

Self Regulating Markets for Electricity?

An Experimental Analysis of How Active Buyers can Help the NYISO and NYS

Presentation to the NYISO Board, July 20, 2004 by Richard E. Schuler with Nodir Adilov, Thomas Light, David Toomey William Schulze & Ray Zimmerman

Why Demand Responsiveness?

- 1. Get Customers into the Game
- 2. Mitigate Supplier Market Power
- 3. Efficient Use of Resources
 - (Including the Environment)
- 4. Affect System Operation

Questions:

- 1. Why Has Utility Promotion been so Tepid?
- 2. Why Haven't Marketers Jumped In?
- 3. What Type of Demand-Side Market Structure
 - a. Is the Most Efficient?

Naw York Independent System Operator

b. Is Understood and Effectively

Used by Consumers

c. Might be Selected by Customers,

Given a Choice?

4. Effect on Line Flow Predictability?

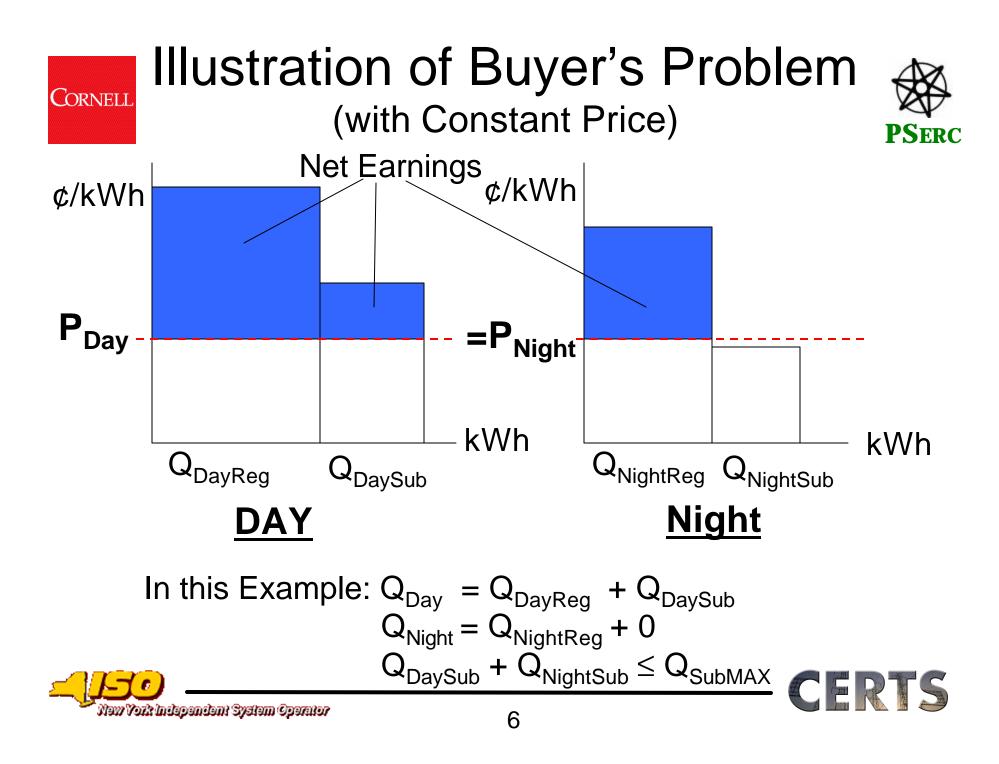
PSerc

Why Laboratory Experiments?

- 1. Theory Not Up to the Task
- 2. To Avoid Social Cost of
 - Experiments of the Whole (e.g. California)
- 3. Low Cost Alternative for Winnowing Out Alternatives
- 4. Reveals Human Cognitive Processes (Learning & Lags)
- 5. Value as Educational Tool

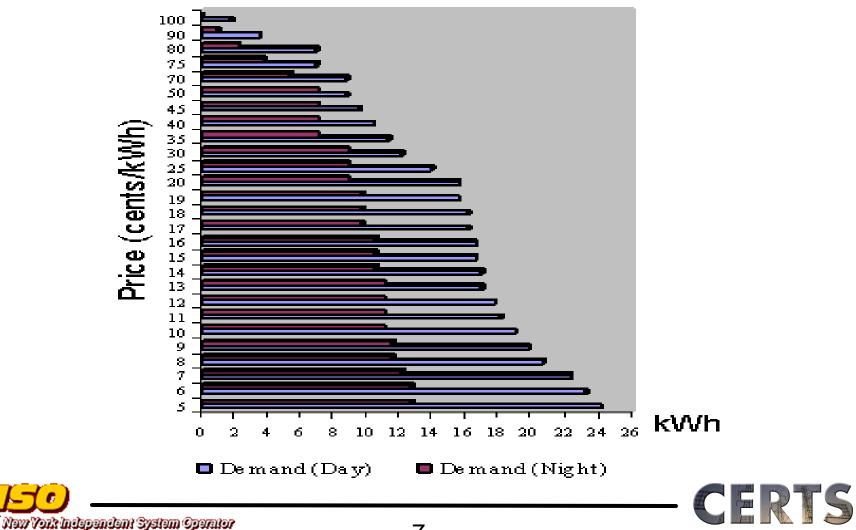
But to be Effective,

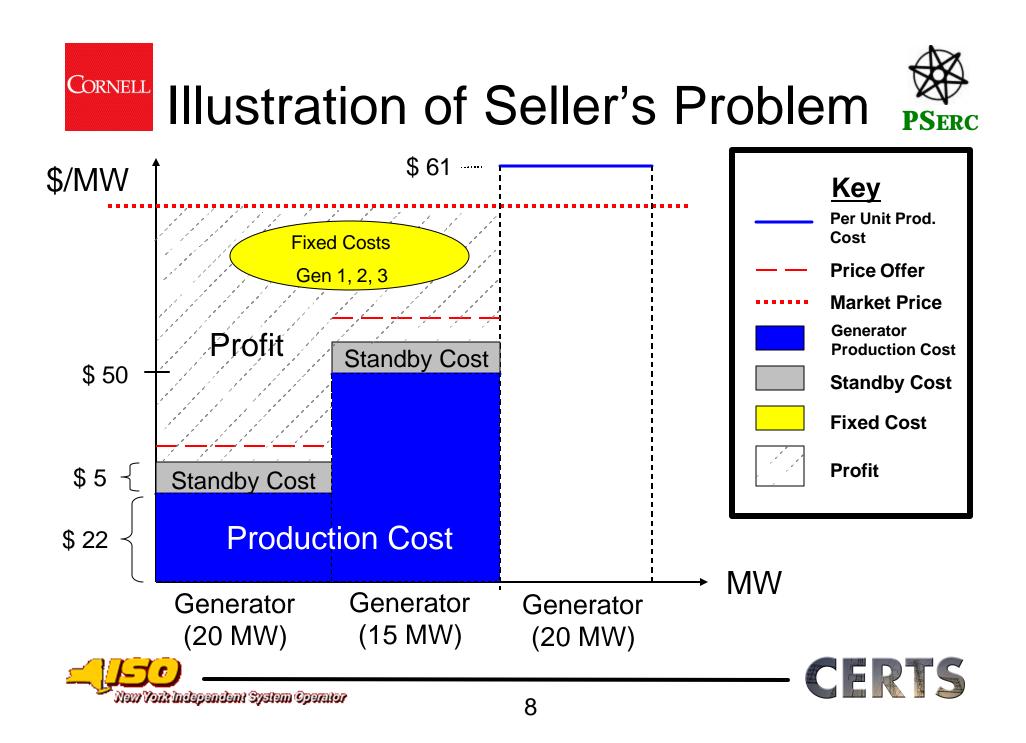
Participants Must be Paid!



Demand-Side Behavioral Representation

- Start with Final Demand: We Need to Understand Behavior of End-Use Customer Before We Represent Marketing Agents
- 2. Disaggregate **Observed Market Demand** Characteristics to Representative Individual Buyers
- 3. Develop "Induced Valuation" Relationships for Individuals
- Customer's Problem: Select Electricity Consumption in Each Period to Maximize Total Value – Total Expenditure
- Compensate Subjects in Proportion to Net Benefits (as computed in 4)





Average Demand Curve

Conceptual Framework for Efficient Market Structures

 <u>Reliability</u> Provided through <u>Networks</u> Has <u>Public Good</u> Aspects:

Market Cannot Solve Completely!

- 2. Efficient Customer Response Requires Both:
 - Real Time Pricing of Energy (RTP)
 - Demand Reduction Program (DRP) to Represent Cost Offset for Generation Reserves

Demand Side Scenarios

- **FP** (Fixed Price) Pre-announced, Constant Identical Prices in All Periods (the Baseline) – <u>Quantity Bids</u>
- DRP (Demand Response Program) FP with Preset Savings in Pre-announced Periods for Purchases Below Benchmark – <u>Quantity Bids</u>
 RTP (Real Time Pricing) – Forecast Day/Night Prices – <u>Quantity Bids</u> – Customers Pay Actual Market Clearing Price

Note: RTP with buyers specifying a maximum price (limit orders) was piloted, but was no more effective

Experimental Design for Three Treatments over 11 Day/Night Pairs

Treatments:	FP (Baseline); DRP (Specified/kWh Credit);
	RTP (Forecast Prices, Q-Bids, Pay Mkt. Price)

Characteristics	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>	<u>10</u>	<u>11</u>
of Day/Night Pairs:	Ν	S	Н	Ν	Ν	Ν	H+S	H+S	Ν	S	Н

N=Normal; H=Heat Wave; S=Random Supply Shortage

Preference Poll, "What Do You Prefer: DRP or RTP?"

After FP After DRP

After RTP → Determines Selection of Additional "High Stakes" Runs on Pairs 1 to 4

Two Separate Identical Trials Were Conducted – with Different Participants

Experiments Conducted

FRTS

- 1. Single-Sided Market
 - 3 Active Demand Treatments
 - Predetermined Cost-Based, Hockey-Stick Shaped Offers with Random Outages
 - Two Repeats with 21 Professional Students, Total
 - May Reflect Active Demand Side in Market with Supplier Regulations (current NYISO markets)
- 2. <u>Two-Sided Markets</u>
 - 3 Active Demand Treatments
 - Active Suppliers without Regulations
 - Two Repeats, Each with 7 Suppliers (6 Experienced Grad. Students + 1 Agent) and 19 Buyers (Undergrad. & Grad. Students + Agents)

Details on Market Sequence

- 1. <u>Load Forecasts</u> (ISO) for Day/Night Pair + <u>Announced</u> Outages
- 2. <u>Quantity-Price Offers</u> (Suppliers)
- 3. Prices (ISO) for Day/Night Pair
 - a. FP: Firm 8.5 ¢/kWh (includes 4 ¢/kWh Wires Charge)
 - b. DRP: Firm 8.5 ¢/kWh + whether a 7.9 ¢/kWh DRP

Credit Applies

- c. RTP: Day/Night Price Forecasts
- 4. <u>Purchases</u> (Buyers) for Day/Night Pair
- <u>Market Clears</u> (ISO) at Last Accepted Offer or External Purchases, if Required

Details on Market Sequence (cont.)

- 6. <u>Settlement</u> (ISO)
 - a. Buyers Pay:
 - 1. **FP**: 8.5 ¢/kWh
 - 2. **DRP**: 8.5 ¢/kWh DRP credit if applies
 - 3. **RTP**: Market Clearing Price for Step 5.
 - b. Sellers Receive:

Market Clearing Price in All Cases – 4 ¢/kWh Wires Charge

7. Required Rate Change (ISO)

after 11 Day/Night Pairs for FP and DRP

CORNELL

Buyer's Computer Screen

Session Session	: [test] Test User <u>Logo</u> : [2] Example Session : [34] Buyer 1	FP-
SYSTEM DATA	Day	Night
Market Condition	Normal	Normal
Fixed Price (¢/kWh)	8.5¢	8.5¢
BUYER DATA	Day	Night
Regular Energy Value (¢/kWh)	15.0¢	13.0¢
Regular Max Energy Quantity (kWh)	7000	5000
Substitutable Energy Value (¢/kWh)	11.0¢	7.0¢
Substitutable Max Quantity (kWh)	200	00
MY BIDS	Day	Night
Energy Quantity Bid (kWh)	9000	5000

 Energy Quantity Bid (kwh)
 9000
 5000

 Regular (kwh)
 7000
 5000

 Substitutable (kwh)
 2000
 0

EARNINGS	Day	Night
Benefits from Energy Consumption	\$ 1270	\$ 650
Cost of Energy Purchased	\$ 765	\$ 425
Energy Earnings	\$ 505	\$ 225

Gray background indicates computed values.

Now York Independent System Operator

CORNELL

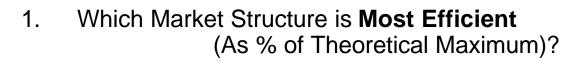
Period

Seller's Computer Screen

POMER	Name: [test] Test User Logout Session: [2] Example Session1 Representing: [29] Seller 3	FP-1
SYSTEM DATA	Day	Night
Market Condition	Normal	Normal
Forecast Load (MW)	196.0	118.0

GENERATOR DATA		Day			Night		
GENERATOR DATA	Gen 7	Gen 8	Gen 9	Gen 7	Gen 8	Gen 9	
Max Capacity (MW)	20.0	15.0	20.0	20.0	15.0	20.0	
Per-Unit Production Cost (\$/MW)	\$22.00	\$50.00	\$61.00	\$22.00	\$50.00	\$61.00	
Standby Cost (\$/MW)	\$5.00	\$5.00	\$5.00	\$5.00	\$5.00	\$5.00	
Fixed Cost (\$)	\$20.00	\$20.00	\$20.00	\$20.00	\$20.00	\$20.00	
MY OFFERS		Day			Night		
PH OFFERS	Gen 7	Gen 8	Gen 9	Gen 7	Gen 8	Gen 9	
Capacity Offer (MW)	20	15		20	15		
Price Offer (\$/MW)	22	100		22	100		

Note: Initial offers are set at your previous offer levels.


Submit

CERTS

Experimental Results

	Active Demand/Preset Cost-Based Supply with Random Shift	<u>Full Two-Sided</u> <u>Market</u>
RTP	99.6%	99.4%
DRP	96.9%	98.7%
FP	98.7%	99.1%

2. What **Rate Change** is Required After Runs to Balance the Budget?

	Active Demand/Preset Cost-Based Supply with Random Shift	<u>Full Two-Sided</u> <u>Market</u>		
RTP		<u>First Exp.</u>	<u>Second Exp.</u> 	
DRP FP	N/A	+ 2.1 ¢/kWh + 1.5 ¢/kWh	+ 0.8 ¢/kWh + 1.5 ¢/kWh	

PSERC

Experimental Results: Two-Sided Experiments: Details on Overall Efficiency for Combined Trials

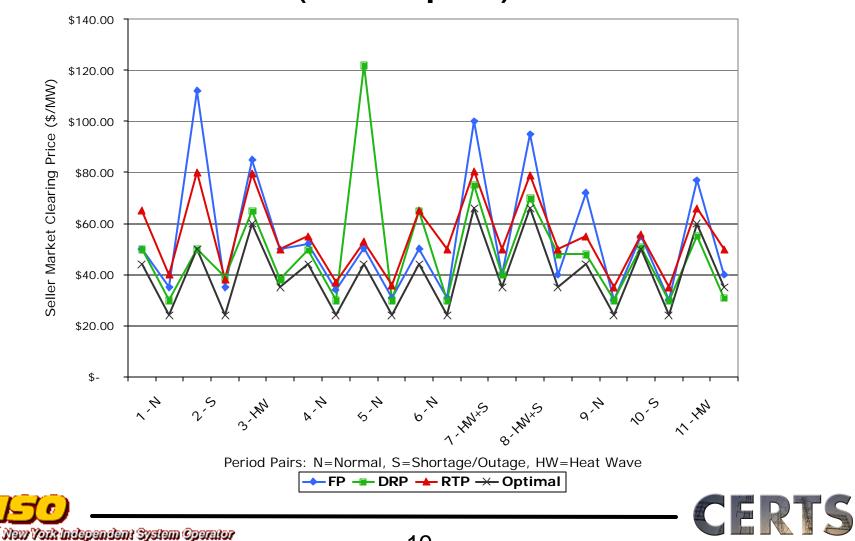
CERTS

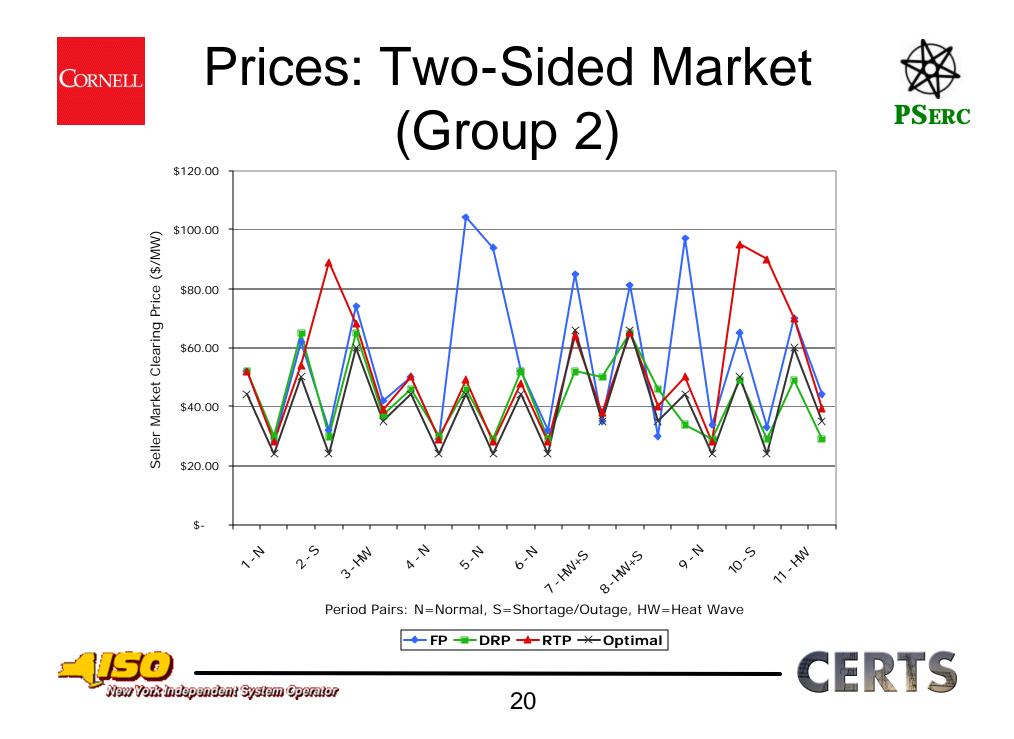
1. Surplus Differences as % of FP Revenues without Regulation:

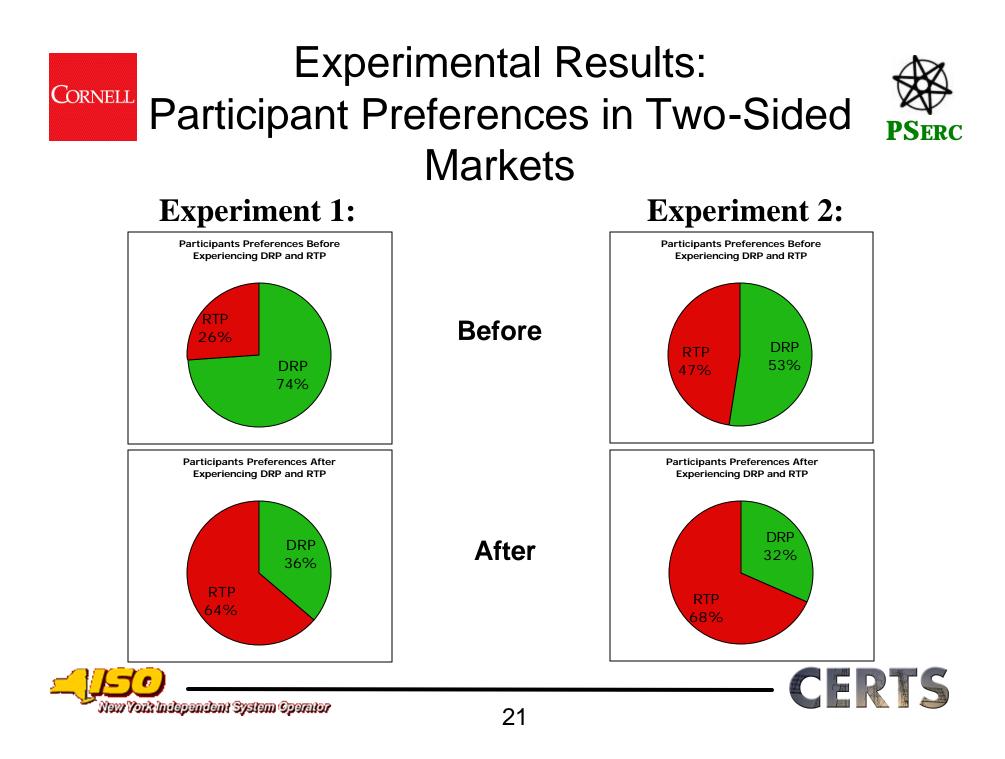
	% Added	% Changes	Combined
	Consumer Value	Supplier Profit	<u>Change</u>
RTP	9.02	-6.99	2.02%
DRP	13.86	-17.52	-3.67%
Social Optimum (as comparison)	29.32	-22.57	6.75%

 Statistically Valid Differences in Behavior from FP Results (@ .95 level):

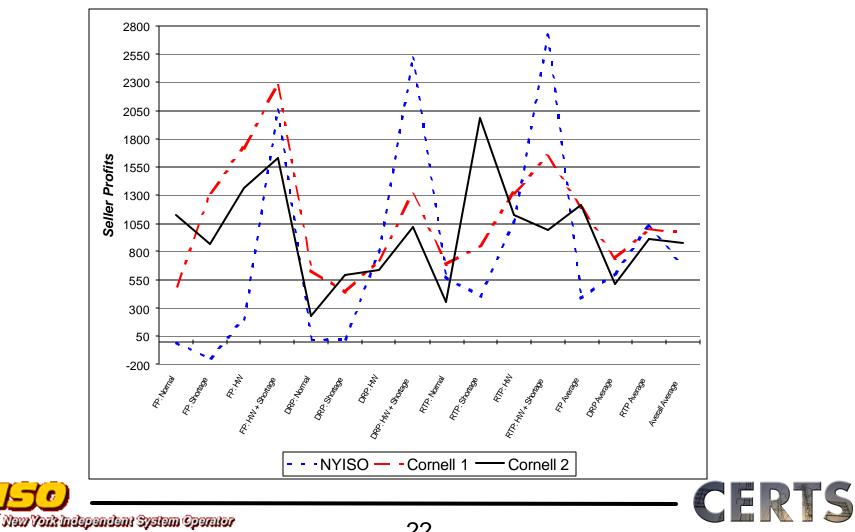
	<u>RTP vs.</u>	<u>. FP</u>	<u>DRP vs.</u>	FP
	Consumers	Sellers*	Consumers	Sellers*
Value/Profit	+	_	+?	_
Quantities Bought/Sold:				
Days	_	_?	—	—
Nights	+	+?	_	+?


*Note: With fewer sellers, statistical significance is harder to attain.

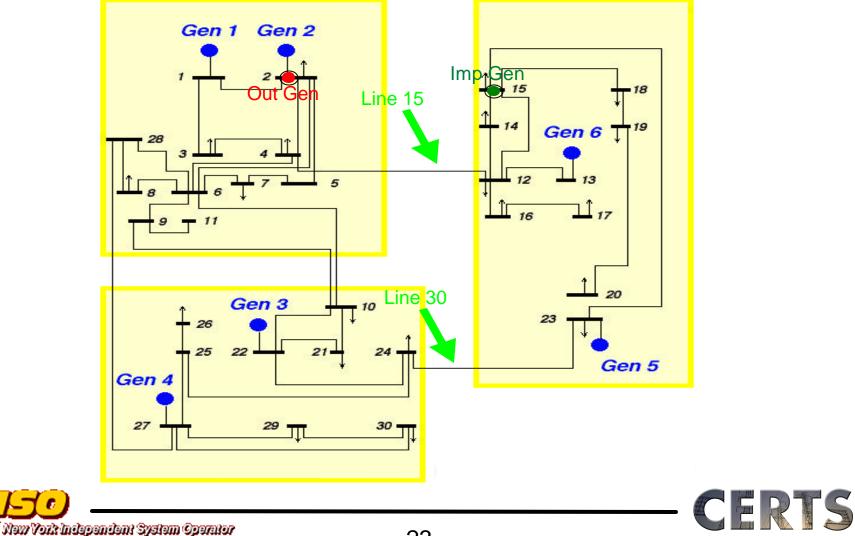


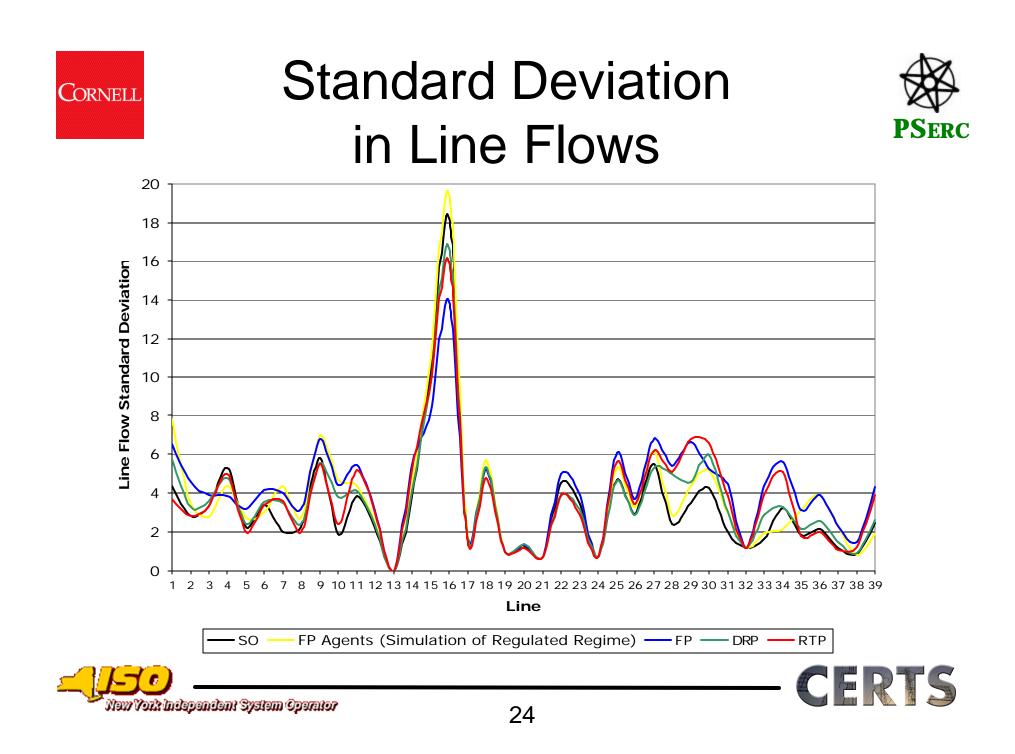


Prices: Two-Sided Market (Group 1)



Comparison of Experts and Students as Participants in Two-Sided Experiments (Average Seller Earnings)





Schematic of Underlying Electricity Network

PSERC

Relationship Between Line Flows and System Load

CERTS

			Results w	ith Active Part	icipants
		(Reg. Regime)			
		Fixed Price with		Demand	
	Social	Regulated		Reduction	Real Time
	Optimum	Sellers	Fixed Price	Program	Pricing
	Regi	ression Results for	Tie Line 15		
Intercept	40.1779	39.1761	17.9780	29.9462	33.0568
Std Err	3.0375	2.1514	3.1385	3.8662	3.5013
Slope Coefficient	(0.1982)	(0.1901)	(0.1025)	(0.1789)	(0.1909)
Std Err	0.0167	0.0116	0.0168	0.0236	0.0197
R-Squared	0.7701	0.8657	0.4695	0.5777	0.6906
F-Statistic	140.6651	270.7614	37.1714	57.4517	93.7394
P-value	0.0000	0.0000	0.0000	0.0000	0.0000
	Regi	ression Results for	Tie Line 30		
Intercept	(17.5262)	(18.5527)	(9.1573)	(13.9666)	(17.5818)
Std Err	1.5631	1.7259	2.4566	3.0202	3.1587
Slope Coefficient	0.0751	0.0753	0.0437	0.0802	0.1024
Std Err	0.0086	0.0093	0.0132	0.0184	0.0178
R-Squared	0.6449	0.6111	0.2079	0.3104	0.4409
F-Statistic	76.2617	66.0048	11.0260	18.9069	33.1193
P-value	0.0000	0.0000	0.0019	0.0001	0.0000
Note: The following			estimated with	OLS.	
Line Power Flow =	Bo + B1 x Syst	tem Load			
N = 44 for all regres	sions				

Now York Independent System Operator

Results (and Their Significance)

- 1. Customers Can Perform Efficiently in Electricity Markets, if Given the Chance
- 2. Markets Perform More Efficiently with Customer Participation, <u>with Less Need for Market Power Mitigation</u>
- 3. Real Time Pricing Perform Better that Pre-announced Demand Response Programs in Most Cases
- 4. Customers Prefer DRP before Trying RTP, but Switch Their Preferences after Experiencing RTP
- 5. Line Flows <u>May</u> be More Predictable with Demand Response

CORNELI