PJM ICAP MARKET DESIGN: SOME BASIC CONSIDERATIONS

Roy J. Shanker PJM July 12, 2001

DISCLAIMER

 The following presentation is a personal work product and does not necessarily represent the position of any of my clients.

THE MARKET DESIGN (ISO/RTO) PROCESS IS A VERY COMPLEX UNDERTAKING:

• IT REQUIRES THE **CONSISTENT** BALANCING OF:

- HARD PHYSICS-ELECTRICAL ENGINEERING
- ECONOMIC THEORY
- STAKEHOLDER INTERESTS
- REGULATORY/LEGAL/POLITICAL REQUIREMENTS

THE PROCESS TENDS TO "COME OFF THE RAILS" IF ANY OF SEVERAL GENERIC MISTAKES ARE MADE:

- WE OVERLOOK OR OMIT BASIC ELEMENTS OR FACTS AND HOW THEY INTERACT
- WE IGNORE THE PHYSICAL REALITY OF ELECTRIC SYSTEMS
- WE ATTEMPT TO REACH COMPROMISE IN AREAS THAT BASICALLY CAN'T BE COMPROMISED
- WE IGNORE POLITICAL REALITIES

- When we "come off the rails" the resulting prices tend to get characterized as Unfair, or "Unjust and Unreasonable" if they result in increased prices regardless of why they occurred
- An important distinction may be Unanticipated versus Unjust

Why Capacity Adequacy Markets?

- Energy Only Markets Work In Theory
- Basic Assumptions
 - Competitive market
 - Atomistic buyers and sellers
 - Rational buyers and sellers with knowledge
 - Elastic demand
 - Elastic supply, no barriers to entry
 - Functional market design
 - Absence of market power

Why Capacity Adequacy Markets/Requirements

- In theory, in a market system, when demand exceeds supply the market price would be set by the scarcity costs represented by load bidding in its willingness to be interrupted
- The system would clear at prices representing scarcity
- Suppliers over time would capture scarcity rents sufficient to attract new capital
- There would be no need for capacity requirements
- This would be the resolution both short and long term
 Roy J. Shanker

- We never meet the assumptions of a fully competitive market in electricity more "workably competitive"
 - Reasonably concentrated buyers/sellers
 - Reasonable short term (long term?) barriers to entry
 - No short term demand elasticity at retail/limited real time information
 - Limited long term demand elasticity

How to Deal with these Limitations

- THE KEY IS HOW WE DESIGN AROUND THESE LIMITATIONS
- Two basic errors in approaching this problem
- Most of the problems being experienced today with "unjust or unexpected" are a result of failing to recognize **basic** market failings and address them from day one
- The other basic problem is failing to understand the properties of what has been designed

- These limitations aren't necessarily a barrier to going to a market based pricing system
- They are however a limitation to going to an energy only market system
- These limitations provide specific areas of caution in market design
 - You have to get the prices right
 - You have to protect against market power
 - You have to recognize the implications of inelastic (uninformed) demand and scarcity in the setting of prices

Two Basic Problem Areas

- Focus today on two related/integrated and very important areas where we are seeing problems based on a failure to both address a basic problem and a failure to understand what has been designed
 - Short term/real time scarcity
 - Long term adequacy

- Historically, in "equilibrium" regulated electric supply systems were designed to be "short"
- The typical design standard was loss of load probability (LOLP) of "one day in ten years"
- This means with normal weather, no unusual conditions we planned systems for demand to exceed supply 2.4 hours a year
- With unusual weather, transmission outages this would result in ????? hours

- In theory, in a market system, in real time when demand exceeds supply the market price would be set by the scarcity costs represented by load bidding in its willingness to be interrupted
- The system would clear
- Suppliers over time would capture scarcity rents sufficient to attract new capital

- However, currently real time demand is effectively totally inelastic
- Retail markets don't see any of the wholesale price signals
- There is currently no practical way to set clearing prices by scarcity
- There is no "correct" clearing price between marginal production cost with adequate supply, and interruption with shortage

- The periods of highest demand are easily predictable
 - Extreme weather
 - Multiple days in a row
 - Afternoon to early evening
 - Most of the information is on the web or available from the ISO

- Shortage+Inelastic Demand+Known Occurrence= Suppliers can set any price they want
- We know this is unacceptable, it typically leads to price caps
- Price caps are "ok" if we agree in **advance** to what the price will be during shortage
- AND we establish alternative ways to collect market clearing revenues-E.g. capacity payments or other ancillary service payments

- With the possible exception of PJM all of the ISO's have failed to answer this very basic question:
- "WHAT WILL BE THE MARKET PRICE OF ENERGY WHEN DEMAND EXCEEDS SUPPLY"
- It appears some refuse to answer this

- Because of market realities the price can be set at whatever we want it to be in this situation
- As a result, you have to answer this question first, and design the markets back from the answer
- This is the only way to get a consistent and workable market design

- Possible solutions
- Design the market (IN ADVANCE) to allow "politically acceptable" energy prices (caps) plus clearing revenues from other sources in an acceptable fashion
 - Ancillary services
 - ICAP, ACAP, operating reserves

- This means at times of scarcity the price will rise to the cap
- What does this mean in terms of pricing:
 - The "spread" between marginal production costs and the energy price cap is a LEGITIMATE revenue for generation—it reflects a proxy for a portion of shortage costs or scarcity rents
 - Suppliers have to be able to bid to the cap in scarcity situations regardless of marginal production costs
 - The use of caps has to be coupled in advance with other clearing revenue sources

- Again, theory suggests that an energy only market is all that is needed
- Participants responding to short term price signals will build new generation and transmission in response to market needs
- Scarcity rents in energy prices only, over the business cycle, are sufficient to attract new capital
- Get the energy prices right and the rest (e.g. new entry) follows

- This is the pricing/market structure for other capital intensive commodities-aluminum, paper etc.
- Characteristics of these other capital intensive commodity markets:
 - Undifferentiated commodity
 - Single commodity price
 - Multiple year business cycle as supply and demand oscillate and adjust-multiple years of scarcity
 - High Price volatility over cycle, factors or 3-5 variation not unusual

Roy J. Shanker

- Implications for single commodity priceenergy only-electric markets:
 - High price volatility
 - Scarcity for number of years—business cycle
 - Coupled with demand inelasticity no rational "cap" for price
- This is exactly the "unexpected" result of a design like California, the results are consistent with design

 We know this is not politically acceptable-no market design rhetoric is going to change this reality

- Potential Long Term Solution
- Administratively set reserves; Installed Capacity Requirements and Market or Equivalent (e.g. mandatory call contracts backed by hard assets)
- These designs don't necessarily encourage reliable performance (DMNC versus Calls)
- Typically criticized as inefficient, e.g. a tax of participants to maintain excess/inefficient resources

THAT IS EXACTLY THE POINT

- THE "TAX" COMPELS SURPLUS CAPACITY
- THE SURPLUS "DAMPENS" VOLATILITY IN THE ENERGY MARKETS
- THE "LONG" SYSTEM NEVER GOES THROUGH THE BUSINESS CYCLE OR HAS A SHORTER PERIOD OF SCARCITY
- DIRECTLY COMPLEMENTS THE SOLUTION TO THE SHORT TERM SCARCITY PROBLEM
- REALITY IS THAT THIS IS POLITICALLY CORRECT AND ACCEPTABLE

- What might this "tax" of excess capacity cost?
- For PJM, assume that the tax was to have excess 4% of peaker reserves above the "market solution", e.g. ~2,000 MW
- Using Joe Bowring's ~\$50 per kW-year this is \$100,000,000 or less than peak "premiums" for a few hours under current conditions (e.g. 50,000 MW for two hours at \$1000)
- In theory this "tax" plus ICAP and energy payments should approximate the same "energy only" total revenues over time,

- This is a small price to pay to avoid persistent scarcity for multiple years coupled with regulatory and political intervention
- "Smart" market participants recognize this:
 - "ICAP is the price I am willing to pay to have access to a liquid and competitive energy market" (Manager of large trading operation.)
 - Sufficient inherent volatility to keep marketers happy

- This is exactly what California is proposing too late
 - Mandatory call rights plus RMR
 - RMR payments effectively are capacity payments
- The problem is they are starting during shortage, and the basic premise of the "Tax" wont work to maintain surplus if you start short

- What does this mean in terms of Market Design
 - Mandatory capacity markets and administratively set levels of reserves
 - Need to recognize pricing implications of a tax in terms of market design
 - Need to couple with short term solution, recognizing entitlement to payments in excess of marginal production costs during scarcity

Additional Observations

- These types of solutions only work if you start from a system in surplus
- Nothing helps once the system goes "short", you have to solve the physical supply issue before you can "dampen" energy prices
- With "bad" design, it will be almost impossible to differentiate or partition between the impacts of scarcity and market power
- This ICAP process is not likely reversible once associated property rights are awarded

IMPLEMENTATION

 Given the above, what are some of the basic functions and problems that have to be addressed with the design of an adequacy market.

Basic Functions of An Adequacy Market

- Establish Reliability/Adequacy Target
- Establish Reserve/Installed Requirement
- Assign Requirement to Participants
- Establish Eligibility/Obligation of Generation to Participate
- Measure Capacity Provided
- Match Supply and Demand
- Penalties for Failure to Meet Requirements

Some Alternative Implementations

- California-none E.g. a boom/bust cycle
- New York
 - NYSRC sets LOLP, ISO Reserve
 - DMNC, limited performance moving to unforced capacity
 - 6 month period, now monthly market
 - ISO auction, bi lateral
 - Locational requirement, no deliverability or associated property rights, minimum interconnect standard
 - Monthly pro-rata deficiency
 - Allocated by peak ratio share

Alternative Implementations

- PJM
 - RAA/ISO sets reserve requirement
 - Unforced capacity for performance
 - Annual requirement but daily obligation, just shifted to seasonal periods
 - ISO auction, bi lateral
 - Clear deliverability rights, and associated FTR creation
 - Question on treatment of excess injection rights
 - Daily pro-rata deficiency going to seasonal
 - Peak load ratio share

Alternative Implementations

- GridFlorida (Proposed)
 - Proposed ICE, energy call options
 - Monthly requirement
 - No reserve requirement value over 100%
 - Auction and bilateral
- Other
 - Central Procurement, long term (not implemented)
 - Call option with reserve level iron in ground requirements/reserves (not implemented)

Alternative Implementations

- From my perspective no one has got this "right". There are missing or inconsistent elements in each of the proposals.
- The following discusses a few of these problems.
- This is a partial agenda for considering new alternatives for PJM

Important Issues

- In this context look at four areas important to capacity market design
 - Time step/obligation period
 - Generator performance/evaluation
 - Deliverability/property rights
 - Level of deficiency penalties

Time Step

- One of the most important elements and least understood is the time stepobligation period-performance period of the capacity adequacy markets
- The time step is a key driver in actually achieving reliability and attracting new entrants in the long run

- To meet reliability objective the time step of the market
 - Must match the underlying reliability assumptions
 - Currently this only appears as annual evaluations (e.g. LOLP analysis assumes that a central planner "consumes" annual maintenance coordination and LOLP is calculated over the year, similarly you see seasonal energy patterns etc.)
 - This means the only "right" time step for current market reliability standards is annual

- Pattern appears to be to go to shorter obligation period
- This reflects:
 - Desire of marketers for more liquid market
 - Desire to mesh more easily with retail
- Shorter obligation period means that physical reliability is reduced
 - LOLP actually higher
 - Generation can typical migrate more easily
 - Load can avoid meeting requirements when actual need exists

- Obligation period is also a major driver for new entry
- Shorter obligation period typically "dilutes" deficiency penalty, e.g. payments are only a (small) share of annual charge
 - This diminishes incentive for long term transactions,
 - This in turn may discourage new entry
 - This also encourages migration of capacity out of system when prices higher elsewhere

- Shorter time step may also make capacity pricing more volatile (tend towards zero-one)
 - When markets are long, this tends to penalize generators by encouraging short purchases/obligations, in turn this may result in very low ICAP prices as most of the short run "to go" costs are sunk after decision to stay in operation.
 - When market is close to being short, prices will likely rise to deficiency rather than marginal "to go" costs

- PJM has recognized some of these limitations from a shorter time step and has moved to extend the obligation period to a seasonal basis. This is still too short
- NY is actually making matters worse by shortening its period

Basic Tension-liquidity and retail access flexibility versus physical adequacy

 The time step interacts with the relationship between markets and reliability. The more you assure long term physical adequacy/"iron in the ground" through strong long term obligations (likely encouraging new entry), the less likely you are to get a market design that meets the flexibility requirements of open retail access and the liquidity desires of traders.

- This isn't a bad result, it is just the reality of administratively imposed physical adequacy. It is at odds with a liquid market
- Indeed, this type of observation may argue for some sort of central imposed ICAP structure.

- Possible improvement-Actions to further extend the time step and promote new entry
 - Go to at least a one year step
 - Central procurement of XX% on a long term basis e.g. if reserve requirement is 118%, 110% could be annual and 8% on a rolling basis for up to 5 years
 - This could be bi lateral and part of LSE requirements as an alternative
 - Offers a long term entry stimulus that is competitively driven

Generator Performance-Evaluation

- There has to be a way to measure a generator's relative contribution to meeting installed capacity requirements
- Ideally there would be a direct link between system demand and performance, e.g. energy at times of highest demand

Generator Performance-Evaluation

- There are a range of alternatives
 - Single measure DMNC (NY)
 - Unforced Capacity (PJM)
 - Performance versus price, call options
 - Performance versus LOLP
- The closer you come to performance tracking actual system reliability needs the better
- Coarse measures like DMNC don't relate to performance and may actually encourage lower reliability

Generator Performance-Evaluation

- The best solutions should emphasize actual performance, e.g. UCAP or calls or peak related (as long as rules are known at the start of the market)
 - Is more fair in terms compensation
 - Rewards the "good" players/performers
 - Encourages new entry
 - Encourages retirement of "bad" performers

- Key element to supporting new entry is clearly defined property rights
 - What is required to be recognized as eligible to sell installed capacity or be a capacity resource?
 - Who pays for these requirements?
 - Who owns the rights to recognition after these payments are made?
 - How long do these rights exist?
 - Who owns any related rights created in the energy markets, E.g. FTR's / TCC's
 - Direct use, future overhead created

- Ambiguity with respect to these rights creates uncertainty for investment
- Clarity for the rights, regardless of "correctness" creates a business environment people can deal with
- I.E. you can have weak or strong rights, with the associated change in risk or incentives so long as you don't have ambiguous rights

- PJM has a clear process for rights:
 - Formal process for deliverability and cost allocation for Capacity Resources v. Energy Only
 - Clear long term Capacity Injection rights for facilities that choose to pay for upgrades to be Capacity Resource
 - These rights are saleable
 - Clear ownership of any incremental FTR's created by upgrades
 - The treatment of excess deliverability is incorrect and should parallel FTR's
 - There is no analogous transmission only process
 Roy J. Shanker
 52

- New York has failed to clarify rights, or even the lack of rights, business rules are ambiguous
 - No deliverability concept
 - Unclear business rules for existing system
 - Minimum/energy only interconnection only
 - No formal property rights to ICAP deliverability for new entrants (or old??)
 - Most participants aren't aware or still don't understand this after years of warning
 - Major problem for new entrants and long term agreements
 Roy J. Shanker

53

- NV does get transmission only property rights

- Major Hidden Problem-Who Owns the Existing Rights on Day One
 - PJM finessed this by just giving them away to incumbents
 - Better result for customer may have been auction of existing deliverability and FTR's with revenues going to reduce access charges
 - Another area where consistency is important in any new approach
 - It probably is too late to fix the injection rights piece of this in PJM due to generator sales
 - It is still feasible to move to a full FTR auction

Deficiency Payments

- Key "enforcement" element in ANY ICAP system is the structure and level of deficiency payments
- This is the engine that drives "proper" behavior-higher is better
- The "right" level is consistent with a premium over the costs of new entry- reflecting the all the costs and risks associated with new entry
- Right level also has to reflect opportunity costs if there are adjacent markets without similar market structures Roy J. Shanker

Deficiency Payments

- PJM has set this too low
- New York is more consistent with function of deficiency payment
- Current rate is a vestige of old environment where participants had mandatory obligations under state jurisdiction
 - The rate was more of a "capacity equalization payment" than deficiency or penalty rate

Deficiency Payments

 PJM needs to recognize the "enforcement" aspect of deficiency charges and move to rates reflecting significant premiums over new entry

STRAWMAN

- Any straw has to recognize the seven basic functions and address them consistently
- There are several different approaches we could try, e.g.:
 - Current form with annual time step, higher deficiency rate, better performance measure, modified allocation of deliverability and new rights etc.
 - Call option structure with "iron in the ground provisions
 - Others?