Summary of Dynamic Net Benefits Options	
Option 1 Option 2	
Attempt to develop a solution using known	Attempt to develop new solution concepts that
optimization techniques that have not been	might permit a faster and better unit
applied to the solution of the dispatch problem in	commitment and dispatch solutions.
commercial software.	
1. Would attempt to develop a solution to the	1. Team with Academic and/or industry
unit commitment and dispatch problem that	research
applies a NBT utilizing known optimization	Attempt to develop new solution
techniques	concepts and new software.
2. Methodology :	2. Approach would focus additional research
• In theory, a non-linear constraint using the	specifically on the unit commitment aspects
current production cost minimization	of the problem.
objective function, or	Explore the consequences of applying multiple has a fits to state to different
Replace current production cost minimization objective function with a	multiple benefits tests to different
minimization objective function with a	choice variables with the same
load or billing unit effect cost minimization	optimization problem, prior to attempting to develop unit commitment
objective function for demand response activation.	and dispatch software for application in
	the NYISO markets.
Option 3	Option 4
Apply an ad hoc solution approach, using existing	Apply an ad hoc approach to utilize existing
software solution methods, to evaluate NBT based	software solution methods to permit application
on making all demand response bids available for	of the NBT to groups of demand response bids
dispatch versus no demand response bids	to avoid the all or nothing outcome of option 3.
available for dispatch.	
1. Three part process (in simplest form):	1. Iterative approach in which SCUC and RTD
 Solve the dispatch without activating 	would be solved for each incremental level
demand response, calculate clearing prices,	of demand response schedule/dispatch
and then	would be infeasible.
 Solve the dispatch again, activating all 	2. DR bids could be grouped by bid price for
demand response that would be economic	evaluation against the NBT.
to dispatch, then recalculate clearing	3. Complex to apply on congested system,
prices.	since DR at different locations will have
• Then apply net benefits test to select	different impacts on clearing prices,
dispatch.	grouping bids by price to apply the NBT
2. Assumes NBT would only take account of net	would not yield accurate results. Could
payments by remaining load based on the	perhaps be applied to bids in broad
energy price.	locations: e.g. Zone K; Zone J, other south of
3. Demand response would only be dispatched if	PV; Rest of State would require on the order
the net benefits test were satisfied.	of more than 17 solutions, implementation
4. Difficult to implement in 24 hour optimization	would have to be based on parallel
framework of day-ahead market. Alternative	processing in real-time;
implementation methods in day-ahead market	Even parallel processing would not make
include:	this workable to apply to individual hours
 "Hour-by-Hour" 	of day-ahead market and unit
 "All-or-Nothing" 	commitment.
"Combined"	Additional compromises would be
	necessary to implement.