

Consumer Impact Analysis: Ancillary Service Mitigation

Tariq N. Niazi

Consumer Interest Liaison
New York Independent System Operator

Market Issues Working group

March 2, 2012

KCC

Background

- The State of the Market Report recommended that the NYISO modify the following two mitigation provisions that may limit competitive 10-minute reserves offers in the DAM:
 - Limit GTs to a 10-minute non-spinning reserve reference of \$2.52/MWh
 - Require New York City steam units to offer 10-minute spinning reserves at \$0/MWh

Background, Contd.

- Ancillary Service Mitigation identified as a 2012 Project and approved in the budget process
- Several stakeholders requested that the NYISO conduct a Consumer Impact Analysis on this project
- Included in the 2012 Consumer Impact Analysis Project List

Consumer Impact Analysis (IA) Evaluation Areas

RELIABILITY	COST IMPACT/ MARKET EFFICIENCIES
ENVIRONMENT/ NEW TECHNOLOGY	TRANSPARENCY

Cost Impact/Market Efficiencies

- Potential for moderate increases in Day Ahead prices during some peak days
- Potential efficiency gains from better convergence of DAM and RT prices

Cost Impact

We have looked at the Cost Impact in several different ways:

- Potential Impact on Prices in the DAM
 - Day-Ahead prices may increase during some peak days to allow for better convergence of DAM and RT prices
 - We do not expect higher prices at other times when there is not a large differential between DAM and RT prices
- Potential gains from a more efficient commitment of resources
- Impact on Generator Revenues
- Impact on Capacity Prices

Potential Impact on Cost/Prices in the DAM

- How market outcomes would change if suppliers raised their DA reserve offer prices to account for predictable differences between DAM and RT clearing prices?
- We performed several simulations (Ranger Runs) on a number of peak days during Summer 2011

DAM Simulations

Summer 2011 Days:

	Peak Load (MW)
July 12, 2011	29,516 MW
July 22, 2011	31,707 MW
July 26, 2011	27,980 MW
August 1, 2011	28,634 MW
August 18, 2011	25,603 MW

- 10 Min. Reserve Offers increased based on linear regression model
 - NYC Spin
 - NYCA Non-Spin
- 10 Min. Reserve Requirements
 - East Spin: 300 MW
 - East Total Reserve: 1200 MW
 - NYCA Spin: 600 MW

Description of Ancillary Services Offer Adjustment

- During some high load periods when the expected RT reserve clearing prices are predictably higher than the expected DAM reserve clearing prices, we would expect suppliers to raise their DAM reserve offers to reduce the likelihood of being scheduled for DAM reserves at a price lower than the RT price.
- To model this behavior, 10-minute Spin and 10-minute Non-Spin Reserves were modified as follows:
 - 10-minute Spinning Reserves- modified NYC unit offers only
 - A regression model was used that looked at the price difference of the reserve clearing price in the DAM and RT, over the previous year, in peak hours, on high load days (forecast load >26GW)
 - The model correlated the price difference with (a) the time of day, and (b) the forecasted daily peak load level.
 - 10-minute Non-Spinning Reserves all units in East NY examined
 - Hours with initial offers less than \$4.90 were not changed
 - A similar regression model was used (although it was separately estimated using non-spinning reserve prices)
- On the days studied, the offer price increases ranged from \$0 to \$50/MWh, depending on the time of day and the forecasted daily peak load level.

Results - Areas of Investigation

- Bid Cost & Total Cost to Load
- Reserve Clearing Price
- Scheduled Reserve Shift
- Day-Ahead to Real-Time Schedule Alignment

Results - Cost to Load

- Small increases in Generation and Total System Bid Costs
 - e.g. July 12, 2011 (post-AMP)
 - Delta Generation Bid Cost = \$51,000
 - Delta Total System Cost = \$15,000
- Small increases in Total Load Payment (pre-AMP)
 - e.g. July 12, 2011
 - Delta Total Energy + AS = \$59,000 [+0.1%]
- Small decreases in Total Load Payment (post-AMP)
 - e.g. July 12, 2011
 - Delta Total Energy + AS = \$110,000 [-0.2%]

Results - Cost to Load

- Small increases in Generation and Total System Bid Costs
 - e.g. July 22, 2011 (post-AMP)
 - Delta Generation Bid Cost = \$21,000
 - Delta Total System Cost = \$11,000
- Small increases in Total Load Payment (pre-AMP)
 - e.g. July 22, 2011
 - Delta Total Energy + AS = \$110,000 [+0.1%]
- Small decreases in Total Load Payment (post-AMP)
 - e.g. July 22, 2011
 - Delta Total Energy + AS = \$227,000 [-0.2%]

Results - Reserve Clearing Prices

- East Reserve
 - 10 Min. Spin
 - 6.6% average increase (HB06-HB21)
 - 10 Min. Non-Spin
 - 11.6% average increase (HB06-HB21)
 - West 10 Min. & NYCA 30 Min.
 - Negligible Price & Cost Changes

Results - Scheduled Reserve

- Similar pattern of Scheduled Reserve "shifts" across all simulated days
 - Off-Peak
 - At low load:
 - ➤ Decrease in NYC 10 Min. Spin
 - ➤ Increase in non-NYC, SENY 10 Min. Spin & Non-Spin
 - As load rises:
 - Replacement of NYC Spin by NYC Non-Spin and West 10 Min. Spin
 - Peak
 - Decrease in NYC 10 Min. Spin & Non-Spin
 - Increase in Upstate East 10 Min. Spin
 - Fulfills East Spin & 10 Min. Total Reqs.

Impact on Generator Revenues

- According to the SOM, modifying the two Ancillary Services Mitigation provisions should improve convergence between the day-ahead and real-time 10-minute reserve prices during peak load hours
- Potomac Economics has estimated that supplier revenues would be higher if they could better arbitrage between DAM and expectations of RT prices

Estimate of Generator Revenues

- A primary concern with the current offer limitations for DAM reserve suppliers is that they require suppliers to sell reserves in the DAM when it would be more profitable for them to defer reserve sales until the RTM.
- Hence, DAM reserve suppliers have an opportunity cost, which is equal to the expected differential between the revenues they would receive by selling in the DAM rather than just the RTM.
- Hence, a primary benefit from lifting these offer limitations is that DAM reserve suppliers would no longer incur such opportunity costs. To estimate this benefit, we calculate:
 - DAM Reserve Sale MW * (RTM price minus DAM price)
 - This includes the highest three load hours of each day on high load days (>27 GW)

Potomac Economics' Estimates

Year	Upper Bound Cost (in Millions \$)			Average Daily Cost (Energy & Ancillary Services) (\$/MWh)	Upper bound cost as a percentage of Average Daily Cost	
2011	1.6	158,878,121	0.0101	56.55	0.0178%	
2010	2.7	158,491,342	0.0170	58.92	0.0289%	
2009	0.3	152,643,823	0.0020	48.63	0.0040%	
2008	1.4	160,953,604	0.0087	95.31	0.0091%	
2007	4.4	161,996,208	0.0272	80.29	0.0338%	

- ➤ A small difference indicates that average DAM prices were more consistent with average RT prices
- >A large difference indicates that average DAM prices were less consistent with average RT prices

Upper bound of costs to consumers

- Price increases in RT can be the result of:
 - Expected factors (for example, higher prices on some afternoons because of the probability of a TSA on a summer afternoon when thunderstorms are expected around NYC)
 - Unexpected factors (for example, a high price to due to a low likelihood equipment failure)
- An Economically Efficient market will arbitrage the expected prices difference between DAM and RT prices but could not arbitrage unexpected price differences.
- These estimates are an upper bound on the increase in revenues to generators (and hence costs to consumers) as they capture both expected and unexpected price differences

Potential Gains from Improved Efficiency

- A better convergence of DAM and RT prices should lead to a more efficient alignment of resources.
- When the prices and flows scheduled in the DAM closely approximate the RT operational conditions, the RT market is best positioned to respond to any unanticipated conditions.
- The current AS mitigation measures lead to two distortions in the DAM compared to RT:
 - Spinning reserves are predominantly scheduled in NYC (because Spinning Reserves are cheapest there) and energy tends to be scheduled outside of NYC
 - Spinning reserves are frequently used to satisfy the total reserve requirement since NYC spinning reserves are frequently less expensive than non-spinning reserves
- In the Ranger simulations, we see reserve and energy commitment patterns that more closely resemble the RT indicating that there is a potential efficiency gain to lifting the two AS mitigation measures.

Impact on Capacity Prices

- There are potential savings to consumers from a secondary effect of higher Ancillary Service prices
- Additional ancillary service revenues will be considered in the demand curve reset process

Impact on Reliability

* No negative impact expected

Impact on the Environment/New Technology

No negative impact expected

Impact on Transparency

* No change expected

Next Steps

- Presentation to BIC March 14
- Presentation to MC 28

Questions/Comments

East 10-Min Spin and Non-Spin Clearing Prices

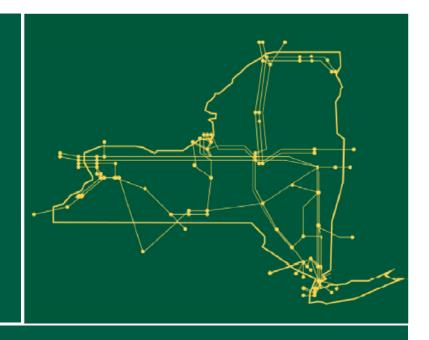
Change	in Avg. Reserve Cle	aring Pr	ice				
Post-AMP	East	1	10 Min Spin		10	Min Non-S	Spin
	Daily Avg.*	Base	Study	Delta	Base	Study	Delta
	July 12, 2011	\$23.45	\$24.77	5.6%	\$16.30	\$17.63	8.2%
	July 22, 2011	\$30.78	\$31.08	1.0%	\$14.04	\$14.57	3.8%
	July 26, 2011	\$10.10	\$10.89	7.8%	\$7.20	\$7.76	7.8%
	Aug. 1, 2011 (Offers A)	\$12.21	\$13.07	7.0%	\$7.96	\$8.97	12.7%
	Aug. 1, 2011 (Offers B)	\$12.21	\$15.49	26.9%	\$7.96	\$11.96	50.3%
	August 18, 2011	\$7.47	\$8.34	11.6%	\$3.21	\$4.03	25.5%
Pre-AMP	East	1	0 Min Spin		10	Min Non-S	Spin
	Daily Avg.*	Base	Study	Delta	Base	Study	Delta
	July 12, 2011	\$22.19	\$23.52	6.0%	\$16.61	\$17.47	5.1%
	July 22, 2011	\$30.60	\$31.13	1.7%	\$14.08	14.51896	3.1%

^{*} HB06 - HB21

Generation & Total System Bid Costs

	DAM Peak Load (Physical)	Δ Gen. Bid Cost*	Δ Total Sys. Bid Cost*
7/12/2011	29,516 MW	\$50,668	-\$15,012
7/22/2011	31,707 MW	\$21,289	\$11,039
7/26/2011	27,980 MW	\$24,952	\$23,563
8/1/2011	28,634 MW	\$60,918	\$24,373
8/18/2011	25,603 MW	\$50,961	\$14,208

^{*} Post-Amp Market Solution



Total Cost to Load (Energy & Ancillary Services)

Post-AMP DAM Solutions												
July 12,		July 12, 2011				July 22, 2011			July 26, 2011			
DA Physical Peak Load	29,516 MW				31,707 MW				27,980 MW			
	Base	Study	Δ		Base	Study	Δ		Base	Study	Δ	
Energy	\$50,330,215	\$50,197,303	-\$132,912	-0.3%	\$100,579,378	\$100,348,413	-\$230,965	-0.2%	\$40,574,800	\$40,490,057	-\$84,743	-0.2%
Ancillary	\$470,223	\$493,331	\$23,108	4.9%	\$731,685	\$736,087	\$4,402	0.6%	\$260,844	\$275,446	\$14,602	5.6%
Total	\$50,800,438	\$50,690,634	-\$109,804	-0.2%	\$101,311,063	\$101,084,500	-\$226,563	-0.2%	\$40,835,644	\$40,765,503	-\$70,141	-0.2%
	Augus	t 1, 2011 (Offe	ers A)		Augus	t 1, <mark>2011 (O</mark> ffei	rs B)		Αι	ıgust 18, <mark>20</mark> 11		
DA Physical Peak Load		28,634 MW				28,634 MW			25,603 MW			
	Base	Study	Δ		Base	Study	Δ		Base	Study	Δ	
Energy	\$43,720,656	\$43,529,956	-\$190,700	-0.4%	\$43,720,656	\$43,430,119	-\$290,537	-0.7%	\$25,862,744	\$25,877,694	\$14,949	0.1%
Ancillary	\$301,523	\$322,250	\$20,727	6.9%	\$301,523	\$386,357	\$84,834	28.1%	\$171,778	\$171,773	-\$5	0.0%
Total	\$44,022,179	\$43,852,206	-\$169,973	-0.4%	\$44,022,179	\$43,816,477	-\$205,702	-0.5%	\$26,034,522	\$26,049,467	\$14,945	0.1%
Pre-AMP DAM Solutions												
		July 12, 2011				July 22, 2011						
DA Physical Peak Load		29,516 MW			31,707 MW							
	Base	Study	Δ		Base	Study	Δ					
Energy	\$50,190,892	\$50,235,724	\$44,832	0.1%	\$99,776,082	\$99,875,727	\$99,644	0.1%				
Ancillary	\$481,476	\$495,147	\$13,671	2.8%	\$729,473	\$740,028	\$10,555	1.4%				
Total	\$50,672,369	\$50,730,871	\$58,503	0.1%	\$100,505,555	\$100,615,755	\$110,200	0.1%				

The New York Independent System Operator (NYISO) is a not-for-profit corporation responsible for operating the state's bulk electricity grid, administering New York's competitive wholesale electricity markets, conducting comprehensive long-term planning for the state's electric power system, and advancing the technological infrastructure of the electric system serving the Empire State.

www.nyiso.com