CC Modeling

Status and Planning MSWG December 14, 2004 Bob de Mello

For discussion only

CC Modeling Plan

1. Seek input from CC owner/operators to fully understand characteristics and limitations of units.

we are here \rightarrow 1.a Report results of (1) to MPs

- » Spoken with 6 organizations over the past several weeks
- 2. Develop Feasible alternatives in conjunction with ABB
 - Scheduling (optimizing) the operating state and/or
 - Detecting the operating state and making allowances for physical limitations.
 - 2.a Report results of (2) to MPs.

CC Modeling Plan

- 3. Select model characteristics in conjunction with MPs. (These may be obvious choices)
- 4. Implementation, tariff filing, testing and deployment.

CC Characteristics

- Three basic types of CC configurations in New York.
 - 1CT/HRSG : 1ST
 - 2CT/HRSG : 1ST
 - 3CT/HRSG : 1ST

- (2 generators)
- (3 generators)
- (4 generators)
- CT: Combustion Turbine
- ST: Steam Turbine
- HRSG: Heat Recovery Steam Generator

Operating States

- Startup / Warming HRSG
 - No control capability
 - Synchronized and producing energy at a fairly low level
 - May take several hours
 - Must warm HRSG and ST slowly
- Normal Operation
 - Able to control output
 - Control range approximately top 30 % of unit capability (Varies)
 - Fairly responsive within its control range

Operating States

- Duct Firing (additional fuel injected into HRSG)
 - Increases output
 - Less ability to follow a control/dispatch signal
- Fuel oil (dual fuel units only) may limit the ability of CC units to be on control.

Transitions

- Units with a (2 on 1) or (3 on 1) architecture can operate in a number of configurations.
- Each transition that adds a CT requires a warm-up period for the HRSG.
 - Limited control capability during the transition
 - Duration may be several hours in length

Physical Parameters

- Ramp rate and control range are state dependent
- Many transition require hold periods
- Modeling of minimum run times, maximum run times, & minimum down times is very complicated.

Economic Parameters

- Incremental cost depends on state
 - Startup and HRSG warming are very inefficient (high incremental heat rate (IHR))
 - Change in IHR is relatively small when another CT is brought on
 - Duct firing is relatively inefficient (high IHR)

Pain Points

- Legacy rules on performance and penalties should be examined for relief.
- Major issue startup period management
 - Non-payment for energy during startup and warming, or
 - Accumulations of performance penalties when attempting to utilize RT market to gain payment for startup energy.

Short-term plan

- Initial draft COO Year-end '04
- COO completion ISO Staff/MSWG -Jan/Feb
- Complete COO late February/March
- Requirements approval and Implementation Start-up
 - Per SMD2 resource availability
 - Target mid-summer '05
- Completion/deployment TBD