

NYISO SCR Baseline Study Analysis ACL Results

Roger Kirkpatrick

Market Product Specialist Demand Response Products New York Independent System Operator

Timothy Hennessy

Senior Principal, Sustainable Use Consulting DNV KEMA Energy & Sustainability

Joint PRLWG/ICAPWG December 10, 2013

Topics

- Follow up on CBL items requested
- Objectives of ACL study (Task 2)
- Results of ACL study
- Results of CBL and ACL Analysis (Task 3)
- Next Steps

Peak Like Day Selection

Stakeholder Comments

- Peak Like Day Selection
 - Identify other days that were part of candidate list that were not selected
 - Slides 5, 8
 - How did system conditions used to identify pseudo-events compare with actual events?
 - Slides 6, 7, 9, 10
 - Consideration of conditions that actually warranted Winter events – lower loads during a spring heat wave coupled with significant generation and transmission maintenance
 - Slide 11

Summer Peak Like Days

		Summe	er 2011			Summe	er 2012
19	Days met NYIS	O's Load Forec	asting Criteria for Peak Like Day	24	Days met NYIS	O's Load Forec	asting Criteria for Peak Like Day
		Any SCR Load				Any SCR Load	
	Max NYCA	Zone Peak			Max NYCA	Zone Peak	
Date	Load	Hours	Reason(s) Excluded	Date	Load	Hours	Reason(s) Excluded
7/22/2011	33865.6	Y	Event Day	7/17/2012	32438.7	Y	
7/21/2011	33454.2	Y	Event Day	7/18/2012	32192.2	Y	Event Day
7/12/2011	31623.7	Y		6/21/2012	32127.8	Y	Event Day
7/20/2011	31224.2	Y		6/20/2012	31295.9	Y	Event Day
6/9/2011	30775.4	Y		8/3/2012	30989.3	Y	
7/11/2011	30717.8	Y		6/29/2012	30981.5	Y	
6/8/2011	30603.5	Y		7/16/2012	30976.6	Ŷ	
7/19/2011	30562.2	Y	Event Day (test)	7/6/2012	30562.6	Y	Max NYCA Load Below 30.600
7/23/2011	30420.8	Y	Weekend, Max NYCA Load Below 30,600	7/5/2012	30518.4	Ŷ	Max NYCA Load Below 30,600
8/1/2011	30404.1	Y	Max NYCA Load Below 30,600	7/24/2012	30131.6	Y	Max NYCA Load Below 30,600
7/18/2011	30038.9	Y	Max NYCA Load Below 30,600	6/22/2012	29932.4	N	Event Day, Max NYCA Load Below 30 600
8/8/2011	29508.9	N	Max NYCA Load Below 30,600	7/26/2012	20006.2	N	Max NYCA Load Bolow 30,600
8/2/2011	28908	N	Max NYCA Load Below 30,600	9/4/2012	29090.3	N	Waskand Max NVCA Load Polow 20,600
7/6/2011	28713.8	N	Max NYCA Load Below 30,600	7/12/2012	20927.7	N	Max NYCA Load Balow 20 600
7/24/2011	27242.9	N	Weekend, Max NYCA Load Below 30,600	7/13/2012	28849.6	N N	Max NYCA Load Below 30,600
7/17/2011	26558.5	N	Weekend, Max NYCA Load Below 30,600	7/27/2012	28660	N	Max NYCA Load Below 30,600
8/7/2011	26551.4	N	Weekend, Max NYCA Load Below 30,600	5/29/2012	28242.1	N	Max NYCA Load Below 30,600
7/30/2011	25986.8	N	Weekend, Max NYCA Load Below 30,600	8/5/2012	2/66/.2	N	Weekend, Max NYCA Load Below 30,600
7/31/2011	25831.6	N	Weekend, Max NYCA Load Below 30,600	7/7/2012	27474.3	N	Weekend, Max NYCA Load Below 30,600
				6/30/2012	27321.8	N	Weekend, Max NYCA Load Below 30,600
				7/4/2012	27096.5	N	Max NYCA Load Below 30,600
				7/1/2012	26974.1	N	Weekend, Max NYCA Load Below 30,600
				7/8/2012	26405.5	Ν	Weekend, Max NYCA Load Below 30,600
				7/14/2012	26071.1	N	Weekend, Max NYCA Load Below 30,600

7/15/2012

25817

Ν

Weekend, Max NYCA Load Below 30,600

Winter Peak Like Days

		Winter 2010	-2011	Winter 2011-2012					
	17 Days inclu	ided in SCR Lo	ad Zone Peak Hours		17 Days inclu	ided in SCR Lo	ad Zone Peak Hours		
		Any SCR Load				Any SCR Load			
	Max NYCA	Zone Peak			Max NYCA	Zone Peak			
Date	Load	Hours	Reason(s) Excluded	Date	Load	Hours	Reason(s) Excluded		
12/14/2010	24653.7	Y		1/3/2012	23900.9	Y			
12/15/2010	24400.8	Y		1/4/2012	23811.6	Y			
1/24/2011	24341.6	Y		1/19/2012	23119.9	Y	Max NYCA Load Below 23,750		
12/16/2010	23756.1	Y		12/19/2011	22879.7	Y	Max NYCA Load Below 23,750		
12/20/2010	23693.8	Y	Max NYCA Load Below 23,750	1/5/2012	22754.6	Y	Max NYCA Load Below 23,750		
12/21/2010	23469.6	Y	Max NYCA Load Below 23,750	1/20/2012	22577.4	Y	Max NYCA Load Below 23,750		
1/12/2011	23448.3	Y	Max NYCA Load Below 23,750	1/13/2012	22563	Y	Max NYCA Load Below 23,750		
2/1/2011	23442.9	Y	Max NYCA Load Below 23,750	12/20/2011	22549.1	Y	Max NYCA Load Below 23,750		
1/13/2011	23441.4	Y	Max NYCA Load Below 23,750	12/29/2011	22473.1	Y	Max NYCA Load Below 23,750		
12/22/2010	23319.9	Y	Max NYCA Load Below 23,750	12/28/2011	22443.1	Y	Max NYCA Load Below 23,750		
2/8/2011	23171.8	Y	Max NYCA Load Below 23,750	1/17/2012	22329.3	Y	Max NYCA Load Below 23,750		
2/9/2011	23166.6	Y	Max NYCA Load Below 23,750	12/21/2011	22207.3	Y	Max NYCA Load Below 23,750		
2/10/2011	23154	Y	Max NYCA Load Below 23,750	1/23/2012	22182.7	Y	Max NYCA Load Below 23,750		
1/31/2011	23152.1	Y	Max NYCA Load Below 23,750	1/26/2012	22172.9	Y	Max NYCA Load Below 23,750		
12/27/2010	23149.5	Y	Max NYCA Load Below 23,750	1/30/2012	22134.1	Y	Max NYCA Load Below 23,750		
1/10/2011	23107.3	Y	Max NYCA Load Below 23,750	2/8/2012	22131.6	Y	Max NYCA Load Below 23,750		
1/11/2011	23087.6	Y	Max NYCA Load Below 23,750	2/13/2012	22049.9	Y	Max NYCA Load Below 23,750		

Generator Outages

- Generator outages for Peak-Like Day Selections
 - NYISO reviewed the Generator outages during the event and peak-like days with the study boundaries.
 - The numbers of generators on forced outage and the MWs associated with those forced outages are consistent between the event and peak-like days

Resource Load Variability by Resource Size

Load Variability by Resource Size

		Capability Period									
		Summer Winter									
Category	Category	N	РСТ	ICAP (MW)	РСТ	N	РСТ	ICAP (MW)	РСТ		
Customer Size	Load Varibility										
	Low	11	0%	0.6	0%	10	1%	0.6	0%		
Up to 100 kW	Medium	227	10%	7.7	1%	227	13%	9.3	1%		
	High	204	9%	7.3	1%	200	11%	7.8	1%		
	Low	169	7%	38.3	4%	139	8%	22.7	3%		
Between 100 kW and 1,000 kW	Medium	988	43%	130.1	13%	770	43%	128.3	19%		
	High	411	18%	50.3	5%	281	16%	54.5	8%		
	Low	41	2%	505.6	52%	20	1%	245.6	36%		
Greater than 1,000 kW	Medium	201	9%	206.4	21%	140	8%	179.0	26%		
	High	31	1%	29.1	3%	19	1%	32.4	5%		
Total	Total	2,283		975.3		1,806		680.3			

Summary Slides by Summer/Winter

Stakeholder Comments

- Seasonal Results
 - Provide overall summary tables separately for Summer and Winter
 - Accuracy: Slides 16, 17
 - Bias: Slides 18, 19
 - Variability: Slides 20, 21

Summer Period Accuracy Results

- 44 combinations of baselines tested in 10 different ways
- Where checkmark is indicated, the CBL was a high performer in each of the four capability periods or seasons of the study
- Baselines/adjustment combinations with statistically significant results (27) were identified
- Those >90% (9) are shown in yellow

						Summe	r	\$					
Ba	aseLine	Adjustment	AIIP	ESOUCES NOT HIS	UP TO UP TO	loo roy	Seen 100 km and	1000 KR NOOK	W Weather Sensiti	he sensitive	arability medi	un Vasihiliti	PROF Best
CAISO	10 of 10	Multiplicative	v	v	v	V	v	V	V	V	v	٧	100%
ISONE		Multiplicative	V	V	V	V	V	V	V	V	v	V	100%
NYISO	10 of 10	Multiplicative	V	V	V	V	V	V	V	V	v	V	100%
NYISO	4 of 5	Multiplicative	v	V	V	V	V	v	V	V	V	V	100%
NYISO	5 of 8	Multiplicative	V	V	V	V	V	V	V	V	V	V	100%
PJM	4 of 5	Multiplicative	V	V	V	V	V	V	V	V	V	V	100%
PJM	Comparable	Multiplicative	v	V	V	V	V	V	V	V	V	V	100%
NYISO	5 of 10	Multiplicative	V	V	V	V	V	V	V		V	V	95%
NYISO	Mid 2 of 10	Multiplicative	V	V	V	V	V	V	V		V	V	95%
CAISO	10 of 10	Additive		V	V	V	V		V	V	v		80%
PJM	4 of 5	Multi w/Cap			V	V	V		V	V		V	80%
CAISO	10 of 10	Multi w/Cap			V	V	V		V	V		V	75%
ISONE		Additive		V	V	V	V		V	V			75%
NYISO	10 of 10	Additive			V	V	V		V	V			75%
NYISO	4 of 5	Additive					V		V	V			65%
PJM	4 of 5	Additive			V		V		V	V			65%
NYISO	10 of 10	Multi w/Cap				V	V		V	V			60%
NYISO	4 of 5	Multi w/Cap				V	V		V	V			60%
ISONE		Multi w/Cap			V	V	V			V		V	55%
NYISO	5 of 8	Multi w/Cap					V		V	V			55%
NYISO	5 of 10	Multi w/Cap					V		V				50%
NYISO	5 of 8	Additive					V		V	V			50%
NYISO	5 of 10	Additive					V		V				45%
NYISO	Mid 2 of 10	Additive					V		V				45%
NYISO	Mid 2 of 10	Multi w/Cap					V						25%
PJM	Comparable	Additive					v						20%
PJM	Settlement	Unadjusted					v			V			20%

Winter Period Accuracy Results

- 44 combinations of baselines tested in 10 different ways
- Where checkmark is indicated, the CBL was a high performer in each of the four capability periods or seasons of the study
- Baselines/adjustment combinations with statistically significant results (29) were identified
- Those >90% (4) are shown in yellow

						Winter							
								th					
								LODO		.0.			
							. 21	o' a	اللي الم	N			
Ba	aseLine	Adjustment		-9	ailab	4.	C KIN	1000	at Gett	Sitint		albille	
				autre .	all'a ar	apt .	and the second	. Wall	athe	J Ser.	ability	Natr.	in thill sest
			. R e	S N	\$ ⁶	1. Sunt	e. 	e ^t	N°	ne an	al al	in in	10 J
			PII	440-	<i>ა</i> የ	¢° ً	ଔ	40.	Ne	19 ⁴⁴	We	His	۹ ⁰⁰
CAISO	10 of 10	Multiplicative	V	۷	V	٧	v	v	٧	٧	٧	V	100%
ISONE		Multiplicative	V	۷	V	٧	٧	٧	٧	٧	٧	V	100%
NYISO	10 of 10	Multiplicative	V	۷	V	٧	v	v	٧	٧	v	V	100%
NYISO	5 of 10	Multiplicative	V		V	٧	٧	V	٧	٧		V	90%
NYISO	5 of 8	Multiplicative	٧		v	V	v	۷	٧	۷		v	85%
NYISO	4 of 5	Multiplicative				V	V	٧	٧	۷		v	70%
ISONE		Additive		٧		V	v	۷		۷			60%
NYISO	10 of 10	Additive				V	٧	٧		٧		٧	60%
NYISO	5 of 8	Additive				V	٧	٧		٧			60%
PJM	Comparable	Multiplicative				V	٧	٧	٧				60%
NYISO	10 of 10	Multi w/Cap				٧	٧	٧		٧			55%
PJM	4 of 5	Multiplicative				V	٧			٧			55%
ISONE		Multi w/Cap				V	٧	٧		٧			50%
NYISO	5 of 10	Additive					٧			٧			50%
NYISO	5 of 10	Multi w/Cap					٧			٧			50%
NYISO	5 of 8	Multi w/Cap					٧			٧			50%
NYISO	Mid 2 of 10	Multiplicative					٧			٧			45%
CAISO	10 of 10	Additive				٧	٧	٧		٧			40%
CAISO	10 of 10	Multi w/Cap					٧			٧			30%
NYISO	4 of 5	Additive					٧			٧			30%
PJM	4of 5	Additive					v			٧			30%
NYISO	4 of 5	Multi w/Cap					٧			٧			25%
NYISO	5 of 8	Unadjusted					v						20%
PJM	4of 5	Multi w/Cap					v			٧			20%
NYISO	10 of 10	Unadjusted					v						15%
NYISO	4of 5	Unadjusted					v						10%
NYISO	Mid 2 of 10	Additive					v						10%
NYISO	Mid 2 of 10	Multi w/Cap					v						10%
PJM	Comparable	Additive					v						10%

Summer Period Bias Results

- 44 combinations of baselines tested in 10 different ways
- Where checkmark is indicated, the CBL was a high performer in each of the four capability periods or seasons of the study
- Baselines/adjustment combinations with statistically significant results (30) were identified
- Those >90% (3) are shown in yellow

					S	ummer						
								th and				
Bi	aseLine	Adjustment	AllPe	sources woth	entweistle	too hay Berny	een 100 km and	1000 DOOK	Neather sensiti	ve Refersitive	nd healten varabilited	athild Best
PJM	Comparable	Multiplicative	v	v	٧	v	٧	v	٧	v	V V	100%
NYISO	Mid 2 of 10	Additive	V	v	v	v	v	v	٧		v	<mark>90%</mark>
NYISO	Mid 2 of 10	Multiplicative	V		V	V	V	V	V	V	v	<mark>90%</mark>
ISONE		Additive	V	v	V		V	v	v		v	85%
NYISO	10 of 10	Multiplicative	V	٧	V		V	V	v		v	85%
CAISO	10 of 10	Additive	V		٧	v	V	V	٧		v	80%
ISONE		Multiplicative		٧	V		V	V	v		v	75%
NYISO	10 of 10	Additive	V		٧		V	V	٧		v	75%
NYISO	10 of 10	Multi w/Cap	V	v	v		V					70%
PJM	Comparable	Additive	V		V	٧	V		v			70%
NYISO	4 of 5	Multiplicative				٧	v	v			v	65%
NYISO	Mid 2 of 10	Multi w/Cap		v			v	v				65%
CAISO	10 of 10	Multiplicative					v		v		v	60%
NYISO	4 of 5	Additive			v		v	v				60%
NYISO	5 of 8	Additive					v	v				60%
ISONE		Multi w/Cap		v			v				v	55%
NYISO	5 of 10	Additive						v				55%
PJM	Comparable	Multi w/Cap					V					50%
CAISO	10 of 10	Multi w/Cap									v	45%
ISONE		Unadjusted						v				40%
PJM	Same Day	Multi w/Cap		v			v					40%
PJM	Comparable	Unadjusted		v								25%
PJM	Same Day	Additive					v		v			25%
PJM	Same Day	Multiplicative					٧		٧			25%
PJM	Settlement	Additive					٧		٧			25%
PJM	Settlement	Multi w/Cap					٧		٧			25%
РЈМ	Settlement	Multiplicative					v		٧			25%
CAISO	10 of 10	Unadjusted						v				20%
PJM	Same Day	Unadjusted						v			v	20%
PJM	Settlement	Unadjusted								v		15%

Winter Period Bias Results

- 44 combinations of baselines tested in 10 different ways
- Where checkmark is indicated, the CBL was a high performer in each of the four capability periods or seasons of the study
- Baselines/adjustment combinations with statistically significant results (26) were identified
- Those >90% (3) are shown in yellow

						Winter							
B	seLine	Adjustment	Alles	Sources Hot	hend verable	LOD IN BEEN	een toolwand	aloopha hone	W Wester Service	uve Inercensitive	arability Medi	In Verbilit	Pet Dest
NYISO	Mid 2 of 10	Multiplicative	V	٧	٧	٧	٧	٧	٧	٧	٧	٧	100%
ISONE		Multiplicative	v		v	v	٧	٧	٧	٧		٧	90%
NYISO	10 of 10	Multiplicative	v		V	v	٧	٧	٧	٧		٧	90%
CAISO	10 of 10	Multiplicative	٧			v	٧	٧	٧	٧		٧	<mark>85%</mark>
NYISO	10 of 10	Additive	٧		٧	v	٧	٧		٧		٧	<mark>85%</mark>
ISONE		Additive					٧	٧		٧			60%
NYISO	Mid 2 of 10	Additive					٧	٧		٧			60%
CAISO	10 of 10	Additive					٧	٧		٧			50%
NYISO	10 of 10	Multi w/Cap				v	٧			٧			50%
NYISO	10 of 10	Unadjusted					٧						50%
PJM	Comparable	Multiplicative				v		٧		٧			50%
NYISO	4 of 5	Multiplicative						٧	v				45%
NYISO	5 of 8	Multi w/Cap					٧						45%
NYISO	Mid 2 of 10	Multi w/Cap					٧			٧			45%
CAISO	10 of 10	Unadjusted								٧			40%
NYISO	4 of 5	Multi w/Cap					٧						40%
PJM	Comparable	Additive								٧			20%
PJM	Same Day	Multi w/Cap					٧			٧			20%
CAISO	10 of 10	Multi w/Cap								٧			15%
ISONE		Multi w/Cap								٧			15%
PJM	Same Day	Additive								٧			15%
PJM	Same Day	Multiplicative								٧			15%
PJM	Settlement	Additive								٧			15%
PJM	Settlement	Multiplicative								٧			15%
PJM	Comparable	Multi w/Cap								٧			10%
MLA	Settlement	Multi w/Cap								v			10%

Summer Period Variability Results

- 44 combinations of baselines tested in 10 different ways
- Where checkmark is indicated, the CBL was a high performer in each of the four capability periods or seasons of the study
- Baselines/adjustment combinations with statistically significant results (27) were identified
- Those >90% (8) are shown in yellow

						Summer						
B	aseLine	Adjustment	Aller	Fources	light Variable	LOO KM BETH	een 100 km and	1000 km hon	Weather Sensiti	e ersensitive Low unitalitiet	Jum Varability	Pet of Best
PJM	Comparable	Multiplicative	٧	٧	٧	٧	٧	٧	٧	V V	٧	100%
CAISO	10 of 10	Multiplicative	V	٧	V	v	v	٧	٧	٧	V	95%
ISONE		Multiplicative	٧	٧	٧	٧	٧	٧	٧	v	٧	95%
NYISO	10 of 10	Multiplicative	٧	٧	٧	٧	٧	٧	٧	v	٧	95%
PJM	4 of 5	Multiplicative	٧	v	٧	v	٧	٧	٧	٧	٧	95%
NYISO	4 of 5	Multiplicative	٧	٧	٧	٧	٧	٧	٧	٧	۷	90%
NYISO	5 of 8	Multiplicative	٧	٧	v	v	٧	٧	V	v	٧	90%
NYISO	Mid 2 of 10	Multiplicative	٧	v	v	v	٧	٧	V	v	٧	90%
NYISO	5 of 10	Multiplicative	٧	٧	v	v	v	٧	V		٧	85%
ISONE		Additive		٧	v	v	v		V	v		80%
CAISO	10 of 10	Additive		٧	v	v	v		V			75%
PJM	4 of 5	Multi w/Cap			v	v	v		V		٧	75%
CAISO	10 of 10	Multi w/Cap			v	v	v		V		٧	70%
NYISO	10 of 10	Additive		٧		v	v		v	v		70%
PJM	4 of 5	Additive			v		v		V			65%
ISONE		Multi w/Cap			v		v		V		٧	55%
NYISO	10 of 10	Multi w/Cap				v	v		V			55%
NYISO	4 of 5	Multi w/Cap				v	v		V			55%
NYISO	4 of 5	Additive					v		V			50%
NYISO	5 of 8	Multi w/Cap					v		V			40%
NYISO	5 of 10	Multi w/Cap					٧		V			35%
NYISO	5 of 10	Additive					v		V			30%
NYISO	5 of 8	Additive					٧		v			30%
NYISO	Mid 2 of 10	Additive					٧		V			25%
PJM	Same Day	Unadjusted					٧			٧		25%
PJM	Settlement	Unadjusted					٧			٧		20%
NYISO	Mid 2 of 10	Multi w/Cap					٧					15%

Winter Period Variability Results

- 44 combinations of baselines tested in 10 different ways
- Where checkmark is indicated, the CBL was a high performer in each of the four capability periods or seasons of the study
- Baselines/adjustment combinations with statistically significant results (31) were identified
- Those >90% (5) are shown in yellow

						Winter							
E	laseLine	Adjustment	AIR	ESOUTCES HOT	upto Upto	100 km 85 km	een 100 km and	100 km	Meather Servit	ive sensitive	anability Medi	un varihitit	Pct Of Best
CAISO	10 of 10	Multiplicative	V	v	v	v	v	v	v	v	V	V	100%
ISONE		Multiplicative	V	V	V	V	V	V	V	V	V	V	100%
NYISO	10 of 10	Multiplicative	V	V	V	V	V	V	V	V	V	V	100%
NYISO	5 of 10	Multiplicative	V	V	V	V	٧	V	V	V		V	<mark>95%</mark>
NYISO	5 of 8	Multiplicative	V		V	V	٧	V	V	V		V	90%
ISONE		Multi w/Cap				v	V	V		V			70%
NYISO	10 of 10	Additive				V	V	V		V			70%
NYISO	4 of 5	Multiplicative				v	V	V	V	V		V	70%
ISONE		Additive		V		v	V	V		V			65%
NYISO	10 of 10	Multi w/Cap				v	V	V		V			65%
NYISO	5 of 10	Additive					V	V		V			65%
PJM	4 of 5	Multiplicative				v	V	V	V	V			65%
NYISO	5 of 10	Multi w/Cap					V			V			55%
NYISO	5 of 8	Additive				v	V	v		V			55%
PJM	Comparable	Multiplicative				v	V	V					55%
CAISO	10 of 10	Additive				V	V	V		V			50%
NYISO	5 of 8	Multi w/Cap					V			V			50%
NYISO	Mid 2 of 10	Multiplicative					V		V	V			50%
CAISO	10 of 10	Multi w/Cap					V			V			30%
NYISO	4 of 5	Additive					V						25%
PJM	4 of 5	Additive					V						25%
NYISO	4 of 5	Multi w/Cap					V			V			20%
PJM	4 of 5	Multi w/Cap					V			V			20%
NYISO	10 of 10	Unadjusted					v						15%
NYISO	5 of 8	Unadjusted					v						15%
NYISO	Mid 2 of 10	Additive					v						15%
NYISO	Mid 2 of 10	Multi w/Cap					v						15%
PJM	Same Day	Unadjusted								v			15%
NYISO	4 of 5	Unadjusted					v						10%
PJM	Comparable	Additive					V						10%
MIA	Settlement	Unadiusted					v						10%

Additive versus Multiplicative Adjustments (Previous DNV KEMA Studies)

Stakeholder Comments

- In-day Adjustments
 - Results about uncapped multiplicative in-day adjustments do not seem to agree with other DNV KEMA baseline studies
 - Slides 24, 25, 26

Multiplicative Adjustment from other DNV KEMA Studies (AEMO)

- AEMO (Australia)
 - Recommendation included the use of an additive adjustment, which was considered equally with the multiplicative adjustment.
 - Additive was recommended due to the susceptibility of multiplicative adjustment to gross inaccuracies.
 - Multiplicative adjustment cap would limit some, if not most of these gross inaccuracies.

Multiplicative Adjustment from other DNV KEMA Studies (PJM)

- PJM
 - Both the additive and multiplicative adjustment provided significant improvement to the accuracy of the baselines tested and their performance
 - Performance difference from either method is insignificant
 - Amongst factors in choosing the baseline with the additive adjustment, the lack of additional administrative costs involved with changing from the current approach was one factor.

Multiplicative Adjustment from other DNV KEMA Studies (ISO New England)

- + ISO-NE
 - The ISO-NE baseline study did not compare additive and multiplicative adjustments
 - The ISO-NE study only looked into the asymmetrical, additive baseline adjustment.

Analysis on Multiplicative In-day Adjustments between the 99th and 100th percentiles

Stakeholder Comments

- In-day Adjustments for 99th-100th percentile
 - What is the correlations between load levels and the in-day adjustment cap?
 - Slide 30
 - Provide overall summary tables for In-day Adjustments
 - Slides 5, 8

Multiplicative In-day Adjustments in the 99th-100th Percentile

- 30,283 baseline-day observations are equally distributed across three NYISO baselines
 - The Multiplicative In-day Adjustment applies to all hours of the day for which the CBL was calculated
- 1,425 unique Resource IDs included in the top 1% of uncapped multiplicative adjustments
- Analysis of maximum NYCA Loads during which CBL was calculated and the period from which the days were selected to calculate the CBL
- Analysis of adjustments by Resource count, Size, Load Variability, Baseline Type, Season, number per Resource and size of adjustments

All-Days Analysis for Multiplicative In-day Adjustments in the 99th-100th percentile

- Top 5 non-peak days with Multiplicative In-day Adjustments in the 99th-100th percentile from each of the three NYISO candidate CBLs were ranked
- Max NYCA Load during the "event" period for the CBL calculation identified for each non-peak day and from the prior 15 weekdays
- With the exception of 4/16/2012, the maximum NYCA Load during "event" hours was lower than the maximum NYCA Load that occurred during the period from which the CBL was calculated

					Max Load
	Number of	Number of			HB13-HB19
	Mult. Adj.	Mult. Adj.	"Event"		w/in 15 days
	Between 1.5	Greater	Max NYCA	"Event" day -	prior to
Date	and 2.0	than 2.0	Load	15 weekdays	event
9/5/2012	274	155	26280	8/13/2012	27433
9/7/2011	195	114	21240	8/15/2011	26442
9/6/2012	195	97	25756	8/13/2012	27433
9/4/2012	192	106	25838	8/13/2012	27433
9/6/2011	172	102	20962	8/15/2011	26442
4/16/2012	171	49	21128	3/26/2012	19582
1/4/2012	143	38	23812	12/14/2011	23901

SCR ID Counts and ICAP by Size, Baseline and Season for Multiplicative Adjustments in 99th-100th percentile

	NYISO 5 of 8		NYISO	5 of 10	NYISO 10 of 10	
Resource Size (ACL)	Summer	Winter	Summer	Winter	Summer	Winter
Up to 100 kW	271	224	270	216	255	216
	57 MW	65 MW	57 MW	61 MW	57 MW	68 MW
Between 100 kW	642	440	646	393	619	413
and 1000 kW	447 MW	576 MW	447 MW	574 MW	418 MW	567 MW
Greater than 1000	55	43	52	43	52	39
kW	222 MW	423 MW	176 MW	539 MW	163 MW	537 MW
Totals	968	707	968	652	926	668
	726 MW	1,064 MW	680 MW	1,174 MW	638 MW	1,172 MW

- MW values shown are the sum of ICAP for all observations in a category
- Seasonal totals show between 25% and 28% fewer SCRs in winter and an increase of between 46% and 84% over summer for winter MW affected by multiplicative adjustments in the 99th-100th percentile
- Observation: The number of adjustments per resource ID in the 99th-100th
 percentile increases in Winter, resulting in higher ICAP MW in Winter

SCR ID Counts and ICAP by Load Variability, Baseline and Season for Multiplicative Adjustments in 99th-100th percentile

	NYISO 5 of 8		NYISO	5 of 10	NYISO 10 of 10		
Load Variability	Summer	Winter	Summer	Winter	Summer	Winter	
Low	4	4	4	6	3	4	
	3 MW	9 MW	3 MW	5 MW	2 MW	2 MW	
Medium	521	432	526	384	503	400	
	299 MW	424 MW	273 MW	484 MW	260 MW	486 MW	
High	443	271	438	262	420	264	
	424 MW	631 MW	404 MW	685 MW	376 MW	684 MW	
Totals	968	707	968	652	926	668	
	726 MW	1,064 MW	680 MW	1,174 MW	638 MW	1,172 MW	

- MW values shown are the sum of ICAP for all observations in a category
- Seasonal totals show 58% 59% of the MW associated with multiplicative adjustments in the 99-100th percentile occur with highly variable loads
- Observation: While the number of resources with medium load variability is slightly higher than the number of resources with highly variable loads, the number of adjustments per resource ID is greater for resources with highly variable loads, especially in Winter

Number of Adjustments by Load Variability, Resource Size, Baseline and Season for Multiplicative Adjustments in 99th-100th percentile

	NYISO 5 of 8		NYISO 5 of 10		NYISO 10 of 10	
Load Variability	Summer	Winter	Summer	Winter	Summer	Winter
Low	11	12	8	13	7	8
Between 100 kW and 1000 kW	2	6	3	10	2	7
Greater than 1000 kW	9	6	5	3	5	1
Medium	2,133	2,007	2,165	1,846	2,197	2,064
Up to 100 kw	607	629	609	592	584	655
Between 100 kW and 1000 kW	1,423	1,250	1,457	1,130	1,483	1,285
Greater than 1000 kW	103	128	99	124	109	124
High	3,384	2,541	3,356	2,701	3,338	2,492
Up to 100 kw	1,067	854	1,075	926	1,093	829
Between 100 kW and 1000 kW	2,190	1,601	2,157	1,688	2,132	1,574
Greater than 1000 kW	127	86	124	87	113	89

- For each baseline and season, between 50% and 60% of multiplicative adjustments in the 99-100th percentile occur with loads identified as highly variable
- Observation: Highly variable loads have the highest number of adjustments in every baseline and season

Count of Adjustments per Resource ID, Load Variability and Resource Size for Multiplicative Adjustments in 99th-100th percentile

		Between 2 and 10	Between 11 and 25	Between 26 and 50	Between 51 and 100	More than 100	
Load Variability	One adjustment	adjustments per	adjustments per	adjustments per	adjustments per	values per	Grand
Resource Size	per Resource ID	Resource ID	Resource ID	Resource ID	resource ID	Resource ID	Total
High	396	1500	④ 386	88	18	1	2389
3. Greater than 1000 kW	13	69	19				101
2. Between 100 kW and 1000 kW	238	898	219	62	18	1	1436
1. Up to 100 kW	145	533	148	26			852
Low	13	13					26
3. Greater than 1000 kW	1	8					9
2. Between 100 kW and 1000 kW	12	5					17
Med	919	1888	231	7	1		3046
3. Greater than 1000 kW	80	109	13				202
2. Between 100 kW and 1000 kW	637	1281	143	5	1		2067
1. Up to 100 kW	202	498	75	2			777
Grand Total	① 1328	2 3401	617	3 95	19	1	5461

- 1. SCRs with only one multiplicative adjustment in the 99th-100th percentile account for 24% of the unique Resource IDs
- 2. SCRs with between two and 25 multiplicative adjustments in the 99th-100th percentile account for 74% of the unique Resource IDs
- 3. Two percent of Resource IDs have more than 25 adjustments in the 99th-100th percentile
 - Majority of which are categorized as highly variable loads
- 4. Observation: The number of resources categorized as highly variable may be fewer than resources with medium load variability, however the higher number of adjustments per resource ID are attributed to resource IDs with highly variable load

Count of Multiplicative Adjustments in 99th-100th percentile by Load Variability and Resource Size

	One	Between 2 and 10	Between 11 and	Between 26 and	Between 51 and	More than 100		
Load Variability	adjustment per	adjustments per	25 adjustments	50 adjustments	100 adjustments	values per	Grand	
Resource Size	Resource ID	Resource ID	per Resource ID	per Resource ID	per resource ID	Resource ID	Total	
High	396	7033	(4) 6082	2988	1212	101	17812	58.8%
3. Greater than								
1000 kW	13	303	310				626	
2. Between 100 kW							•	•
and 1000 kW	238	4188	3457	2146	1212	101	2 11342	
1. Up to 100 kW	145	2542	2315	842			5844	
Low	13	46					59	0.2%
3. Greater than								
1000 kW	1	28					29	
2. Between 100 kW								
and 1000 kW	12	18					30	
Med	919	7914	3296	229	54		12412	41.0%
3. Greater than								
1000 kW	80	406	201				687	
2. Between 100 kW								
and 1000 kW	637	5105	2065	167	54		8028	
1. Up to 100 kW	202	2403	1030	62			3697	
Grand Total	3 1328	14993	9378	3217	1266	101	30283	
	4.4%	49.5%	31.0%	10.6%	4.2%	0.3%		

- 1. 58.8% of all Multiplicative Adjustments in the 99th-100th percentile are from Resources categorized as highly variable loads
- 2. 63.7% of Multiplicative Adjustments in the 99th-100th percentile from highly variable loads are from resources with loads between 100kW and 1000kW
- 3. 54% of all Multiplicative Adjustments in the 99th-100th percentile are from Resources with fewer than 10 Multiplicative Adjustments per Resource ID
- 4. Observation: The number of adjustments per resource ID greater than 10 for highly variable loads is onethird of all adjustments and nearly three times the number of adjustments as loads with medium variability

Count of adjustments in the 99-100th percentile By Load Variability, Resource Size, and Size of Multiplicative Adjustment

Load Variability	Less than or	Between 1.5	Between 2.0	Between 5.0	Greater than	
Resource Size	equal to 1.5	and 2.0	and 5.0	and 10.	10.0	Grand Total
High	293	10,370	6,535	412	202	17,812
1. Up to 100 kW	125	3,719	1,942	40	18	5,844
2. Between 100 kW and 1000 kW	157	6,237	4,407	360	181	11,342
3. Greater than 1000 kW	11	414	186	12	3	626
Low	3	51	5			59
2. Between 100 kW and 1000 kW	3	24	3			30
3. Greater than 1000 kW		27	2			29
Med	311	9,264	2,820	17		12,412
1. Up to 100 kW	101	2,740	856			3,697
2. Between 100 kW and 1000 kW	185	6,037	1,788	14		8,024
3. Greater than 1000 kW	25	487	176	3		691
Grand Total	607	19,685	9,360	429	202	30,283

- 65% of all multiplicative adjustments in the 99th-100th percentile fall between 1.5 and 2.0, with over half from resources with highly variable loads
- Uncapped multiplicative adjustments greater than 2.0 occur nearly three times as often for resources categorized as highly variable loads
- Observations:
 - 67% of all Multiplicative Adjustments in the 99th-100th percentile fall between 1.46 and 2.0
 - Excluding highly variable loads increases that percentage to 77%
 - 99.67% of all uncapped multiplicative adjustments for the three NYISO candidate CBLs are below 2.0

Summary of Observations

- The number adjustments per resource ID in the 99th-100th percentile increases in Winter, resulting in higher ICAP MW in Winter
- While the number of resources with medium load variability is slightly higher than the number of resources with highly variable loads, the number of adjustments per resource ID is greater for resources with highly variable loads, especially in Winter
- Highly variable loads have the highest number of adjustments in every baseline and season
- The number of resources categorized as highly variable may be fewer than resources with medium load variability, however the higher number of adjustments per resource ID are attributed to resource IDs with highly variable load
- The number of adjustments per resource ID greater than 10 for highly variable loads is nearly three times the number of adjustments for loads with medium variability
- 67% of all Multiplicative Adjustments in the 99th-100th percentile fall between 1.46 and 2.0
 - Excluding highly variable loads increases that percentage to 77%
- 99.67% of all uncapped multiplicative adjustments for the three NYISO candidate CBLs are below 2.0

Additive In-day Adjustment Analysis

- For resources with uncapped Multiplicative Adjustments in the 99th-100th percentile, NYISO also conducted limited analysis on the Additive In-day Adjustments
- 5% of the adjustments (1,619) have an Additive Adjustment greater than the ACL
 - 75% of those adjustments apply to resources categorized as highly variable loads
- 6% of the adjustments (1,878) have an Additive Adjustment greater than 95% of the ACL
 - The number of adjustments for highly variable loads increases by 17%, while the number of adjustments for loads with medium variability increases by 13%
- Further analysis would be required to assess the percentage of Additive Adjustments for resources with Multiplicative Adjustments in the 99th-100th percentile that would cause the adjusted CBL to exceed the ACL

Conclusions

- The uncapped Multiplicative Adjustment for highly variable loads accounts for a significant portion of the adjustments in the 99th-100th percentile for Multiplicative In-day adjustments
- The Additive Adjustment for highly variable loads and, to a lesser extent loads with medium variability, shows potential for adjusting the CBL above the ACL
- Further examination into the characteristics of resources with highly variable load should be considered to determine whether an alternative adjustment mechanism or alternative baseline is necessary

Task 2: ACL Analysis

Evaluation of ACL Baseline

- At the January 26, 2011 BIC meeting, the motion to approve the change from APMD to ACL included a commitment by NYISO to conduct an evaluation of the revised baseline methodology in 2013:
 - "... and will include in the meeting minutes that the NYISO staff has indicated that in Calendar Year 2013, the NYISO will report to the ICAP Working Group on its evaluation of the revised SCR baseline performance methodology that is part of this motion."

Analysis Design Approach - ACL

- Compare existing capacity baseline with variations under consideration
 - Evaluate how seasonal load variations impact amount of capacity available for a season
- Identify a measure of available capacity in advance that closely reflects the estimated load during an event
- To consider a combination of capacity baseline to use for market participation and an energy baseline to use for performance evaluation

Assessment of Current and Alternative ACLs

- Capability Period ACL
 - Top 20 of 40, 1 p.m. 7 p.m. ("old")
 - Hours reflecting the current effective tariff
 - Top 20 of 40, 11 a.m. 8 p.m. ("new")
 - Proposed hours in Provisional ACL filing
- Monthly ACL
 - Top 20 of 40
 - Top 10 of 20, and
 - Top 5 of 10

Assessment of Current and Alternative ACLs

ACL Approach	Reasoning
Old (Current) Capability Period ACL -Top 20 of 40 hours - HB 13 through HB 18	 To evaluate the current ACL methodology Per January 26, 2011 BIC motion approving ACL methodology.
New (Revised) Capability Period ACL -Top 20 of 40 hours - HB 11 through HB 19	To analyze the new hours awaiting FERC approval in the Provisional ACL filings
Monthly -Using HB 11 through HB 19 -Includes: - Top 20 of 40 hours - Top 10 of 20 hours - Top 5 of 10 hours	To analyze the number of hours that would be needed for a Monthly ACL to reflect the available capacity of a resource on a monthly basis

ACL Comparisons

	Compare:	То:	Purpose of comparison
ACL 1	CP ACL (old)	CP ACL (new)	To determine the impact of the new SCR Load Zone Peak Hours, proposed in ER14-39
ACL 2	CP ACL (old)	CP 5 CPk (Top 5)	To determine how closely the old (current) ACL reflects the top 5 NYCA load hours (CP 5CPk)
ACL 3	CP ACL (new)	CP 5 CPk (Top 5)	To determine how closely the new (revised) ACL reflects the top 5 NYCA load hours (CP 5CPk)
ACL 4	CP ACL (new)	Monthly ACL (new) (20/40)	To compare and contrast the differences between the New CP ACL and a monthly ACL utilizing the average of the highest 20 out of 40 hours
ACL 5	CP ACL (new)	Monthly ACL (new) (10/20)	To compare and contrast the differences between the new CP ACL and a monthly ACL utilizing the average of the highest 10 out of 20 hours
ACL 6	CP ACL (new)	Monthly ACL (new) (5/10)	To compare and contrast the differences between the new CP ACL and a monthly ACL utilizing the average of the highest 5 out of 10 hours
ACL 7	Monthly ACL (new) (20/40)	Monthly 5CPk (Top 5)	To determine whether a monthly ACL utilizing the average of the highest 20 out of 40 hours, reflects the top 5 NYCA load hours for the respective month
ACL 8	Monthly ACL (new) (10/20)	Monthly 5CPk (Top 5)	To determine whether a monthly ACL utilizing the average of the highest 10 out of 20 hours, reflects the top 5 NYCA load hours for the respective month
ACL 9	Monthly ACL (new) (5/10)	Monthly 5CPk (Top 5)	To determine whether a monthly ACL utilizing the average of the highest 5 out of 10 hours, reflects the top 5 NYCA load hours for the respective month

Outline of Results

- For each ACL Analysis Code 1-9:
 - Overall Performance
 - By Summer and Winter
 - Error/Difference
 - Absolute Error/Difference
 - ICAP
 - No. of Resource Observations

5 CPk – Five Coincident Peak Hours

- CP 5 CPk calculated as the average of the five load hours for each resource corresponding to the NYCA top five load hours in the Capability Period of the SCR Load Zone Peak Hours
- Monthly 5 CPk calculated as the average of the five load hours for each resource corresponding to the NYCA top five load hours for the month

Capability Period Analysis

- ACL Analyis1-3: Comparison of Capability Period ACLs
 - CP old vs. CP new
 - CP ACL old vs. CP 5 CPk
 - CP ACL new vs. CP 5 CPk

ACL 1: 20/40 CP ACL Old vs. New Hours -Overall

- Purpose: To determine the impact of the new SCR Load Zone Peak Hours, proposed in ER14-39
 - This analysis compares two ACLs, therefore the differences are presented
- Overall, the new CP ACL is 0.5% higher than the old CP ACL in Summer, and 0.4% lower in Winter
- In absolute terms (the sum of all differences both positive and negative), the difference between the old CP ACL and new CP ACL is 0.8% in the Summer and 1.2% in the Winter

20/40 Old Rules Capability Period ACL Compared to the 20/40 New Rules Capability Period ACL										
	Summer Winter									
Statistic	MW	Pct	MW	Pct						
CP ACL (20/40 Old Rules)	3,922		1,750							
CP ACL (20/40 New Rules)	3,943		1,742							
Difference (Old - New)	(22)	-0.5%	8	0.4%						
Absolute Difference	31	0.8%	21	1.2%						
ICAP	1,672		1,131							
No. of Resource Observations	4,108		3,078							

- Purpose: To determine how closely the old (current) ACL reflects the top 5 NYCA load hours (CP 5CPk)
- Overall, the total old CP ACL is 7.6% higher than the CP 5 CPk in Summer, and 6.4% higher in Winter
- In absolute terms, the old CP ACL is 8.2% different from the CP 5 CPk in the Summer, and 7.2% different in the Winter

20/40 Old Rules Capability Period ACL Compared to the CP 5 CPk										
	Sum	mer	Wir	nter						
Statistic	MW	Pct	MW	Pct						
CP ACL (20/40 Old Rules)	3,922		1,750							
CP 5 CPk	3,644		1,645							
Error	278	7.6%	105	6.4%						
Absolute Error	300	8.2%	119	7.2%						
ICAP	1,672		1,131							
No. of Resource Observations	4,108		3,078							

ACL 3: 20/40 CP ACL New vs. ČP 5 CPk -Overall

- Purpose: To determine how closely the new (revised) ACL reflects the top 5 NYCA load hours (CP 5CPk)
- •Overall, the total new CP ACL is 8.3% higher than the CP 5 CPk in Summer, and 6.4% higher in Winter
- •In absolute terms, the new CP ACL is 8.9% different from the CP 5 CPk in the Summer, and 7.1% different in the Winter

20/40 New Rules Capability Period ACL Compared to the CP 5 CPk										
	Sum	mer	Wir	nter						
Statistic	MW	Pct	MW	Pct						
CP ACL (20/40 New Rules)	3,943		1,742							
CP 5 CPk	3,640		1,637							
Error	303	8.3%	105	6.4%						
Absolute Error	324	8.9%	117	7.1%						
ICAP	1,672		1,131							
No. of Resource Observations	4,108		3,078							

NYISO Load Variability used for ACL

- Identify the maximum NYCA load day of each month that was not an event day in the capability period
- For each resource, identify minimum and maximum kW during SCR Load Zone Peak Hour time window of the maximum NYCA load day for the month
- Calculate percent difference (PD) for each month
 - PD = [max(kW) min(kw)] / max(kW)
- Assign load variability status to each month
 - Low indicating less than 25% load variability
 - *Medium indicating between 25% and 50% load variability*
 - High indicating greater than 50% load variability
- Average load variability status across months, rounding up the variable load designation

ACL 2-3: Comparison Tables - Error

 The overall error comparing the CP ACL to the 5 CPK is slightly higher under the new hours for Summer (8.3% vs. 7.6%), and the same for Winter (6.4%)

Comparison of 20/40 CP ACL to CP 5 CPk												
		Sum	mer			Wir	nter					
	% of Resource Obs	% ICAP	% Error		% of Resource Obs	% ICAP	% Error					
			CP Old	CP New			CP Old	CP New				
Overall	100%	100%	7.6%	8.3%	100%	100%	6.4%	6.4%				
By Size :												
Small	20%	2%	23.8%	21.1%	24%	3%	10.5%	11.6%				
Medium	70%	20%	11. 7 %	11.2%	66%	29%	6.1%	6.4%				
Large	10%	78%	6.6%	7.6%	10%	68%	6.3%	6.3%				
By Variability:												
Low	24%	46%	3.7%	4.5%	29%	21%	4.7%	4.9%				
Medium	41%	42%	6. 7 %	7.6%	42%	62%	6.3%	6.2%				
High	35%	12%	52.0%	48.2%	29%	1 7 %	14.1%	14.2%				

ACL 2-3: Comparison Tables – Absolute Error

• The overall *absolute* error comparing the CP ACL to the 5 CPk is slightly higher under the new hours for Summer (8.9% vs. 8.2%), and about the same under the new hours for Winter (7.1% vs. 7.2%)

Comparison of 20/40 CP ACL to CP 5 CPk												
		Sum	mer		Winter							
	% of Resource Obs	% ICAP	% Absolute Error		% of % Absolute Error Resource % ICAP Obs		% Absolute Error					
			CP Old	CP New			CP Old	CP New				
Overall	100%	100%	8.2%	8.9 %	100%	100%	7.2%	7.1%				
By Size :												
Small	20%	2%	25.0%	23.3%	2 7 %	3%	11.4%	12.6%				
Medium	70%	20%	12. 7 %	12.5%	65%	2 7 %	7.8%	7.9%				
Large	10%	78%	7.1%	8.0%	8%	71%	7.0%	6.8%				
By Variability:												
Low	24%	46%	4.1%	4.9%	26%	18%	5.2%	5.4%				
Medium	41%	42%	7.5%	8.1%	42%	65%	7.4%	7.1%				
High	35%	12%	53.2%	49.8%	31%	1 7 %	14.9%	15.2%				

Capability Period ACL vs. Monthly ACL

ACL 4 – 6: Comparison of Capability Period ACL vs. Monthly ACL

- 20/40 new CP ACL vs:
 - 20/40 Monthly ACL
 - 10/20 Monthly ACL
 - 5/10 Monthly ACL

ACL 4: 20/40 CP ACL New vs. 20/40 Monthly ACL New - Overall

- Purpose: To compare and contrast the differences between the New CP ACL and a monthly ACL utilizing the average of the highest 20 out of 40 hours
- Overall, the new CP ACL is 4.6% higher than the Monthly ACL in Summer, and 1.5% lower in Winter
- In absolute terms, the new CP ACL is 9.3% different from the Monthly ACL in the Summer, and 8.7% different in the Winter

ACL 4: 20/40 CP ACL New vs. 20/40 Monthly ACL New – By Month

20/40 New Rules C	apability Period A	ACL Compared	to the 20/40 Ne	ew Rules Montl	hly ACL	
			SUM	IMER		
Statistic	May	Jun	Jul	Aug	Sep	Oct
CP ACL - 20/40 New Rules (MW)	3,943	3,943	3,943	3,943	3,943	3,943
Monthly ACL - 20/40 New Rules (MW)	3,638	3,876	3,912	3,782	3,784	3,629
Difference (MW)	305	68	31	162	160	314
Difference (%)	8.4%	1.7%	0.8%	4.3%	4.2%	8.7%
Absolute Difference (MW)	475	212	78	226	362	741
Absolute Difference (%)	13.1%	5.5%	2.0%	6.0%	9.6%	20.4%
ICAP (MW)	1,672	1,672	1,672	1,672	1,672	1,672
No. of Resource Observations	4,108	4,108	4,108	4,108	4,108	4,108
			WIN	ITER		
Statistic	Nov	Dec	Jan	Feb	Mar	Apr
CP ACL - 20/40 New Rules (MW)	1,742	1,742	1,742	1,742	1,742	1,742
Monthly ACL - 20/40 New Rules (MW)	1,739	1,742	1,732	1,725	1,769	1,908
Difference (MW)	3	0	11	18	(26)	(165)
Difference (%)	0.2%	0.0%	0.6%	1.0%	-1.5%	-8.7%
Absolute Difference (MW)	165	60	57	117	187	336
Absolute Difference (%)	9.5%	3.5%	3.3%	6.8%	10.6%	17.6%
ICAP (MW)	1,131	1,131	1,131	1,131	1,131	1,131
No. of Resource Observations	3,078	3,078	3,078	3,078	3,078	3,078

ACL 5: 20/40 CP ACL New vs. 10/20 Monthly ACL New - Overall

- Purpose: To compare and contrast the differences between the new CP ACL and a monthly ACL utilizing the average of the highest 10 out of 20 hours
- Overall, the new CP ACL is 4.3% higher than the Monthly ACL in Summer, and 0.7% lower in Winter
- In absolute terms, the new CP ACL is 9.4% different from the Monthly ACL in the Summer, and 8.7% different in the Winter

ACL 5: 20/40 CP ACL New vs. 10/20 Monthly ACL New – By Month

20/40 New Rules Capability Period ACL Compared to the 10/20 New Rules Monthly ACL								
		SUMMER						
Statistic	May	Jun	Jul	Aug	Sep	Oct		
CP ACL - 20/40 New Rules (MW)	3,943	3,943	3,943	3,943	3,943	3,943		
Monthly ACL - 10/20 New Rules (MW)	3,674	3,932	3,903	3,731	3,794	3,654		
Difference (MW)	269	11	41	212	149	289		
Difference (%)	7.3%	0.3%	1.0%	5.7%	3.9%	7.9%		
Absolute Difference (MW)	446	216	98	286	366	732		
Absolute Difference (%)	12.1%	5.5%	2.5%	7.7%	9.6%	20.0%		
ICAP (MW)	1,672	1,672	1,672	1,672	1,672	1,672		
No. of Resource Observations	4,108	4,108	4,108	4,108	4,108	4,108		
			WIN	ITER				
Statistic	Nov	Dec	Jan	Feb	Mar	Apr		
CP ACL - 20/40 New Rules (MW)	1,742	1,742	1,742	1,742	1,742	1,742		
Monthly ACL - 10/20 New Rules (MW)	1,741	1,743	1,714	1,697	1,707	1,922		
Difference (MW)	1	(1)	29	45	35	(180)		
Difference (%)	0.1%	-0.1%	1.7%	2.7%	2.1%	-9.3%		
Absolute Difference (MW)	169	56	67	112	155	359		
Absolute Difference (%)	9.7%	3.2%	3.9%	6.6%	9.1%	18.7%		
ICAP (MW)	1,131	1,131	1,131	1,131	1,131	1,131		
No. of Resource Observations	3,078	3,078	3,078	3,078	3,078	3,078		

ACL 6: 20/40 CP ACL New vs. 5/10 Mont ACL New - Overall

- Purpose: To compare and contrast the differences between the new CP ACL and a monthly ACL utilizing the average of the highest 5 out of 10 hours
- Overall, the new CP ACL is 4.6% higher than the Monthly ACL in Summer, and 0.2% higher in Winter
- In absolute terms, the new CP ACL is 10.2% different from the Monthly ACL in the Summer, and 9.2% different in the Winter

ACL 6: 20/40 CP ACL New vs. 5/10 Monthly ACL New – By Month

20/40 New Rules Capability Period ACL Compared to the 5/10 New Rules Monthly ACL								
		SUMMER						
Statistic	May	Jun	Jul	Aug	Sep	Oct		
CP ACL - 20/40 New Rules (MW)	3,943	3,943	3,943	3,943	3,943	3,943		
Monthly ACL - 5/10 New Rules (MW)	3,728	3,945	3,909	3,655	3,739	3,639		
Difference (MW)	215	(1)	34	288	205	304		
Difference (%)	5.8%	0.0%	0.9%	7.9%	5.5%	8.4%		
Absolute Difference (MW)	432	217	145	372	385	758		
Absolute Difference (%)	11.6%	5.5%	3.7%	10.2%	10.3%	20.8%		
ICAP (MW)	1,672	1,672	1,672	1,672	1,672	1,672		
No. of Resource Observations	4,108	4,108	4,108	4,108	4,108	4,108		
			WIN	ITER				
Statistic	Nov	Dec	Jan	Feb	Mar	Apr		
CP ACL - 20/40 New Rules (MW)	1,742	1,742	1,742	1,742	1,742	1,742		
Monthly ACL - 5/10 New Rules (MW)	1,728	1,741	1,713	1,693	1,648	1,913		
Difference (MW)	14	2	29	50	94	(171)		
Difference (%)	0.8%	0.1%	1.7%	2.9%	5.7%	-8.9%		
Absolute Difference (MW)	167	60	76	116	169	371		
Absolute Difference (%)	9.7%	3.4%	4.4%	6.9%	10.3%	19.4%		
ICAP (MW)	1,131	1,131	1,131	1,131	1,131	1,131		
No. of Resource Observations	3,078	3,078	3,078	3,078	3,078	3,078		

ACL 4-6: Comparison Tables – Difference,

Overall

Comparison of Capability Period ACL to Monthly ACL - NEW Rules

	Summer									
	No. of Resources (% of Total) % ICAP % Difference									
	20/40, 10/20, 5/10	20/40, 10/20, 5/10	20/40	10/20	5/10					
Overall	100%	100%	4.6%	4.3%	4.6%					
By Size:										
Small	20%	2%	7.0%	4.9%	5.2%					
Medium	70%	20%	7.1%	5.3%	5.1%					
Large	10%	78%	4.0%	4.1%	4.5%					
By Variability:										
Low	24%	46%	6.3%	5.4%	5.1%					
Medium	41%	42%	3.7%	3.9%	4.7%					
High	35%	12%	-0.3%	-0.6%	1.4%					

Comparison of Capability Period ACL to Monthly ACL - NEW Rules

	Winter								
	No. of Resources (% of Total)	% ICAP	% Difference						
	20/40, 10/20,	20/40, 10/20,							
i .	5/10	5/10	20/40	10/20	5/10				
Overall	100%	100%	-1.5%	-0.7%	0.2%				
By Size:									
Small	27%	3%	-5.3%	-2.6%	-0.1%				
Medium	65%	27%	-2.1%	-1.1%	-0.1%				
Large	8%	71%	-1.2%	-0.5%	0.2%				
By Variability:									
Low	26%	18%	-1.4%	-1.2%	-0.7%				
Medium	42%	65%	-0.8%	0.0%	0.8%				
High	31%	17%	-5.8%	-2.4%	-0.2%				

ACL 4-6: Comparison Tables – Difference, by Month

20/40 New Rules Capability Period ACL Compared to the 20/40 New Rules Monthly ACL								
	SUMMER							
% Difference	May	Jun	Jul	Aug	Sep	Oct		
Monthly ACL (20/40 New Rules)	8.4%	1.7%	0.8%	4.3%	4.2%	8.7%		
Monthly ACL (10/20 New Rules)	7.3%	0.3%	1.0%	5.7%	3.9%	7.9%		
Monthly ACL (5/10 New Rules)	5.8%	0.0%	0.9%	7.9%	5.5%	8.4%		
	WINTER							
% Difference	Nov	Dec	Jan	Feb	Mar	Apr		
Monthly ACL (20/40 New Rules)	0.2%	0.0%	0.6%	1.0%	-1.5%	-8.7%		
Monthly ACL (10/20 New Rules)	0.1%	-0.1%	1.7%	2.7%	2.1%	-9.3%		
Monthly ACL (5/10 New Rules)	0.8%	0.1%	1.7%	2.9%	5.7%	-8.9%		

Monthly ACL vs. Monthly 5 CPk

- ACL 7 9: Comparison of Monthly ACL vs. Monthly 5 CPk
 - 20/40 Monthly ACL vs. Monthly 5 CPk
 - 10/20 Monthly ACL vs. Monthly 5 CPk
 - 5/10 Monthly ACL vs. Monthly 5 CPk

ACL 7: 20/40 Monthly ACL New vs. Monthly 5 CPk - Overall

- •Purpose: To determine whether a monthly ACL utilizing the average of the highest 20 out of 40 hours, reflects the top 5 NYCA load hours for the respective month
- •Overall, the Monthly ACL is 6.3% higher than the Monthly 5 CPk in Summer and 7.4% higher in Winter
- In absolute terms, the Monthly ACL is 7.4% different from the Monthly 5 CPk in the Summer, and 8.2% different in the Winter

ACL 7: 20/40 Monthly ACL New vs. Monthly 5 CPk – By Month

20/40 New Rules Monthly ACL Compared to the Monthly 5 CPk							
	SUMMER						
Statistic	May	Jun	Jul	Aug	Sep	Oct	
Monthly ACL - 20/40 New Rules (MW)	3,638	3,876	3,912	3,782	3,784	3,629	
Monthly 5 CPk (MW)	3,532	3,664	3,641	3,417	3,607	3,427	
Error (MW)	107	211	272	365	176	202	
Error (%)	3.0%	5.8%	7.5%	10.7%	4.9%	5.9%	
Absolute Error (MW)	218	241	292	410	199	217	
Absolute Error (%)	6.2%	6.6%	8.0%	12.0%	5.5%	6.3%	
ICAP (MW)	1,672	1,672	1,672	1,672	1,672	1,672	
No. of Resource Observations	4,108	4,108	4,108	4,108	4,108	4,108	
			WIN	ITER			
Statistic	Nov	Dec	Jan	Feb	Mar	Apr	
Monthly ACL - 20/40 New Rules (MW)	1,739	1,742	1,732	1,725	1,769	1,908	
Monthly 5 CPk (MW)	1,616	1,659	1,618	1,605	1,564	1,818	
Error (MW)	123	83	114	120	204	89	
Error (%)	7.6%	5.0%	7.0%	7.5%	13.1%	4.9%	
Absolute Error (MW)	127	95	122	122	210	132	
Absolute Error (%)	7.8%	5.7%	7.6%	7.6%	13.4%	7.3%	
ICAP (MW)	1,131	1,131	1,131	1,131	1,131	1,131	
No. of Resource Observations	3,078	3,078	3,078	3,078	3,078	3,078	

ACL 8: 10/20 Monthly ACL New vs. Monthly 5 CPk - Overall

- Purpose: To determine whether a monthly ACL utilizing the average of the highest 10 out of 20 hours, reflects the top 5 NYCA load hours for the respective month
- Overall, the Monthly ACL is 6.6% higher than the Monthly 5 CPk in Summer and 6.5% higher in Winter
- In absolute terms, the Monthly ACL is 6.9% different from the Monthly 5 CPk in the Summer, and 6.8% different in the Winter

ACL 8: 10/20 Monthly ACL New vs. Monthly 5 CPk – By Month

10/20 New Rules Monthly ACL Compared to the Monthly 5 CPk							
	SUMMER						
Statistic	May	Jun	Jul	Aug	Sep	Oct	
Monthly ACL - 10/20 New Rules (MW)	3,674	3,932	3,903	3,731	3,794	3,654	
Monthly 5 CPk (MW)	3,532	3,664	3,641	3,417	3,607	3,427	
Error (MW)	142	268	262	314	186	227	
Error (%)	4.0%	7.3%	7.2%	9.2%	5.2%	6.6%	
Absolute Error (MW)	181	270	271	328	191	230	
Absolute Error (%)	5.1%	7.4%	7.4%	9.6%	5.3%	6.7%	
ICAP (MW)	1,672	1,672	1,672	1,672	1,672	1,672	
No. of Resource Observations	4,108	4,108	4,108	4,108	4,108	4,108	
			WIN	ITER			
Statistic	Nov	Dec	Jan	Feb	Mar	Apr	
Monthly ACL - 10/20 New Rules (MW)	1,741	1,743	1,714	1,697	1,707	1,922	
Monthly 5 CPk (MW)	1,616	1,659	1,618	1,605	1,564	1,818	
Error (MW)	125	84	96	92	143	104	
Error (%)	7.7%	5.1%	5.9%	5.8%	9.1%	5.7%	
Absolute Error (MW)	126	90	101	93	144	115	
Absolute Error (%)	7.8%	5.4%	6.2%	5.8%	9.2%	6.3%	
ICAP (MW)	1,131	1,131	1,131	1,131	1,131	1,131	
No. of Resource Observations	3,078	3,078	3,078	3,078	3,078	3,078	

ACL 9: 5/10 Monthly ACL New vs. Monthly 5 CPk - Overall

- Purpose: To determine whether a monthly ACL utilizing the average of the highest 5 out of 10 hours, reflects the top 5 NYCA load hours for the respective month
- Overall, the Monthly ACL is 6.2% higher than the Monthly 5 CPk in Summer and 5.6% higher in Winter
- In absolute terms, the Monthly ACL is 6.2% different from the Monthly 5 CPk in the summer, and 5.6% different in the winter

ACL 9: 5/10 Monthly ACL New vs. Monthly 5 CPk – By Month

5/10 New Rules Monthly ACL Compared to the Monthly 5 CPk							
	SUMMER						
Statistic	May	Jun	Jul	Aug	Sep	Oct	
Monthly ACL - 5/10 New Rules (MW)	3,728	3,945	3,909	3,655	3,739	3,639	
Monthly 5 CPk (MW)	3,532	3,664	3,641	3,417	3,607	3,427	
Error (MW)	196	280	269	239	131	212	
Error (%)	5.6%	7.6%	7.4%	7.0%	3.6%	6.2%	
Absolute Error (MW)	196	280	269	239	131	212	
Absolute Error (%)	5.6%	7.7%	7.4%	7.0%	3.6%	6.2%	
ICAP (MW)	1,672	1,672	1,672	1,672	1,672	1,672	
No. of Resource Observations	4,108	4,108	4,108	4,108	4,108	4,108	
			WIN	ITER			
Statistic	Nov	Dec	Jan	Feb	Mar	Apr	
Monthly ACL - 5/10 New Rules (MW)	1,728	1,741	1,713	1,693	1,648	1,913	
Monthly 5 CPk (MW)	1,616	1,659	1,618	1,605	1,564	1,818	
Error (MW)	112	82	96	88	84	95	
Error (%)	6.9%	4.9%	5.9%	5.5%	5.4%	5.2%	
Absolute Error (MW)	112	82	96	88	84	95	
Absolute Error (%)	6.9%	4.9%	5.9%	5.5%	5.4%	5.2%	
ICAP (MW)	1,131	1,131	1,131	1,131	1,131	1,131	
No. of Resource Observations	3,078	3,078	3,078	3,078	3,078	3,078	

ACL 7-9: Comparison Tables – Error,

Overall

Comparison of Monthly ACL to Monthly 5 CPk - NEW Rules

	Summer								
	No. of Resources (% of Total)	% ICAP	% Error						
	20/40, 10/20, 5/10	20/40, 10/20, 5/10	20/40	5/10					
Overall	100%	100%	6.3%	6.6%	6.2%				
By Size:									
Small	20%	2%	18.3%	20.7%	20.4%				
Medium	70%	20%	9.0%	10.9%	11.1%				
Large	10%	78%	5.6%	5.5%	5.1%				
By Variability:	0%	0%							
Low	24%	46%	1.8%	2.6%	3.0%				
Medium	41%	42%	7.5%	7.2%	6.4%				
High	35%	12%	31.8%	32.1%	29.6%				

Comparison of Monthly ACL to Monthly 5 CPk - NEW Rules									
	Winter								
	No. of Resources (% of Total)	% ICAP	% Error						
	20/40, 10/20,	20/40, 10/20,							
	5/10	5/10	20/40	10/20	5/10				
Overall	100%	100%	7.4%	6.5%	5.6%				
By Size:									
Small	27%	3%	18.4%	15.2%	12.2%				
Medium	65%	27%	9.4%	8.2%	7.1%				
Large	8%	71%	6.6%	5.8%	5.0%				
By Variability:	0%	0%							
Low	26%	18%	4.4%	4.2%	3.7%				
Medium	42%	65%	6.5%	5.7%	4.8%				
High	31%	17%	27.2%	22.7%	20.1%				

ACL 7-9: Monthly ACL Comparison – Error, by Month

New Rules Monthly ACL Compared to the Monthly 5 CPk								
	SUMMER							
% Error	May	Jun	Jul	Aug	Sep	Oct		
Monthly ACL (20/40 New Rules)	3.0%	5.8%	7.5%	10.7%	4.9%	5.9%		
Monthly ACL (10/20 New Rules)	4.0%	7.3%	7.2%	9.2%	5.2%	6.6%		
Monthly ACL (5/10 New Rules)	14.2%	7.6%	7.4%	7.0%	3.6%	6.2%		
	WINTER							
% Error	Nov	Dec	Jan	Feb	Mar	Apr		
Monthly ACL (20/40 New Rules)	7.6%	5.0%	7.0%	7.5%	13.1%	4.9%		
Monthly ACL (10/20 New Rules)	7.7%	5.1%	5.9%	5.8%	9.1%	5.7%		
Monthly ACL (5/10 New Rules)	6.9%	4.9%	5.9%	5.5%	5.4%	5.2%		

Building the Comparison Charts

Summer 2011- start with CP ACL

Summer 2011 – add the CP 5 CPk

Summer 2011 – add Monthly ACLs

Summer 2011 – add the Monthly 5 CPk

ACL Comparison Charts

Comparison of CP and Monthly ACLs and 5 CPks – Summer 2011

© 2013 New York Independent System Operator, Inc. All Rights Reserved.

₹

Comparison of CP and Monthly ACLs and 5 CPks – Summer 2012

© 2013 New York Independent System Operator, Inc. All Rights Reserved.

М¥

Comparison of CP and Monthly ACLs and 5 CPks – Summer Overall (2011 & 2012)

© 2013 New York Independent System Operator, Inc. All Rights Reserved.

₹

Comparison of CP and Monthly ACLs and 5 CPks – Winter 2010/2011

© 2013 New York Independent System Operator, Inc. All Rights Reserved.

MМ

Comparison of CP and Monthly ACLs and 5 CPks – Winter 2011/2012

© 2013 New York Independent System Operator, Inc. All Rights Reserved.

Comparison of CP and Monthly ACLs and 5 CPks – Winter Overall (2010/2011 & 2011/2012)

MМ

Best Monthly ACL Results

- The Monthly 10 of 20 ACL performs the best at measuring the available capacity of resources during the course of both peak and shoulder months
- The NYISO bases this performance on the difference and error associated with the monthly 10 of 20, when compared to the new CP ACL, the monthly 5 CPk, and to the other monthly ACLs

Monthly 10 of 20 Comparison

• CP ACL comparison:

Comparison of Capability Period ACL to Monthly ACL - NEW Rules						Comparison of Capability Period ACL to Monthly ACL - NEW Rules						
	Summer						Winter					
	No. of Resources (% of Total)	% ICAP	% Difference				No. of Resources (% of Total)	% ICAP		% Difference		
	20/40, 10/20.	20/40, 10/20,					20/40, 10/20,	20/40, 10/20,				
	5/10	5/10	20/40	10/20	5/10		5/10	5/10	20/40	10/20	5/10	
Overall	100%	100%	4.6%	4.3%	4.6%	Overall	100%	100%	-1.5%	-0.7%	0.2%	
By Size:						By Size:						
Small	20%	2%	7.0%	4.9%	5.2%	Small	27%	3%	-5.3%	-2.6%	-0.1%	
Medium	70%	20%	7.1%	5.3%	5.1%	Medium	65%	27%	-2.1%	-1.1%	-0.1%	
Large	10%	78%	4.0%	4.1%	4.5%	Large	8%	71%	-1.2%	-0.5%	0.2%	
By Variability:						By Variability:						
Low	24%	46%	6.3%	5.4%	5.1%	Low	26%	18%	-1.4%	-1.2%	-0.7%	
Medium	41%	42%	3.7%	3.9%	4.7%	Medium	42%	65%	-0.8%	0.0%	0.8%	
High	35%	12%	-0.3%	-0.6%	1.4%	High	31%	17%	-5.8%	-2.4%	-0.2%	
<u> </u>												

Monthly 10 of 20 Comparison (cont.)

Monthly 5 CPk comparison

Comparison of Monthly ACL to Monthly 5 CPk - NEW Rules						Comparison of Monthly ACL to Monthly 5 CPk - NEW Rules						
	Summer						Winter					
	No. of Resources (% of Total) % ICAP		% Error				No. of Resources (% of Total)	% ICAP	% Error			
	20/40, 10/20,	20/40, 10/20,					20/40, 10/20,	20/40, 10/20,			- 4 - 0	
	5/10	5/10	20/40	10/20	5/10		5/10	5/10	20/40	10/20	5/10	
Overall	100%	100%	6.3%	6.6%	6.2%	Overall	100%	100%	7.4%	6.5%	5.6%	
By Size:						By Size:						
Small	20%	2%	18.3%	20.7%	20.4%	Small	27%	3%	18.4%	15.2%	12.2%	
Medium	70%	20%	9.0%	10.9%	11.1%	Medium	65%	27%	9.4%	8.2%	7.1%	
Large	10%	78%	5.6%	5.5%	5.1%	Large	8%	71%	6.6%	5.8%	5.0%	
By Variability:	0%	0%				By Variability:	0%	0%				
Low	24%	46%	1.8%	2.6%	3.0%	Low	26%	18%	4.4%	4.2%	3.7%	
Medium	41%	42%	7.5%	7.2%	6.4%	Medium	42%	65%	6.5%	5.7%	4.8%	
High	35%	12%	31.8%	32.1%	29.6%	High	31%	17%	27.2%	22.7%	20.1%	

Summer 2011

Summer 2012

₹

Winter 2010 - 2011

© 2013 New York Independent System Operator, Inc. All Rights Reserved.

MМ

Winter 2011-2012

₹

Entire Study – Resources included in the study, in both Winter and Summer

Observations: ACL

- Current ACL reflects the coincident load of the resource close to what was expected
 - Estimated difference between the ACL and CP 5 CPk from previous baseline study showed that the CP 5 CPk understated proposed ACL by 5.4% (October 29, 2010 ICAPWG presentation)
 - Current study shows 5 CPk understating the ACL by up to 8% in Summer and 6% in Winter
 - Given the diversity of the larger sample size, the expanded hours of the ACL, and two Capability Periods analyzed for each season in this study, the increase from the first study is not significant
- CP ACL tends to overstate capability in the shoulder months when load is lower than the months from which the current CP ACL is calculated
 - Monthly ACL better reflects load levels than CP ACL
- 5 CPk is lower than the ACL, regardless of basis: Capability Period or Monthly

Task 3 Combination of ACL and CBL

Task 3: Combination of ACL and CBL

 Task 3 analyzes and evaluates a combination of a capacity baseline (ACL) to use for market participation/ enrollment and energy baseline (CBL) to use for performance evaluation exists.

Compared

- Capability ACL (both old and new hours)
- Monthly ACL (10 of 20 hours)
- Three NYISO CBLs with uncapped Multiplicative adjustments (5 of 8, 5 of 10 and 10 of 10)
- Comparison done for four event-like days, one from each Capability Period
 - July 12, 2011 (31,623.7 MW peak NYCA load)
 - August 3, 2012 (30,989.3 MW peak NYCA load)
 - December 14, 2010 (24,653.7 MW peak NYCA load)
 - January 3, 2012 (23,900.9 MW peak NYCA load)

Event-Like Day: July 12, 2011

Event-Like Day: August 3, 2012

Event-Like Day: December 14, 2010

Event-Like Day: January 3, 2012

Observations: CBL

- The three candidate NYISO CBLs are performing comparably and among the best in the industry for accuracy, bias and variability
- Highly variable loads may need a separate CBL and/or in-day adjustment type
 - PJM currently uses a separate CBL for highly variable loads

Observations: CBL (cont.)

- Uncapped multiplicative adjustment, tested very well in the baseline analysis
 - However, this study, as in previous studies, shows that a significant weakness of unbounded multiplicative adjustments is that in rare cases they can produce gross inaccuracies
 - Accordingly, a reasonably established boundary, (e.g., 99th percentile of observed multiplicative adjustments) should adopted to address this deficiency
- The inherent qualities of highly variable loads do not lend themselves to a baseline methods based on previous load patterns
- Accordingly, alternative approaches to determine these resources contributions should be considered

Observations: ACL

- ACL reflects the coincident load of the resource as expected
- CP ACL tends to overstate capability in the shoulder months when load is lower than the months from which the ACL is calculated
 - Monthly ACL better reflects load levels than CP ACL
- 5 CPk is lower than the ACL, regardless of basis: Capability Period or Monthly

Next Steps

- NYISO invites written comments on the SCR Baseline results presented
 - Send to Debbie Eckels (<u>deckels@nyiso.com</u>) by Friday, January 3, 2014
- NYISO and DNV KEMA to complete the SCR Baseline Study Report and Recommendations
 - Post the final report to NYISO's website late January/early February
- Stakeholders will have the opportunity to provide comments on the SCR Baseline Study Report
- NYISO Management Response to SCR Baseline Study Report in Q2 2014

The New York Independent System Operator (NYISO) is a not-for-profit corporation responsible for operating the state's bulk electricity grid, administering New York's competitive wholesale electricity markets, conducting comprehensive long-term planning for the state's electric power system, and advancing the technological infrastructure of the electric system serving the Empire State.

www.nyiso.com