with the actual \$5 adder rather than \$8.33 under the TEC scenario

Gen 1 Strategy	Gen 1 Actual Production Cost		Total System Production Cost		Load Payment		Gen 1 Net Revenue		Gen 2 Net Revenue	
Adder in Total Energy Curve	\$	12,423	\$	19,423	\$	21,716	\$	1,793	\$	500
Adder in Fuel Cost Curve	\$	12,423	\$	19,423	\$	21,350	\$	1,427	\$	500
Delta (Fuel Cost - Total Energy)	\$	-	\$	-	\$	(366)	\$	(366)	\$	-

Numerical Example Conclusion

There are risks presented when a resource does not reflect the correct operating efficiency in a Total Energy Curve offer:

- 1. A resource risks reflecting too low of a cost adder: Gen1 anticipated that it would run at 68% efficiency where it would incur \$5.00/MWh fuel cost adder. In reality the market scheduled Gen 1 at 62% where it incurred \$8.33/MWh cost adder. It did not fully reflect its costs in offers using a TEC.
- 1. A resource risks reflecting too high of a cost adder: Gen 1 anticipated that it would run at 62% efficiency where it would incur \$8.33/MWh cost adder. In reality the market scheduled Gen 1 at 68% where it only incurred \$5.00/MWh cost adder. LBMPs may reflect too high of a cost, or the resource may risk not receiving a schedule.

Fuel Cost and Efficiency Curve Design Research – Additional Observations

- The small-scale simulation we ran assumed the fuel constrained resources was a single fuel resource
- There are added modeling complexities needed to address resources that can operate on more than one fuel
 - This would require the resource offer to include detailed unit characteristics and associated costs in all operating configurations
 - Even with a single fuel offer, complexities are introduced when emission costs are tied to fuel consumption
 - Resources would have to submit emission characteristic offers that are related to fuel burn, which may include multiple emissions costs (CO2, NOx, SOx)
 - This complexity would require extended time to conceptualize, model, and test
- Implementation of this design would impact downstream processes that utilize bid data as each system would have to be capable of calculating a variety of bid costs in different configurations
 - This is a driver behind an extended timeline for developing requirements

Conclusion

- Both TEC and Fuel Cost and Efficiency Curve designs eliminate the risk of guessing <u>where and when</u> to impose cost adders in hourly bids
 - Total Energy Curve (output constraint) accurately optimizes the limited energy available to the generator(s)
 - Fuel Cost & Efficiency Curve (input constraint) further optimizes the limited fuel available to the generator(s).
- If the generator/portfolio efficiency is uniform, the two designs are identical
- The Fuel Cost & Efficiency Curve eliminates risk of reflecting the wrong operating efficiency in TEC offers
- Both risks described above are faced today when resources are bidding to reflect fuel or energy limitations
- Both designs provide appreciable benefits from the current bid construct

Fuel Cost and Efficiency Curve Development Timeline

- The NYISO foresees that implementation of this design would extend beyond 2019 into 2020 due to more extensive bid to bill impacts than the TEC design which would require:
 - Extended time to conceptualize design components, develop market rules, tariff amendments and functional requirements
 - Extended development and testing
- The NYISO estimates the following timeline until implementation for this design:

Target Date	Estimated Time to Complete	Activity
October 2017	18 months	Tariff and Functional Requirements
February 2017	4 months	FERC Filing
August 2018	6 months	Draft Use Cases
		Development/Testing (likely would
April 2020	12-16 months	not begin until 2019)
Late 2020		Deployment

Fuel Cost and Efficiency Curve Development Timeline

- Initial summary of system and interface changes associated with implementation of this design
- Items in blue highlight differences compared to the TEC design

Description of Changes	Details
New bid screens	 Bidding interface for select resource or group Funtionality to specify constraint hours and associated fuel cost/efficiency curves Additional inputs must be accounted for to allow for submission of multiple parameters that vary with heat rates
Additional bid validations	 Resource can only belong to one approved bid entitiy in a market day Offer cap validations - additional complexity to account for the computation of costs between the fuel cost and efficiency parameters Hourly Offers v. Capability Reflected in Fuel Cost and Efficiency Curve validations - additional complexity to account for the computation of potential energy capability as reflected in fuel and heat rate offers
New tables for mapping bid entities to specific generators	
New tools for users to administer mappings of generators and bid entities	
New tables for fuel cost and efficiency curve offers	Additional complexity to reflect potentially multiple cost and efficiency curves
Revised MIS conduct testing (data fed to SCUC and Billing software for automated mitigation processes)	Additional complexity to perform conduct tests across potentially multiple cost offers
Revised reliability committed unit mitigation processes	
Logic revision to account for fuel cost and efficiency curve offers in the objective function	Additional complexity to account for potentially multiple cost and efficiency curves; costs are calculated within the optimization
Revised Automated Mitigation logic	
New multi-hour, multi-unit references for each resource or group	Multiple components of references for each resource or group
Revise BPCG/DAMAP eligibility coding	
Revise BPCG/DAMAP calculation coding	
Revise Automated GP Mitigation coding	
New displays for multi-unit/multi-hour settlement components	
New data structure to accomodate fuel cost and efficiency curve offers for masked bid reporting	Must consider what the masked bids should look like

Limited Energy Bidding

Background

- The NYISO is currently pursuing the Total Energy Curve bidding design
- All examples presented to MPs have shown this design as a way to more efficiently reflect opportunity costs across a resource(s)' <u>full potential capability</u> as reflected in hourly three-part bids
 - Bid validation was presented to ensure this condition is met
- The NYISO has stated that this design should not be used in place of taking an outage; this still holds true
- At the last MIWG, MPs expressed that there is value to allowing resources to reflect a "hard" limit on energy using this design
 - We noted to MPs that we would discuss this topic at a future MIWG

Limited Energy Bidding Concept

- Using this functionality, the TEC resource or TEC group could submit:
 - Hourly three-part bids for all resource-hours covered by the constraint
 - Total Energy Curve reflecting limited energy and associated adder costs
 - The last MWh point on the Total Energy Curve could be less than the total MWh reflected in hourly offers
- This would allow the optimization to schedule the resource(s) in the most optimal hours subject to the limited energy reflected on the TEC
- The benefit is that the resource would not have to guess in which hours to bid (reflect availability)

Limited Energy Bidding Concept

	Hour	MWh 1	\$/MWh 1
	HB00	100	\$15
	HB01	100	\$15
	HB02	100	\$15
	HB03	100	\$15
	HB04	100	\$15
	HB05	100	\$15
	HB06	100	\$15
	HB07	100	\$15
	HB08	100	\$15
rs	HB09	100	\$15
ffe	HB10	100	\$15
ЕО	HB11	100	\$15
Ę.	HB12	100	\$15
Hourly IE Offers	HB13	100	\$15
T	HB14	100	\$15
	HB15	100	\$15
	HB16	100	\$15
	HB17	100	\$15
	HB18	100	\$15
	HB19	100	\$15
	HB20	100	\$15
	HB21	100	\$15
	HB22	100	\$15
	HB23	100	\$15

- Total Capability Reflected in Hourly Bids = 2400MWh
- Total Actual Capability Reflected on TEC = 400MWh
- The resource can be scheduled for <=400MWh total over the day

Total Energy Curve

Limited Energy Bidding Concept

- The NYISO has determined that this capability does provide additional market efficiency and proposes to pursue this subdesign as part of the Fuel Constrained Bidding effort
- This design provides benefits in comparison to current options:
 - A resource can guess in which hours would be most optimal to run and bid only in those hours, and report an outage for other hours
 - A resource risks guessing wrong; the optimization may have scheduled the resource in a more optimal hour, but instead must schedule a more costly resource
 - A resource can bid in more hours than capable, then take a forced outage if it cannot meet that schedule
 - This may result in more costly resources making up for the resource's schedule in RT
- The following provisions will be enforced for resources using this functionality:
 - Resources must still report their anticipated de-rate to outage scheduling as done today
 - Based on outage records and DAM offers, MMA will still check that ICAP resources are meeting their DAM bid, schedule, notify obligation
 - Using this feature to withhold available capability from the Energy and Ancillary Service markets will result in review for possible physical withholding
 - This MWh limitation will also serve as a cap on the total of energy, spin, and non-spin reserve schedules

Level Schedule Request Feature

Background

- This feature is currently part of the high level design approved at BIC
- Bidding functionality to allow resources to more efficiently reflect 1/24th OFO constraints in dayahead offers is recommended in 2013/14 State of the Market reports
- Though discussions with resource bidders, this functionality is desirable to help reflect costs better in energy offers when a 1/24th OFO is anticipated

Level Schedule Concept

- This feature does not have to be used with a Total Energy Curve, though it is a multi-hour constraint
- Using this functionality, a resource could submit:
 - Hourly three-part bids for all resource-hours covered by the constraint
 - Request to enforce a level schedule for specified hours
 - OPTIONAL: Total Energy Curve
- This would allow the optimization to schedule the resource(s) flexibly, but to enforce a level schedule if scheduled
- This feature would give resources an alternative to selfscheduling to achieve a level schedule
 - A resource can be evaluated economically for a level schedule as opposed to offering as a price taker in order to guarantee a level schedule

Level Schedule Request Concept

Single block-loaded resource with level schedule request over HB 00-09:

Hour

٠

Level Schedule Request Concept

- NYISO proposes that this sub-design be available for single, block loaded resources only
 - Historically, MPs have inquired about how to reflect OFOrelated costs across block-loaded resources, not flexible resources
 - Single resources in a portfolio can bid with this request to achieve a portfolio-level, level schedule
 - A resource requesting a level schedule may still belong to a TEC group
 - NYISO is interested in hearing feedback on whether this functionality would be beneficial for flexible scheduled resources as well
- These resources could bid in the ISO Flex or ISO Fixed bid mode and will be eligible for BPCG as the decision to schedule the resource would be an economic decision
- For block-loaded resources, this request is essentially an on/off decision and NYISO will assume that a resource's UOL offers are reflective of a level fuel draw
- Resources using this feature will be precluded form providing reserves in the constraint timeframe

Solicitation of generator bidder/scheduler feedback

- The NYISO plans to conduct an informative WebEx for resource bidders and conduct a follow-up survey to determine design preferences and quantify perceived benefits of each design and sub-functionality
- The following questions will be addressed:
 - How beneficial is the design or sub-functionality to your generation fleet?
 - How often would this design or sub-functionality be used?
 - Where do preferences lie?
- The results of this survey will be discussed at an April MIWG
- This feedback will help inform us of which design components to prioritize

Next Steps

- Currently soliciting MP feedback
 - Please e-mail any questions or comments to <u>csanada@nyiso.com</u>
- Conduct a WebEx to solicit feedback from resource bidders/schedules to gauge design preferences
- March May
 - Continuation of discussions on market rules for the TEC design
- Q2-Q3 2016
 - Tariff language development
 - BIC Vote on Market Design and Tariff Language
- Q4 2016
 - Draft and approve functional requirements (Internal)

APPENDIX 1 – Conversion of Incremental Heat Rate Curve to Operating Point Efficiency

Conversion of Incremental Heat Rate Curve to Operating Point Efficiency

.

Assume the resource's Fuel Input at Min Gen (50MW) is 430MMBtu/h. ٠ Fuel consumption is calculated at each point of the incremental heat rate curve. We can construct the resource's input/output curve as follows:

MW	\$/MWh	\$/MWh BTU/kWh Conversion to Fuel Consumption, MMBtu/h F		Fuel Consumption, MMBtu/h
50	\$ 20	2667	430MMBtu/h	430
100	\$ 25	3333	433MMBtu/h + [(3333Btu/kWh * 1/1000) * (100MW - 50MW)]	597
200	\$ 30	4000	3333MMBtu/h + [(4000Btu/kWh * 1/1000) * (200MW - 100MW)]	9 97
300	\$ 50	6667	4000MMBtu/h + [(6667Btu/kWh * 1/1000) * (300MW - 200MW)]	1663

From here, we can calculate the resource's average heat rate and calculate a % efficiency at each operating point, used in the analysis

	Average heat rate and efficiency										
MW	Fuel Consumption, MMBtu/h	Conversion to Average Heat Rate, BTU/kWh	Average Heat Rate, BTU/kWh	Conversion to Efficiency	Effidency, %						
50	430	(430MMBtu/h)/50MW * 1000	8600	(3412 Btu/hr) / (8600 Btu/kWh)	40%						
100	597	(597MMBtu/h)/100MW * 1000	5970	(3412 Btu/hr) / (5970 Btu/kWh)	57%						
200	997	(997MMBtu/h)/200MW * 1000	4985	(3412 Btu/hr) / (4985 Btu/kWh)	68%						
300	1663	(1663MMBtu/h)/300MW * 1000	5543	(3412 Btu/hr) / (5543 Btu/kWh)	62%						

severe la set unter au d'affi d'au au

APPENDIX 2 – TEC/Fuel Cost and Efficiency Curve Comparison Example 1 Details

TEC/Fuel Cost and Efficiency Curve Comparison – Example 1

TEC inputs and outcomes:

Offer curves

Name	Hour	MW1	\$/M\	Wh1	MW2	\$/N	\$/MWh2 MW3		MW3 \$/MWh3		MW4	\$/	MWh4
GEN1	1	50	\$	20	100	\$	25	200	\$	30	300	\$	50
GEN1	2	50	\$	20	100	\$	25	200	\$	30	300	\$	50
GEN2	1	100	\$	60	300	\$	65	500	\$	70	600	\$	100
GEN2	2	100	\$	45	300	\$	50	500	\$	70	600	\$	100

Gen 1 Total Energy Curve

	MW1	\$/MWh1	MW2	\$/MWh2	
GEN1	300	\$ -	600	\$ 5.00	

Load					LBMPs					
Hour 1 Hour 2			HB1			HB2				
	250		350		\$	55.00	\$	50.00		

Schedules

Name	HB1	HB2	MWH Total	MMBTU Fuel
GEN1	250	200	450	2,326.7
GEN2	0	150	150	-

Actual Production Cost (not bid production cost)

Name	HB1	HB2		straint Cost	Total		
GEN1	\$ 9,975	\$ 7,475	\$	1,040	\$	18,490	
GEN2	\$ -	\$ 7,000			\$	7,000	

Load Payment

	HB1	HB2
[\$ 13,750	\$ 17,500

Mingen Cost

\$ 3,225

Gen Payment

	-			
Name		HB1	HB2	Total
GEN1	\$	13,750	\$ 10,000	\$ 23,750
GEN2	\$	-	\$ 7,500	\$ 7,500

Net Revenues

Name	HB1	HB2		Constraint Cost		Total	
GEN1	\$ 3,775	\$ 2,525	\$	(1,040)	\$	5,260	
GEN2	\$ -	\$ 500			\$	500	

TEC/Fuel Cost and Efficiency Curve Comparison – Example 1

Fuel Cost and Efficiency Curve inputs and outcomes:

Offer curves

Name	Hour	MW1	\$/MWh1	MW2	\$/MWh	2	MW3	\$/N	IWh3	MW4	\$/	/MWh4
GEN1	1	50	\$ 20	100	\$	25	200	\$	30	300	\$	50
GEN1	2	50	\$ 20	100	\$	25	200	\$	30	300	\$	50
GEN2	1	100	\$ 60	300	\$	65	500	\$	70	600	\$	100
GEN2	2	100	\$ 45	300	\$	50	500	\$	70	600	\$	100

Gen 1 Incremental Heat Rate Curve

	MMBTU1	\$/MMBTU1	MMBTU2	\$/MMBTU2
GEN1	1,495	\$ -	2,990	\$ 1.25

Gen 1 Total Fuel Curve

	MMBTU1	\$/MMBTU1	MMBTU2	\$/MMBTU2
GEN1	1,495	\$-	2,990	\$ 1.25

Load				LBMPs				
Hour 1	Hour 2				HB1		HB2	
2	50	350		\$	58.33	\$	50.00	

Schedules

Name	HB1	HB2	MWH Total	MMBTU Fuel
GEN1	250	200	450	2,326.7
GEN2	0	150	150	-
GEN1(MMBtu)	1330	999.65		2,329.7

Actual Production Cost (not bid production cost)

Name	HB1	HB2		Constraint Cost		Total	
GEN1	\$ 9,975	\$	7,475	\$	1,040	\$	18,490
GEN2	\$ -	\$	7,000			\$	7,000

Load Payment

HB1	HB2				
\$ 14,583	\$	17,500			

Mingen Cost

Ś	3.225
Y	0,220

© 2000 - 2015 New York Independent System Operator, Inc. All Rights Reserved.

Gen Payment

Name	HB1	HB2	Total
GEN1	\$ 14,583	\$ 10,000	\$ 24,583
GEN2	\$ -	\$ 7,500	\$ 7,500

Net Revenues

Name	HB1		HB2	Con	straint Cost	Total	
GEN1	\$	4,608	\$ 2,525	\$	(1,040)	\$	6,093
GEN2	\$	-	\$ 500			\$	500

Example 1 – Fuel Cost and Efficiency Curve Market Clearing

Example 1 Comparison of Outcomes

 Actual production costs for Gen 1 and Gen 2 over both hours is calculated as:

	HB1	HB2	Constraint Cost	Total					
Gen 1	\$3,225/h + 50MW× \$25 + 100MW×\$30 + 50MW×\$50	\$3,225/h + 50MW× \$25 + 100MW×\$30	max(0, (2,326.7 MMBtu – 1,495 MMBTU) x \$1.25/MMBtu)	\$18,490					
Gen 2	Gen 2 - 100MW×\$45 + N/A 50MW×\$50								
	System Production Cost:								

Comparison of results:

Gen 1 Strategy	Gen 1 Actual Production Cost		Total System		Load Payment		Gen 1 Net Revenue		Gen 2 Net Revenue	
Adder in Total Energy Curve	\$	18,490	\$	25,490	\$	31,250	\$	5,260	\$	500
Adder in Fuel Cost Curve	\$	18,490	\$	25,490	\$	32,083	\$	6,093	\$	500
Delta (Fuel Cost - Total Energy)	\$	-	\$	-	\$	833	\$	833	\$	-

APPENDIX 3 – TEC/Fuel Cost and Efficiency Curve Comparison Example 2 Details

TEC/Fuel Cost and Efficiency Curve Comparison – Example 2

TEC inputs and outcomes:

Offer curves

Name	Hour	MW1	\$/MW	h1	MW2	\$/N	/Wh2	MW3	\$/M	IWh3	MW4	\$/	WWh4
GEN1	1	50	\$	20	100	\$	25	200	\$	30	300	\$	50
GEN1	2	50	\$	20	100	\$	25	200	\$	30	300	\$	50
GEN2	1	100	\$	60	300	\$	65	500	\$	70	600	\$	100
GEN2	2	100	\$	45	300	\$	50	500	\$	70	600	\$	100

Gen 1 Total Energy Curve

	MW1	\$/MWh1	MW2	\$/MWh2	
GEN1	270	\$-	539	\$ 8.33	

Load					LBMPs				
Hour 1	Ho	our 2				HB1		HB2	
:	110		350		\$	38.33	\$	50.00	

Schedules

Name	HB1	HB2	MWH Total	MMBTU Fuel
GEN1	110	200	310	1,633.3
GEN2	0	150	150	-

Actual Production Cost (not bid production cost)

Name	HB1		HB2		Constraint Cost		Total	
GEN1	\$	4,775	\$	7,475	\$	173	\$	12,423
GEN2	\$	-	\$	7,000			\$	7,000

Load Payment

HB1	HB2				
\$ 4,216	\$	17,500			

Mingen Cost

\$ 3,225

Gen Payment

Name	HB1 HB2			Total	
GEN1	\$ 4,216	\$	10,000	\$	14,216
GEN2	\$ -	\$	7,500	\$	7,500

Net Revenues

Name	HB1		HB2	Cons	straint Cost	Total		
GEN1	\$	(559)	\$ 2,525	\$	(173)	\$	1,793	
GEN2	\$	-	\$ 500			\$	500	

TEC/Fuel Cost and Efficiency Curve Comparison – Example 2

Fuel Cost and Efficiency outcomes:

Offer curves

Name	Hour	MW1	\$/MWh1	MW2	\$/M	Wh2	MW3	\$/M\	Nh3	MW4	\$/	MWh4
GEN1	1	50	\$ 20	100	\$	25	200	\$	30	300	\$	50
GEN1	2	50	\$ 20	100	\$	25	200	\$	30	300	\$	50
GEN2	1	100	\$ 60	300	\$	65	500	\$	70	600	\$	100
GEN2	2	100	\$ 45	300	\$	50	500	\$	70	600	\$	100

Gen 1 Incremental Heat Rate Curve

	MMBTU1	\$/MMBTU1	MMBTU2	\$/MMBTU2	
GEN1	1,495	\$-	2,990	\$ 1.25	

Gen 1 Total Fuel Curve

	MMBTU1	\$/MMBTU1	MMBTU2	\$/MMBTU2	
GEN1	1,495	\$-	2,990	\$ 1.25	

Load		L	LBMI	Ps		
Hour 1 Hour 2			Γ		HB1	HB2
1	10	350		\$	35.00	\$ 50.00

Schedules

Name	HB1	HB2	MWH Total	MMBTU Fuel
GEN1	110	200	310	1,633.3
GEN2	0	150	150	-
GEN1(MMBtu)	636.65	999.65		1,636.3

Actual Production Cost (not bid production cost)

Name	HB1		HB2	Const	raint Cost	Total		
GEN1	\$	4,775	\$ 7,475	\$	173	\$	12,423	
GEN2	\$	-	\$ 7,000			\$	7,000	

Load Payment

HB1	HB2
\$ 3,850	\$ 17,500

Mingen Cost

\$ 3,225	
	\$ 3,225

Gen Payment

Name	HB1	HB2	Total		
GEN1	\$ 3,850	\$ 10,000	\$	13,850	
GEN2	\$ -	\$ 7,500	\$	7,500	

Net Revenues

Name		HB1		HB2	Cons	traint Cost		Total	
GEN1	\$	(925)	\$	2,525	\$	(173)	\$	1,427	
GEN2	\$	-	\$	500			\$	500	

© 2000 - 2015 New York Independent System Operator, Inc. All Rights Reserved.

Example 2 Comparison of Outcomes

• Actual production costs for Gen 1 and Gen 2 over both hours is calculated as:

	HB1	HB2	Total							
Gen 1	\$3,225/h + 50MW× \$25 + 10MW×\$30	\$3,225/h + 50MW× \$25 + 100MW×\$30	max(0, (1,633.3 MMBtu – 1,495 MMBTU) x \$1.25/MMBtu)	\$12,423						
Gen 2	-	100MW×\$45 + 50MW×\$50	N/A	\$7,000						
	System Production Cost:									

Comparison of results:

Gen 1 Strategy	Gen 1 Actual Production Cost	Total System Production Cost	Load Payment	Gen 1 Net Revenue	Gen 2 Net Revenue
Adder in Total Energy Curve	\$ 12,423	\$ 19,423	\$ 21,716	\$ 1,793	\$ 500
Adder in Fuel Cost Curve	\$ 12,423	\$ 19,423	\$ 21,350	\$ 1,427	\$ 500
Delta (Fuel Cost - Total Energy)	\$ -	\$-	\$ (366)	\$ (366)	\$-