Integrating Public Policy: The ICAP Market -Preliminary Findings

Meghan Castellano Nathaniel Gilbraith, Ph.D.

Installed Capacity Working Group

July 13, 2017, Rensselaer NY

PRAFT – FOR DISCUSSION PURPOSES ONLY

Agenda

- Overview of the Integrating Public Policy Project and Phase 2
 - IPP Project Description
 - Phase 2 Market Impact Assessment
- ICAP Assumptions Overview
- Preliminary ICAP Results
- Discuss Potential Sensitivities
- Next steps

Background

Date	Working Group	Discussion points and links to materials
08-17-16	Business Issue Committee (BIC)	First discussion of the possibility of an Integrating Public Policy Project
09-12-16	Budget & Priorities Working Group (BPWG)	Presentation of stakeholder feedback, proposed scope of the project
10-19-16	Market Issues Working Group (MIWG)	Presentation providing more detail on the scope and timeline of the project
11-22-16	Market Issues Working Group (MIWG)	Presentation <u>updating project status</u> consultant selection and goals of Phases 1 and 2
12-14-16	Market Issues Working Group (MIWG)	Consultant's Project Introduction and solicitation of input (Phase 1)
01-31-17	Market Issues Working Group (MIWG)	Integrating Public Policy Update (Phases 1 and 2)
2-16-17	Market Issues Working Group (MIWG)	Phase 2: Study Description and Assumptions Review
3-28-17	Market Issues Working Group (MIWG)	Phase 2: Study Description and Assumption Update
4-24-17	Market Issues Working Group (MIWG)	Phase 2: Preliminary DAM Results
06-01-17	Installed Capacity Working Group (ICAPWG)	Phase 2: ICAP Study Description and Assumptions
6-21-17	Market Issues Working Group (MIWG)	Phase 2: Real-time Study Description and Assumptions

 $\rightarrow + + +$

DRAFT – FOR DISCUSSION PURPOSES ONLY

Overview of the Integrating Public Policy Project

With a focus on the Market Impact Assessment (Phase 2)

Integrating Public Policy

Integrating Public Policy Project

The Brattle Group Work

PHASE 1: Incorporating the Cost of Carbon Study Study whether incorporating a state policy defined cost of carbon in the wholesale market would improve the overall efficiency of the NYISO energy and capacity markets PHASE 2: Market Impact Assessment Study the impacts of decarbonization goals on the current NYISO energy and capacity markets from the high penetration of low carbon or carbon-free resources

NYISO Work

PHASE 3: Market Rule Assessment Study whether other market products or changes to the existing market structure will be necessary to meet the anticipated reliability needs

Phase 2: Market Impact Assessment

- Today's presentation is focused on the capacity market and the effect of additional renewable capacity given today's ICAP market design and market rules
- NYISO's goal is to provide stakeholders with information regarding potential market dynamics related to the incorporation of additional renewable resources
 - This information will provide insight into what will be needed for the Phase 3: Market Rule Assessment
- The NYISO is evaluating these market dynamics with renewable resource additions sufficient to meet the CES goal of 50% renewable by 2030
- This study is not a planning study
 - The NYISO is considering only existing market rules and designs (i.e., will not consider potential market rules changes that might occur in the future)
 - The NYISO is considering only existing transmission (i.e., will not consider assumptions related to new or upgraded transmission)
- The study uses existing energy and capacity market tools.

ICAP Assumptions Overview

DRAFT – FOR DISCUSSION PURPOSES ONLY © COPYRIGHT NYISO 2017. ALL RIGHTS RESERVED.

Base Case Assumptions

- Market parameters and conditions representative of current market conditions
 - 2017 ICAP reference points, NYCA Minimum Installed Capacity Requirement, Locational Minimum Installed Capacity Requirements (LCRs), ICAP Load forecast, ICAP Demand Curves' respective zero crossing points
 - Estimated ICAP to UCAP translation factors
 - Representative levels of Generation, SCRs, UDRs, imports and exports, unoffered and unsold ICAP

Modeling the effect of additional renewable resources on the ICAP market

Identify the additional resources

- Quantity
- Location
- Characteristics (e.g., Unforced Capacity as a percentage of ICAP)

Model the effect of these resources on resource adequacy requirements

- Installed Reserve Margin (IRM)
- LCRs

Model the effect of these resources on peak demand

ICAP Load forecast

Model the effect of these resources on Demand Curve parameters

- Demand Curve reference points
 - Net Energy and Ancillary Services revenues of the Demand Curve peaking unit (i.e. \$0/kW-y)
 - Winter-to-Summer ratio
- NYCA and Locality translation factors

'Study Case' Assumptions

- Keep the same existing generation, SCR, UDR, capacity imports, exports, and unoffered, unsold capacity as the base case
- Add incremental renewable capacity, similar to the approach in the IPP energy market study
 - The intent is to have the same resources modeled in both the energy market and capacity market studies
 - The primary source of projections for the quantity and location of qualified CES renewable generation is the NYSDPS Final Supplemental Environmental Impact Statement ("Final EIS") in CASE 15-E-0302 using the "Blend Base Case" <u>http://documents.dps.ny.gov/public/Common/ViewDoc.aspx?DocRefId={424F3723-155F-4A75-BF3E-E575E6B0AFDC}</u>
 - Start with nameplate capacity values as ICAP and then convert into UCAP (*i.e.*, the product transacted in the NYISO ICAP market)

Renewable Capacity from the 2017 Gold Book (*i.e.*, Base Case)

Renewable Capacity in the Study Case

Study Case ICAP to UCAP derating factors

Resource	Summer DF	Winter DF	Source
On-shore wind	0.90	0.70	ICAP Manual, pg. 4-23
Off-shore wind	0.62	0.62	ICAP Manual, pg. 4-23
Solar (utility scale and BTM)	0.54	0.98	ICAP Manual, pg. 4-25
Run-of-River Hydro	0.50	0.40	Approximate NYCA average
Biomass/Landfill Gas	0.40	0.40	Approximate NYCA average

RAFT – FOR DISCUSSION PURPOSES ONLY

Preliminary ICAP Results

DRAFT – FOR DISCUSSION PURPOSES ONLY © COPYRIGHT NYISO 2017. ALL RIGHTS RESERVED.

Effect of Incremental Renewable Resources – ICAP Demand Curves

ICAP reference points increased

 Driven by the use of the assumption that the Demand Curve peaking unit receives O\$/kW-y net EAS

• ICAP minimum requirements increased for the NYCA, remained nearly flat for the Localities

- Adding renewable resources increases the derating factor (locational EFORd) and thus increases the requirement
- Adding BTM solar decreases peak load and thus decreases the requirement
- Demand Curves became steeper
 - Driven by higher reference points
- The NYCA and NYC ICAP Demand Curves are shown on the next slides
 - Other Locality Demand Curves are shown in the appendix

NYCA ICAP Demand Curves

New York City ICAP Demand Curves

Effect of Incremental Renewable Resources – <u>UCAP</u> Demand Curves

The NYCA and Locality derating factors increased

- Renewable resources tended to have above average individual derating factors, which increased the location-wide average derating factor
- Derating factor changes were similar for the Summer and Winter Capability Periods

Brief review of UCAP calculations

- UCAP Ref. Point = ICAP Ref. Point / (1 derating factor)
 - In practice, UCAP Ref. Point is higher than ICAP Ref. Point
- UCAP Req. = ICAP Req. * (1 derating factor)
 - In practice, UCAP Req. is lower than ICAP Req.
- Absent BTM solar, UCAP requirements would have remained relatively stable
 - UCAP Requirements fell in all locations largely due to BTM solar
- UCAP reference points increased in all locations due to the higher derating factors
- The next slides show the NYCA UCAP Demand Curve
 - Locality UCAP Demand Curves are in the Appendix

NYCA Demand Curve Parameters

	Units	Base - Summer	Study Case - Summer	Delta	Base - Winter	Study Case - Winter	Delta
	MW	Gammer	Gammer	Denta	Winter	White	Denta
Load Forecast 2017		33,177.8	31,503.5	-1,674.3		•	
IRM/LCR Percentage	%	118.0%	138.8%	20.8%	Same as Summer		ner
ICAP Reference Point	\$/kW-mo_ICAP	\$9.08	\$12.19	\$3.10			
ICAP/UCAP Derating Factor	· %	9.68%	21.58%	11.90%	7.90%	20.95%	13.06%
UCAP Reference Point	\$/kW-mo_UCAP	\$10.05	\$15.54	\$5.50	\$9.86	\$15.42	\$5.60
UCAP Requirement	MW_UCAP	35,361.4	34,290.5	-1,070.9	36,058.8	34,565.0	-1,493.8
Demand Curve ZCP	%	112.0%	112.0%	0.0	San	ne as Sumr	ner
UCAP at \$0	MW_UCAP	39,604.8	38,405.4	-1,199.4	40,385.9	38,712.8	-1,673.1
Demand Curve Slope	(\$/kW- mo_UCAP)/100MW_UCAP	\$(0.2369)	\$(0.3778)	\$(0.1409)	\$(0.2278)	\$(0.3718)	\$(0.1440)

DRAFT – FOR DISCUSSION PURPOSES ONLY

NYCA UCAP Demand Curves

Market dynamics

- Summer supply and demand balances shift most dramatically in the NYCA and Long Island
 - Due to additional MW of renewable capacity (both wholesale and BTM) in these locations
- Winter supply exceeds the zero crossing point in all locations

UCAP Price in the Base and Study Cases

Sensitivity Cases Being Considered

- NYISO estimates for various parameters were based on currently available information
- Sensitivities are being considered to test potentially uncertain or important parameters
 - Sensitivity to off-shore wind resource capacity factors
 - Sensitivity of LCRs to incremental renewable capacity
 - Renewable resource derating factor (e.g., BTM solar)
 - Current derating factor method is based on resource performance during the previous year
 - Assess the feasibility of performing a capacity exit sensitivity

Next steps

- Select and perform sensitivities
- Present final results and sensitivities to stakeholders
- Write draft whitepaper

The Mission of the New York Independent System Operator, in collaboration with its stakeholders, is to serve the public interest and provide benefits to consumers by:

- Maintaining and enhancing regional reliability
- Operating open, fair and competitive wholesale electricity markets
- Planning the power system for the future
- Providing factual information to policy makers, stakeholders and investors in the power system

www.nyiso.com

Appendix

DRAFT – FOR DISCUSSION PURPOSES ONLY © COPYRIGHT NYISO 2017. ALL RIGHTS RESERVED.

ICAP Demand Curves

DRAFT – FOR DISCUSSION PURPOSES ONLY © COPYRIGHT NYISO 2017. ALL RIGHTS RESERVED.

G-J Locality ICAP Demand Curves

Long Island ICAP Demand Curves

29

Long Island ICAP Demand Curves

 The reference point exceeds the max clearing price due to the \$0/kW-y net EAS assumption used and the effect of accounting for the level of excess in the reference point formula

UCAP Demand Curves

DRAFT – FOR DISCUSSION PURPOSES ONLY © COPYRIGHT NYISO 2017. ALL RIGHTS RESERVED.

New York City UCAP Demand Curves

			Study			Study	
		Base -	Case -		Base -	Case -	
	Units	Summer	Summer	Delta	Winter	Winter	Delta
Load Forecast 2017	MW	11,670.0	11,305.3	-364.7			
IRM/LCR Percentage	%	81.5%	83.4%	1.9%	San	ne as Sumr	ner
ICAP Reference Point	\$/kW-mo_ICAP	\$18.61	\$24.98	\$6.4			
ICAP/UCAP Derating Factor	%	4.36%	6.75%	2.39%	5.29%	7.40%	2.11%
UCAP Reference Point	\$/kW-mo_UCAP	\$19.46	\$26.79	\$7.3	\$19.65	\$26.98	\$7.3
UCAP Requirement	MW_UCAP	9,096.0	8,792.2	-303.8	9,008.4	8,731.2	-277.2
Demand Curve ZCP	%	118.0%	118.0%	0.0	Sam	ne as Sumr	ner
UCAP at \$0	MW_UCAP	10,733.3	10,374.8	-358.5	10,629.9	10,302.8	-327.1
	(\$/kW-						
Demand Curve Slope	mo_UCAP)/100MW_UCAP	\$(1.1885)	\$(1.6927)	\$(0.5042)	\$(1.2117)	\$(1.7164)	\$(0.5047)

DRAFT – FOR DISCUSSION PURPOSES ONLY

New York City UCAP Demand Curves

DRAFT – FOR DISCUSSION PURPOSES ONLY

G-J Locality UCAP Demand Curves

			Study			Study	
		Base -	Case -		Base -	Case -	
	Units	Summer	Summer	Delta	Winter	Winter	Delta
Load Forecast 2017	MW	16,061.3	15,503.9	-557.4			
IRM/LCR Percentage	%	90.5%	93.6%	3.1%	San	ne as Sumi	mer
ICAP Reference Point	\$/kW-mo_ICAP	\$14.84	\$18.95	4.1			
ICAP/UCAP Derating Factor	%	7.34%	10.22%	2.87%	5.69%	9.53%	3.84%
UCAP Reference Point	\$/kW-mo_UCAP	\$16.02	\$21.11	5.1	\$15.74	\$20.95	5.2
UCAP Requirement	MW_UCAP	13,468.1	13,029.2	-438.9	13,708.2	13,128.8	-579.4
Demand Curve ZCP	%	115.0%	115.0%	0.0	San	ne as Sumi	mer
UCAP at \$0	MW_UCAP	15,488.3	14,983.6	-504.7	15,764.4	15,098.1	-666.3
Demand Curve Slope	(\$/kW- mo_UCAP)/100MW_UCAP	\$(0.7928)	\$(1.0799)	\$(0.2871)	\$(0.7653)	\$(1.0636)	\$(0.2984)

DRAFT – FOR DISCUSSION PURPOSES ONLY

G-J Locality UCAP Demand Curves

DRAFT – FOR DISCUSSION PURPOSES ONLY

Long Island UCAP Demand Curves

			Study			Study	
		Base -	Case -		Base -	Case -	
	Units	Summer	Summer	Delta	Winter	Winter	Delta
Load Forecast 2017	MW	5,427.1	4,802.1	-625.0			
IRM/LCR Percentage	%	103.5%	114.3%	10.8%	San	ne as Sumn	ner
ICAP Reference Point	\$/kW-mo_ICAP	\$12.72	\$26.05	13.3			
ICAP/UCAP Derating Factor	%	6.90%	14.58%	7.69%	6.91%	16.51%	9.59%
UCAP Reference Point	\$/kW-mo_UCAP	\$13.66	\$30.50	16.8	\$13.66	\$31.20	\$17.5
UCAP Requirement	MW_UCAP	5,229.6	4,688.3	-541.3	5,228.7	4,582.7	-646.0
Demand Curve ZCP	%	118.0%	118.0%	0.0	San	ne as Sumn	ner
UCAP at \$0	MW_UCAP	6,170.9	5,532.2	-638.7	6,169.9	5,407.6	-762.3
Demand Curve Slope	(\$/kW- mo_UCAP)/100MW_UCAP	\$(1.4514)	\$(3.6139)	\$(2.1625)	\$(1.4519)	\$(3.7824)\$	\$(2.3305)

DRAFT – FOR DISCUSSION PURPOSES ONLY

Long Island UCAP Demand Curves

Long Island UCAP Demand Curves

 The reference point exceeds the max clearing price due to the \$0/kW-y net EAS assumption used and the effect of accounting for the level of excess in the reference point formula

