New York State Transmission Assessment and Reliability Study (STARS) Phase 1 Study Report – "As Is" Transmission System

January 13, 2010

Prepared for: NYTO STARS Working Group

Prepared by: ABB Inc.

940 Main Campus Drive, Suite 300 Raleigh, NC 27606

12 Cornell Road Latham, NY 12110

STARS PHASE I SUMMARY

The New York State Transmission Assessment and Reliability Study Working Group¹ (STARS WG) commissioned a Long Term Transmission Planning study for the electric transmission system within the State of New York. The results from this study are intended to be used by individual New York Transmission Owners (NYTOs) for developing a coordinated and well planned transmission system to meet the overall NYCA reliability requirements over a study horizon of about 20 years into the future.

Presently, the New York Independent System Operator (NYISO) has in-place a Comprehensive System Planning Process (CSPP) encompassing both reliability and economic analyses which are conducted over a 10-year planning horizon:

- i) Comprehensive Reliability Planning Process (CRPP)
- ii) Congestion Analysis and Resource Integration Study (CARIS).

The CRPP has two parts; a) a Reliability Needs Assessment (RNA) and b) a Comprehensive Reliability Plan (CRP), which identifies the resources needed on the bulk power system to meet applicable Reliability Rules, including sufficient resource capacity to meet the New York State Reliability Council's (NYSRC) Loss-of-Load Expectation (LOLE) criterion².

The CARIS is an economic process which identifies the highest congested bulk power elements based on the analysis of both historic and projected congestion. In the first part of the CARIS, a benefit/cost analysis of generic generation, transmission and demand-side solutions is performed; and in the subsequent part, developers may submit specific transmission solutions for analysis to determine their eligibility for cost recovery under the NYISO Tariff.

However, identifying the most economical and effective solutions for a mature power system (which is characterized by slower load growth and aging facilities) that exist in the State of New York requires a longer time horizon than the 10 year period of CSPP. More specifically, the longer time horizon is necessary for several reasons, such as, to:

- i) evaluate whether a new transmission voltage or technology is necessary and economical
- ii) incorporate the need to replace aging infrastructure (transmission lines and substations)
- iii) address various existing limited rights-of-way and siting issues
- iv) consider effective integration of renewable resources
- v) meet varying reliability needs across the NYCA system in a coordinated manner
- vi) consider emerging technological and regulatory issues, such as plug in electric vehicles, under a reasonable number of potential future scenarios

The above six factors are overlapping in nature. Considering all of these factors at the same time will expand the possibilities to a large number of alternatives and options. As the number of alternatives increase, the amount of effort required for analyses increases substantially.

² LOLE criterion is 1 day in ten years or an annual statewide LOLE of no greater than 0.1 days/year

¹ Central Hudson Gas & Electric Corporation ("Central Hudson"), Consolidated Edison Company Of New York, Inc. ("Con Edison"), Long Island Power Authority ("LIPA"), National Grid ("National Grid"), New York Power Authority ("NYPA"), New York State Electric And Gas Corporation ("NYSEG"), Orange & Rockland Utilities, Inc. ("O&R") and Rochester Gas & Electric Corporation ("RGE")

Study Approach: Although the longer time horizon is needed because of the issues stated above, it introduces other significant issues. One of the most difficult issues, for long-range transmission planning under open market conditions, is the great uncertainty associated with new generation plants/units, including location, size, type etc. If a new transmission project is built³ and the new generation does not materialize at the location or in its anticipated size (or capacity); then the new transmission becomes a stranded or under utilized asset. In the case of reverse situation, the transmission becomes limiting, thereby potentially affecting the reliability and economics (congestion) of the power system. Similar issues with respect to the degree of penetration and the location of demand side resources also exist. In light of these uncertainties, the most practical approach is to postulate various Scenarios of future resource development and to determine a range of transmission solutions or projects for the pre-defined Scenarios. Even though the Scenario approach considerably increases the amount of effort required for the analyses, using carefully considered Scenarios combined with appropriate sensitivity evaluations will assist in defining the transmission capacity requirements for meeting the reliability criterion.

Inclusion of aged facilities and renewable resource development to identify a robust mix of prudent transmission alternatives requires further analyses. Hence, STARS WG divided this study into three phases:

- 1. **Phase I** Identify the need for additional transfer capability to meet state-wide LOLE (with the existing transmission system).
- 2. **Phase II** Identify the most suitable and cost effective transmission alternatives to meet the previously determined additional transfer capability while considering aged infrastructure and integration of renewable resources.
- 3. **Phase III** Perform additional sensitivity analyses and assessments

This Summary presents the results of Phase-I only.

Load Levels: In any planning study the starting point is to define a base forecasted load level. The load growth for the past 30 years has been uneven; similarly there is a high degree of uncertainty regarding future electric load within the state. Rather than expending a lot of time and effort on arriving at a precise timing for a given forecasted load level; this study looks at a particular future load level for NY State of 40,816MW for the **Horizon Year (about year 2030)**. This level of load may happen earlier or later, depending upon the load growth that actually occurs. An example of higher load growth is a high penetration of plug-in electrical vehicles. Conversely, a slower load growth will be due to aggressive Energy Conservation and Efficiency Programs, Distributed Generation etc. A load level of 37,130MW for the **Intermediate Year** (about half-way of the planning horizon) was assumed. As a reference, the summer peak load for the year 2009 was 30,844 MW; whereas the record peak load of 33,939MW occurred during the summer of 2006.

Capacity Expansion Scenarios: The STARS-WG formulated four Scenarios, as a "mix and match" of Regional and Statewide Generation coupled with Low and High Import possibilities (Table 1). Thus, the four Scenarios (#1 through #4) span a wide range of future generation development possibilities and thus define boundaries or "book-end" possibilities.

Further, with the Renewable Portfolio Standards (RPS) goals of the state in mind; two additional Scenarios (#5 and #6) explicitly including higher levels of wind generation have also been

³ This includes uprating, upgrading and/or undersizing and over-sizing of transmission additions.

included. The total new generation capacity added by the Horizon Year for each scenario is based on the installed capacity reserve margin of 16.5% (IRM) that was in effect when the Study started, translating to 5,015MW for Scenarios #1 through #4. Due to lower and different capacity factors associated with on-land and off-shore wind farms as well as non-coincidence of the maximum wind generation with the system peak load, the total new generation installed capacity requirement (to equal the effective or UCAP requirement of scenario's #1 thru' #4) is 6,834MW for Scenario #5 and 7,740MW for Scenario #6.

The recent change of IRM from 16.5% to 18% may be viewed as an additional generation requirement for a given load level or a lower load level for a given generation capacity. In this study, the various scenarios assume a given level of generation and the need for additional transmission was evaluated by using a Probabilistic Reliability Criterion (LOLE). The identified needs for the Horizon Year may be viewed to advance by a couple of years, when one considers an 18% IRM vs. the 16.5% assumed in the study. Thus, the results of the Phase-I Study are not affected by this change in the IRM requirement, except for possible timing of identified needs.

	Future Capacity Scenario	Internally Located Capacity (as percentage of	Externally Located Capacity Imports(as percentage of incremental	Location of Externally Located Capacity Imports (as percentage of
		incremental capacity requirement)	capacity requirement)	incremental capacity requirement)
1	Downstate Capacity	85% Zones H-K	15%	10% ISONE (Zone K) 5% PJM (Zone J)
2	Upstate Capacity	50% Zones A-F	50%	25% PJM (Zones A/C) 25% HQ (Zone D)
3	Statewide Capacity -Low Imports	90% Zones A-K	10%	3.3% ISONE (Zone F/G) 3.3% PJM (Zone J) 3.3% HQ (Zone D)
4	Statewide Capacity - High Imports	25% Zones A-K	75%	25% PJM (Zones I/J/K) 50% HQ (Zones D)
	S	cenarios With Wind Resourc	ces for 25% Energy	
5	Downstate Capacity Renewables located downstate	85% Zones H-K	15%	10% ISONE (Zone K) 5% PJM (Zone J)
6	Upstate Capacity 50% of renewable capacity located upstate; 50% external	50% Zones A-F	50%	25% PJM 25% HQ

Table-1: Capacity Expansion Scenarios

Reliability Criterion: The resource adequacy reliability criterion for New York State bulk electricity system is a LOLE of one day in 10 years or 0.1 days per year. Emergency assistance available from the external areas (PJM, ISO-NE, Ontario and Hydro-Quebec) is included for the calculation of LOLE. These external areas are also assumed, consistent with the NYISO RNA assumptions, to achieve the target resource reliability criterion (LOLE of 1 day in ten years) on a multi-area or interconnected operation basis.

Methodology: The main methodology for this Phase-I Study is to determine the transmission capacity requirements for various scenarios to meet the above mentioned LOLE. The primary tool used for LOLE calculation in this study is GridView⁴. In this model a full representation of the transmission network (as in the PSS/E power flow cases including external areas) is used. In addition to the detailed transmission network representation, the GridView model contains various constraints for transmission lines, interfaces, contingency constraints, monitored lines, nomograms and emergency operating procedures (EOP).

Transfer Limits: The Interface Transfer Limits for both Cross-State and External areas (Table-2) were computed for the existing transmission topology and the intermediate year conditions; which are close to the NYISO 2009 RNA assumptions and findings. These limits are used in the Gridview model for the LOLE calculations.

Interface	Limit MW
Dysinger East	2,504 (V)
West Central	1,134 (V)
Moses South	1,971 (V)
Volney East	3,952 (V)
Total East (Closed)	6,270 (V)
Central East	2,604 (V)
Central East + Fraser-Gilboa	2,916 (V)
CE Group	4,587 (V)
F to G	3,485 (T)
UPNY-SENY Open	5,124 (T)
UPNY-ConEd Open	5,392 (V)
Millwood South Closed	8,161 (V)
Dunwoodie South Plan	5,780 (T)
I to J	4,460 (T)
I to K (Y49/Y50) with Y49 flow set to 637 MW	1,238 (T)
I to K (Y49/Y50) with Y49 flow set to 637 MW and Y50 RateA=653 MVA	1,293 (T)
I to J+K	5,413 (V)
LI Import (with LIPA imports maximized)	2,851 (T)
LI Import (with LIPA imports maximized and Y50	2,905 (T)
RateA=653 MVA)	
Marcy South	1,686 (V)
(T) = Thermally-constrained	
(V) = Voltage-constrained	

Table-2: Emergency Transfer Limits for LOLE Calculations for the existing transmission (Intermediate Year)

⁴ GridView is ABB's reliability analysis and market simulation software using Monte Carlo simulations. Gridview results benchmarked are very close to the values from GE Multi-Area-Reliability Simulation Program used by NYSRC and NYISO for LOLE studies.

Calculated LOLE for the Six Scenarios: The LOLE index was calculated for each of the six scenarios (Table-3). For Scenarios #1 and #5; the calculated LOLE values show that the postulated generation expansion plans combined with the existing transmission capability can meet the target reliability index of 0.1day/year. It may be recalled that for these two scenarios, most (85%) of the new generation capacity was added in the down-state load zones. In Scenario #3 the new generation (90%) was distributed proportionally to each zone and resulted in an LOLE somewhat above the target level. Scenario #4 with a heavy emphasis on imports (75% of new capacity) shows that LOLE criterion cannot be met with the existing transmission system. The Scenarios #2 and #6 (with 50% of generation in the upstate zones and the other 50% from external imports) have the highest LOLE of the generation expansion system. The LOLE value for Scenario #6 (similar to Scenario#2, but with more wind) is a bit higher, because the installed generation capacity considered for Wind Scenarios is in the up-state zones. Similar comparison can be made between LOLEs for Scenarios #1 and #5.

Table-3: Calculated LOLE values for Six Scenarios (Horizon Year) With the existing transmission

	NYCA LOLE (days/year)
Scenario 1	0.06
Scenario 2	1.68
Scenario 3	0.20
Scenario 4	0.44
Scenario 5	0.07
Scenario 6	1.82

Additional Transmission Capacity for Scenario #s 2, 3, 4 and 6: The study results have shown that the reliability criterion is met for Scenarios #1 & #5. However, the LOLEs for Scenario #s 2, 3, 4 and 6 are above the desired value. In order to estimate the additional transmission capacity needed to reduce the LOLE values to 0.1day/year the GridView simulations were repeated for these four Scenarios to determine the additional transmission MW needed for each of the Interfaces (shown in Table 4) to achieve the reliability criterion. Because Scenarios #5 are similar to Scenarios #1, results for only the four primary scenarios are shown in this table. The values in green color show the lowest non-zero value of the need, the red color the highest values and the black color for in-between values.

The MW need for each scenario (shown in each column) should be interpreted to be simultaneous, i.e. all the interface transfer limits need to be increased to the levels shown. In other words, increasing only one or a few of the interfaces to the shown MW levels is not sufficient to achieve the LOLE criterion. On the other hand, it may not be reasonable to upgrade all the Interfaces for all the Scenarios to the highest values shown in red color because these limits define the book ends and any future development will likely be somewhere within these boundaries.

Additional Transfer Capability (MW) Need										
	Scenario #1	Scenario #2	Scenario #3	Scenario #4						
CE Group	0	1,460	150	1,185						
UPNY-SENY	0	1,735	249	702						
Volney East	0	1,314	492	648						
Central East	0	1,047	279	1,106						
I to J	0	1,135	386	424						
Y49Y50	0	752	159	972						
F to G	0	1,171	187	399						
Total East	0	1,274	0	456						
West Central	0	265	316	192						
Marcy South	0	435	15	257						
Moses South	0	0	0	228						
HQ - D	0	0	0	550						

Table-4: Additional Transmission Capacity Need for the 4 Scenarios (Horizon Year)

The values in Table 4 are shown to a precision of one MW. For practical purposes, the values will be rounded when considering the MW need in Phase II when transmission alternatives are being analyzed for those scenarios which require transmission reinforcements.

Transition from Phase I to Phase II: The actual expansion of the NYCA transmission grid should be adapted to account for the constantly evolving load growth, location and magnitude of future resource capacity additions, and assumed emergency assistance from neighboring control areas. For example, additional resource capacity assumed Downstate (Scenario 1) was shown to mitigate or eliminate the need for transmission expansion for the study horizon (without consideration of aged infrastructure which is a Phase II consideration). Conversely resource capacity assumed for Upstate (Scenario 2) showed a need to expand the transmission system to satisfy system reliability requirements. The reliability needs along with the aging infrastructure needs and the delivery of renewable resources will be considered within the next phase of the study. As with any study of this type, time will tell which scenario reflects more accurately the location of new generation and/or demand side resources. However, since timescales for constructing transmission reinforcements are in the five to ten year time horizons for large scale improvements, it will be necessary to identify those projects that can provide the overall best values for the state when considering all of the needs. Since generation expansion assumptions have a major impact on scenario analysis, and there have been some major changes in base generation assumptions since the start of this study, Phase II will update the power flow base case with likely new generation to be installed in the state in the next 5 years based on how far along they are in the NYISO interconnection process. The updated power flow base case with economic dispatch will be used for determination of new Interface Transfer Limits in Phase II part of the study.

Table of Contents

1	INTRODUCTION	1
2	STUDY APPROACH	4
	2.1 Load Levels	5
	2.2 Generation Capacity	
	2.3 New Generation for Six Scenarios for Horizon Year	
	2.4 Capacity and Energy Models:	
P	ART I – POWER FLOW ANALYSIS	.13
3	DEVELOPMENT OF POWER FLOW MODELS	.14
	3.1 Model Update for the Intermediate Year	. 14
	3.2 Model Update for the Horizon Year	
	3.2.1 General Steps for Power Flow Model Development	16
	3.2.2 Power Flow Model Development for Horizon Year Scenario 1 (85% NYC Down State, 15% External)	
	3.2.3 Power Flow Model Development for Horizon Year Scenario 2 (50% NYC	
	Up State, 50% External)	. 19
	3.2.4 Power Flow Model Development for Horizon Year Scenario 3 (90% NYC All Zones, 10% External Low Import)	
	3.2.5 Power Flow Model Development for Horizon Year Scenario 4 (25% NYC	
	All Zones, 75% External High Imports)	23
	3.2.6 Power Flow Model Development for Horizon Year Scenario 5 with	25
	Renewables	25
	Renewables	27
	3.3 Summary of Interface Flows in Intermediate and Horizon Year Cases	
4	SECURITY ANALYSIS FOR INTERMEDIATE YEAR	
-		
	4.1 Methodology4.2 Results	
	4.2 Results 4.2.1 System Intact Conditions	
	4.2.2 Contingency Case Conditions	
	4.3 Summary	
5	SECURITY ANALYSIS FOR HORIZON YEAR	
	5.1 Results	39
	5.1.1 System Intact Conditions	.39
	5.1.2 Contingency Case Conditions	
	5.2 Transmission Interface Loadings	
	5.3 Conclusions	
6	TRANSFER LIMITS FOR INTERMEDIATE YEAR	.56
	6.1 Description of Power Flow Model	56
	6.2 Calculation of Emergency Thermal Transfer Limits	

6.2.1	Methodology	56
6.2.2	Cross-State Interfaces	
6.2.3		
6.2.3		
6.2.3		
6.2.3	5	
6.3 Ca	Iculation of Emergency Voltage Transfer Limits	
6.3.1	Methodology	
6.3.2	Results	. 68
6.4 Ca	Iculation of Reverse Limits	. 74
6.4.1	LIPA Export	. 74
	West Central	
6.5 Co	nsolidation of Emergency Thermal and Voltage Transfer Limits	. 75
PART II – LO	DLE ANALYSIS	77
BENCHMAR	KING OF RESOURCE RELIABILITY MODEL	78
7 NYCA	A RESOURCE RELIABILITY MODEL UPDATE FOR FUTURE STUDY YEARS	.79
7.1 Re	liability Model Update and Assumption	. 79
7.1.1	Load Level	
7.1.2	Generation Capacity	
7.1.3	Transmission System	
7.1.4	External Area Modeling	
7.1.5	NYCA LOLE Calculation Assumptions	. 81
7.1.6	NYCA LOLE of Intermediate Year Reference Case	. 82
7.2 Ne	w Generation for Six Scenarios for Horizon Year LOLE Calculation	. 82
8 NYCA	A SYSTEM ADEQUACY DETERMINATION FOR THE INTERMEDIATE YEAR	86
8.1 NY	CA LOLE for the Intermediate Year	. 86
8.2 NY	CA Interface Flows	. 90
8.3 Se	nsitivity Case:	102
9 NYCA SY	STEM ADEQUACY DETERMINATION FOR THE HORIZON YEAR	103
9.1 LO	LE Overview for Six Scenarios	103
	CA Interface Flows:	
	erface Constraints Overview for Six Scenarios	
	ditional Transmission Capacity for Scenarios 2, 3, 4 and 6	
	erface Upgrades Priority	
	y Findings	
	ERENCES	

APPENDIX A – SUMMARY OF MODELING CHANGES PROVIDED FOR AREA 11 (LIPA) APPENDIX B – SUB, MON AND CON FILES FOR SECURITY ANALYSIS APPENDIX C – DATA FILES FOR INTERMEDIATE YEAR TRANSFER LIMIT ANALYSIS

APPENDIX D – MUST OUTPUT FOR CROSS-STATE INTERFACES

APPENDIX E – MUST OUTPUT FOR INTER-AREA INTERFACES

APPENDIX F – NOTES ON PJM EAST – NY EAST INTERFACE

APPENDIX G – PV CURVES FOR VOLTAGE TRANSFER ANALYSIS

APPENDIX H – REVERSE TRANSFER LIMITS

APPENDIX I – GRIDVIEW BENCHMARKING

APPENDIX J – REPRESENTATION OF EXTERNAL AREAS IN GRIDVIEW

APPENDIX K – RENEWABLE ENERGY IN INTERMEDIATE YEAR REFERENCE CASE

APPENDIX L – NEW WIND CAPACITY CALCULATION

APPENDIX M – NEW GENERATION CALCULATION

1 INTRODUCTION

The New York Strategic Transmission Assessment and Reliability Study Working Group⁵ (STARS WG) commissioned a Long Term Transmission Planning study for the New York State's electric transmission system. During this study, several issues such as reliability, economical alternatives, political and regulatory initiatives, integration of renewable resources were taken into consideration. The results from this analysis are intended for developing a coordinated and well planned transmission system expansion as well as investments to be made by individual New York Transmission Owners (NYTOs) to meet the overall NYCA reliability requirements over the next 20 years.

During the vertically integrated utility structure, the location of new generation sites was fairly well defined and transmission was planned to bring the power from generation plants to load centers. Also, the transmission capability was built on the basis of deterministic planning criteria (most familiar n-1 and others) under the most plausible transmission stress (i.e. generation dispatch) conditions. However, the deregulation and the open market operation have changed these two fundamental assumptions of transmission planning.

One of the big challenges of long-range transmission planning in the open market arena is the great uncertainty of the location of new generation plant/unit, its size, type etc.

Recognizing this aspect, as well as meet various regulatory requirements (State and Federal), New York Independent System Operator (NYISO) has two processes in place;

- i) Comprehensive Reliability Planning Process (CRPP)
- ii) Congestion Analysis and Resource Integration Study (CARIS).

The CRPP is a long-range (10-year planning horizon) reliability assessment of both resource adequacy and transmission security of the bulk power system in the State of New York. The Comprehensive System Planning Process (CSPP) encompasses the existing CRPP (technical) as well as the Congestion Analysis and Resource Integration Study (CARIS) for economic aspects. Based on the CRPP, an annual Reliability Needs Assessment (RNA) is undertaken by NYISO. The latest completed RNA (in early 2009) was for identifying and meeting the future reliability requirements, up to the year 2018.

However, identifying the most economical and effective solutions requires a much longer view (time horizon), especially for a mature power system such as the one that exists in the State of New York. A long-term view for transmission planning is necessary to:

⁵ Central Hudson Gas & Electric Corporation ("Central Hudson"), Consolidated Edison Company Of New York, Inc. ("Con Edison"), Long Island Power Authority ("LIPA"), National Grid ("National Grid"), New York Power Authority ("NYPA"), New York State Electric And Gas Corporation ("NYSEG"), Orange & Rockland Utilities, Inc. ("O&R") and Rochester Gas & Electric Corporation ("RGE")

- i) evaluate whether a new transmission voltage or technology is necessary and economical
- ii) incorporate the need to replace aging infrastructure (transmission lines and substations)
- iii) address various limited rights-of-way and sitting issues
- iv) consider effective integration of renewable resources
- v) meet varying reliability needs across the NYCA system in a coordinated manner
- vi) consider emerging technological and regulatory issues, such as plug in electric vehicles, under a reasonable number of potential future scenarios

The above six factors are overlapping in nature. For example a new transmission voltage requirement may be due to the new generation proposed at a specific location, or a combination with an aging transmission line requiring replacement and/or limited right-of-way. Considering all these factors at the same time will expand the possibilities to a large number alternatives and options. As the number of alternatives increase, the amount of effort for analyses increases substantially. Further, the results obtained may complicate the identification of prudent transmission alternatives. Hence, STARS WG divided this study into three phases:

- 1 **Phase I** Identify the need for additional transfer capability to meet state-wide LOLE (as is transmission system).
- 2 **Phase II** Identify the most suitable and cost effective transmission alternatives to meet the previously determined additional transfer capability
- 3 **Phase III** Perform sensitivity analyses and assessments

A conceptual view of this study is shown in Figure 1-1.

This report presents the analyses and results of Phase-I only. Study Approach and basic assumptions are described in Section 2. Then the remaining sections are divided into two parts. In the first part the power flow models, emergency transfer limit calculations and security analysis results are discussed. In the second part, the capacity models, LOLE calculations and the Transfer Capability Needs for meeting the NYCA Reliability Criterion of 0.1day/yr are presented. The Phase-I study results are summarized and presented at the front of this report.

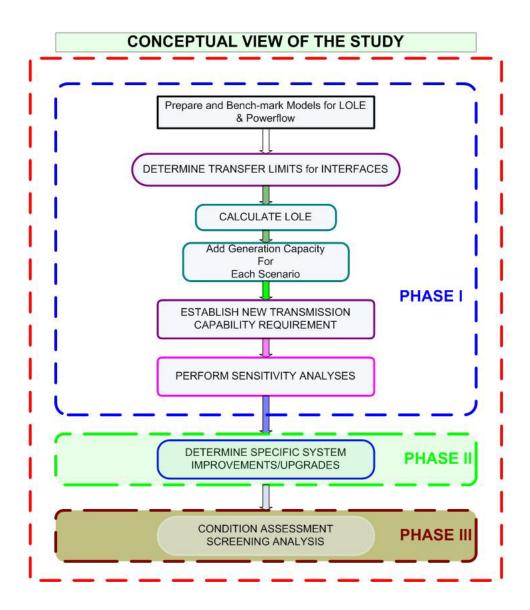


Figure 1-1: Three Phases of the Study

2 STUDY APPROACH

Adequacy (Reliability) is the ability of an electric system to supply and deliver the total quantity of electricity demand at any given time taking into account scheduled and unscheduled outages of system elements. Adequacy considers the transmission systems, generation resources and other capacity resources, such as demand response. Adequacy assessments are performed on a probabilistic basis to capture the randomness of system element outages. A system is adequate if the probability of not having sufficient transmission and generation to meet expected demand is better (equal to or less) than the reliability criterion or target. The reliability criterion or metric used is Loss of Load Expectation (LOLE). The New York State bulk electricity system is planned to meet an LOLE of one day in 10 years or 0.1 days per year. Thus, the main study methodology is to determine whether the future system meets this reliability target and if not what is required from transmission point of view.

In order to span a sufficiently long time horizon, this study looks at approximately twenty years ahead called **Horizon Year** for planning purposes. Depending upon the load forecast used and its attendant assumptions, the time horizon is about 2028 – 2030 range; earlier timing for a higher load growth (plug-in electrical vehicles as an example) and later timing for a slower load growth (Aggressive Energy Conservation and Efficiency Programs, Distributed Generation etc.).

At the same time, it is also important to address the needs in the near term and coordinate both the long term and near term needs. Hence, the study also addresses the needs for the **Intermediate Year** (next ten year period of about 2018-2020 range), with the same load growth caveat. A very good example of a coordinated implementation of a transmission project is building an overhead line for a higher voltage level (a very efficient utilization of right-of-way), but operating at a lower voltage level until the substation upgrade is needed so that the corresponding investment is deferred.

One of the most difficult issues, for long-range transmission planning under open market conditions, is the great uncertainty associated with new generation plants/units, including location, size, type etc. If a new transmission project is built⁶ and the new generation does not materialize at the location or in its anticipated size (or capacity); then the new transmission becomes a stranded or under utilized asset. In the case of reverse situation, the transmission becomes limiting, there by affecting the reliability and economics (congestion) of the power system.

The most practical approach for this type of situation is to postulate various Scenarios and determine a range of solutions or projects. Even though the Scenario approach increases the amount of effort required for the analyses considerably; using carefully considered Scenarios combined with appropriate

⁶ This includes uprating, upgrading and/or undersizing and over-sizing of transmission additions.

sensitivity evaluations will assist in decision making. A primary advantage of the Scenario approach is its ability to clarify which new projects are:

- i) essential or must-build
- ii) suitable for most Scenarios if not all
- iii) suitable for specific Scenarios
- iv) encompass a range between the most suitable to the least.

The goal is to making this type of classification at the end of Phase-III effort.

The STARS-WG formulated four Scenarios, as a "mix and match" of Regional and Statewide Generation coupled with Low and High Import possibilities, as shown in Figure 2-1. Thus, the four Scenarios (#1 thru' #4) span a wide range of all possibilities of future generation development and thus define "book-end" possibilities as defined in Table 2-1. Further, the New York State Renewable Portfolio Standards (RPS) requires 25% of the energy to be supplied from Renewable Resources. In Scenarios #2 and #4, the import from Hydro-Qubec is 25% or more and this mainly being a hydro generation is a renewable resource. The remaining two Scenarios #1 and #2 have been modified to define Scenarios #5 & #6 by explicitly including Renewables, assumed to mainly consist of Wind Generation, for the purposes of this Study.

2.1 Load Levels

The coincident and non-coincident peak loads and energy assumptions for the Intermediate and Horizon Years are shown in Table 2-2. NYCA coincident peak demand is 37,130 MW⁷ shown in Table 2-2 for the Intermediate Year. Also, this load level approximately corresponds to the econometric load forecast of 37,784 MW mentioned in Table 4-9 of the 2009 RNA Report. For the horizon year, the zonal and NYCA demands are based on the average annualized 10 year long term growth rate in the study scope document. The coincident system peak load level for the horizon year is 40,816 MW as shown in Table 2-2.

⁷ Table I-2c, 2008 Load and Capacity Report - Gold Book

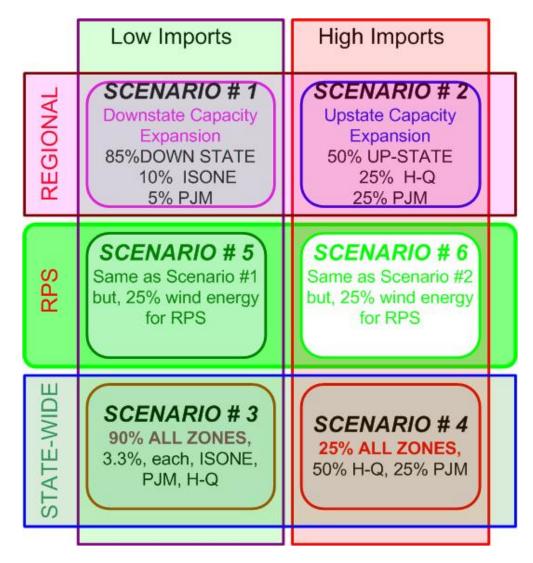


Figure 2-1: Depiction of Six Scenarios

	Euturo Consoity Soonaria	Internally Logated Canacity	Externally Logated	Logation of Extornally
	Future Capacity Scenario	Internally Located Capacity	-	Location of Externally
		<i>,</i> , , , , , , , , , , , , , , , , , ,	Capacity Imports(as	Located Capacity Imports
		(as percentage of	percentage of incremental	(as percentage of
		incremental capacity	capacity requirement)	incremental capacity
		requirement)		requirement)
1		85%	15%	10% ISONE (Zone K)
	Downstate Capacity	Zones H-K		5% PJM (Zone J)
2		50%	50%	25% PJM (Zones A/C)
	Upstate Capacity	Zones A-F		25% HQ (Zone D)
3		90%	10%	3.3% ISONE (Zone F/G)
	Statewide Capacity -Low	Zones A-K		3.3% PJM (Zone J)
	Imports			3.3% HQ (Zone D)
	·			
4		25%	75%	25% PJM (Zones I/J/K)
	Statewide Capacity - High	Zones A-K	10,0	50% HQ (Zones D)
	Imports			00,0 mg (20100 2)
	S	cenarios With Wind Resourc	ces for 25% Energy	
5	Downstate Capacity	85%	15%	10% ISONE (Zone K)
Ŭ	Renewables located	Zones H-K	10,0	5% PJM (Zone J)
	downstate	20100111		
6	Upstate Capacity	50%	50%	25% PJM
Ŭ	50% of renewable capacity	Zones A-F	50 /0	25% HQ
		ZUNES A-F		20/01102
	located upstate; 50%			
	external			

Table 2-1: Capacity Expansion Scenarios

	Inte	ermediate Ye	ear	Horizon Year				
Zone	Non Coincident coincident peak (MW) Peak (MW)		Annual Energy (G Wh)	Coincident peak (MW)	Non coincident Peak (MW)	Annual Energy (GWh)		
А	2,875	2,960	17,404	3,123	3,215	18,904		
В	2,139	2,210	11,155	2,365	2,444	12,334		
С	3,090	3,157	18,260	3,323	3,395	19,638		
D	895	973	7,499	971	1,056	8,137		
E	1,486	1,544	8,601	1,600	1,662	9,259		
F	2,566	2,627	13,292	2,868	2,937	14,858		
G	2,627	2,655	12,327	2,948	2,980	13,834		
Н	707	738	3,066	782	816	3,390		
I	1,645	1,664	6,998	1,753	1,774	7,459		
J	13,085	13,086	62,979	14,326	14,327	68,951		
K	6,015	6,095	25,981	6,757	6,847	29,186		
NYCA	37,130		187,562	40,816		205,949		

Table 2-2: NYISO Zonal Load Levels

2.2 Generation Capacity

The capacity value in the 2009 RNA study (Table 3-7) for the Intermediate Year is 40,452MW. With 2,084 MW of Special Case Resources (SCR), the total resources available would be 42,536MW. The zonal breakdown at the system peak is shown in Table 2-3.

Zone	Capability (MW) at Peak	SCR&EOP (MW)	l otal Resources (MW)
Α	4,664	503	5,167
В	733	210	943
С	6,774	221	6,995
D	1,685	144	1,829
E	955	104	1,059
F	3,804	204	4,008
G	2,934	130	3,064
Н	2,116	10	2,126
I	1	100	101
J	9,206	1,098	10,304
K	6,598	417	7,015

Table 2-3: Zonal Capacity for Intermediate Year

The NYCA installed capacity for the Horizon Year was calculated with Installed Reserve Margin (IRM) of 16.5%. In Table 2-4, the NYCA installed capacity and new capacity addition requirements are summarized for the first four Scenarios (#1 thru' #4). Individual zonal capacity additions are described in the next section.

Table 2-4: NYCA Capacity Requirement for the Horizon Year (Scenarios 1 to 4)

	MW
System Peak	40,816
IRM of 16.5% of System Peak	6,735
Load + Reserve	47,551
SCR	2,084
Total Resources	45,467
Year 2018 Capacity	40,452
New Capacity Requirement	5,015

Scenarios #5 & #6 explicitly include Renewables, assumed to mainly consist of Wind Generation, for the purposes of this Study. The total new capacity required with wind is calculated on the basis of the following assumptions:

1. The effective reserve margin of 16.5% is same as that used for other Scenarios.

- 2. Twenty-five percent (25%) of the additional energy (18,387 GWh) required for the load growth is met by new wind resources.
- 3. Also, make-up of 2,511GWh from wind resource and other renewables in the Intermediate Year is necessary.
- 4. Hence, the total additional renewable energy requirement is 7,108GWh.
- 5. The wind profiles for the terrestrial and off-shore wind generation are assumed to have 26.8% and 34.4% capacity factor, respectively.
- 6. The Capacity Credits for new terrestrial and off-shore wind generation are assumed to be 10% and 30% respectively (to be consistent with Tariff definitions).

The new generation capacity requirements are 6,828MW (for Scenario #5) and 7,740MW (Scenario #6). Scenario#5 has mostly off-shore wind development with higher capacity factor as compared Scenario#6 which has mostly land based wind parks.

2.3 New Generation for Six Scenarios for Horizon Year

The new capacity requirement of 5015MW for the first four Scenarios (#1 thru' #4) was allocated according to the Scenario definition in Table 2-1. Further, the additional generation was allocated to each zone in proportion to the zonal load. Generic 250MW units with 6% forced outage rate (FOR) are assumed for the new generation, unless only smaller amounts are indicated. The new generation units assumed for the four Scenarios are shown in Table 2-5.

For Scenarios #5 and #6, with substantial wind generation, the new conventional generation units (250MW size) and the wind generation allocation by zones are shown in Table 2-6.

2.4 Capacity and Energy Models:

The Capacity (Reliability) Models used to calculate Loss of Load Expectation (LOLE) identify the necessary "**Reliability Based Need**" to meet the NYCA's Loss of Load Expectation (LOLE) Criterion of 0.1day/year. Whereas the Energy Models identify the necessary "**Economic Based Need**" for achieving a low cost generation dispatch. The main differences in two different types of models used for these two types of studies are summarized in Table 2-7.

This Phase-I study pertains to the Capacity/Reliability Based transmission needs only.

		EXTERNAL - FIRM PURCHASE								
	85% OF REQUIREMENT (MW) 4,263					15% OF REQUIETREMENT (MW			752	752
		LOAD	NEW GEN	Units	MW					
SCENARIO-1	ZONE-H	782	141	1	250	10%	ISONE	ZONE-K	500	500
(85%DOWN	ZONE-I	1.753	316	1	250	5%	PJM	ZONE-J	265	265
STATE, 15%	ZONE-J	14,326	2,586	10	2,500					
EXTERNAL)	ZONE-K	6,757	1,220	5	1,250					
,	ZONES-TOTAL	23,618	4,263	17	4,250					765
	TOTAL NEW CAPACITY		4,250		.,			TOTAL	765	
			-,							
	50% OF REQRM	ЛТ	2,508		2,508	50	% OF RF	QRMNT	2.507	2,507
		LOAD	NEW GEN	Units	 MW				2,001	2,007
	ZONE-A	3,123	550	2	500	25%	РЈМ	ZONES-A&C	1,255	1,255
	ZONE-B	2,365	416	2	500	25%	-	ZONE-D	1,255	1,255
SCENARIO-2	ZONE-C	3,323	585	2	500	25%		ZONE-D	1,200	1,200
(50% UPSTATE,		<u>3,323</u> 971		2				<u> </u>		
50% EXTERNAL)	ZONE-D ZONE-E	1.600	171 282	1	250 250			┥───┤		
	ZONE-E ZONE-F	2,868	<u>282</u> 505	1	250			┥───┤		
	ZONE-F ZONES-TOTAL			2 10	2.500					0.545
	TOTAL NEW CAPACITY	14,250	2,509 2,500	10	2,500			TOTAL	0.545	2,515
	TOTAL NEW CAPACITY		2,500					TUTAL	2,515	
	90% OF REQRM		4,514		4,514	10	% OF RE	QRMNT	501	501
		LOAD	NEW GEN	Units	MW					
	ZONE-A	3,123	345	2	500		ISONE	ZONES-F&G	170	170
	ZONE-B	2,365	262	1	250		PJM	ZONE-J	170	170
	ZONE-C	3,323	368	2	500	3.3%	HQ	ZONE-D	175	175
SCENARIO-3	ZONE-D	971	107	0	-					
(90% ALL	ZONE-E	1,600	177	1	250					
ZONES,	ZONE-F	2,868	317	1	250					
10% EXTERNAL	ZONE-G	2,948	326	1	250					
LOW IMPORT)	ZONE-H	782	86	0	-					
	ZONE-I	1,753	194	1	250					
	ZONE-J	14,326	1,584	6	1,500					
	ZONE-K	6,757	747	3	750					
	ZONES-TOTAL	40,816	4,513	18	4,500					515
	TOTAL NEW CAPACITY		4,500					TOTAL	515	
	25% OF REQRM	T	1,254		1,254	75	75% OF REQRMNT		3,761	
		LOAD	NEW GEN	Units	MW					
	ZONE-A	3,123	96	1	250	25%	PJM	ZONE-I/J/K	1,255	1,255
	ZONE-B	2,365	73	0	-	50%	HQ	ZONE-D	2,510	2,510
	ZONE-C	3,323	102	1	250					
SCENARIO-4	ZONE-D	971	30	0	-					
(25% ALL	ZONE-E	1,600	49	0	-					
ZONES,	ZONE-F	2,868	88	0	-					
75% EXTERNAL	ZONE-G	2,948	91	0	-					
	ZONE-H	782	24	0	-					
	ZONE-I	1,753	54	0	-		1			
	ZONE-J	14,326	440	2	500		1			
	ZONE-K	6,757	208	1	250					
	ZONES-TOTAL	40,816	1,255	5	1,250		1	1		3765
	TOTAL NEW CAPACITY	.,	1,250	5	.,_00	-		TOTAL	3,765	0.00

Table 2-5: New Generation Capacity for Scenarios #1 through #4

			INTERNA	_					EXTERNAL - F	IRM PUR	CHASE	
SCENARIO-5	85% OF REQUIRE	MENT (MW	3,714	2,090		3,714	15% OF	REQUIR	EMENT (MW)	1,024	369	655
(85%DOWN				RENEW	CONVEN	TIONAL					RENEW	CONVENTI
STATE, 15%		LOAD	NEW GEN		Units	MW						
EXTERNAL)	ZONE-H	782	123	-	1	250	10%	ISONE	ZONE-K	683	240	443
	ZONE-I	1,753	276		1	250	5%	PJM	ZONE-J	341	129	212
	ZONE-J	14,326	2,253	1,400	8	2,210						
	ZONE-K	6,757	1,063	700	4	1,000						
	ZONES-TOTAL	23,618	3,715	2,100	14	3,710					369	655
	TOTAL NEW CAP	ACITY	5,810						TOTAL	1,024		
SCENARIO-6	50% OF REG	RMNT	3,870	1,514		2,356	50%	OF REQI	JIREMENT	3,870	1,514	2,356
(50% UPSTATE,				RENEW	CONVEN	TIONAL						
50% EXTERNAL)		LOAD	NEW GEN		Units	MW					RENEW	CNVNTNL
100% GROWTH	ZONE-A	3,123	848	332	2	500	25%	PJM	ZONES-A&C	1,935	757	1,178
ENERGY FROM	ZONE-B	2,365	642	251	2	500	25%	HQ	ZONE-D	1,935	757	1,178
RENEWABLES	ZONE-C	3,323	902	353	2	500						
	ZONE-D	971	264	103	1	106						
	ZONE-E	1,600	435	170	1	250						
	ZONE-F	2,868	779	305	2	500						
	ZONES-TOTAL	14,250	3,870	1,514	10	2,356					1,514	2,356
	TOTAL NEW CAP	ACITY	3,870						TOTAL	3,870		

Table 2-6: New Generation Capacity for Scenarios #5 and #6

Table 2-7: Important Differences between Capacity and Energy Models

Important Differences between Capacity and Energy Models								
	Capacity or Reliability	Energy or Production Cost						
Index	LOLE, EENS	MWh generation, LMP						
Model	Capacity	Energy						
8760 hours/yr	Yes	Yes						
Generation Maintenance	Yes	Yes						
Generating Unit Contingencies	Yes - Random	Yes - Random						
Unit Commitment	No	Yes - SCUC/Merit Order						
Economic Dispatch	No	Yes - SCED						
Individual Branch Contingencies	No	Yes						
Branch Ratings	STE	LTE for OHL, STE for UG						
Interface Transfer Limits	Emergency Transfers, Both Thermal & Voltage Based. No Tower & Stuck Breaker Contingencies	All Design Contingencies						
Notes:								
1. LOLE Loss of Load Expectat								
2. EENS Expected Energy Not								
3. SCUC Security Constrained								
	4. SCED Security Constrained Economic Dispatch							
5. STE Short Term Emergency Loading Limit								
6. LTE Long Term Emergency Loading Limit								
7. OHL Overhead Transmission Line								
8. UG Underground Cables								

The remaining Sections of this report are grouped into two parts followed by conclusions:

- 1. Part-I EMERGENCY TRANSFER LIMIT CALCULATIONS
- 2. Part-II LOLE CALCULATIONS

PART I – POWER FLOW ANALYSIS

3 DEVELOPMENT OF POWER FLOW MODELS

This section summarizes the steps taken to update the power flow model of New York State Transmission System. Power flow models were developed for summer peak load conditions for two specific study years: the Intermediate Year and the Horizon Year.

The starting point for the power flow analysis is a power flow model of the existing New York State transmission system for the year 2018⁸ provided by the New York Independent System Operator (NYISO). In this power flow model, for 2018 summer peak load conditions, the New York Control Area (NYCA) load plus losses is 37,449 MW. Energy efficiency or emergency demand response programs are not modeled in this case.

Table 3-1 summarizes NYCA generation, load and losses in the above-mentioned power flow model.

ZONES	DESCRIPTION	GENERATION	DEMAND (MW)				
		(MW)	LOAD	LOSSES	LOAD+ LOSSES		
А	WEST	4820.2	2807.9	79.8	2887.7		
В	GENESEE	760.8	2083.7	77.7	2161.4		
С	CENTRAL	6332.2	3081.8	188.7	3270.5		
D	NORTH	1182.6	873.4	20.3	893.7		
E	MOHAWK VAL.	725.4	1294.9	186.8	1481.7		
F	CAPITAL	4056.6	2460.4	107.2	2567.6		
G	HUDSON VAL.	2716.5	2596.7	129.0	2725.7		
Н	MILLWOOD	2175.4	707	52.3	759.3		
I	DUNWOODIE	3.0	1604.5	50.3	1654.8		
J	NYC	7496.8	12851	152.3	13003.3		
K	LI	4627.3	5964.2	79.0	6043.2		
NY	′CA TOTALS	34896.8	36325.5	1123.4	37448.9		

 Table 3-1: NYISO Power Flow Case (Case sum18tr2-gb-bal-rev1-rev30)

3.1 Model Update for the Intermediate Year

The power flow model described in the above section was updated as follows:

1. Several transmission changes were made in the LIPA system (area 11) based on input from LIPA. See Appendix A for a summary of these changes.

2. Loads in the individual NYCA zones (areas 1 through 11) were scaled such that the zonal demands (i.e., load + losses) match the corresponding summer peak values in

⁸ Siemens-PTI PSS/E 30 raw data file "sum18tr2-gb-bal-rev1-v30" provided by NYISO on March 11, 2009. Case title:

²⁰⁰⁹ CRPP 2018 GEN BALANCED CASE FROM 2008 FERC 2018 CASE

²⁰¹⁸ SUMMER GB LOAD, WITH TO CRP FIRM PLANS

Table I-2A of the 2008 Gold Book. Total NYCA Load + Losses = 37,130 MW. Area interchanges were not changed⁹.

- 3. The MVAr outputs of the Fraser and Leeds SVCs and the Marcy STATCOM are set to near zero.
- 4. The case was solved with phase angle regulators, switched shunts, LTC transformers and area interchange enabled.

Table 3-2 summarizes NYCA generation, load and losses in the updated power flow model.

ZONES	DESCRIPTION	GENERATION	DEMAND (MW)				
		(MW)	LOAD	LOSSES	LOAD+		
					LOSSES		
А	WEST	4808.0	2795.8	79.2	2875.0		
В	GENESEE	738.3	2062.8	76.1	2138.9		
С	CENTRAL	6152.5	2908.8	181.2	3090.0		
D	NORTH	1184.1	874.7	20.3	895.0		
E	MOHAWK VAL.	730.5	1297.5	188.3	1485.8		
F	CAPITAL	4055.1	2458	107.8	2565.8		
G	HUDSON VAL.	2618.3	2499	127.9	2626.9		
Н	MILLWOOD	2125.3	656.4	50.9	707.3		
	DUNWOODIE	3.0	1595.1	50.2	1645.3		
J	NYC	7578.3	12930.7	154.0	13084.7		
K	LI	4598.6	5934.4	80.6	6015.0		
NY	′CA TOTALS	34592.0	36013.2	1116.5	37129.7		

Table 3-2: Updated Summer Peak Power Flow Case for the Intermediate Year (Case sum18tr2-gb-bal-rev1-rev30-abb-v3)

3.2 Model Update for the Horizon Year

Power flow models for summer peak load conditions in the Horizon Year were developed on the basis of the intermediate year summer peak load case (sum18tr2-gb-bal-rev1-rev30-abb-v3.sav) as described in Section 2 of this report. Power flow cases were developed for six capacity expansion Scenarios as defined in Table 2-5 and Table 2-6Table 2-6).

⁹ It should be noted that the resultant load in Zone I (Dunwoodie) in Table 3-2 is 9.4 MW lower than in Table 3-1; this difference should be taken up by slack generator in that zone in order to keep the area interchange unchanged. However, there is no slack generator in Zone I. As a result, the "actual" area interchange value of Zone I has to change in order to reflect the load changes. The dispatch of existing unit in that Zone remains unchanged.

3.2.1 General Steps for Power Flow Model Development

The following sections summarize the steps taken to develop the six power flow cases.

Tables 2-5 and 2-6 show the required generation capacity inside & outside NYCA for Scenarios 1 to 6.

The generator size for conventional units is chosen as 250 MW inside NYCA assuming a typical power factor of ± 0.90 (lagging and leading). Wind generators are modeled in multiples of 50 MW assuming a power factor of 0.95 leading and 0.90 lagging. The reactive power limits of the wind generators are adjusted based on their dispatch. Generators outside NYCA were chosen to meet the exact capacity requirement, hence they are not necessarily assumed to have a capacity of 250 MW. Nonetheless, 0.9 power factor was still assumed. Selected locations for the additional generation capacity are not based on any specific known plans. They were identified as representative bus locations within each zone.

The following assumptions were made when developing the individual power flow cases for the 6 Scenarios:

1) Loads in the individual NYCA zones (areas 1 through 11) were scaled such that the zonal demands (i.e., load + losses) match the corresponding summer peak Horizon Year values in Table 2-2. Total NYCA Load + Losses = 40,816 MW. Also, zonal losses as a percentage of the total demand in each zone are assumed to be the same as in the Intermediate Year. Losses are subtracted out from the demand prior to scaling. Constant power factor is assumed when scaling the loads.

2) New generators in each NYCA zone were dispatched so as to meet the load increase in that zone to the extent possible.

3) New generators in NYCA external areas were dispatched only if the internal zonal capacity (new units plus existing units in each zone and neighboring zones) is not able to meet the load increase.

4) Area interchange values were kept unchanged from the Intermediate Year case whenever possible.

5) Existing units were re-dispatched when slack bus generation in each zone exceeded PMAX.

6) Existing capacitors were maximized in the vicinity of the POI (Point of Interconnection) and SVC/STATCOMs

7) The MVAr outputs of the Fraser and Leeds SVCs and the Marcy STATCOM are set to near zero.

8) Per National Grid, the Warren-Falconer 115 kV line rating has been updated as follows:

Summer Rating (Normal/4 hour/15 minute, 35 degree C, in MVA): 220/252/280

9) Cases were solved with phase angle regulators, switched shunts, LTC transformers and area interchange enabled.

In addition, the following updates were performed on all Scenarios to reflect NYPA comments dated 06/12/2009:

10) Parameters of four Gilboa units were updated

11) Willis-Patnode-Duley-Plat & Willis-Ryan-Plat line summer ratings in the North Country were updated

12) Ratings of Niagara 230/115kV transformer AT2 were updated

13) The voltage levels of fake SW buses:101, 102, 105-111, 114-121, 150, 154-158 were updated

14) The units at Beaver Falls (Bus#136823 & #136824) were dispatched to the full capacity of 80MW

Additional updates were preformed to reflect TOs' comments dated 07/29/2009:

15) Per Con Edison, additional area station capacitor banks were added at the Corona 1, Corona 2, and Rockview stations. They were applied to all Scenarios.

16) Per NYPA, the reactive power limits of several existing wind farms were not realistic in relation to their active power dispatch. The reactive limits were updated to reflect the portion of running units with 0.9 power factor.

17) Per National Grid, the initially proposed new thermal unit(s) at Clay #136150 was moved to Scriba #136155 to reflect the proposals from interconnection queue during the study time. This is applicable to Scenarios 2, 3, 4, and 6.

18) Per National Grid, in Scenario6, the initially proposed wind farms, at Indian River #136776, Valley #137246, and Boonville#137221, were moved to Lyme Tap #136816 to reflect the wind interconnection queue. Similarly, wind farm at Dunkirk #135250 was moved to Falconer #135277.

3.2.2 Power Flow Model Development for Horizon Year Scenario 1 (85% NYCA Down State, 15% External)

The tables below show the proposed generator connection points which incorporate suggestions from Con Edison, LIPA and National Grid.

Zone#	Zone Name	Bus#	Bus Name	kV	Units	PMAX (MW)
Н	MILLWOOD	126262	BUCHANAN N	345	1	250
I	DUNWOODIE	126292	PL VILLE	345	1	250
1	J NYC	(Note 1)	E 13TH ST	345	6	1,500
J		(Note 2)	W 49TH ST	345	4	1,000
к	LI	129361	RULAND	138	3	750
r.	LI	129421	HOLLBROOK	138	2	500
		17	4,250			

S
S

Note:

(1) Con Edison indicated that no physical space is available to connect the new generators directly to the East 13th Street 345kV buses. The suggested approach was to model the units with a generator lead(s). As a result, a new bus (#126317) was created which connects the new units with GSUs and East 13th Street 345kV bus with cables.

(2) Con Edison indicated that no physical space is available to connect the new generators directly to the West 49th Street 345kV buses. The suggested approach was to model the units with a generator lead(s). As a result, a new bus (#126474) was created which connects the new units with GSUs and West 49th Street 345kV bus with cables.

Area	Bus#	Bus Name	kV	Units	PMAX (MW)
ISO-NE	100656	NEW HAVN	345	2	500
PJM (PSEG)	4989	1	265		
	тот	3	765		

The following general steps were taken to develop the Scenario 1 case:

- 1) No new capacity is proposed in upstate Zones A to G. To meet the upstate zonal load increase, the primary rule is to scale the existing units together with imports from neighboring zones.
- 2) Zone B (Genesee) does not have any new capacity added and reserve from existing units was not sufficient to meet the zonal load increase. The increase in demand is supplied by importing power from Zone A (West). The area interchange values of both areas were adjusted accordingly.
- 3) Zones D (North) and E (Mohawk Valley) do not have any new capacity added and reserve from existing units was not sufficient to meet the zonal load increase. The

increase in demand is supplied by importing power from Zone C (Central)¹⁰. The area interchange values of these areas were adjusted accordingly.

4) Per Con Edison, base case overloads were fixed as noted in the Con Edison system.

Table 3-5 summarizes the load and losses in the Horizon Year Summer Peak Scenario 1 case.

ZONES		GEN.	PROPOSED	HORIZO	DIFF		
ZUNES	NAME	MW	DEMAND (MW)	LOAD	LOSSES	LOAD+ LOSSES	MW
Α	WEST	5286.5	3123.0	3028.4	94.6	3123.0	0.0
В	GENESEE	734.6	2365.0	2271.8	93.3	2365.1	0.1
С	CENTRAL	6581.4	3323.0	3118.6	204.4	3323.0	0.0
D	NORTH	1184.0	971.0	947.6	23.4	971.0	0.0
E	MOHAWK VL	726.8	1600.0	1406.6	193.5	1600.1	0.1
F	CAPITAL	4355.7	2868.0	2743.3	124.8	2868.1	0.1
G	HUDSON VL	2938.0	2948.0	2812.7	135.3	2948.0	0.0
Н	MILLWOOD	2198.1	782.0	728.1	53.9	782.0	0.0
	DUNWOODIE	111.0	1753.0	1700.0	53.0	1753.0	0.0
J	NYC	8819.4	14326.0	14144.8	181.4	14326.2	0.2
K	LI	5341.1	6757.0	6659.0	97.9	6756.9	-0.1
NYC	A TOTALS	38276.6	40816.0	39560.9	1255.5	40816.4	0.4

 Table 3-5: Load & Losses for Horizon Year Summer Peak Scenario 1 Case

3.2.3 Power Flow Model Development for Horizon Year Scenario 2 (50% NYCA Up State, 50% External)

The tables below show the proposed generator connection points for this generation expansion Scenario.

Zone#	Zone Name	Bus#	Bus Name	kV	Units	PMAX (MW)
Α	WEST	130754	KINTI345	345	1	250
A	VESI	135250	DUNKIRK	230	1	250
В	GENESEE	149000	ROCHESTER	345	2	500
С	CENTRAL	136155	SCRIBA	345	2	500
D	NORTH	147837	MASS230A	230	1	250
Е	MOHAWK VL	137200	EDIC	345	1	250
F	CAPITAL	137455	ATHENS	345	2	500
		10	2,500			

Table 3-6: Scenario 2: NYCA New Generator Connection Points

¹⁰ This assumes that the Hydro Quebec to Zone D interface is loaded at its firm 1200 MW limit. There is an additional 300 MW of emergency assistance capability on this interface that was not modeled.

Area	Bus#	Bus Name	kV	Units	PMAX (MW)
PJM	200769	HOMER CY	345	4	1,000
(PENELEC)	200709	TOMERCI	545	1	255
				4	1,000
HQ	180819	CHA-NY	765	1	260
	ΤΟΤΑ	10	2,515		

Table 3-7: Scenario 2: External New Generator Connection Points

The following general steps were taken to develop the Scenario 2 case:

- 1) New capacity in Zones A to F is used to meet the zonal load increase.
- 2) Load growth in Zones G (Hudson Valley) and K (LIPA) was supplied by scaling the existing units since no new capacity was added.
- 3) Zones H (Millwood) and I (Dunwoodie) do not have any new capacity added and reserve from existing units was not sufficient to meet the load increase. As a result, the increase in demand is supplied by importing power from Zones F (Capital) and G (Hudson Valley). The area interchange values of these four areas were adjusted accordingly.
- Reserve from existing units was not sufficient in Zone J (NYC) to meet the demand. Thus one off-line unit was turned on (bus #126667 SCS18-G1 13.8kV) to provide about 140MW active power.
- 5) One fictitious switched capacitor of about 860MVAR was added at bus# 126277 FARRAGUT 345kV to get the case to converge. This has been reviewed by Con Edison.
- 6) Per Con Edison, base case overloads were fixed as noted in the Con Edison system. Since this is a Scenario for the Horizon Year without any new generation additions in Down State, steady state system without overloads was achieved with zero margin (A-B-C wheel had to be re-directed to 200-400-400 schedule).

 Table 3-8 summarizes the load and losses in the Horizon Year Summer Peak Scenario 2 case.

ZONES	NAME	GEN.	PROPOSED	HORIZON	DIFF		
ZUNES	NAME	MW	DEMAND (MW)	LOAD	LOSSES	LOAD+ LOSSES	MW
Α	WEST	5055.8	3123.0	3035.3	87.7	3123.0	0.0
В	GENESEE	964.4	2365.0	2277.3	87.8	2365.1	0.1
С	CENTRAL	6384.5	3323.0	3128.6	194.4	3323.0	0.0
D	NORTH	1260.0	971.0	947.6	23.4	971.0	0.0
Е	MOHAWK VL	843.7	1600.0	1402.9	197.1	1600.0	0.0
F	CAPITAL	4389.9	2868.0	2750.3	117.6	2867.9	-0.1
G	HUDSON VL	3038.8	2948.0	2808.5	139.5	2948.0	0.0
Н	MILLWOOD	2173.1	782.0	726.5	55.5	782.0	0.0
I	DUNWOODIE	3.0	1753.0	1699.3	53.9	1753.2	0.2
J	NYC	8819.4	14326.0	14139.5	186.6	14326.1	0.1
K	LI	5340.9	6757.0	6653.8	103.1	6756.9	-0.1
NYC	A TOTALS	38273.5	40816.0	39569.6	1246.6	40816.2	0.2

Table 3-8: Load & Losses for Horizon Year Summer Peak Scenario 2 Case

3.2.4 Power Flow Model Development for Horizon Year Scenario 3 (90% NYCA All Zones, 10% External Low Import)

The tables below show the proposed generator connection points for this generation expansion Scenario.

Zone#	Zone Name	Bus#	Bus Name	kV	Units	PMAX (MW)
А	WEST	130754	KINTI345	345	1	250
A	VEST	135250	DUNKIRK	230	1	250
В	GENESEE	149000	ROCHESTER	345	1	250
С	CENTRAL	136155	SCRIBA	345	2	500
D	NORTH	147837	MASS230A	230	0	-
E	MOHAWK	137200	EDIC	345	1	250
F	CAPITAL	137455	ATHENS	345	1	250
G	HUDSON V	125000	HURLEY 3	345	1	250
I	DUNWOODIE	126292	PL VILLE	345	1	250
J	NYC	(Note 1) in Table 3-3	E 13TH ST	345	4	1,000
J	NYC	(Note 2) in Table 3-3	W 49TH ST	345	2	500
к	LI	129361	RULAND	138	2	500
۲	LI	129421	HOLLBROOK	138	1	250
		18	4,500			

Table 3-9: Scenario	2. NVCA Now	Concreter (Connection Dointo
	J. INT CA NEW	Generator	

Area	Bus#	Bus Name	kV	Units	PMAX (MW)
ISO-NE	102926	NORTHFIELD	345	1	170
PJM	4989	HUDSON1	345	1	170
HQ	180819	CHA-NY	765	1	175
	Т	OTALS		3	515

 Table 3-10: Scenario 3: External New Generator Connection Points

The following general steps were taken to develop the power flow case:

- 1) In Scenario 3, Zone D (North) does not have any new capacity added. As a result, the zonal load increase of 76MW is supplied by importing power from area 104 (HQ). The area interchange values of both areas were adjusted accordingly.
- 2) Similarly Zone H (Millwood) does not have any new capacity added. The zonal load increase of 75MW is supplied from Zone G (Hudson Valley). Accordingly, the area interchange values of both areas were adjusted.
- 3) Per Con Edison, base case overloads were fixed as noted in the Con Edison system.

Switched capacitors were added at the following locations based on input from Con Edison to allow the case to converge.

BUS#	BUS NAME	KV	ZONE NAME	CAP SIZE
126354	YORK	13.8	NYC	20
126389	ROCKVIEW	13.8	DUNWOODIE	40
126607	CORONA 1	27.0	NYC	30
126608	CORONA 2	27.0	NYC	30
126627	PARKVIEW	13.8	NYC	20
126640	MOTTHAVN	13.8	NYC	40
126690	GRASSLND	13.8	DUNWOODIE	40
126717	CHERRY ST	13.8	NYC	20
126731	LEONARD ST 1	13.8	NYC	20
126732	LEONARD ST 2	13.8	NYC	20
126882	GATEWAY	27.0	NYC	30

Table 3-11: Scenario 3: Added Capacitors for Case Convergence

Table 3-12 summarizes the load and losses in the Horizon Year Summer Peak Scenario 3 case.

ZONES	NAME	GEN.	PROPOSED	HORIZON	N YEAR SUN SCENARIO	MER PEAK 3	DIFF
ZUNES		MW	DEMAND (MW)	LOAD	LOSSES	LOAD+ LOSSES	MW
А	WEST	5056.1	3123.0	3035.6	87.6	3123.2	0.2
В	GENESEE	964.5	2365.0	2276.9	88.1	2365.0	0.0
С	CENTRAL	6385.3	3323.0	3128.5	194.3	3322.8	-0.2
D	NORTH	1181.9	971.0	947.2	23.8	971.0	0.0
E	MOHAWK VL	846.0	1600.0	1402.7	197.3	1600.0	0.0
F	CAPITAL	4355.5	2868.0	2750.3	117.6	2867.9	-0.1
G	HUDSON VL	2972.8	2948.0	2806.4	141.6	2948.0	0.0
Н	MILLWOOD	2162.9	782.0	727.7	54.2	781.9	-0.1
	DUNWOODIE	114.3	1753.0	1700.5	52.6	1753.1	0.1
J	NYC	8819.8	14326.0	14148.4	177.7	14326.1	0.1
K	LI	5341.2	6757.0	6659.1	97.9	6757.0	0.0
NYC	A TOTALS	38200.3	40816.0	39583.3	1232.7	40816.0	0.0

Table 3-12: Load & Losses for Horizon Year Summer Peak Scenario 3 Case

3.2.5 Power Flow Model Development for Horizon Year Scenario 4 (25% NYCA All Zones, 75% External High Imports)

The tables below show the proposed generator connection points for this generation expansion Scenario.

Zone#	Zone Name	Bus#	Bus Name	kV	Units	PMAX (MW)
Α	WEST	130754	KINTI345	345	1	250
В	GENESEE					
С	CENTRAL	136155	SCRIBA	345	1	250
D	NORTH					
E	MOHAWK VL					
F	CAPITAL					
G	HUDSON VL					
Н	MILLWOOD					
I	DUNWOODIE					
J	NYC	(Note 1) in Table 3-3	E 13TH ST	345	1	250
J	NIC	(Note 2) in Table 3-3	W 49TH ST	345	1	250
K	LI	129361	RULAND	138	1	250
		TOTALS			5	1,250

Table 3-13: Scenario 4: NYCA New Generator connection points

Area	Bus#	Bus Name	kV	Units	PMAX (MW)
	5054	ESSEX	230	3	750
PJM (PSEG)	4989		345	1	255
(1020)	4909	HUDSON1 34	545	1	250
HQ	180819	CHA-NY 765		9	2,250
	160619 CHA-NT		705	1	260
	ΤΟΤΑ	15	3,765		

Table 3-14: Scenario 4: External New Generator connection points

The following general steps were taken to develop the Scenario 4 case:

- Zone B (Genesee) does not have any new capacity added and reserve from existing units was not sufficient to supply the zonal load increase. As a result, the increase in demand is supplied by importing power from Zone A (West). The area interchange values of both areas were adjusted accordingly.
- 2) Zones D (North) and E (Mohawk Valley) do not have any new capacity added and reserve from existing units was not sufficient to meet the zonal load increases. As a result, the increase in demand is supplied by importing power from Zone C (Central)¹¹. The area interchange values of these areas were adjusted accordingly.
- 3) Zones H (Millwood) and I (Dunwoodie) do not have any new capacity added and reserve from existing units was not sufficient to meet the zonal load increase. The increase in demand is supplied by importing power from Zones F (Capital) and G (Hudson Valley). Accordingly, the area interchange values of these four areas were adjusted.
- 4) Per Con Edison, base case overloads were fixed as noted in the Con Edison system. Additional area station capacitor banks were added at the Corona 1, Corona 2, and Rockview stations.

Similar to Scenario 3, switched capacitors were added at the locations shown in Table 3-11 to facilitate case convergence.

Table 3-15 summarizes the load and losses in the Horizon Year Summer Peak Scenario 4 case.

¹¹ This assumes that the Hydro Quebec to Zone D interface is loaded at its firm 1200 MW limit. There is an additional 300 MW of emergency assistance capability on this interface that was not modeled.

		GEN.	PROPOSED	Horizon Year SP SCENARIO 4			DIFF
ZONES	NAME	MW	DEMAND (MW)	LOAD	LOSSES	LOAD+ LOSSES	MW
Α	WEST	5286.2	3123.0	3029.0	94.1	3123.1	0.1
В	GENESEE	734.5	2365.0	2273.7	91.2	2364.9	-0.1
С	CENTRAL	6585.7	3323.0	3119.1	203.7	3322.8	-0.2
D	NORTH	1184.0	971.0	947.6	23.4	971.0	0.0
E	MOHAWK VL	722.2	1600.0	1405.7	194.3	1600.0	0.0
F	CAPITAL	4388.4	2868.0	2742.2	125.8	2868.0	0.0
G	HUDSON VL	3037.6	2948.0	2810.3	137.8	2948.1	0.1
Н	MILLWOOD	2172.5	782.0	726.5	55.5	782.0	0.0
I	DUNWOODIE	3.0	1753.0	1700.1	52.9	1753.0	0.0
J	NYC	8820.2	14326.0	14142.3	183.6	14325.9	-0.1
K	LI	5341.2	6757.0	6655.1	101.9	6757.0	0.0
NYC	A TOTALS	38275.5	40816.0	39551.6	1264.2	40815.8	-0.2

Table 3-15: Load & Losses for Horizon Year Summer Peak Scenario 4 Case

3.2.6 Power Flow Model Development for Horizon Year Scenario 5 with Renewables

The tables below show the proposed generator connection points for this generation expansion Scenario (conventional & renewable generation, respectively).

Table 3-16: Scenario 5: NYCA New Generator connection points (Conventional)

Zone#	Zone Name	Bus#	Bus Name	kV	Units	PMAX (MW)
Н	MILLWOOD	126262	BUCHANAN N	345	1	250
I	DUNWOODIE	126292	PL VILLE	345	1	250
J	NYC	(Note 1) in Table 3-3	E 13TH ST E 13TH ST	345 345	4	1,000 210
		(Note 2) in Table 3-3	W 49TH ST	345	4	1,000
к	11	129361	RULAND	138	2	500
r.	LI	129421	HOLLBROOK	138	2	500
		TOTALS			15	3,710

Table 3-17: Scenario 5: External New Generator connection points (Conventional)

Area	Bus#	Bus Name	kV	Units	PMAX (MW)
ISO-NE	100656		345	1	250
130-INE	100050	NEW HAVN	345	1	193
PJM (PSEG)	4989	HUDSON1	345	1	212
	тот	3	655		

Zone#	Zone Name	Bus#	Bus Name	kV	Units	PMAX (MW)
Н	MILLWOOD					
I	DUNWOODIE					
J	NYC	126286	Gowanus	345	1	1400
K	LI	129403	Sterling Rd	138	1	700
	TOTALS					2,100

Table 3-18: Scenario 5: NYCA New Generator connection points (Renewable)

Table 3-19: Scenario 5: External New Generator connection points (Renewable)

Area	Bus#	Bus Name	kV	Units	PMAX (MW)
ISO-NE	100656	NEW HAVN	345	1	240
PJM (PSEG)	4989	HUDSON1	345	1	129
	тот	2	369		

The following general steps were taken to develop the Scenario 5 case:

- 1) No new capacity is proposed in upstate Zones A to G. To meet the upstate zonal load increase, the primary rule is to scale the existing units together with imports from neighboring zones.
- 2) Zone B (Genesee) does not have any new capacity added and reserve from existing units was not sufficient to meet the zonal load increase. The increase in demand is supplied by importing power from Zone A (West). The area interchange values of both areas were adjusted accordingly.
- 3) Zones D (North) and E (Mohawk Valley) do not have any new capacity added and reserve from existing units was not sufficient to meet the zonal load increase. The increase in demand is supplied by importing power from Zone C (Central)¹². The area interchange values of these areas were adjusted accordingly.
- 4) In Scenario 5, off-shore wind plants at zones J & K were modeled at 575V bus which is connected to a 34.5kV bus and then to the HV bus (Point Of Interconnection). The assumption is that the new wind units will be GE units. Typical parameters for the wind units and transformers were used. It is also assumed that the new wind units were dispatched at 34% of nameplate so that it lines up with the wind profiles used in GridView. In addition, the model for the Wind Farm interconnected at Gowanus 345kV station was updated to include a long 'generator' lead as per Con Edison.
- 5) Zone H (Millwood) does not have any new capacity added and reserve from existing units was not sufficient to meet the load increase. As a result, the increase in demand is supplied by importing power from Zone G (Hudson Valley). The area interchange values of these areas were adjusted accordingly.
- 6) Per Con Edison, additional area station capacitor banks were added at the Corona 1, Corona 2, and Rockview stations.

¹² This assumes that the Hydro Quebec to Zone D interface is loaded at its firm 1200 MW limit. There is an additional 300 MW of emergency assistance capability on this interface that was not modeled.

Table 3-20 summarizes the load and losses in the Horizon Year Summer Peak Scenario 5 case.

		GEN.	PROPOSED	Horizon	Year SP SC	ENARIO 5	DIFF
ZONES	NAME	MW	DEMAND (MW)	LOAD	LOSSES	LOAD+ LOSSES	MW
Α	WEST	5286.1	3123.0	3028.3	94.7	3123.0	0.0
В	GENESEE	734.6	2365.0	2271.6	93.5	2365.1	0.1
С	CENTRAL	6580.8	3323.0	3115.6	207.3	3322.9	-0.1
D	NORTH	1183.9	971.0	947.6	23.4	971.0	0.0
E	MOHAWK VL	723.4	1600.0	1399.7	200.2	1599.9	-0.1
F	CAPITAL	4357.0	2868.0	2739.5	128.5	2868.0	0.0
G	HUDSON VL	2938.5	2948.0	2809.8	138.1	2947.9	-0.1
н	MILLWOOD	2198.0	782.0	727.4	54.6	782.0	0.0
I	DUNWOODIE	111.0	1753.0	1699.5	53.4	1752.9	-0.1
J	NYC	8819.7	14326.0	14145.0	181.1	14326.1	0.1
K	LI	5341.1	6757.0	6659.8	97.2	6757.0	0.0
NYC	A TOTALS	38274.1	40816.0	39543.8	1272.0	40815.8	-0.2

Table 3-20: Load & Losses for Horizon Year Summer Peak Scenario 5 Case

3.2.7 Power Flow Model Development for Horizon Year Scenario 6 with Renewables

The tables below show the proposed generator connection points for this generation expansion Scenario (conventional & renewable generation, respectively).

Table 3-21: Scenario 6: NYCA New Generator connection points (Conventional)

Zone#	Zone Name	Bus#	Bus Name	kV	Units	PMAX (MW)
Α	WEST	130754	KINTI345	345	1	250
A	VEST	135250	DUNKIRK	230	1	250
В	GENESEE	149000	ROCHESTER	345	2	500
С	CENTRAL	136155	SCRIBA	345	2	500
D	NORTH	147837	MASS230A	230	1	106
E	MOHAWK	137200	EDIC	345	1	250
F	CAPITAL	137455	ATHENS	345	2	500
		TOTALS	5		10	2,356

Area	Bus#	Bus Name	kV	Units	PMAX (MW)
PJM	200769	HOMER CY	345	4	1,000
F JIVI				1	178
HQ	180819	CHA-NY	765	4	1,000
				1	178
	T	OTALS		10	2,356

Table 3-22: Scenario 6: External New Generator connection points (Conventional)

Table 3-23: Scenario 6: NYCA New Generator connection points (Renewables)

Zone#	Zone Name	Bus#	Bus Name	Kv	Units	PMAX (MW)
А	WEST	130756	Stole Road	345	1	132
A	WEST	135277	Falconer	115	1	200
В	GENESEE	135853	Batavia	115	1	126
D	GENESEE	135851	Shelby	115	1	125
		130764	Meyer	230	1	150
		130774	Bath	115	1	150
С	CENTRAL		Flat St.			
			(Prattsburgh			
		130803	Wind Farm)	115	1	53
		147846	Willis W	230	1	23
D	NORTH	147974	Ellenburg II	230	1	20
		131754	Mason Corner	115	1	60
E	MOHAWK	136816	Lyme	115	1	170
F	CAPITAL	137891	Marshville	115	1	305
		TOTALS			15	1,514

Table 3-24: Scenario 6: External New Generator connection points (Renewables)

Area	Bus#	Bus Name	kV	Units	PMAX (MW)
PJM	200769	HOMER CY	345	1	757
HQ	180819	CHA-NY	765	1	757
	Т	OTALS		2	1,514

The following general steps were taken to develop the power flow case:

1) New capacity in Zones A to F is used to meet the zonal load increase. Wind units were added and assumed to be 5% dispatch.

2) Load growth in Zones G (Hudson Valley) and K (LIPA) was supplied by scaling the existing units since no new capacity was added.

3) Zones H (Millwood) and I (Dunwoodie) do not have any new capacity added and reserve from existing units was not sufficient to meet the load increase. As a result, the increase in demand is supplied by importing power from Zones F (Capital) and G (Hudson Valley). The area interchange values of these four areas were adjusted accordingly.

4) Reserve from existing units was not sufficient in Zone J (NYC) to meet the demand. Thus one off-line unit was turned on (bus #126667 SCS18-G1 13.8kV) to provide about 170MW active power.

5) In Scenario 6, new on-shore wind farms were modeled at 575V bus which is connected to a 34.5kV bus and then to the HV bus (Point Of Interconnection). The assumption is that the new wind units will be GE units with typical parameters. It is also assumed that these units were dispatched at 5% of nameplate at the peak hour.

6) As in Scenario2, one fictitious switched capacitor of about 860MVAR was added at bus# 126277 FARRAGUT 345kV to get the case to converge.

7) Batch files were provided by Con Edison to fix overloads in Con Edison system.

Table 3-25 summarizes the load and losses in the Horizon Year Summer Peak Scenario 6 case.

		GEN.	PROPOSED	Horizon	Year SP SC	ENARIO 6	DIFF
ZONES	NAME	MW	DEMAND (MW)	LOAD	LOSSES	LOAD+ LOSSES	MW
А	WEST	5054.9	3123.0	3035.5	87.5	3123.0	0.0
В	GENESEE	964.4	2365.0	2277.0	88.0	2365.0	0.0
С	CENTRAL	6384.4	3323.0	3129.4	193.9	3323.3	0.3
D	NORTH	1259.7	971.0	948.1	22.9	971.0	0.0
E	MOHAWK VL	843.2	1600.0	1401.8	198.2	1600.0	0.0
F	CAPITAL	4390.5	2868.0	2748.2	119.7	2867.9	-0.1
G	HUDSON VL	3038.7	2948.0	2807.5	140.4	2947.9	-0.1
Н	MILLWOOD	2172.8	782.0	726.3	55.7	782.0	0.0
I	DUNWOODIE	3.0	1753.0	1698.8	54.2	1753.0	0.0
J	NYC	8819.1	14326.0	14138.7	187.3	14326.0	0.0
K	LI	5341.6	6757.0	6653.4	103.6	6757.0	0.0
NYC	A TOTALS	38272.3	40816.0	39564.7	1251.4	40816.1	0.1

Table 3-25: Load & Losses for Horizon Year Summer Peak Scenario 6 Case

3.3 Summary of Interface Flows in Intermediate and Horizon Year Cases

For the purpose of convergence, fictitious capacitors were added in the Horizon Year Cases (Scenarios 2, 3 and 4) to compensate for the reactive power deficiency due to the increasing load demand and line flows. The capacitor size added is shown below in Table 3-26.

SCENARIO	DESCRIPTION	ADDED CAP(MVAR)	NOTE
1	85% Down State, 15% External	-	
2	50% Up State, 50% External	860	After Con Edison revisions
3	90% NYCA All Zones, 10% External	310	Per Con Edison
4	25% NYCA All Zones, 75% External	310	Same as in Scenario 3
5	Similar to Scenario 1 but with Renewables	-	
6	Similar to Scenario 2 but with Renewables	860	After Con Edison revisions

Table 3-26: Summary of Added Capacitors for Horizon Year Scenarios	3
--	---

Table 3-27 compares the cross-state and inter-area interface flows in the base cases for the six Horizon Year cases against the corresponding flows in the Intermediate Year Case. This comparison is for demonstrating that the generation dispatch for each zone was adjusted such that the interface flows and the external area flows from the Intermediate year to the Horizon year Scenarios is kept unchanged to the extent possible.

	Interfaces	Int. Year Case	Horizon Scenari			Horizon Year Scenario 2		Horizon Year Scenario 3		Year io 4	Horizon Scenar		Horizon Scenari	
		Flow	Flow	Dif	Flow	Dif	Flow	Dif	Flow	Dif	Flow	Dif	Flow	Dif
	Dysinger East	1593	1798	205	1592	-1	1586	-6	1808	216	1798	206	1592	-1
	West Central	171	143	-27	167	-3	162	-9	154	-17	144	-27	167	-4
	Volney East	3598	3797	199	3602	4	3598	0	3801	203	3797	199	3601	3
	MosesSouth	1374	1297	-76	1373	0	1373	0	1297	-76	1297	-76	1373	-1
	TotalEast	5749	5754	5	5752	3	5751	2	5754	5	5751	2	5750	2
	CentralEast	2383	2422	39	2434	51	2428	45	2423	40	2423	40	2440	57
	CE_FraserGilboa	2600	2604	4	2618	18	2603	3	2600	0	2610	10	2627	27
0	CE_Group	4218	4222	4	4220	2	4219	1	4223	5	4220	2	4219	1
Cross State	F to G	3713	3732	19	3795	82	3741	27	3757	44	3734	21	3804	91
Oldic	UPNYSENY	5639	5642	3	5674	35	5638	-1	5674	35	5641	2	5674	35
	UPNYConEd	5082	5083	2	5217	135	5114	33	5215	134	5083	1	5216	135
	Millwd S. CLS	7862	7863	0	7971	109	7859	-4	7969	107	7862	0	7970	108
	Dunwoodie S.	4858	4858	0	4858	1	4857	0	4856	-1	4857	0	4858	0
	I to J	3921	3922	1	3922	0	3921	0	3919	-2	3921	-1	3922	0
	LIPA_Import (1)	1679	1679	0	1679	0	1679	-1	1679	0	1679	0	1679	-1
	I to K	936	936	-1	936	0	936	0	937	1	936	0	936	0
	J to K	-286	-286	0	-286	0	-286	0	-287	-1	-286	0	-286	0
	NY-NE (2)	81	81	1	81	0	81	1	81	1	81	0	80	0
Inter	NY-PJM (3)	-1498	-1518	-20	-1504	-5	-1502	-4	-1524	-26	-1520	-21	-1504	-6
Area	NY-ONT	743	761	18	744	1	747	4	767	23	761	18	744	0
	NY-HQ	-1200	-1200	0	-1200	0	-1278	-78	-1200	0	-1200	0	-1200	0

Table 3-27: Comparison of Interface Flows in Horizon Year Cases and Intermediate Year Case

Note:

1 Includes CSC and Neptune

2 Excludes Cross Sound Cable

3 Excludes Neptune HVDC

4 CSC flow is 330MW, and Neptune is 666MW

5 Sign Convention for Inter-area Interfaces: Positive sign denotes export out of NYCA, Negative sign denotes import into NYCA

4 SECURITY ANALYSIS FOR INTERMEDIATE YEAR

This section presents results obtained from steady-state analysis of the New York State Transmission System for Summer Peak load conditions in the Intermediate Study Year. System performance is evaluated under all-lines in and contingency case conditions and checked against New York State Reliability Criteria.

4.1 Methodology

Power flow analysis was performed on the updated intermediate year summer peak power flow case described in Section 2.1 of this report. The analysis was performed using the AC Contingency Analysis tool in the Siemens-PTI PSSTMMUST program.

For the purposes of this analysis, transmission facilities rated 100 kV and above within NYCA (and tie-lines out of NYCA) were monitored.

For thermal overloads, each branch element (transformer, transmission line, or feeder) in the monitored system was monitored and electrical flows above the applicable branch rating (normal continuous rating - Rate A) under system intact conditions, LTE rating - Rate B) under contingency conditions for overhead transmission lines and STE rating (Rate C) for underground feeders) were flagged. Transmission interfaces were not monitored (thermal transfer limits for interfaces will be determined and presented separately in Section 5).

For bus voltage violations, the following range limits and pre-to-post-contingency voltage change criteria were applied:

- 0.95-1.05 pu for system intact conditions
- 0.90-1.10 pu for contingency conditions (0.95-1.05 pu in the Con Edison system)
- Voltage change criteria of 0.10 pu

In addition several 230 kV and 345 kV buses identified by NYISO for special range limits were checked for voltage violations.

Phase angle regulators (PARs), switched shunts and LTC transformers are modeled as regulating pre-contingency and non-regulating post-contingency.

The following types of contingencies were simulated based on the contingency files provided by NYISO:

1. Outage of branches connected between buses with a base voltage of 100 kV and above (these included outages based on "automatic" N-1 contingency specification¹³ in MUST and specific pre-defined branch outages)

¹³ Automatic N-1 contingencies were not simulated in the Con Edison system.

- 2. Generation contingencies
- 3. Series element contingencies
- 4. Bus contingencies
- 5. HVdc contingencies

No stuck-breaker or tower contingencies were simulated.

In addition to these contingencies, other contingencies provided by National Grid associated with wind generation in the North Country were simulated

Appendix A shows the relevant subsystem description, monitored element and contingency description files used in this analysis (these files were derived based on files provided by NYISO).

<u>Note</u>: Some transmission facilities were excluded from monitoring based on input provided by NYCA transmission owners. Also, the transmission owners indicated that some of the automatic N-1 contingencies are not legitimate – these contingencies were excluded from analysis. See Appendix A.4 for a list of excluded monitored elements and contingencies.

4.2 Results

4.2.1 System Intact Conditions

Results of the system intact analysis (with all lines in-service) showed a base case overload on a 115/11.5 kV transformer (#4) at Station 42 in the Rochester Gas & Electric (RGE) system (16% overload approx. based on the transformer's normal rating of 29.7 MVA). No voltage violations were observed under system intact conditions.

4.2.2 Contingency Case Conditions

Results of the contingency analysis showed several thermal and voltage violations. These are listed in Tables 4-1 and 4-2 and are described below.

Table 4-1 shows the overloaded transmission facilities. These violations were submitted to the transmission owners for review.

NYSEG / RGE Systems:

NYSEG indicated that the overloads in the NYSEG and RGE systems are on underlying systems and that these facilities should be ignored when analyzing bulk power system limits. NYSEG requested that these facilities continue to be monitored for potential problems when wind generation is increased in the base case.

Long Island Power Authority System:

Each of the 345/138 kV New Bridge Road transformers becomes overloaded for loss of the parallel bank (15% overload based on the 585 MVA LTE rating). These transformers have a short-term capability of 801 MVA and the overloads can be mitigated by redispatching resources within the system. Also, a post-contingency overload of 3% was observed on the Brookhaven-Riverhead 138 kV line following the loss of the Shoreham-Wildwood 138 kV line.

National Grid System:

Several post-contingency overloads were observed in the National Grid system. National Grid indicated that most of these overloads are dispatch dependent and may be addressed by generation reduction. Specific National Grid comments are summarized below:

• The post-contingency overloads on the Leeds-Pleasant Valley 345 kV and Athens-Pleasant Valley 345 kV lines are dependent on dispatch and expected to decrease if Athens Generation is reduced. At present, there is a temporary SPS in place for the contingencies that cause the overloads.

• The overloads on the following facilities are dispatch dependent and expected to decrease if Athens Generation is reduced:

125040 N.CAT. 1	115	137507	BOC 2T	115	2
137507 BOC 2T	115	137510	JMC2+9TP	115	1
137481 JMC1+7TP	115	137490	BLUECIRC	115	1

• The overloads on the Reynolds Road 345/115 kV transformer are dependent on local generation, and there is an SPS that ramps down the Besicorp generation (or now called Empire generation – bus# 137558) for the contingencies listed.

• The overload on the Allens F – Colton 115 kV line is driven by generation dispatch; if it turns out to be wind/hydro it may be something the STARS project will need to address.

• The overloads on the Menands-St. Camps 115 kV line are a result of incorrect contingencies.

Table 4-2 lists post-contingency voltage violations. These violations were submitted to the transmission owners for review. The following comments were received.

New York Power Authority:

New York Power Authority indicated that the following voltage violations should be ignored:

- PMLD 3 for the loss of PMLD 1 is a local issue.
- MDTN Tap for loss of the CCRT 34 is an expected voltage issue.

NYSEG / RGE:

NYSEG/RGE indicated that the following voltage violations should be ignored:

SLVYN115 for loss of FISHKILL115 to SYLVN115 is a local issue.

• The four WOODA 345 and WOODB345 violations for loss of bus and line tap connections are expected voltage issue.

4.3 Summary

The results presented in this section showed several security violations (thermal and voltage). It should be noted that these violations are for a typical generation dispatch i.e., for a snapshot of system conditions at a given instant in time – it may be possible to mitigate the violations through generation redispatch. Solutions to mitigate these constraints will be developed as part of the Phase II analysis.

Table 4-1: Post-Contingency Overloads - Intermediate Year Summer Peak Conditions

** From bu	s ** **	ma haa	** CKT	A	Base Case	LTE	Post Cont	Post Cont	ant in survey
	2	To bus		Owner	MVA Flow	Rating	MVA Flow	Loading%	Contingency
125015 AC CBLTP	115 125020		115 1	CENT HUD	165.8	211.0	323.6	153.4	125020 DANSKAMA 115 125021 DC CBLTP 115 1
125015 AC CBLTP	115 125020		115 1	CENT HUD	165.8	211.0	323.7	153.4	125021 DC CBLTP 115 125041 N.CHELSE 115 1
125015 AC CBLTP	115 125020		115 1	CENT HUD	165.8	211.0	215.7	102.2	125002 ROSETON 345 126281 FISHKILL 345 1
125015 AC CBLTP	115 125041		115 1	CENT HUD	165.8	211.0	323.7	153.4	125020 DANSKAMA 115 125021 DC CBLTP 115 1
125015 AC CBLTP	115 125041		115 1	CENT HUD	165.8	211.0	323.7	153.4	125021 DC CBLTP 115 125041 N.CHELSE 115 1
125015 AC CBLTP	115 125041		115 1	CENT HUD	165.8	211.0	215.7	102.2	125002 ROSETON 345 126281 FISHKILL 345 1
125020 DANSKAMA	115 125021		115 1	CENT HUD	170.9	199.0	324.3	163.0	125015 AC CBLTP 115 125020 DANSKAMA 115 1
125020 DANSKAMA	115 125021		115 1	CENT HUD	170.9	199.0	324.3	163.0	125015 AC CBLTP 115 125041 N.CHELSE 115 1
125020 DANSKAMA	115 125021		115 1	CENT HUD	170.9	199.0	222.3	111.7	125002 ROSETON 345 126281 FISHKILL 345 1
125021 DC CBLTP	115 125041		115 1	CENT HUD	170.9	253.0	324.3	128.2	125015 AC CBLTP 115 125020 DANSKAMA 115 1
125021 DC CBLTP	115 125041		115 1	CENT HUD	170.9	253.0	324.4	128.2	125015 AC CBLTP 115 125041 N.CHELSE 115 1
128847 NWBRG	345 129310) NEWBRGE	138 1	LIPA	333.8	585.0	677.3	115.8	128847 NWBRG 345 129310 NEWBRGE 138 2
128847 NWBRG	345 129310) NEWBRGE	138 2	LIPA	333.8	585.0	677.3	115.8	128847 NWBRG 345 129310 NEWBRGE 138 1
129488 EDWRDSAV	138 129493	3 RVRHD	138 1	LIPA	133.1	297.0	306.4	103.1	129459 SHOREHAM 138 129475 WILDWOOD 138 1
125040 N.CAT. 1	115 137507	7 BOC 2T	115 2	NGRID	106.0	120.0	140.5	117.1	125000 HURLEY 3 345 125030 HURLEY 1 115 1
125040 N.CAT. 1	115 137507	7 BOC 2T	115 2	NGRID	106.0	120.0	135.7	113.1	125000 HURLEY 3 345 137451 LEEDS 3 345 1
126294 PLTVLLEY	345 137451	l leeds 3	345 2	NGRID	1248.8	1538.0	1790.8	116.4	126294 PLTVLLEY 345 137455 ATHENS 345 1
126294 PLTVLLEY	345 137451	l leeds 3	345 2	NGRID	1248.8	1538.0	1545.6	100.5	125000 HURLEY 3 345 137451 LEEDS 3 345 1
126294 PLTVLLEY	345 137451	l leeds 3	345 2	NGRID	1248.8	1538.0	1538.2	100.0	125002 ROSETON 345 126281 FISHKILL 345 1
126294 PLTVLLEY	345 137455	5 ATHENS	345 1	NGRID	1209.2	1538.0	1753.5	114.0	126294 PLTVLLEY 345 137451 LEEDS 3 345 2
136200 GERES LK	115 136269	9 SOLVTAP2	115 1	NGRID	103.4	120.9	145.0	120.0	136200 GERES LK 115 136270 CRUC TAP 115 1
136751 ALLENS F	115 136764	4 COLTON	115 1	NGRID	42.4	128.0	133.2	104.1	136783 MALONE 115 147856 WILL 115 115 1
137454 REYNLD3	345 137528	B REY. RD.	115 1	NGRID	338.8	562.0	567.5	101.0	BUS:ALPS_345
137454 REYNLD3	345 137528	B REY. RD.	115 1	NGRID	338.8	562.0	567.2	100.9	137450 ALPS345 345 137454 REYNLD3 345 1
137481 JMC1+7TP	115 137490) BLUECIRC	115 1	NGRID	108.4	120.0	122.1	101.7	126294 PLTVLLEY 345 137451 LEEDS 3 345 2
137481 JMC1+7TP	115 137490		115 1	NGRID	108.4	120.0	121.4	101.2	126294 PLTVLLEY 345 137455 ATHENS 345 1
137481 JMC1+7TP	115 137490) BLUECIRC	115 1	NGRID	108.4	120.0	120.5	100.4	125000 HURLEY 3 345 137451 LEEDS 3 345 1
137507 BOC 2T	115 137510		115 1	NGRID	106.0	120.0	140.5	117.1	125000 HURLEY 3 345 125030 HURLEY 1 115 1
137507 BOC 2T	115 137510		115 1	NGRID	106.0	120.0	135.7	113.1	125000 HURLEY 3 345 137451 LEEDS 3 345 1
137515 MENANDS	115 137542		115 1	NGRID	45.9	114.0	132.2	116.0	137518 NW KRMKL 115 137716 ALB1 115 1
137515 MENANDS	115 137542		115 1	NGRID	45.9	114.0	118.7	104.2	137514 MCKOWNVL 115 137518 NW KRMKL 115 1
130813 HICK 115	115 130845		115 1	NYSEG	71.1	97.0	107.2	110.6	130782 CATON115 115 130813 HICK 115 115 1
130813 HICK 115	115 130845		115 1	NYSEG	71.1	97.0	108.1	111.5	130782 CATON115 115 130814 HILSD115 115 1
149018 S71 115	115 149035		115 1	RGE	17.0	121.5	155.6	128.1	149014 S418 115 115 149016 S67-1115 115 2
149029 S204 911	115 149033		115 1	RGE	132.7	207.2	232.6	112.2	149024 GINNA115 115 149196 S124C913 115 1
149029 S204 911	115 149033		115 1	RGE	132.7	207.2	226.9	109.5	149033 S42 115 115 149196 S124C913 115 1
149033 S42 115	115 149196		115 1	RGE	137.8	207.2	228.8	110.4	149029 S204 911 115 149033 S42 115 115 1
149033 S42 115	115 149196		115 1	RGE	137.8	207.2	228.8	109.8	149024 GINNA115 115 149029 S204 911 115 1
149035 S42 115 149035 S69 917	115 149196		115 1	RGE	26.3	143.4	165.1	115.2	149014 S418 115 115 149016 S67-1115 115 2
149036 STA 93	115 149062	2 2/ 112B2	115 1	RGE	33.2	143.4	173.2	120.7	149014 S418 115 115 149016 S67-1115 115 2
126385 E179 ST	138 126730	1 1 5 0 5 5 0 5	138 1	CONED	223.4	365.0	417.5	114.4	CEN.NVDA AC
	138 126730		138 1		223.4	365.0	417.5	114.4	GEN:NYPA_AS
126581 HG TAP				CONED					GEN:NYPA_AS
126283 GOTHLS N	345 126286		345 1	CONED	471.7	759.0	874.2	115.2	SER: 42&26
126285 GOTHLS S	345 126285		345 1	CONED	471.7	759.0	881.2	116.1	SER:41&25
126285 GOTHLS S	345 126287		345 1	CONED	471.7	759.0	844.9	111.3	BUS:GOWANUS_N_345
126283 GOTHLS N	345 126286		345 1	CONED	471.7	759.0	842.5	111.0	BUS:GOWANUS_S_345
126295 RAINEY	345 126561	L 8E DUM	138 8	CONED	205.7	305.0	311.1	102.0	GEN:RAVNWD 3-New

New York State Transmission Assessment and Reliability Study (STARS)

Table 4-2: Post-Contingency Voltage Violations - Intermediate Year Summer Peak Conditions

Bus #	Bus Name	KV	Area	Zone	System Intact Volt	Vlow	Vhigh	Cont Volt	Drop/Rise	Viol	Cont	ingency Description	
130788	COLDS115	115.0	1	149	1.0263	0.9000	1.1000	0.8098	-0.2165	LD	130788 COLDS115	115 135267 CARR CRN	115 1
135263	BERRY RD	115.0	1	145	1.0549	0.9000	1.1000	0.9494	-0.1055	D	135263 BERRY RD	115 135273 DUNKIRK1	115 1
135281	HARTFLD1	115.0	1	145	1.0137	0.9000	1.1000	0.8336	-0.1801	LD	135281 HARTFLD1	115 135286 MOON-162 115 135296 W.OL-155	115 1
135290 135296	COOPER W.OL-155	115.0 115.0	1	145 145	1.0271	0.9000	1.1000	0.8568	-0.1703	LD	135282 HOMERHIL 135282 HOMERHIL	115 135296 W.OL-155	115 1 115 1
135301	BETH-150	115.0	1	145	1.0367	0.9000	1.1000	0.8826	-0.1541	LD	135301 BETH-150	115 135250 W.OL-155	115 1
135302	GIBSONT6	115.0	1	145	1.0284	0.9000	1.1000	0.8734	-0.1550	LD	135302 GIBSONT6	115 147851 NIAG115W	115 1
135367	HARBFRT0	115.0	1	145	1.0366	0.9000	1.1000	0.8832	-0.1534	LD	135301 BETH-150	115 135450 GRDNVL1	115 1
135410	ELM-70	230.0	1	145	1.0204	0.9000	1.1000	0.9173	-0.1031	D	135410 ELM-70	230 135414 HUNTLEY2	230 1
135411	ELM-71	230.0	1	145	1.0009	0.9000	1.1000	0.8848	-0.1161	LD	135413 GRDNVL2	230 135416 SENCA-71	230 1
135412	ELM-72	230.0	1	145	1.0009	0.9000	1.1000	0.8848	-0.1161	LD	135413 GRDNVL2	230 135417 SENCA-72	230 1
135416	SENCA-71	230.0	1	145	1.0012	0.9000	1.1000	0.8844	-0.1168	LD	135413 GRDNVL2	230 135416 SENCA-71	230 1
135417	SENCA-72	230.0	1	145	1.0012	0.9000	1.1000	0.8844	-0.1168	LD	135413 GRDNVL2	230 135417 SENCA-72	230 1
135420	HARPR183	115.0	1	145	1.0252	0.9000	1.1000	0.8738	-0.1514	LD	135461 PACK(S)W	115 148004 CARGR183	115 1
135421	HARPR184	115.0 115.0	1	145	1.0237	0.9000	1.1000	0.8102	-0.2135	LD	135421 HARPR184	115 136544 UDG-184	115 1
135466 135466	S215-188 S215-188	115.0	1	145 145	1.0176	0.9000	1.1000	0.8852	-0.1324	LD	135466 S215-188 135511 NFWWP188	115 135511 NFWWP188 115 148006 CARBW188	115 1 115 1
135509	NFWWP187	115.0	1	145	1.0215	0.9000	1.1000	0.8916	-0.1299	LD	135509 NFWWP187	115 148002 CARBW187	115 1
135509	NFWWP187	115.0	1	145	1.0215	0.9000	1.1000	0.8312	-0.1903	LD	148002 CARBW187	115 148008 HOOKS187	115 1
135509	NFWWP187	115.0	1	145	1.0215	0.9000	1.1000	0.8017	-0.2198	LD	148007 GRTLK187	115 148008 HOOKS187	115 1
135511	NFWWP188	115.0	1	145	1.0176	0.9000	1.1000	0.8785	-0.1391	LD	135511 NFWWP188	115 148006 CARBW188	115 1
135823	S215-187	115.0	1	145	1.0215	0.9000	1.1000	0.8978	-0.1237	LD	135509 NFWWP187	115 135823 S215-187	115 1
135823	S215-187	115.0	1	145	1.0215	0.9000	1.1000	0.8917	-0.1298	LD	135509 NFWWP187	115 148002 CARBW187	115 1
135823	S215-187	115.0	1	145	1.0215	0.9000	1.1000	0.8312	-0.1903	LD	148002 CARBW187	115 148008 HOOKS187	115 1
135823	S215-187	115.0	1	145	1.0215	0.9000	1.1000	0.8017	-0.2198	LD	148007 GRTLK187	115 148008 HOOKS187	115 1
147959	NCARBON7	115.0	1	157	1.0283	0.9000	1.1000	0.8732	-0.1551	LD	135302 GIBSONT6	115 147851 NIAG115W	115 1
147961	AIRCO197	115.0	1	157	1.0283	0.9000	1.1000	0.8732	-0.1551	LD	135302 GIBSONT6	115 147851 NIAG115W	115 1
147963	TITAN197	115.0	1	157	1.0282	0.9000	1.1000	0.8732	-0.1550	LD	135302 GIBSONT6	115 147851 NIAG115W	115 1
147995	DUPNT183 DUPNT184	115.0 115.0	1	157	1.0248	0.9000	1.1000	0.8733	-0.1515	LD	135461 PACK(S)W	115 148004 CARGR183 115 136544 UDG-184	115 1 115 1
147996 147997	DUPNT184 DUPNT187	115.0	1	157 157	1.0227	0.9000	1.1000	0.8091 0.8975	-0.2136	LD LD	135421 HARPR184 135509 NFWWP187	115 136544 UDG-184 115 135823 S215-187	115 1
147997	DUPNI187 DUPNT187	115.0	1	157	1.0212	0.9000	1.1000	0.8973	-0.1237	LD	135509 NFWWP187	115 135823 S215-187 115 148002 CARBW187	115 1
147997	DUPNT187	115.0	1	157	1.0212	0.9000	1.1000	0.8308	-0.1904	LD	148002 CARBW187	115 148008 HOOKS187	115 1
147997	DUPNT187	115.0	1	157	1.0212	0.9000	1.1000	0.8013	-0.2199	LD	148007 GRTLK187	115 148008 HOOKS187	115 1
147998	DUPNT188	115.0	1	157	1.0173	0.9000	1.1000	0.8848	-0.1325	LD	135466 S215-188	115 135511 NFWWP188	115 1
147998	DUPNT188	115.0	1	157	1.0173	0.9000	1.1000	0.8782	-0.1391	LD	135511 NFWWP188	115 148006 CARBW188	115 1
148002	CARBW187	115.0	1	157	1.0217	0.9000	1.1000	0.8311	-0.1906	LD	148002 CARBW187	115 148008 HOOKS187	115 1
148002	CARBW187	115.0	1	157	1.0217	0.9000	1.1000	0.8016	-0.2201	LD	148007 GRTLK187	115 148008 HOOKS187	115 1
148004	CARGR183	115.0	1	157	1.0272	0.9000	1.1000	0.8720	-0.1552	LD	135461 PACK(S)W	115 148004 CARGR183	115 1
148008	HOOKS187	115.0	1	157	1.0231	0.9000	1.1000	0.8014	-0.2217	LD	148007 GRTLK187	115 148008 HOOKS187	115 1
148012	OLIN-184	115.0	1	157	1.0229	0.9000	1.1000	0.8092	-0.2137	LD	135421 HARPR184	115 136544 UDG-184	115 1
148014	OLIN-183	115.0	1	157	1.0249	0.9000	1.1000	0.8735	-0.1514	LD	135461 PACK(S)W	115 148004 CARGR183	115 1
135854	BRCKPTHS	115.0	2	173	0.9876	0.9000	1.1000	0.8163	-0.1713	LD	135854 BRCKPTHS	115 135873 SWDN-111	115 1
135857 135857	GENFOOD GENFOOD	115.0 115.0	2	173 173	1.0024	0.9000	1.1000	0.8642	-0.1382	LD LD	135849 E.GOLAH 135857 GENFOOD	115 135895 BARILLA 115 135895 BARILLA	115 1 115 1
135863	N.LAKE 1	115.0	2	173	1.0010	0.9000	1.1000	0.8667	-0.1343	LD	135849 E.GOLAH	115 135895 BARILLA	115 1
135863	N.LAKE 1	115.0	2	173	1.0010	0.9000	1.1000	0.8653	-0.1357	LD	135857 GENFOOD	115 135895 BARILLA	115 1
135877	UNIVRSTY	115.0	2	173	0.9861	0.9000	1.1000	0.8766	-0.1095	LD	135874 SWDN-113	115 135877 UNIVRSTY	115 1
135895	BARILLA	115.0	2	173	1.0032	0.9000	1.1000	0.8642	-0.1390	LD	135849 E.GOLAH	115 135895 BARILLA	115 1
149032	S33 902	115.0	2	153	1.0149	0.9000	1.1000	0.9015	-0.1134	D	149032 S33 902	115 149049 S82 B#3	115 02
136159	BRIDGE 7	115.0	3	146	1.0164	0.9000	1.1000	0.9020	-0.1144	D	136159 BRIDGE 7	115 136189 DEWITT 1	115 1
136166	A/B_LY13	115.0	3	146	0.9906	0.9000	1.1000	0.7470	-0.2436	LD	136166 A/B_LY13	115 136173 ANHBS-13	115 1
136186	CRUCIBLE	115.0	3	146	0.9992	0.9000	1.1000	0.6530	-0.3462	LD	136200 GERES LK	115 136270 CRUC TAP	115 1
136206	HDSN-7	115.0	3	146	1.0162	0.9000	1.1000	0.9021	-0.1141	D	136159 BRIDGE 7	115 136189 DEWITT 1	115 1
136230	PEAT-7	115.0	3	146	1.0150	0.9000	1.1000	0.9008	-0.1142	D	136159 BRIDGE 7	115 136189 DEWITT 1	115 1
136238 136239	SOLVAY-B SOLVAY-N	115.0 115.0	3	146 146	0.9986	0.9000	1.1000	0.7340	-0.2646	LD	136238 SOLVAY-B 136200 GERES LK	115 136269 SOLVTAP2 115 136270 CRUC TAP	115 1 115 1
136239	CRUC TAP	115.0	3	146	0.9995	0.9000	1.1000	0.6538	-0.3457	LD	136200 GERES LK	115 136270 CRUC TAP	115 1
147897	SOLVMATT	115.0	3	146	0.9993	0.9000	1.1000	0.6532	-0.3460	LD	136200 GERES LK	115 136270 CRUC TAP	115 1
147925	PMLD 3	115.0	4	158	1.0137	0.9000	1.1000	0.8735	-0.1402	LD	147923 PMLD 1	115 147925 PMLD 3	115 1
137222	CAMDNWIR	115.0	5	147	0.9700	0.9000	1.1000	0.8917	-0.0783	L	137211 TRNG STN	115 137233 ONEIDA	115 1
137230	LEHIGH	115.0	5	147	0.9700	0.9000	1.1000	0.8918	-0.0782	L	137211 TRNG STN	115 137233 ONEIDA	115 1
130822	KLINE115	115.0	6	165	1.0154	0.9000	1.1000	1.2081	0.1927	Н	130793 CRARY115	115 130822 KLINE115	115 1
130931	STEPH115	115.0	6	165	0.9965	0.9000	1.1000	0.6891	-0.3074	LD	130931 STEPH115	115 137502 GBSH+LGE	115 1
130932	COWEE 1\$	115.0	6	165	0.9965	0.9000	1.1000	0.6891	-0.3074	LD	130931 STEPH115	115 137502 GBSH+LGE	115 1
137501	FRONT ST	115.0	6	148	0.9999	0.9000	1.1000	0.8880	-0.1119	LD	137501 FRONT ST	115 137532 RTRDM1	115 1
137504 137531	GE R&D ROSA RD	115.0 115.0	6	148 148	0.9876	0.9000	1.1000	0.8936	-0.0940	L	137501 FRONT ST 137501 FRONT ST	115 137532 RTRDM1	115 1 115 1
137531	ROSA RD BROOK1	115.0	6	148	0.9899	0.9000	1.1000		-0.0972	L	137501 FRONT ST 137867 BROOK W	115 137532 RTRDM1 115 137868 BROOK1	115 1
137868	KNAPP	115.0	6	148	0.9830	0.9000	1.1000	0.3776	-0.4485	LD	137867 BROOK W 137880 EJW+STWB	115 137868 BROOKI 115 137902 SCOFIELD	115 1
137889	KNAPP	115.0	6	148	0.9979	0.9000	1.1000	0.6354	-0.3625	LD	137902 SCOFIELD	115 137914 WBURG115	115 1
137896	N. CRK	115.0	6	148	0.9975	0.9000	1.1000	0.5454	-0.4521	LD	137880 EJW+STWB	115 137902 SCOFIELD	115 1
137896	N. CRK	115.0	6	148	0.9975	0.9000	1.1000	0.6319	-0.3656	LD	137902 SCOFIELD	115 137914 WBURG115	115 1
137902	SCOFIELD	115.0	6	148	1.0046	0.9000	1.1000	0.5522	-0.4524	LD	137880 EJW+STWB	115 137902 SCOFIELD	115 1
137912	VAIL 115	115.0	6	148	0.9752	0.9000	1.1000	0.8976	-0.0776	L	137911 VAIL TAP	115 137912 VAIL 115	115 1
137914	WBURG115	115.0	6	148	0.9975	0.9000	1.1000	0.5543	-0.4432	LD	137880 EJW+STWB	115 137902 SCOFIELD	115 1
137914	WBURG115	115.0	б	148	0.9975	0.9000	1.1000	0.6394	-0.3581	LD	137902 SCOFIELD	115 137914 WBURG115	115 1
137915	WEIBEL1	115.0	6	148	0.9775	0.9000	1.1000	0.3688	-0.6087	LD	137867 BROOK W	115 137868 BROOK1	115 1
137919	SMITHBR1	115.0	6	148	0.9794	0.9000	1.1000	0.3718	-0.6076	LD	137867 BROOK W	115 137868 BROOK1	115 1
126260	BOWLINE1	345.0	7	176	1.0439	0.9510	1.0490	1.0570	0.0131	Н	126263 BUCHANAN S	345 126290 LADENTWN	345 1
126260 126460	BOWLINE1 38W42	345.0 138.0	7	176 167	1.0439	0.9510	1.0490	1.0600	0.0161	H	126290 LADENTWN 126458 MLWD TA	345 146750 WHAV345 138 126460 38W42	345 1 138 1
126460 126461	38W42 38W41	138.0	8	167	1.0070	0.9000	1.1000	0.8865	-0.1205	LD			138 1
126461 130842	38W41 PAWLN115	138.0	8	167	0.9921	0.9000	1.1000	0.8865	-0.1204	LD	126458 MLWD TA 125026 FISHKILL	138 126461 38W41 115 131112 SYLVN115	138 1
130842	SYLVN115	115.0	8	174	1.0085	0.9000	1.1000	0.8934	-0.1160	LD	125026 FISHKILL 125026 FISHKILL	115 131112 SYLVN115	115 1
126386	ROCK V T1	138.0	9	169	1.0085	0.9000	1.1000	0.8323	-0.1767	LD	126372 DUN SO	138 126386 ROCK V T1	138 1
126387	ROCK V T2	138.0	9	169	1.0066	0.9000	1.1000	0.8299	-0.1767	LD	126372 DUN SO	138 126387 ROCK V T2	138 1
	ROCK V T3	138.0	9	169	1.0066	0.9000	1.1000	0.8677	-0.1389	LD	126372 DUN SO	138 126388 ROCK V T3	138 1
126388									-0.1324	LD			

New York State Transmission Assessment and Reliability Study (STARS)

Table 4-2: Post-Contingency Voltage Violations - Intermediate Year Summer Peak Conditions

Bus #	Bus Name	KV	Area	Zone	System	Vlow	Vhigh	Cont	Drop/Rise	Viol	Contingency Description
					Intact Volt		_	Volt			
126431	GRANHL T2	138.0	9	169	1.0066	0.9000	1.1000	0.8751	-0.1315	LD	126372 DUN SO 138 126431 GRANHL T2 138 1
126432	GRANHL T3	138.0	9	169	1.0066	0.9000	1.1000	0.8740	-0.1326	LD	126372 DUN SO 138 126432 GRANHL T3 138 1
126433 126439	GRANHL T4 HARR TX1	138.0 138.0	9	169 169	1.0066	0.9000	1.1000	0.8745	-0.1321	LD LD	126372 DUN SO 138 126433 GRANHL T4 138 1 126382 ELMSFD2E 138 126524 38W14 T 138 1
126439	HARR TX1	138.0	9	169	0.9989	0.9000	1.1000	0.8663	-0.1326	LD	126532 BEASTBEE 136 126524 Sow14 T 138 1 126439 HARR TX1 138 126524 38W14 T 138 1
126440	HARR TX2	138.0	9	169	0.9993	0.9000	1.1000	0.8674	-0.1319	LD	126440 HARR TX2 138 126523 38W13 T 138 1
126441	HARR TX 3	138.0	9	169	0.9989	0.9000	1.1000	0.8689	-0.1300	LD	126441 HARR TX 3 138 126522 38W02 T 138 1
126519	WHITE P TX1	138.0	9	169	1.0037	0.9000	1.1000	0.8811	-0.1226	LD	126380 ELMSFD1E 138 126519 WHITE P TX1 138 1
126523 126524	38W13 T 38W14 T	138.0 138.0	9	169 169	1.0035	0.9000	1.1000	0.9022	-0.1013	D LD	126383 ELMSFD2W 138 126523 38W13 T 138 1 126382 ELMSFD2E 138 126524 38W14 T 138 1
126524	HARR T4	138.0	9	169	1.0032	0.9000	1.1000	0.8714	-0.1295	LD	126319 38W15 T 138 126670 HARR T4 138 1
126708	GRASSL1	138.0	9	169	1.0064	0.9000	1.1000	0.8504	-0.1560	LD	126378 EASTVIEW 138 126708 GRASSL1 138 1
126709	GRASSL2	138.0	9	169	1.0064	0.9000	1.1000	0.8504	-0.1560	LD	126378 EASTVIEW 138 126709 GRASSL2 138 1
126718	GRASSL3	138.0	9	169	1.0064	0.9000	1.1000	0.8504	-0.1560	LD	126378 EASTVIEW 138 126718 GRASSL3 138 1
126747 126748	WHITE P TX2	138.0 138.0	9	169 169	1.0033	0.9000	1.1000	0.8823	-0.1210	LD LD	126522 38W02 T 138 126747 WHITE P TX2 138 1 126382 ELMSFD2E 138 126524 38W14 T 138 1
126748	WHITEP TX2 WHITEP TX2	138.0	9	169	1.0031	0.9000	1.1000	0.8974	-0.1057	LD	126524 38W14 T 138 126748 WHITEP TX2 138 1
126749	WHITEP T7	138.0	9	169	1.0035	0.9000	1.1000	0.9022	-0.1013	D	126383 ELMSFD2W 138 126523 38W13 T 138 1
126749	WHITEP T7	138.0	9	169	1.0035	0.9000	1.1000	0.8828	-0.1207	LD	126523 38W13 T 138 126749 WHITEP T7 138 1
126366	YORK1	138.0	10	159	1.0098	0.9500	1.0500	0.9378	-0.0720	L	GEN:RAVNWD 3-New
126367	YORK2	138.0	10	159	1.0102	0.9500	1.0500	0.9382	-0.0720	L	GEN:RAVNWD 3-New
126375	YORK3	138.0	10	159	1.0099	0.9500	1.0500	0.9379	-0.0720	L	GEN:RAVNWD 3-New
126384 126390	E13 ST E75 ST-1	138.0 138.0	10	159 159	1.0096	0.9500	1.0500	0.9299	-0.0797	L	GEN:RAVNWD 3-New GEN:RAVNWD 3-New
126392	E75 ST-3	138.0	10	159	1.0266	0.9500	1.0500	0.9444	-0.0822	L	GEN:RAVNWD 3-New GEN:RAVNWD 3-New
126394	FGT_Y5	138.0	10	159	1.0149	0.9500	1.0500	0.9436	-0.0713	L	GEN:RAVNWD 3-New
126395	FGT_Y7	138.0	10	159	1.0176	0.9500	1.0500	0.9444	-0.0732	L	GEN:RAVNWD 3-New
126396	FGT_Y10	138.0	10	159	1.0160	0.9500	1.0500	0.9444	-0.0716	L	GEN:RAVNWD 3-New
126397	FGT_Y8	138.0 138.0	10	159 159	1.0133	0.9500	1.0500	0.9404	-0.0729	L	GEN:RAVNWD 3-New
126398 126401	FGT_Y9 PLYM_X1	138.0	10	159	1.0170	0.9500	1.0500	0.9472	-0.0698	L	GEN:RAVNWD 3-New GEN:RAVNWD 3-New
126409	FGT_X2	138.0	10	159	1.0174	0.9500	1.0500	0.9393	-0.0781	L	GEN:RAVNWD 3-New
126478	RAINEY7E	138.0	10	159	1.0181	0.9500	1.0500	0.9364	-0.0817	L	GEN:RAVNWD 3-New
126484	SEAPT 5&9	138.0	10	159	1.0163	0.9500	1.0500	0.9463	-0.0700	L	GEN:RAVNWD 3-New
126485 126487	38M12 TAP SEPRT 4&8	138.0 138.0	10	159 159	1.0164	0.9500	1.0500	0.9429	-0.0735	L	GEN:RAVNWD 3-New
126487	38M15 TAP	138.0	10	159	1.0159	0.9500	1.0500	0.9424	-0.0715	L	GEN:RAVNWD 3-New GEN:RAVNWD 3-New
126489	SEAPT 2&6	138.0	10	159	1.0163	0.9500	1.0500	0.9428	-0.0735	L	GEN:RAVNWD 3-New
126501	TRADE TX3	138.0	10	159	1.0160	0.9500	1.0500	0.9459	-0.0701	L	GEN:RAVNWD 3-New
126502	TRADE TX2	138.0	10	159	1.0149	0.9500	1.0500	0.9430	-0.0719	L	GEN:RAVNWD 3-New
126503	TRADE TX4 38M13 TAP	138.0 138.0	10	159 159	1.0163	0.9500	1.0500	0.9428	-0.0735	L	GEN:RAVNWD 3-New
126504 126531	W110 2&7	138.0	10	159	1.0150	0.9500	1.0500	0.9433	-0.0717	L	GEN:RAVNWD 3-New GEN:RAVNWD 3-New
126536	EAST75 TAP 4	138.0	10	159	1.0167	0.9500	1.0500	0.9346	-0.0821	L	GEN:RAVNWD 3-New
126537	EAST75 TAP 3	138.0	10	159	1.0267	0.9500	1.0500	0.9446	-0.0821	L	GEN:RAVNWD 3-New
126538	W42 T2&10	138.0	10	159	1.0170	0.9500	1.0500	0.9424	-0.0746	L	GEN:RAVNWD 3-New
126540	W42 T3&7	138.0	10	159	1.0165	0.9500	1.0500	0.9393	-0.0772	L	GEN:RAVNWD 3-New
126541 126543	W42 T4&6 W49 ST 1	138.0 138.0	10	159 159	1.0167	0.9500	1.0500	0.9393	-0.0774	L	GEN:RAVNWD 3-New GEN:RAVNWD 3-New
126544	W49 ST 2	138.0	10	159	1.0171	0.9500	1.0500	0.9398	-0.0773	L	GEN:RAVNWD 3-New
126546	W49 ST 4	138.0	10	159	1.0170	0.9500	1.0500	0.9399	-0.0771	L	GEN:RAVNWD 3-New
126549	ASTOR T1 TAP	138.0	10	159	1.0169	0.9500	1.0500	0.9398	-0.0771	L	GEN:RAVNWD 3-New
126551	ASTOR T5 TAP	138.0	10	159	1.0170	0.9500	1.0500	0.9425	-0.0745	L	GEN:RAVNWD 3-New
126552 126554	ASTOR T2 TAP W65ST2&5	138.0 138.0	10	159 159	1.0171	0.9500	1.0500	0.9398 0.9392	-0.0773	L	GEN:RAVNWD 3-New GEN:RAVNWD 3-New
126554	W65S12&5 W65ST4&7	138.0	10	159	1.0165	0.9500	1.0500	0.9392	-0.0773	L	GEN:RAVNWD 3-New GEN:RAVNWD 3-New
126592	SEAPT T3&10	138.0	10	159	1.0150	0.9500	1.0500	0.9432	-0.0718	L	GEN:RAVNWD 3-New
126596	W42 TX7	138.0	10	159	1.0165	0.9500	1.0500	0.9392	-0.0773	L	GEN:RAVNWD 3-New
126597	W42 TX6	138.0	10	159	1.0166	0.9500	1.0500	0.9392	-0.0774	L	GEN:RAVNWD 3-New
126611 126628	ASTOR T2 MHTX1	138.0 138.0	10	159 159	1.0171	0.9500	1.0500	0.9397 0.9431	-0.0774	L	GEN:RAVNWD 3-New GEN:RAVNWD 3-New
126628	PARK1	138.0	10	159	1.0143	0.9500	1.0500	0.9431	-0.0712	L	GEN:RAVNWD 3-NEW GEN:RAVNWD 3-New
126630	MOTT TX2	138.0	10	159	1.0110	0.9500	1.0500	0.9430	-0.0717	L	GEN:RAVNWD 3-New GEN:RAVNWD 3-New
126631	MHTX2	138.0	10	159	1.0145	0.9500	1.0500	0.9433	-0.0712	L	GEN:RAVNWD 3-New
126632	PARK2	138.0	10	159	1.0122	0.9500	1.0500	0.9405	-0.0717	L	GEN:RAVNWD 3-New
126633	MOTT TX1	138.0	10	159	1.0144	0.9500	1.0500	0.9432	-0.0712	L	GEN:RAVNWD 3-New
126634 126635	MHTX3 PARK3	138.0 138.0	10	159 159	1.0141	0.9500	1.0500	0.9429	-0.0712	L	GEN:RAVNWD 3-New GEN:RAVNWD 3-New
126635	MOTT TX3	138.0	10	159	1.0117	0.9500	1.0500	0.9401	-0.0716	L	GEN:RAVNWD 3-New GEN:RAVNWD 3-New
126637	MHTX4	138.0	10	159	1.0089	0.9500	1.0500	0.9381	-0.0708	L	GEN:RAVNWD 3-New
126639	MOTT TX4	138.0	10	159	1.0088	0.9500	1.0500	0.9380	-0.0708	L	GEN:RAVNWD 3-New
126726	ASTOR T1	138.0	10	159	1.0169	0.9500	1.0500	0.9397	-0.0772	L	GEN:RAVNWD 3-New
126728	ASTOR T5	138.0	10	159	1.0170	0.9500	1.0500	0.9425	-0.0745	L	GEN:RAVNWD 3-New
126828 155073	W50-TAP TX 5 STLAWL34	138.0	10	159 1105	1.0170	0.9500	1.0500	0.9398	-0.0772	L H	GEN:RAVNWD 3-New 147839 MOSES E 230 155073 STLAWL34 230 1
1000/3	STLAWL34	230.0	103	1105	1.0413	0.9520	1.0520	1.0722	0.0309	Н	147839 MOSES E 230 155073 STLAWL34 230 1

5 SECURITY ANALYSIS FOR HORIZON YEAR

This section presents results obtained from steady-state analysis of the New York State Transmission System for Summer Peak load conditions in the Horizon Year. System Power flow analysis is performed on the six power flow cases developed in Section 3.2 based on the methodology presented in Section 4.1. Analysis of the wind cases (Scenarios 5 and 6) will be performed in Phase II of this study.

5.1 Results

5.1.1 System Intact Conditions

Results of the system intact analysis (with all lines in-service) showed some base case overloads mostly on underlying systems (115 kV and below) as in Table 5-1.

Based on information provided by LIPA, the overloads on the step down banks at Holbrook and Port Jefferson in the LIPA system are due to high loads at 69 kV buses in the area. Also the injection of the STARS generation of Zone K in most cases is at Holbrook. LIPA indicated that in order to mitigate these overloads additional stepdown transformers are required at those locations.

Voltage violations were observed under system intact conditions but most of them are marginal as shown in Table 5-2.

These violations should be reviewed by the Transmission Owners.

5.1.2 Contingency Case Conditions

Results of the contingency analysis showed thermal and voltage violations. These are listed in Tables 5-3 and 5-4 and are described below.

Table 5-3 shows the overloaded transmission facilities.

NYSEG / RGE Systems:

As in the intermediate year system, most of the overloads in the NYSEG and RGE systems are on underlying systems and these facilities should be ignored when analyzing bulk power system performance. NYSEG requested that these facilities continue to be monitored for potential problems when wind generation is increased in the base case. The only exception is the transformer from Pannell Road 345kV to Station 122 115kV in Scenarios 3 and 4 following the loss of Ginna units. The maximum overloading is seen to be around 8%.

Long Island Power Authority System:

Each of the 345/138 kV Newbridge Road transformers becomes overloaded for loss of the parallel bank (about 16% overload based on the 585 MVA LTE rating) for all four Scenarios.

Also, a post-contingency overload was observed on the Brookhaven-Riverhead 138 kV line following the loss of the Shoreham-Wildwood 138 kV line.

National Grid System:

Several post-contingency overloads were observed in the National Grid system. Based on comments received from National Grid for the Intermediate Year security analysis, it is our understanding that most of these overloads are dispatch dependent and may be addressed by generation reduction. Other comments are given below:

- The post-contingency overloads on the Leeds-Pleasant Valley 345 kV and Athens-Pleasant Valley 345 kV lines are dependent on dispatch and expected to decrease if Athens Generation is reduced. At present, there is a temporary SPS in place for the contingencies that cause the overloads.
- The overloads on the following facilities are dispatch dependent and expected to decrease if Athens Generation is reduced:

125040 N.CAT. 1	115 137507 BOC 2T	115	2
137507 BOC 2T	115 137510 JMC2+9TP	115	1
137481 JMC1+7TP	115 137490 BLUECIRC	115	1

- The overloads on the Reynolds Road 345/115 kV transformer are dependent on local generation, and there is an SPS that ramps down the Besicorp generation (or now called Empire generation (bus 137558)) for the contingencies listed.
- The overload on the Allens F Colton 115 kV line is driven by generation dispatch; if it turns out to be wind/hydro it may be something the STARS project will need to address.
- The overloads on the Menands-St. Camps 115 kV line are a result of incorrect contingencies.

Table 5-4 lists post-contingency voltage violations.

New York Power Authority:

Based on comments received from New York Power Authority as part of the Intermediate Year security analysis, it is our understanding that the following voltage violations can be ignored:

- PMLD 3 for the loss of PMLD 1 is a local issue.
- MDTN Tap for loss of the CCRT 34 is an expected voltage issue.

NYSEG / RGE:

Based on comments received from NYSEG/RGE as part of the Intermediate Year security analysis, it is our understanding that the following voltage violations can be ignored:

- SLVYN115 for loss of FISHKILL115 to SYLVN115 is a local issue.
- The four WOODA 345 and WOODB345 violations for loss of bus and line tap connections are expected voltage issue.

5.2 Transmission Interface Loadings

Flows on transmission interfaces were monitored under all-lines-in and contingency case conditions in Scenarios 1 through 4 and checked against the corresponding emergency transfer limits derived in Section 6. The intent here is not to check interfaces for possible overload conditions¹⁴ but to identify those interfaces whose flows exceed the previously established transfer limits and have a potential for becoming congested thus resulting in generation curtailment and impacting LOLE. The idea is to compare such interfaces against the interfaces previously flagged as being congested in the LOLE analysis (performed elsewhere in this study – see Part II of this report).

Table 5-5 shows those interfaces whose flows exceed the interface transfer limits. Again, these results should not be reviewed from a deterministic standpoint but from a probabilistic (LOLE) standpoint in the sense that we want to identify which interfaces are congested. For example, Table 5-5 shows that the emergency transfer limit on the F-G interface is 3485 MW¹⁵ and the corresponding base case flow is 3795 MW in the Scenario 2 case. This does not imply that the interface is overloaded. However, it implies that generation will be redispatched (or curtailed) to reduce the flow on this interface below its emergency transfer limit, thus potentially impacting LOLE.

Table 5-5 shows several interfaces whose flows exceed the corresponding transfer limits. Several of these interfaces were also flagged in the LOLE analysis, for example Volney East, UPNY-SENY, F-G, I-K etc. See Section 9 of this report for details. Thus, the results of Table 5-5 support the findings of the LOLE analysis.

5.3 Conclusions

The results presented in this report showed several security violations (thermal and voltage). It should be noted that these violations are for a typical generation dispatch i.e., for a snapshot of system conditions at a given instant in time. It may be possible to mitigate the violations through generation redispatch or through transmission

¹⁵ From the Task 5 report, the F-G interface is thermally limited, the limiting element being the Leeds-Pleasant Valley 345 kV line for loss of the Athens-Pleasant Valley 345 kV line.

¹⁴ Flows on some interfaces are limited due to system thermal constraints while flows on other interfaces are limited due to system voltage constraints.

reinforcements. Solutions to mitigate these constraints will be developed in Phase II of this study based on discussions with the Transmission Owners.

				Normal	Int. Year	Horizon Year	Scenariol	Horizon Year	Scenario2	Horizon Year	Scenario3	Horizon Year	Scenario4
** From bus **	* ** To bus **	CKT	Owner	Rating	Loading%	MVA Loading	Loading%						
125002 ROSETON	345 125192 ROSE GN2	24.0 2	CENT HUD	614.0	-	647.9	105.5	660.7	107.6	-	-	660.7	107.6
125020 DANSKAMA	115 125021 DC CBLTP	115 1	CENT HUD	178.0	-	191.3	107.5	188.9	106.1	-	-	191.8	107.8
125002 ROSETON	345 125190 ROSE GN1	24.0 1	CENT HUD	614.0	-	-	-	653.0	106.4	-	-	652.0	106.2
126283 GOTHLS N	345 126286 GOWANUSN	345 1	CONED	529.0	-	-	-	537.7	101.6	-	-	-	-
126285 GOTHLS S	345 126287 GOWANUSS	345 1	CONED	529.0	-	-	-	537.7	101.6	-	-	-	-
129421 HOLBROOK	138 129806 HOLBRK1	69.0 1	LIPA	239.0	-	268.8	112.5	251.4	105.2	269.1	112.6	259.3	108.5
129421 HOLBROOK	138 129807 HOLBRK2	69.0 2	LIPA	104.0	-	104.4	100.4	1	-	104.6	100.5	-	-
129448 PT JEFF1	138 129828 PT.JEFF2	69.0 1	LIPA	117.0	-	121.1	103.5	123.8	105.8	120.5	103.0	121.0	103.4
136779 LTL RV-F	115 137043 LITTLE R	23.0 1	NGRID	11.0	106.6	12.8	116.4	12.8	116.1	12.8	116.1	12.8	116.4
136781 LWRNCE-A	115 137153 LAWRENCE	13.2 1	NGRID	10.0	-	10.9	109.4	10.9	109.1	10.9	109.1	10.9	109.3
136782 LWRNCE-B	115 137153 LAWRENCE	13.2 1	NGRID	10.0	-	10.8	108.5	10.8	108.1	10.8	108.1	10.8	108.4
136783 MALONE	115 136918 MALONE 3	34.5 1	NGRID	10.5	103.0	12.1	115.2	12.1	115.2	12.1	115.2	12.1	115.2
136783 MALONE	115 136918 MALONE 3	34.5 2	NGRID	11.9	117.1	15.6	131.0	15.6	131.1	15.6	131.0	15.6	131.0
136791 NICHOLVL	115 136926 NICHOLVI	34.5 1	NGRID	13.8	129.3	19.6	142.2	19.6	142.2	19.6	142.1	19.6	142.2
137484 ALTAMONT	115 137572 ALTAMONT	34.5 1	NGRID	16.8	-	17.0	101.2	17.3	102.9	17.3	102.8	17.0	101.1
135868 PTSFD-23	115 149111 STA 56	34.5 1	RGE	56.0	-	56.2	100.4	56.2	100.3	56.1	100.2	56.3	100.5
135869 PTSFD-24	115 149111 STA 56	34.5 2	RGE	56.0	-	57.9	103.3	57.8	103.2	57.7	103.1	57.9	103.3
136197 FRMGTN-4	115 149141 FRMNGT2	34.5 1	RGE	57.6	-	67.6	117.4	67.3	116.8	67.3	116.8	68.0	118.1
149033 S42 115	115 149181 STA42 B	11.5 4	RGE	29.7	116.1	38.6	129.8	38.9	130.9	38.8	130.7	39.4	132.6
149032 S33 902	115 149172 S33 11T	11.5 11	RGE	33.0	-	34.0	103.1	33.7	102.2	33.7	102.1	34.1	103.3

Table 5-1: System Intact Overloads – Horizon Year Summer Peak Conditions (Scenarios 1~4)

Note:

1. "-" indicates no violations for this scenario

2. Roseton GSUs' overload were due to the increased dispatch at generators with no addition of new generators in Scenarios 1,2,4

3. The load at Lawrence increased which caused overloading on the GSU. However, the load was not considered as station service load (20MW load against 2MW generatic

							Intermediate	Horizo	n Year Syst	em Inta
Bus #	Bus Name	kV	Area	Zone	Vlow	Vhigh	Year	Scenariol	Scenario2	Scenar
135257	SPECMETL	115.0	1	145	0.950	1.050	1.058	1.053	1.058	1.05
135263	BERRY RD	115.0	1	145	0.950	1.050	1.055	1.055	1.055	1.05
135264	BNNT-142	115.0	1	145	0.950	1.050	1.058	1.053	1.057	1.05
135265	BNNT-162	115.0	1	145	0.950	1.050	1.056	1.051	1.056	1.05
135266	BRIGHAM1	115.0	1	145	0.950	1.050	1.058	1.053	1.058	1.05
135273	DUNKIRK1	115.0	1	145	0.950	1.050	1.062	1.056	1.061	1.06
135274	EDNK-161	115.0	1	145	0.950	1.050	1.054	1.054	1.054	1.05
135275	EDNK-162	115.0	1	145	0.950	1.050	1.055	1.055	1.055	1.05
135283	LUDLUM62	115.0	1	145	0.950	1.050	1.057	1.052	1.057	1.05
135293	LUDLUM61	115.0	1	145	0.950	1.050	1.057	1.052	1.057	1.05
149024	GINNA115	115.0	2	153	0.950	1.050	1.052	1.052	1.052	1.05
130827	MILKN115	115.0	3	150	0.950	1.050	1.058	1.054	1.054	1.05
130871	CANADIAC	115.0	3	150	0.950	1.050	1.126	1.103	1.107	1.10
130872	CANADIAS	115.0	3	150	0.950	1.050	1.125	1.105	1.109	1.10
131342	BENET115	115.0	3	150	0.950	1.050	1.057	-	-	-
131344	PALMT115	115.0	3	150	0.950	1.050	1.057	-	-	-
114	RTDM77SW	230.0	6	148	0.950	1.050	-	0.928	0.922	0.92
115	RTDM99SW	230.0	6	148	0.950	1.050	-	0.928	0.922	0.92
130773	BARTN115	115.0	6	165	0.950	1.050	-	0.950	0.950	0.95
137730	ROTRDM.2	230.0	6	148	0.950	1.050	-	0.928	0.922	0.92
126266	DUNWODIE	345.0	9	169	1.003	1.049	-	1.002	1.002	-
126298	SPRBROOK	345.0	9	169	1.003	1.049	-	1.003	1.003	-
126284	GOTHLS R	345.0	10	159	0.950	1.050	1.051	1.052	1.054	1.05
126499	TllMPT	138.0	10	159	0.950	1.050	-	1.051	-	-
T - 1 - -										
Note:	dicates no vio	lotion- f	l an this -	laonomic						

 Table 5-2: System Intact Voltage Violations – Horizon Year Summer Peak Conditions (Scenarios 1~4)

Table 5-3: Post-Contingency Overloads – Horizon Year Summer Peak Conditions (Scenarios 1~4)

													enario 2									
					Base	Post	Post															
	Limiting Element		Owner	LTE/STE Rating	Case MVA Flow	Cont MVA Flow	Cont Loading%	т.	imiting Contingency													
125015 AC CBLTP	115 125020 DANSKAMA	115 1	CENT HUD	211.0	165.8	323.7	153.4	185.6	363.3	172.2	183.3	360.2	170.7	171.7	337.0	159.7	186.1	364.3	172.7	125021 DC CBLTP	115 125041 N.CHELSE	115 1
125015 AC CBLTP	115 125020 DANSKAMA	115 1	CENT HUD	211.0	165.8	323.6	153.4	185.6	363.1	172.1	183.3	360.2	170.7	171.7	336.6	159.5	186.1	364.0	172.5	125020 DANSKAMA	115 125021 DC CBLTP	115 1
125015 AC CBLTP	115 125020 DANSKAMA	115 1	CENT HUD	211.0	165.8	215.7	102.2	185.6	236.2	111.9	183.3	238.6	113.1	171.7	223.1	105.7	186.1	240.2	113.8	125002 ROSETON	345 126281 FISHKILL	345 1
125015 AC CBLTP 125015 AC CBLTP	115 125041 N.CHELSE 115 125041 N.CHELSE	115 1 115 1	CENT HUD	211.0	165.8	323.7	153.4	185.7	363.4	172.2	183.4	360.3	170.7	171.7	337.0	159.7	186.2	364.4	172.7	125021 DC CBLTP 125020 DANSKAMA	115 125041 N.CHELSE	115 1
125015 AC CBLTP 125015 AC CBLTP	115 125041 N.CHELSE 115 125041 N.CHELSE	115 1	CENT HUD CENT HUD	211.0	165.8 165.8	323.7 215.7	153.4	185.7	363.1 236.2	172.1 111.9	183.4	360.2	113.1	171.7	336.6 223.1	159.5	186.2	364.1 240.2	172.5	125020 DANSKAMA 125002 ROSETON	115 125021 DC CBLTP 345 126281 FISHKILL	345 1
125020 DANSKAMA	115 125021 DC CBLTP	115 1	CENT HUD	199.0	-	-	-	-	-	-	-	-	-	-	-	-	191.8	199.8	100.4	126262 BUCHANAN N	345 126267 E VIEW 2N	345 1
125020 DANSKAMA	115 125021 DC CBLTP	115 1	CENT HUD	199.0	-	-	-	-	-	-	-	-	-	-	-	-	191.8	199.8	100.4	SER:W93&W79		
125020 DANSKAMA	115 125021 DC CBLTP	115 1	CENT HUD	199.0	170.9	324.3	163.0	191.3	364.1	183.0	188.9	361.0	181.4	176.9	337.7	169.7	191.8	365.1	183.5	125015 AC CBLTP	115 125041 N.CHELSE	115 1
125020 DANSKAMA 125020 DANSKAMA	115 125021 DC CBLTP 115 125021 DC CBLTP	115 1	CENT HUD CENT HUD	199.0	170.9	324.3	163.0	191.3	363.9	182.8	188.9	360.9	181.4	176.9	337.3	169.5	191.8	364.8	183.3	125015 AC CBLTP 125002 ROSETON	115 125020 DANSKAMA 345 126281 FISHKILL	345 1
125020 DANSKAMA	115 125021 DC CBLTP	115 1	CENT HUD	199.0	-	-	-	191.3	214.6	107.8	188.9	215.4	108.2	176.9	201.4	101.2	191.8	216.4	108.8	125001 ROCK TAV	345 126297 RAMAPO	345 1
125020 DANSKAMA	115 125021 DC CBLTP	115 1	CENT HUD	199.0	-	-	-	191.3	214.3	107.7	188.9	214.0	107.6	176.9	203.1	102.1	191.8	214.5	107.8	125022 E FISH I	115 126281 FISHKILL	345 1
125020 DANSKAMA 125020 DANSKAMA	115 125021 DC CBLTP 115 125021 DC CBLTP	115 1 115 1	CENT HUD CENT HUD	199.0	-	-	-	191.3	206.5	103.8	188.9	204.8	102.9	-	-	-	191.8 191.8	207.3	104.2	125020 DANSKAMA 125044 REYNOLDS	115 125198 DR CBLTP 115 125198 DR CBLTP	115 1 115 1
125020 DANSKAMA 125020 DANSKAMA	115 125021 DC CBLTP	115 1	CENT HUD	199.0	-	-	-	191.3	200.5	100.8	188.9	199.2	102.9	-	-	-	191.8	207.3	101.0	125036 MANCHEST	115 125198 DK CBHIP 115 125043 PL.VAL 1	115 1
125020 DANSKAMA	115 125021 DC CBLTP	115 1	CENT HUD	199.0	-	-	-	191.3	200.6	100.8	188.9	201.2	101.1	-	-	-	191.8	202.0	101.5	126294 PLTVLLEY	345 137451 LEEDS 3	345 2
125020 DANSKAMA	115 125021 DC CBLTP	115 1	CENT HUD	199.0	-	-	-	191.3	200.1	100.6	188.9	200.9	101.0	-	-	-	191.8	201.6	101.3	126294 PLTVLLEY	345 137455 ATHENS	345 1
125020 DANSKAMA 125020 DANSKAMA	115 125021 DC CBLTP 115 125021 DC CBLTP	115 1	CENT HUD	199.0	-	-	-	191.3	199.3 199.3	100.1	-	-	-	-	-	-	191.8	199.8 200.0	100.4	125043 PL.VAL 1 130781 CARMILLS	115 125054 TODD HIL 115 130865 WOODS115	115 1 115 1
125020 DANSKAMA 125021 DC CBLTP	115 125021 DC CBLIP 115 125041 N.CHELSE	115 1	CENT HUD	253.0	170.9	324.4	128.2	191.3	364.1	143.9	189.0	361.0	142.7	177.0	337.7	133.5	191.8	365.1	144.3	125015 AC CBLTP	115 125041 N.CHELSE	115 1
125021 DC CBLTP	115 125041 N.CHELSE	115 1	CENT HUD	253.0	170.9	324.3	128.2	191.3	363.9	143.8	189.0	361.0	142.7	177.0	337.4	133.3	191.9	364.8	144.2	125015 AC CBLTP	115 125020 DANSKAMA	115 1
125027 FORGEBRK	115 125041 N.CHELSE	115 1	CENT HUD	211.0	-	-	-	155.8	213.3	101.1	153.6	211.3	100.1	-	-	-	156.4	214.5	101.7	125026 FISHKILL	115 125041 N.CHELSE	115 1
126266 DUNWODIE	345 126600 REAC71 345 126600 REAC71	345 SR 345 SR	CONED	851.0	-		-	-	-	-	747.6	891.6 891.6	104.8	-	-		-	-	-	126298 SPRBROOK 126298 SPRBROOK	345 126517 REACM51 345 126518 REACM52	345 SR 345 SR
126266 DUNWODIE	345 126600 REAC71 345 126600 REAC71	345 SR 345 SR	CONED	851.0	-	-	-	698.7	855.0	100.5	747.6	916.4	104.8	697.6	854.1	100.4	694.1	851.0	100.0	126266 DUNWODIE	345 126601 REAC72	345 SR 345 SR
126266 DUNWODIE	345 126600 REAC71	345 SR	CONED	851.0	-	-	-	698.7	852.9	100.2	747.6	911.0	107.1	697.6	851.9	100.1	-	-	-	126601 REAC72	345 126641 MOTT HAVEN	345 4
126266 DUNWODIE	345 126601 REAC72	345 SR	CONED	851.0	-	-	-	-	-	-	742.5	911.5	107.1	-	-	-	-	-	-	126266 DUNWODIE	345 126600 REAC71	345 SR
126266 DUNWODIE 126266 DUNWODIE	345 126601 REAC72 345 126601 REAC72	345 SR 345 SR	CONED	851.0 851.0	-		-	-	-	-	742.5	906.1 885.5	106.5	-	-		-	-	-	126600 REAC71 126298 SPRBROOK	345 126641 MOTT HAVEN 345 126517 REACM51	345 3 345 SR
126266 DUNWODIE	345 126601 REAC72	345 SR	CONED	851.0	-	-	-	-	-	-	742.5	885.5	104.1	-	-	-	-	-	-	126298 SPRBROOK	345 126518 REACM52	345 SR
126385 E179 ST	138 126730 15055 SR	138 1	CONED	365.0	223.4	417.5	114.4	-	-	-	221.2	432.9	118.6	-	-	-	215.7	437.2	119.8	GEN:NYPA_AS		
126581 HG TAP	138 126730 15055 SR	138 1	CONED	365.0	223.4	417.5	114.4	-	-	-	221.2	432.9	118.6	-	-	-	215.7	437.2	119.8	GEN:NYPA_AS		
126600 REAC71	345 126641 MOTT HAVEN 345 126641 MOTT HAVEN	345 3	CONED	851.0	-	-	-	-	-	-	747.6	891.6	104.8	-	-	-	-	-	-	126298 SPRBROOK 126298 SPRBROOK	345 126517 REACM51 345 126518 REACM52	345 SR 345 SR
126600 REAC71	345 126641 MOTT HAVEN	345 3	CONED	851.0	-	-	-	698.7	855.0	100.5	747.6	916.4	104.8	697.6	854.1	100.4	694.1	851.0	100.0	126266 DUNWODIE	345 126518 REACH52 345 126601 REAC72	345 SR
126600 REAC71	345 126641 MOTT HAVEN	345 3	CONED	851.0	-	-	-	698.7	852.9	100.2	747.6	911.0	107.1	697.6	851.9	100.1	-	-	-	126601 REAC72	345 126641 MOTT HAVEN	345 4
126601 REAC72	345 126641 MOTT HAVEN	345 4	CONED	851.0	-	-	-	-	-	-	742.5	911.5	107.1	-	-	-	-	-	-	126266 DUNWODIE	345 126600 REAC71	345 SR
126601 REAC72 126601 REAC72	345 126641 MOTT HAVEN 345 126641 MOTT HAVEN	345 4 345 4	CONED	851.0 851.0	-		-	-	-	-	742.5	906.1 885.5	106.5	-	-		-	-	-	126600 REAC71 126298 SPRBROOK	345 126641 MOTT HAVEN 345 126517 REACM51	345 3 345 SR
126601 REAC72	345 126641 MOTT HAVEN	345 4	CONED	851.0	-	-	-	-	-	-	742.5	885.5	104.1	-	-	-	-	-	-	126298 SPRBROOK	345 126518 REACM52	345 SR
128847 NWBRG	345 129310 NEWBRGE	138 1	LIPA	585.0	333.8	677.3	115.8	333.9	676.8	115.7	334.0	683.8	116.9	333.9	676.8	115.7	333.9	676.8	115.7	128847 NWBRG	345 129310 NEWBRGE	138 2
128847 NWBRG	345 129310 NEWBRGE	138 2	LIPA	585.0	333.8	677.3	115.8	333.9	676.8	115.7	334.0	683.8	116.9	333.9	676.8	115.7	333.9	676.8	115.7	128847 NWBRG	345 129310 NEWBRGE	138 1
129234 VLY STRM 129234 VLY STRM	138 129271 E.G.C2 138 129271 E.G.C2	138 1 138 1	LIPA	304.0	-	-	-	262.6	337.2 327.2	110.9 107.6	-	-	-	262.7	337.3	110.9	216.3	305.0	100.3	128900 BARETG1 128910 BRTG9-12	20.0 129202 BARRETT1 13.8 129203 BARRETT2	138 1 138 1
129234 VLY STRM	138 129271 E.G.C2	138 1	LIPA	304.0	-	-	-	262.6	319.1	107.0	-	-	-	262.7	319.2	107.0	-	-	-	128901 BARETG2	20.0 129203 BARRETT2	138 1
129234 VLY STRM	138 129271 E.G.C2	138 1	LIPA	304.0	-	-	-	262.6	312.2	102.7	-	-	-	262.7	312.2	102.7	-	-	-	129270 E.G.C.	138 129580 E.G.C.1	69.0 1
129234 VLY STRM	138 129271 E.G.C2	138 1	LIPA	304.0	-	-	-	262.6	309.5	101.8	-	-	-	262.7	309.5	101.8	-	-	-	129276 FREEPORT	138 129310 NEWBRGE	138 1
129265 CARLE PL 129265 CARLE PL	138 129270 E.G.C. 138 129270 E.G.C.	138 1 138 1	LIPA	303.0	-	-	-	186.7	305.0 304.9	100.7	-	-	-	186.6	305.1	100.7	-	-	-	BUS:SHORE_RD_345 126266 DUNWODIE	345 128835 SHORE RD	345 1
129205 CARLE FL 129341 NRTHPRT1	138 129355 PILGRIM	138 1	LIPA	644.0	-	-	-	-	-	-	418.4	677.3	105.2	-	-	-	414.7	669.2	103.9	129346 NRTHPT3	138 129355 PILGRIM	138 2
129346 NRTHPT3	138 129355 PILGRIM	138 2	LIPA	644.0	-	-	-	-	-	-	419.6	674.3	104.7	-	-	-	415.8	666.1	103.4	129341 NRTHPRT1	138 129355 PILGRIM	138 1
129475 WILDWOOD	138 129493 RVRHD	138 1	LIPA	327.0	-	-	-	215.3	346.7	106.0	212.8	347.6	106.3	215.3	346.8	106.1	212.5	345.4	105.6	129414 BRKHAVEN2	138 129488 EDWRDSAV	138 1
129488 EDWRDSAV 129488 EDWRDSAV	138 129493 RVRHD 138 129493 RVRHD	138 1 138 1	LIPA	297.0	133.1	306.4	103.1	164.1	363.8 322.4	122.5 108.5	168.5	366.2 325.4	123.3 109.5	164.2	363.9 322.4	122.5	166.4 166.4	363.6	122.4	129459 SHOREHAM 129475 WILDWOOD	138 129475 WILDWOOD 138 129493 RVRHD	138 1 138 1
125040 N.CAT. 1	115 137507 BOC 2T	115 2	NGRID	120.0	106.0	140.5	117.1	107.9	148.1	123.4	103.7	144.8	120.7	102.8	147.8	123.1	108.7	149.1		125000 HURLEY 3	345 125030 HURLEY 1	115 1
125040 N.CAT. 1	115 137507 BOC 2T	115 2	NGRID	120.0	106.0	135.7	113.1	107.9	138.2	115.2	103.7	134.7	112.2	102.8	130.5	108.7	108.7	139.0	115.8	125000 HURLEY 3	345 137451 LEEDS 3	345 1
125040 N.CAT. 1	115 137507 BOC 2T	115 2	NGRID	120.0	-	-	-	107.9	121.5	101.3	-	-	-	-	-	-	108.7	122.2	101.8	125030 HURLEY 1	115 125132 SAUGE115	115 1
126294 PLTVLLEY 126294 PLTVLLEY	345 137451 LEEDS 3 345 137451 LEEDS 3	345 2 345 2	NGRID	1538.0	- 1248.8	- 1790.8	- 116.4	- 1256.5	- 1808.6	- 117.6	- 1285.0	- 1855.5	- 120.6	1304.9 1304.9	1540.2	100.1	- 1269.9	- 1830.5	- 119.0	125000 HURLEY 3 126294 PLTVLLEY	345 125002 ROSETON 345 137455 ATHENS	345 1 345 1
126294 PLTVLLEY	345 137451 LEEDS 3	345 2	NGRID	1538.0	1248.8	1538.2	100.0	1256.5	1565.0	101.8	1285.0	1608.2	104.6	1304.9	1624.4	105.6	1269.9	1593.5	103.6	125002 ROSETON	345 126281 FISHKILL	345 1
126294 PLTVLLEY	345 137451 LEEDS 3	345 2	NGRID	1538.0	1248.8	1545.6	100.5	1256.5	1560.7	101.5	1285.0	1595.8	103.8	1304.9	1582.1	102.9	1269.9	1574.4	102.4	125000 HURLEY 3	345 137451 LEEDS 3	345 1
126294 PLTVLLEY	345 137455 ATHENS	345 1	NGRID	1538.0	-	-	-	-	-	-	1251.7	1559.9	101.4	1269.8	1574.3	102.4	1231.2	1539.7	100.1	125002 ROSETON	345 126281 FISHKILL	345 1
126294 PLTVLLEY 126294 PLTVLLEY	345 137455 ATHENS 345 137455 ATHENS	345 1 345 1	NGRID	1538.0	- 1209.2	- 1753.5	- 114.0	- 1218.2	- 1772.1	- 115.2	1251.7	1546.4	100.5	- 1269.8	- 1842.2	- 119.8	- 1231.2	- 1793.6	- 116.6	125000 HURLEY 3 126294 PLTVLLEY	345 137451 LEEDS 3 345 137451 LEEDS 3	345 1 345 2
130815 HINMN115	115 135452 LOCKPORT	115 1	NGRID	252.0	-	-	-	-	-	-	-	-	-	-	-	-	182.4	261.6	103.8	GEN:GINNA	515 15,151 10055 5	515 2
130855 STATE115	115 136191 ELBRIDGE	115 1	NGRID	137.0	-	-	-	-	-	-	-	-	-	-	-	-	85.9	144.9	105.8	GEN:GINNA		
130867 WYANT115	115 137528 REY. RD.	115 1	NGRID	214.0	-	-	-	147.2	221.3	103.4	145.0	218.1	101.9	145.1	218.7	102.2	147.1	221.2	103.4	137517 N. TROY	115 137544 SYCA-16	115 1
130867 WYANT115 135461 PACK(S)W	115 137528 REY. RD. 115 147851 NIAG115W	115 1 115 3	NGRID	214.0	-	-	-	147.2	221.2	103.4	145.0	218.1	101.9	145.1	218.6	102.1	147.1	221.1	103.3	137528 REY. RD. 135461 PACK(S)W	115 137544 SYCA-16 115 147851 NIAG115W	115 1
136200 GERES LK	115 136269 SOLVTAP2	115 1	NGRID	120.9	103.4	145.0	120.0	111.5	157.6	130.4	111.8	158.1	130.8	111.8	158.1	130.8	111.5	157.6	130.3	136200 GERES LK	115 136270 CRUC TAP	115 1
136751 ALLENS F	115 136764 COLTON	115 1	NGRID	128.0	42.4	133.2	104.1	45.2	151.5	118.3	43.6	151.5	118.4	43.7	151.4	118.3	45.0	151.5	118.4	136783 MALONE	115 147856 WILL 115	115 1
136751 ALLENS F	115 136795 PARISHVL	115 1	NGRID	144.0	-	-	-	49.3	156.4	108.6	47.7	156.5	108.7	47.8	156.4	108.6	49.1	156.5	108.7	136783 MALONE	115 147856 WILL 115	115 1
136791 NICHOLVL 137229 KELSEY H	115 136795 PARISHVL 115 137235 PORTER 1	115 1 115 1	NGRID	143.8	-	-	-	49.6 93.3	156.9 127.8	109.1	48.0 94.9	157.0	109.2	48.1 95.0	156.9	109.1	49.4 93.5	157.0 127.8	109.2	136783 MALONE 137233 ONEIDA	115 147856 WILL 115 115 137241 SHRL TAP	115 1 115 1
137229 KELSEY H 137235 PORTER 1	115 137235 PORTER 1 115 147905 ILION	115 1	NGRID	120.0	-	-	-	93.3	127.8	106.5	94.9	127.9	105.5	95.0	127.9	105.6	93.5	127.8	105.5	137235 DORTER 1	115 137241 SHRL TAP 115 137246 VALLEY	115 1
137450 ALPS345	345 137454 REYNLD3	345 1	NGRID	562.0	-	-	-	272.4	570.3	101.5	-	-	-	-	-	-	274.2	577.3	102.7	137454 REYNLD3	345 137528 REY. RD.	115 1
137454 REYNLD3	345 137528 REY. RD.	115 1	NGRID	562.0	338.8	567.5	101.0	417.5	627.2	111.6	422.9	579.1	103.0	426.4	579.7	103.2	414.8	632.5	112.5	BUS:ALPS_345		
137454 REYNLD3	345 137528 REY. RD.	115 1	NGRID	562.0	338.8 108.4	567.2	100.9	417.5	626.1	111.4	422.9	577.9 123.0	102.8	426.4	578.6	102.9	414.8	631.4 125.7	112.3	137450 ALPS345	345 137454 REYNLD3 345 137451 LEEDS 3	345 1 345 2
137481 JMC1+7TP 137481 JMC1+7TP	115 137490 BLUECIRC 115 137490 BLUECIRC	115 1	NGRID	120.0	108.4	122.1	101.7	110.5	124.6	103.8	108.2	123.0	102.5	109.8	124.5	103.8	111.3	125.7	104.7	126294 PLTVLLEY 126294 PLTVLLEY	345 137451 LEEDS 3 345 137455 ATHENS	345 2
137481 JMC1+7TP	115 137490 BLUECIRC	115 1	NGRID	120.0	108.4	120.5	100.4	110.5	123.0	102.5	108.2	121.2	101.0	109.8	121.3	101.1	111.3	123.8	103.2	125000 HURLEY 3	345 137451 LEEDS 3	345 1
13/481 JMCI+/TP								110.5	120.2	100.1	-	-	-	-	-	-	111.3	121.1	100.9	130750 COOPC345	245 120552 88208245	345 1
137481 JMC1+7TP 137481 JMC1+7TP 137502 GBSH+LGE	115 137490 BLUECIRC 115 137528 REY, RD,	115 1 115 1	NGRID	120.0 293.0	-	-	-	156.2	304.5	103.9	149.7	303.0	103.4	148.6	303.7	103.6	156.3			137454 REYNLD3	345 130753 FRASR345 345 137528 REY. RD.	115 1

New York State Transmission Assessment and Reliability Study (STARS)

Table 5-3: Post-Contingency Overloads – Horizon Year Summer Peak Conditions (Scenarios 1~4)

					Inte	rmediate	Year	Horizon	Year Sce	nario 1	Horizor	n Year Sce	enario 2	Horizon	Year Sce	enario 3	Horizon	n Year Sce	nario 4			
					Base	Post	Post	Base	Post	Post	Base	Post	Post	Base	Post	Post	Base	Post	Post			/
				LTE/STE	Case MVA	Cont MVA	Cont	Case MVA	Cont MVA	Cont		Cont MVA	Cont	Case MVA	Cont MVA	Cont	Case MVA		Cont			
	Limiting Element		Owner	Rating	Flow	Flow	Loading%	Flow	Flow	Loading%	Flow	Flow	Loading%	Flow	Flow	Loading%	Flow	Flow	Loading%	L	imiting Contingency	
137502 GBSH+LGE	115 137717 ALB2	115 1	NGRID	208.0	-	-	-	130.4	213.9	102.8	-	-	-	-	-	-	131.5	215.6	103.7	137502 GBSH+LGE	115 137718 ALB3	115 2
137502 GBSH+LGE	115 137718 ALB3	115 2	NGRID	208.0	-	-	-	130.4	214.1	102.9	-	-	-	-	-	-	131.5	215.9	103.8	137502 GBSH+LGE	115 137717 ALB2	115 1
137507 BOC 2T	115 137510 JMC2+9TP	115 1	NGRID	120.0	106.0	140.5	117.1	107.9	148.1	123.4	103.7	144.8	120.7	102.8	147.8	123.1	108.7	149.1	124.3	125000 HURLEY 3	345 125030 HURLEY 1	115 1
137507 BOC 2T	115 137510 JMC2+9TP	115 1	NGRID	120.0	106.0	135.7	113.1	107.9	138.2	115.2	103.7	134.7	112.2	102.8	130.5	108.7	108.7	139.0	115.8	125000 HURLEY 3	345 137451 LEEDS 3	345 1
137507 BOC 2T	115 137510 JMC2+9TP	115 1	NGRID	120.0	-	-	-	107.9	121.5	101.3	-	-	-	-	-	-	108.7	122.2	101.8	125030 HURLEY 1	115 125132 SAUGE115	115 1
137512 JOHNSON	115 137513 MAPLWOOD	115 1	NGRID	182.0	-	-	-	81.4	205.7	113.0	80.2	206.3	113.3	80.4	206.7	113.6	81.5	206.2	113.3	137501 FRONT ST	115 137532 RTRDM1	115 1
137513 MAPLWOOD	115 137515 MENANDS	115 1	NGRID	124.0	-	-	-	67.1	135.5	109.3	66.1	135.5	109.3	66.2	135.8	109.5	67.3	135.8	109.6	137501 FRONT ST	115 137532 RTRDM1	115 1
137513 MAPLWOOD	115 137515 MENANDS	115 1	NGRID	124.0	-	-	-	67.1	132.1	106.6	66.1	131.3	105.9	66.2	131.6	106.1	67.3	132.4	106.7	137528 REY. RD.	115 137900 REN WAST	115 1
137513 MAPLWOOD	115 137515 MENANDS	115 1	NGRID	124.0	-	-	-	67.1	130.8	105.5	66.1	130.0	104.9	66.2	130.3	105.1	67.3	131.1	105.7	137485 ALTEC	115 137486 ARSENAL	115 1
137513 MAPLWOOD	115 137515 MENANDS	115 1	NGRID	124.0	-	-	-	67.1	130.8	105.5	66.1	130.0	104.8	66.2	130.3	105.1	67.3	131.0	105.7	137485 ALTEC	115 137900 REN WAST	115 1
137515 MENANDS	115 137542 ST CAMPS	115 1	NGRID	114.0	45.9	132.2	116.0	55.4	155.1	136.0	54.2	154.5	135.5	55.0	155.0	135.9	55.5	155.3	136.2	137518 NW KRMKL	115 137716 ALB1	115 1
137515 MENANDS	115 137542 ST CAMPS	115 1	NGRID	114.0	45.9	118.7	104.2	55.4	139.7	122.6	54.2	138.9	121.9	55.0	139.4	122.3	55.5	139.9	122.7	137514 MCKOWNVL	115 137518 NW KRMKL	115 1
137515 MENANDS	115 137542 ST CAMPS	115 1	NGRID	114.0	-	-	-	55.4	114.6	100.5	-	-	-	-	-	-	55.5	116.9	102.6	137488 BETHLEHE	115 137716 ALB1	115 1
137516 N.SCOT1	115 137550 VOORH E	115 1	NGRID	120.0	-	-	-	-	-	100.5	92.6	120.8	100.7	93.0	121.3	101.1	-	-	102.0	BUS:RTRDM 77 BUS	115 15//10 1051	
137516 N.SCOT1	115 137550 VOORH E	115 1	NGRID	120.0	-	-	-	92.4	131.2	109.4	92.6	132.6	110.5	93.0	132.9	110.7	92.4	131.3	109.4	BUS:RTRDM 99 BUS		
137517 N. TROY	115 137544 SYCA-16	115 1	NGRID	197.0	-	-	-	129.9	214.2	108.8	127.7	211.2	107.2	127.7	211.7	107.5	129.8	214.3	109.1	130867 WYANT115	115 137528 REY. RD.	115 1
137517 N. TROY	115 137544 SICA-16	115 1	NGRID	197.0	-		-	129.9	205.3	104.2	127.7	202.1	107.2	127.7	202.6	107.9	129.8	205.2	104.2	130867 WYANT115	115 137543 SYCA-14	115 1
137518 NW KRMKL	115 137544 SICA-10 115 137716 ALB1	115 1	NGRID	303.0	_		-	129.9	205.5	104.2	127.7	202.1	102.0	-	202.0	102.9	193.0	305.2	104.2	137488 BETHLEHE	115 137545 SICA-14 115 137716 ALB1	115 1
137521 PATRN 11	115 137542 ST CAMPS	115 1	NGRID	176.0	-	-	-	76.5	185.8	105.6	-	-	-	-		-	77.3	189.3	107.6	137488 BETHLEHE	115 137716 ALB1	115 1
137528 REY. RD.	115 137542 SI CAMPS 115 137544 SYCA-16	115 1	NGRID	197.0	-	-	-	129.8	214.1	105.0	127.6	211.1	107.2	127.6	211.6	107.4	129.6	214.2	107.8	137488 BEIHLEHE 130867 WYANT115	115 137718 ALBI 115 137528 REY. RD.	115 1
137528 REY. RD.		115 1		197.0	-	-	-	129.8	205.2	108.7	127.6		107.2	127.6	202.5	107.4	129.6	205.1				115 1
	115 137544 SYCA-16		NGRID		-		-					202.0							104.1	130867 WYANT115	115 137543 SYCA-14	
137545 TRINITY 137897 OGN BRK5	115 137718 ALB3	115 2	NGRID	191.0		-		121.8	202.1	105.8	118.8	197.3	103.3	118.7	197.4	103.4	122.2	202.8	106.2	137545 TRINITY	115 137717 ALB2	115 1
	115 137904 SPIER	115 1	NGRID	114.0	-	-	-	64.2	114.0	100.0	64.6	114.7	100.6	64.6	115.0	100.8	64.3	114.2	100.2	137899 QBURY	115 137903 SHERMAN	115 1
130781 CARML115	115 130865 WOODS115	115 1	NYSEG	247.0	-	-	-	142.9	260.7	105.6	140.7	252.4	102.2	144.1	261.6	105.9	143.1	262.0	106.1	125026 FISHKILL	115 131112 SYLVN115	115 1
130781 CARML115	115 130865 WOODS115	115 1	NYSEG	247.0			-	142.9	256.4	103.8	140.7	251.6	101.9	144.1	258.1	104.5	143.1	256.4	103.8	130865 WOODS115	115 131109 AMWLK115	115 1
130782 CATON115	115 130814 HILSD115	115 1	NYSEG	113.0	-	-	-	61.4	118.4	104.8	61.3	118.6	104.9	61.4	118.7	105.1	61.3	118.3	104.7	130813 HICK 115	115 130845 RIDGT115	115 1
130813 HICK 115	115 130845 RIDGT115	115 1	NYSEG	97.0	71.1	108.1	111.5	73.7	113.6	117.1	74.1	113.9	117.5	74.1	114.0	117.6	73.8	113.6	117.2	130782 CATON115	115 130814 HILSD115	115 1
130813 HICK 115	115 130845 RIDGT115	115 1	NYSEG	97.0	71.1	107.2	110.6	73.7	112.0	115.4	74.1	112.3	115.7	74.1	112.4	115.8	73.8	112.0	115.4	130782 CATON115	115 130813 HICK 115	115 1
130815 HINMN115	115 131611 HARIS115	115 1	NYSEG	287.0	-	-	-	-	-	-	-	-	-	-	-	-	213.0	295.5	103.0	GEN:GINNA		
146754 MDTN TAP	345 146772 SHOEMTAP	138 1	0&R	652.0	-	-	-	-	-	-	-	-	-	492.0	659.7	101.2	489.4	653.4	100.2	125001 ROCK TAV	345 126297 RAMAPO	345 1
135861 MORTIMER	115 149031 S33 901	115 1	RGE	197.0	-	-	-	-	-	-	-	-	-	105.2	235.6	119.6	105.4	229.7	116.6	GEN:GINNA		
147941 SPENCPRT	115 149012 S113 115	115 1	RGE	123.5	-	-	-	-	-	-	-	-	-	89.5	153.3	124.1	89.5	152.6	123.5	GEN:GINNA		
147941 SPENCPRT	115 149012 S113 115	115 1	RGE	123.5	-	-	-	89.6	128.5	104.0	89.5	128.0	103.6	89.5	128.4	103.9	89.5	128.6	104.2	149036 STA 93	115 149062 S7 115B2	115 1
147941 SPENCPRT	115 149017 S70 115	115 1	RGE	123.5	-	-	-	-	-	-	-	-	-	77.0	134.2	108.7	77.1	132.6	107.4	GEN:GINNA		
149001 PANNELL3	345 149002 3T@S122	115 JT	RGE	265.0	-	-	-	-	-	-	-	-	-	134.7	285.8	107.8	130.2	266.4	100.5	GEN:GINNA		
149002 3T@S122	115 149004 S121 B#2	115 1	RGE	304.0	-	-	-	-	-	-	-	-	-	129.8	325.5	107.1	126.8	324.8	106.8	GEN:GINNA		
149012 S113 115	115 149014 S418 115	115 1	RGE	147.4	-	-	-	-	-	-	-	-	-	99.0	160.0	108.6	98.9	161.2	109.4	GEN:GINNA		
149013 S37 115	115 149048 S67-2115	115 1	RGE	304.7	-	-	-	-	-	-	-	-	-	197.5	350.6	115.1	197.0	345.0	113.2	GEN:GINNA		
149013 S37 115	115 149048 S67-2115	115 1	RGE	304.7	-	-	-	196.6	314.9	103.3	197.4	314.7	103.3	197.5	315.0	103.4	197.0	314.9	103.4	149034 JCT 921	115 149047 S48-1115	115 1
149013 S37 115	115 149048 S67-2115	115 1	RGE	304.7	-	-	-	196.6	314.3	103.2	197.4	314.2	103.1	197.5	314.5	103.2	197.0	314.4	103.2	149011 S82-1115	115 149034 JCT 921	115 1
149014 S418 115	115 149016 S67-1115	115 2	RGE	211.1	-	-	-	-	-	-	-	-	-	152.0	244.6	115.9	152.1	251.9	119.3	GEN:GINNA		
149017 S70 115	115 149018 S71 115	115 1	RGE	123.5	-	-	-	32.0	137.1	111.0	32.1	135.7	109.9	32.1	136.7	110.7	32.0	137.6	111.4	149014 S418 115	115 149016 S67-1115	115 2
149018 S71 115	115 149035 S69 917	115 1	RGE	121.5	17.0	155.6	128.1	17.8	184.0	151.4	17.9	182.1	149.9	18.2	183.3	150.9	18.1	184.6	151.9	149014 S418 115	115 149016 S67-1115	115 2
149025 PANNELLI	115 149026 QUAKER	115 1	RGE	248.0	-	-	-	-	-	-	-	-	-	49.0	253.8	102.3	50.1	252.4	101.8	GEN:GINNA		
149029 S204 911	115 149033 S42 115	115 1	RGE	207.2	132.7	232.6	112.2	148.1	260.3	125.6	147.9	259.1	125.1	148.5	261.1	126.0	148.6	261.2	126.1	149024 GINNA115	115 149196 S124C913	115 1
149029 S204 911	115 149033 S42 115	115 1	RGE	207.2	132.7	226.9	109.5	148.1	255.3	123.2	147.9	253.7	122.4	148.5	256.1	123.6	148.6	256.3	123.7	149033 S42 115	115 149196 S124C913	115 1
149033 S42 115	115 149196 S124C913	115 1	RGE	207.2	137.8	228.8	110.4	154.0	257.3	124.2	153.9	255.9	123.5	154.6	258.1	124.6	154.6	258.3	124.7	149029 S204 911	115 149033 S42 115	115 1
149033 S42 115	115 149196 S124C913	115 1	RGE	207.2	137.8	227.5	109.8	154.0	254.0	122.6	153.9	253.2	122.2	154.6	254.9	123.0	154.6	254.8	123.0	149024 GINNA115	115 149029 S204 911	115 1
149035 S69 917	115 149036 STA 93	115 1	RGE	143.4	26.3	165.1	115.2	28.2	195.3	136.2	28.2	193.3	134.8	28.5	194.6	135.7	28.5	195.9	136.6	149014 S418 115	115 149016 S67-1115	115 2
149036 STA 93	115 149062 S7 115B2	115 1	RGE	143.4	33.2	173.2	120.7	36.1	204.5	142.6	36.0	202.4	141.2	36.3	203.8	142.1	36.3	205.2	143.1	149014 S418 115	115 149016 S67-1115	115 2
	110002 07 11082	110 1	1001	113.1	55.2	213.4	140.7	30.1	201.3	110.0	50.0	202.1		50.5	203.3		50.5	203.2	110.1			

Note: 1. *-* indicates no violations for this scenario 2. Con Edison Cables are not overloaded with STE ratings (rows are hidden)

Table 5-4: Post-Contingency Voltage Violations – Horizon Year Summer Peak Conditions (Scenarios 1~4)

								Horizor			on Year	Horizo		Horizo		
Bus Name	kV	Area	Zone	Vlow	Vhigh	Intermed	iate Year Cont.	Scena	riol Cont.	Scen Intact	ario2 Cont.	Scena	cont.	Scena Intact	cont.	Limiting Contingency
COLDS115	115.0	1	149	0.900	1.100	1.026	0.810	1.025	0.669	1.026	0.666	1.026	0.668	1.025	0.669	130788 COLDS115 115 135267 CARR CRN 115 1
HINMN115	115.0	1	149	0.900	1.100	-	-	1.025	0.009	1.020	0.000	1.020	0.000	1.025	0.878	GEN:GINNA
ROBIN115	115.0	1	149	0.900	1.100	-	-	-	-	-	-	-	-	1.026	0.920	GEN:GINNA
A.LUD TP	115.0	1	149	0.900	1.100	-	-	-	-	-	-	-	-	1.023	0.911	GEN:GINNA
A.LUD115	115.0	1	149	0.900	1.100	-	-	-	-	-	-	-	-	1.023	0.911	GEN:GINNA
HARIS115	115.0	1	149	0.900	1.100	-	-	-	-	-	-	-	-	1.022	0.903	GEN:GINNA
LEA12115	115.0	1	149	0.900	1.100	-	-	-	-	-	-	-	-	1.023	0.905	GEN:GINNA
LEA34115	115.0	1	149	0.900	1.100	-	-	-	-	-	-	-	-	1.023	0.904	GEN:GINNA
BERRY RD HARTFLD1	115.0 115.0	1	145 145	0.900	1.100	1.055	0.949	-	0.822	1.055	0.948	1.055	0.948	-	- 0.820	135263 BERRY RD 115 135273 DUNKIRK1 115 1 135281 HARTFLD1 115 135286 MOON-162 115 1
COOPER	115.0	1	145	0.900	1.100	1.014	0.834	1.013	0.822	1.016	0.824	1.016	0.823	1.014	0.820	135281 HARTFLDI 115 135286 MOON-162 115 1 135282 HOMERHIL 115 135296 W.OL-155 115 1
W.OL-155	115.0	1	145	0.900	1.100	1.027	0.854	1.021	0.821	1.021	0.819	1.021	0.819	1.021	0.820	135282 HOMERHIL 115 135296 W.OL-155 115 1
BETH-150	115.0	1	145	0.900	1.100	1.037	0.883	1.033	0.860	1.034	0.861	1.034	0.860	1.034	0.861	135301 BETH-150 115 135450 GRDNVL1 115 1
GIBSONT6	115.0	1	145	0.900	1.100	1.028	0.873	1.028	0.847	1.028	0.846	1.028	0.846	1.028	0.847	135302 GIBSONT6 115 147851 NIAG115W 115 1
HARBFRT0	115.0	1	145	0.900	1.100	1.037	0.883	1.033	0.860	1.034	0.861	1.034	0.861	1.034	0.861	135301 BETH-150 115 135450 GRDNVL1 115 1
ELM-70	230.0	1	145	0.900	1.100	1.020	0.917	1.017	0.904	1.018	0.907	1.018	0.907	1.018	0.905	135410 ELM-70 230 135414 HUNTLEY2 230 1
ELM-71	230.0	1	145	0.900	1.100	1.001	0.885	0.996	0.875	0.997	0.876	0.997	0.876	0.997	0.875	135413 GRDNVL2 230 135416 SENCA-71 230 1
ELM-72	230.0	1	145	0.900	1.100	1.001	0.885	0.996	0.875	0.997	0.876	0.997	0.876	0.997	0.875	135413 GRDNVL2 230 135417 SENCA-72 230 1
SENCA-71	230.0	1	145	0.900	1.100	1.001	0.884	0.996	0.874	0.998	0.876	0.997	0.875	0.997	0.875	135413 GRDNVL2 230 135416 SENCA-71 230 1
SENCA-72 HARPR183	230.0 115.0	1	145 145	0.900	1.100	1.001	0.884	0.996	0.874	0.998	0.876	0.997	0.876	0.997	0.875	135413 GRDNVL2 230 135417 SENCA-72 230 1 135461 PACK(S)W 115 148004 CARGR183 115 1
HARPR183 HARPR184	115.0	1	145	0.900	1.100	1.025	0.0/4	1.024	0.852	1.024	0.852	1.024	0.852	1.024	0.852	135461 PACK(S)W 115 148004 CARGR183 115 1 135461 PACK(S)W 115 148003 CARGR184 115 1
HARPR184	115.0	1	145	0.900	1.100	1.024	0.810	1.024	0.903	1.024	0.769	1.024	0.902	1.024	0.903	135421 HARPR184 115 136544 UDG-184 115 1
BOCGASES	115.0	1	145	0.900	1.100	-	-	1.027	0.906	1.028	0.907	1.021	0.907	1.021	0.907	135450 GRDNVL1 115 135462 RDGE-145 115 1
GETZTP36	115.0	1	145	0.900	1.100	-	-	-	-	-	-	-	-	1.004	0.903	GEN:GINNA
GETZTP37	115.0	1	145	0.900	1.100	-	-	-	-	-	-	-	-	1.004	0.903	GEN:GINNA
LOCKPORT	115.0	1	145	0.900	1.100	-	-	-	-	-	-	-	-	1.011	0.877	GEN:GINNA
RDGE-145	115.0	1	145	0.900	1.100	-	-	1.030	0.909	1.031	0.910	1.031	0.910	1.031	0.910	135450 GRDNVL1 115 135462 RDGE-145 115 1
S215-188	115.0	1	145	0.900	1.100	1.018	0.879	1.016	0.859	1.016	0.859	1.016	0.859	1.016	0.859	135511 NFWWP188 115 148006 CARBW188 115 1
S215-188	115.0	1	145	0.900	1.100	1.018	0.885	1.016	0.867	1.016	0.866	1.016	0.866	1.016	0.867	135466 S215-188 115 135511 NFWWP188 115 1
SHAW-103 SWAN-104	115.0 115.0	1	145 145	0.900	1.100	-	-	-	-	-	-	-	-	1.016	0.902	GEN:GINNA GEN:GINNA
SUAN-104 S138-37	115.0	1	145	0.900	1.100	-	-	-	-	-	-	_	-	1.012	0.877	GEN:GINNA GEN:GINNA
TONCRK37	115.0	1	145	0.900	1.100	-	-	-	-	-	-	-	-	1.004	0.894	GEN:GINNA
TONCRK 36	115.0	1	145	0.900	1.100	-	-	-	-	-	-	-	-	1.004	0.895	GEN:GINNA
NFWWP187	115.0	1	145	0.900	1.100	1.022	0.802	1.020	0.764	1.020	0.763	1.020	0.763	1.020	0.764	148007 GRTLK187 115 148008 HOOKS187 115 1
NFWWP187	115.0	1	145	0.900	1.100	1.022	0.831	1.020	0.802	1.020	0.802	1.020	0.802	1.020	0.802	148002 CARBW187 115 148008 HOOKS187 115 1
NFWWP187	115.0	1	145	0.900	1.100	1.022	0.892	1.020	0.875	1.020	0.874	1.020	0.874	1.020	0.875	135509 NFWWP187 115 148002 CARBW187 115 1
SHAW-102	115.0	1	145	0.900	1.100	-	-	-	-	-	-	-	-	1.014	0.900	GEN:GINNA
NFWWP188	115.0	1	145	0.900	1.100	1.018	0.879	1.016	0.859	1.016	0.859	1.016	0.859	1.016	0.859	135511 NFWWP188 115 148006 CARBW188 115 1
S138-36 CANFIBRE	115.0 115.0	1	145 145	0.900	1.100	-	-	1.027	0.906	1.028	0.907	- 1.028	0.907	1.005	0.889	GEN:GINNA 135450 GRDNVL1 115 135462 RDGE-145 115 1
CO-STEEL	115.0	1	145	0.900	1.100	-	-	1.027	0.906	1.028	0.907	1.028	0.907	1.028	0.907	135450 GRDNVL1 115 135462 RDGE-145 115 1 135450 III 115 135462 RDGE-145 115 1
MTNSW	115.0	1	145	0.900	1.100	-	-	-	-	-	-	-	-	1.012	0.877	GEN:GINNA
S215-187	115.0	1	145	0.900	1.100	1.022	0.802	1.020	0.764	1.020	0.763	1.020	0.763	1.020	0.764	148007 GRTLK187 115 148008 HOOKS187 115 1
S215-187	115.0	1	145	0.900	1.100	1.022	0.831	1.020	0.802	1.020	0.802	1.020	0.802	1.020	0.802	148002 CARBW187 115 148008 HOOKS187 115 1
S215-187	115.0	1	145	0.900	1.100	1.022	0.892	1.020	0.875	1.020	0.874	1.020	0.874	1.020	0.875	135509 NFWWP187 115 148002 CARBW187 115 1
S215-187	115.0	1	145	0.900	1.100	1.022	0.898	1.020	0.882	1.020	0.882	1.020	0.882	1.020	0.882	135509 NFWWP187 115 135823 S215-187 115 1
AYERTP36	115.0	1	145	0.900	1.100	-	-	-	-	-	-	-	-	1.004	0.903	GEN:GINNA
AYERTP37 UDG-184	115.0 115.0	1	145 145	0.900	1.100	-	-	-	- 0.903	- 1.025	- 0.903	- 1.025	- 0.903	1.004	0.903	GEN:GINNA 135461 PACK(S)W 115 148003 CARGR184 115 1
UDG-184 NCARBON7	115.0	1	145	0.900	1.100	- 1.028	- 0.873	1.025	0.903	1.025	0.903	1.025	0.903	1.025	0.903	135461 PACK(S)W 115 148003 CARGR184 115 1 135302 GIBSONT6 115 147851 NIAG115W 115 1
AIRCO197	115.0	1	157	0.900	1.100	1.028	0.873	1.028	0.847	1.028	0.846	1.028	0.846	1.028	0.847	135302 GIBSONI6 115 147851 NIAGIISW 115 1 135302 GIBSONT6 115 147851 NIAGIISW 115 1
TITAN197	115.0	1	157	0.900	1.100	1.028	0.873	1.028	0.847	1.028	0.846	1.028	0.846	1.028	0.847	135302 GIBSONT6 115 147851 NIAG115W 115 1 135302 GIBSONT6 115 147851 NIAG115W 115 1
DUPNT183	115.0	1	157	0.900	1.100	1.025	0.873	1.023	0.851	1.024	0.851	1.024	0.851	1.024	0.852	135461 PACK(S)W 115 148004 CARGR183 115 1
DUPNT184	115.0	1	157	0.900	1.100	-	-	1.023	0.902	1.023	0.901	1.023	0.901	1.023	0.902	135461 PACK(S)W 115 148003 CARGR184 115 1
DUPNT184	115.0	1	157	0.900	1.100	1.023	0.809	1.023	0.769	1.023	0.768	1.023	0.768	1.023	0.768	135421 HARPR184 115 136544 UDG-184 115 1
DUPNT187	115.0	1	157	0.900	1.100	1.021	0.801	1.019	0.764	1.020	0.763	1.020	0.763	1.020	0.764	148007 GRTLK187 115 148008 HOOKS187 115 1
DUPNT187	115.0	1	157	0.900	1.100	1.021	0.831	1.019	0.802	1.020	0.801	1.020	0.801	1.020	0.802	148002 CARBW187 115 148008 HOOKS187 115 1
DUPNT187	115.0	1	157	0.900	1.100	1.021	0.891	1.019	0.874	1.020	0.874	1.020	0.874	1.020	0.874	135509 NFWWP187 115 148002 CARBW187 115 1
DUPNT187	115.0	1	157 157	0.900	1.100	1.021	0.898	1.019	0.881	1.020	0.881	1.020	0.881	1.020	0.882	135509 NFWWP187 115 135823 S215-187 115 1 135511 NFWWP188 115 148006 CARBW188 115 1
DUPNT188	115.0	1														

h h										Horizon	n Year	Horizo	on Year	Horizo	on Year	Horizo	on Year	
19790 CONTINE 11.0 1.0 0.00 <								Intermed	iate Year	Scena	riol	Scen	ario2	Scen	ario3	Scen	ario4	Limiting
1999 1999 1999 110 1.90 0.90	Bus #	Bus Name	kV	Area	Zone	Vlow	Vhigh	Intact	Cont.	Intact	Cont.	Intact	Cont.	Intact	Cont.	Intact	Cont.	Contingency
14900 Description 11.10 1.00 0.848 0.100 0.848 0.100 0.848 0.100 0.848 0.100 0.848 0.100 0.848 0.100 0.848 0.100 0.848 0.100 0.848 0.100	147997	DUPNT187	115.0	1	157	0.900	1.100	1.021	0.831	1.019	0.802	1.020	0.801	1.020	0.801	1.020	0.802	148002 CARBW187 115 148008 HOOKS187 115 1
14/104 SMORT.AB 1.5. 5. 1.5. 1.5. 0.4.87 1.5.5. 0.4.87 0.5.5. 0.4.87 0.5.5. 0.4.87 0.5.5.	147997	DUPNT187	115.0	1	157	0.900	1.100	1.021	0.891	1.019	0.874	1.020	0.874	1.020	0.874	1.020	0.874	135509 NFWWP187 115 148002 CARBW187 115 1
lawne lawne <thlawne< th=""> lawne <thl< td=""><td></td><td>DUPNT187</td><td>115.0</td><td>1</td><td></td><td></td><td>1.100</td><td>1.021</td><td>0.898</td><td>1.019</td><td></td><td>1.020</td><td></td><td>1.020</td><td>0.881</td><td></td><td>0.882</td><td>135509 NFWWP187 115 135823 S215-187 115 1</td></thl<></thlawne<>		DUPNT187	115.0	1			1.100	1.021	0.898	1.019		1.020		1.020	0.881		0.882	135509 NFWWP187 115 135823 S215-187 115 1
14003 Same 7 15.0 1 15.0 1.00 1.00 0.40 1.000 0.400 1.000 0.400 1.000 0.400 1.000 0.400 1.000 0.400 1.000 0.400 1.000 0.400 1.000 0.400 1.000 0.400 1.000 0.400 1.000 0.400 1.000 0.400 1.000 0.400 1.000 0.400 1.000 0.400 1.000 0.400 1.000 0.400 1.000 0.400 </td <td></td> <td></td> <td></td> <td>1</td> <td></td>				1														
14102 Subar J 15 1 15 0 150 0.50 1.50 0.50 </td <td>147998</td> <td>DUPNT188</td> <td>115.0</td> <td>1</td> <td>157</td> <td></td> <td>1.100</td> <td>1.017</td> <td>0.885</td> <td></td> <td>0.866</td> <td>1.015</td> <td>0.866</td> <td>1.015</td> <td>0.866</td> <td>1.015</td> <td>0.866</td> <td>135466 S215-188 115 135511 NFWWP188 115 1</td>	147998	DUPNT188	115.0	1	157		1.100	1.017	0.885		0.866	1.015	0.866	1.015	0.866	1.015	0.866	135466 S215-188 115 135511 NFWWP188 115 1
1440 SAMD14 15.0 1 17.0 0.70 1.70 0.70	148002	CARBW187	115.0	1	157	0.900	1.100	1.022	0.802	1.020	0.764	1.020	0.763	1.020	0.763	1.020	0.764	148007 GRTLK187 115 148008 HOOKS187 115 1
14804 50808.1 15.2 1 17.0 0.700 1.700 0.7	148002	CARBW187	115.0	1	157			1.022	0.831		0.802	1.020	0.802	1.020	0.801	1.020	0.802	148002 CARBW187 115 148008 HOOKS187 115 1
14000 DOCUMENT 15.0 1 1.0 1.0 1.00 1.000<				1														
14002 001140 11.5 1 <				1														
14402 0.111-14 1 </td <td></td> <td></td> <td></td> <td>1</td> <td></td>				1														
14104 6.117. 1.1 1.1 1.1 1.024 0.817 1.024 0.817 1.024 0.817 1.024 0.817 1.024 0.817 1.024 0.817 1.024 0.817 1.024 0.817 1.024 0.817 1.024 0.817 0.81				1														
110 DCH. BV P 2				1														
15546 0.0.0.1 1.5 2 1.5 0.0.0 1.5 0.0.0 0.0.0 0.0.00				-				1.025	0.874	1.024	0.852	1.024	0.851					
15550 000-114 15,0 2 17 0.900 1.00 2 - - - 0.900 0.900 0.775 0m/rays 0m/rays 15555 000-000 110 0 0 - - - - 0.900 0.800 0.755 0m/rays 0m/rays 15555 000-000 1100 0 - - - - 0.900 0.800 0.800 0.900 <				-				-	-	-	-	-	-					
131561 08L-13 1.5. 2 7.5 0.5.0 0.7.4 0.7.87 0.7.87 0.7.75 DEFENDING 131851 MUMAL 1.5. 2 1.7 0.7.00 DEFENDING DEFENDING <thdefending< th=""> DEFENDING <</thdefending<>									-									
13582 NUMBER 135.0 2 17.0 0.900 1.00 - - - - 0.982 0.983 0.775 DENO DINAL - - - 0.982 0.983 0.775 DENO DINAL - - - 0.982 0.983 0.973 0.983 0.973 0.983 0.973 0.983 0.973 0.983 0.973 0.983 0.983 0.973 0.983 0.973 0.983 0.973 0.983 0.973 0.983 0.973 0.983 0.973 0.983 0.973 0.981 0.933 0.775 0.973 0.981 0.933 0.775 0.973 0.981 0.973 0.981 0.973 0.981 0.973 0.981 0.973 0.981 0.973 0.981 0.973 0.981 0.973 0.981 0.973 0.981 0.973 0.981 0.973 0.981 0.973 0.981 0.973 0.993 0.973 0.993 0.973 0.993 0.973 0.993								-	-	-	-							
13583 NTAYLI 115.0 2 173 0.900 1.00 0 0 0.992 0.983 0.783 DENTITEM 115.0 2 173 0.900 1.00 0				-				-	-	-	-							
15558 BCCPTEM 115.0 2 173 0.900 1.00 0.980 0.980 0.972 0.773 0.973 0.785 0.575 0.575 DESCUTUD 115.0 115.01 115.1 115.1 15555 BECT-107 15.0 2 133 0.900 1.00 - - - 0.972 0.733 0.923 0.763 DESC 100K10IMA 15565 BACT-107 15.0 2 133 0.900 1.100 0.864 0.781 0.982 0.681 0.783 DESC 100K10IMA 115 13555 BACT 10 115 13555 BACT 10 115 1355 BACT 10 115 1355 DESC 10 DESC 10 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td></t<>								-	-	-	-	-	-					
11545 MCCPTIS 115.0 2 17.0 0.900 1.000 - - - - - - 0.971 0.733 0.987 0.633 DERCOTING 15555 BLK-113 115.0 2 17.0 0.900 1.000 - - - - - 0.981 0.983 0.985 0.981 0.742 DERCOTING 115.0 15.0 15.0 0.900 1.50 0.980 0.981 0.				-				-	-	-	-	-	-					
131555 BAR-107 115.0 2 173 0.900 1.000 - - - - - 0.920 0.833 0.895 0.763 DERUSINA - 0.982 0.984 0.985 0.885 0.885 0.885 0.885 0.885 0.885 0.885 0.885 0.885 0.885 0.885 0.885 0.685 <td></td> <td></td> <td></td> <td>-</td> <td></td>				-														
131565 RAT-130 115.0 2 7.0 0.900 1.0.00 0.900 1.0.00 0.900 0.900 0.984 0.780 0.780 0.780 0.780 0.780 0.780 0.780 0.780 0.780 0.780								-	-	-	-	-	-					
13550 REMOON 115.0 2 173 0.90 1.00 0.00 0.664 0.91 0.78 0.984 0.78 0.981 0.78 0.981 0.78 0.981 0.78 0.981 0.78 0.981 0.78 0.981 0.78 0.981 0.78 0.981 0.78 0.981 0.78 0.981 0.78 0.981 0.78 0.981 0.78 0.981 0.78 0.981 0.78 0.984 0.637 0.881 0.637 0.881 0.637 0.881 0.637 0.881 0.637 0.881 0.639 0.884 0.639 0.884 0.639 0.884 0.639 0.884 0.639 0.884 0.639 0.884 0.639 0.884 0.639 0.884 0.639 0.884 0.639 0.884 0.639 0.884 0.639 0.884 0.639 0.884 0.639 0.884 0.639 0.884 0.639 0.884 0.639 0.884 0.639 0.894 0.639 0				-				-	-	-	-	-	-					
19857 2BEFCOM 115.0 2 173 0.90 1.00 0.92 <t< td=""><td></td><td></td><td></td><td>2</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				2					-			-						
13555 Disk Disk <thdis< th=""> Disk <thdisk< th=""> D</thdisk<></thdis<>				2														
13585 0.24 1.1 0 2 1.1 0 0 - - - - 0 0.986 0.985 0.636 DENTIONA - - - 0 0.987 0.728 0.980 0.636 DENTIONA - - - 0 0.727 0.980 0.636 DENTIONA - - - 0 0.727 0.980 0.646 DENTIONA - - - 0 0.730 0.890 DENTIONA - - 0 0.727 0.790 DENTIONA - - 0 0.727 0.790 DENTIONA - DENTIONA - - 0 0.790 0.790 DENTIONA DENTIONA - - 0 0.980 0.982 0.790 0.790 DENTIONA DENTIONA - DENTIONA DENT				-				1.002	0.864		0.789	0.986	0.799					
13555 LAPPINEL 115.0 2 173 0.900 1.100 - - - - - 0.987 0.782 0.984 0.699 DRNGTERN 135661 MURCNED1 115.0 2 173 0.900 1.100 - - - - 0.983 0.727 0.986 0.665 DRNGTERN 135635 NLAKR 1 115.0 2 173 0.900 1.100 1.00 0.665 0.978 0.727 0.981 0.987 0.797 0.797 13585 NLAKR 1 115.0 2 173 0.900 1.100 0.677 0.998 0.981 0.984 0.989 0.981 0.987 0.797 0.797 0.595 DRJATA 115 153695 NLAKR 1 115.0 2 173 0.900 1.100 - - - 0.991 0.975 0.975 DRJATA DRJATA 15369 NLAKR 1 115.0 2 1338 NLAKR 1 115.0				-				-	-		-	-	-					
13561 MORTIMER 11.50 2 173 0.900 1.100 - - - - - - 0.930 0.722 1.001 0.930 Disk MURNA 13562 MURKE 1 115.0 2 173 0.900 1.100 1.000 0.656 0.978 0.891 0.976 0.978				-					-		-							
13582 MMMCVDD1 115.0 2 173 0.900 1.100 - - - - 0.983 0.727 0.980 0.686 Dest Dest <thdest< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td></thdest<>								-	-		-	-	-					
135863 NLAKE 1 115.0 2 173 0.900 1.000 0.085 0.790 0.790 0.979 0.790 15857 SINNPOOL 115				2				-	-	-	-	-	-					
13563 N_LAKE 1 115.0 2 173 0.900 1.100 0.978 0.891 0.892 0.892 0.891 13563 7.587 0.891 13563 N_LAKE 1 115.0 2 173 0.900 1.100 0.877 0.979 0.981 0.891				-				-	-	-	-	-						
135863 N.AKE 1 115.0 2 173 0.900 1.100 0.867 0.978 0.984 0.898 0.892 0.988 0.879 0.601 0577 0.501 05840 E.GOLAH 115 13589 BARLLA 115 13589 BARLLA </td <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>1.001</td> <td>0.865</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				-				1.001	0.865									
135863 N_LAKE 1 115.0 2 173 0.900 1.100 - - - 0.889 0.892 0.691 0.691 0.979 0.610 CENTGINAA 135864 NAKE-107 115.0 2 173 0.900 1.100 - - - 0.893 0.8972 0.991 0.9756 CENTGINAA 135865 NAKE-107 115.0 2 173 0.900 1.100 - - - 0.994 0.8972 0.991 0.796 CENTGINAA 135865 NAKE-107 115.0 2 173 0.900 1.100 - - - 0.992 0.662 C.991 0.610 CENTGINAA 135866 NERCPA 115.0 2 153 0.900 1.100 - - - 1.003 0.689 1.000 0.610 GENTGINAA 135867 FSFD-24 115.0 2 153 0.900 1.100 - - - 0.903 0.622 GENTGINAA 13587 SENCAP 115.0 21				-				-	-									
135864 MAR-107 115.0 2 17.3 0.900 1.100 - - - - 0.993 0.872 0.991 0.795 DENKIDINA 135865 MAR-107 115.0 2 173 0.900 1.100 - - - 0.993 0.872 0.991 0.795 DENKIDINA 135867 MAR-107 115.0 2 173 0.900 1.100 - - - 0.992 0.862 0.900 0.766 DENKIDINA 135867 PTSP-34 115.0 2 153 0.900 1.100 - - - - 1.002 0.700 0.622 0.900 0.764 DENKIDINA 135867 PTSP-34 115.0 2 153 0.900 1.100 - - - - 1.002 0.700 0.998 0.628 DENKIDINA 135870 PTSP-34 115.0 2 173 0.900 1.100 - - - 0.993 0.831 0.990 0.755 DENKIDINA 1358								1.001	0.867	0.978	0.792							
135865 NAR-108 115.0 2 173 0.900 1.100 - - - - 0.944 0.873 0.923 0.796 GENIGINA 135866 NLEROTTA 115.0 2 173 0.900 1.100 - - - 0.982 0.862 0.990 0.786 GENIGINA 135867 NARLDTP 115.0 2 173 0.900 1.100 - - - 0.982 0.862 0.990 0.786 GENIGINA 135867 NERD-24 115.0 2 153 0.900 1.100 - - - 1.002 0.669 1.000 0.617 GENIGINA 135871 SERD-24 115.0 2 173 0.900 1.100 - - - 1.002 0.618 GENIGINA 135871 SERD-24 115.0 2 173 0.900 1.100 - - - 0.996 0.848 0.994 0.775 GENIGINA 135871 SERD-11 115.0 2 173 0.900				-				-	-	-	-							
135866 NLEROYTA 115.0 2 173 0.900 1.100 - - - - - 0.985 0.765 0.982 0.682 0.990 0.682 0.588 CENTGINNA 135867 0AKPLDTP 115.0 2 153 0.900 1.100 - - - 1.003 0.682 0.990 0.617 GENGINNA 135867 PTSPD-23 115.0 2 153 0.900 1.100 - - - 1.00 0.682 0.990 0.617 GENGINNA 135867 PTSPD-24 115.0 2 153 0.900 1.100 - - - 1.002 0.682 GENGINNA 135870 PTSP-24 115.0 2 173 0.900 1.100 - - - 0.993 0.831 0.990 0.755 GENGINNA 135873 SNDH-111 115.0 2 173 0.900 1.100 - - - 0.996 0.755 GENGINNA - - 0.906 0.757 0.756 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									_		-	-						
13567 OAKFLDTP 115.0 2 173 0.900 1.100 0.992 0.862 0.990 0.784 GEN:GINNA 135868 PTSPD-23 115.0 2 153 0.900 1.100 1.003 0.689 1.000 0.617 GEN:GINNA 135870 PTSPD-24 115.0 2 153 0.900 1.100 1.002 0.689 0.628 GEN:GINNA 135871 SINDRAP 115.0 2 173 0.900 1.100 0.993 0.831 0.990 0.750 GEN:GINNA 135871 SINDRAP 115.0 2 173 0.900 1.100 0.996 0.848 0.994 0.776 GEN:GINNA 135874 SINDAP113 115.0 2 173 0.900 1.100 0.996 0.875 0.972 0.658 GEN:GINNA <									-		-	-						
135868 PTSPD-23 115.0 2 153 0.900 1.100 - - - - - 1.003 0.689 1.000 0.617 GEN:GINNA 135869 PTSPD-24 115.0 2 153 0.900 1.100 - - - - - 1.002 0.700 0.998 0.628 GEN:GINNA 135870 PTSPD-25 115.0 2 173 0.900 1.100 - - - - - 0.993 0.631 0.990 0.628 GEN:GINNA 135871 SENECAP 115.0 2 173 0.900 1.100 - - - - 0.993 0.831 0.990 0.750 GEN:GINNA 135873 SENECAP 115.0 2 173 0.900 1.100 - - - - 0.993 0.836 0.994 0.755 GEN:GINNA 135875 TELRDTP1 115.0 2 173 0.900 1.100 - - - - 0.996 0.972 0.658<									_									
135869 PTSFD-24 115.0 2 153 0.900 1.100 - - - - 1.002 0.700 0.998 0.628 GEN:GINNA 135870 PTSFD-25 115.0 2 153 0.900 1.100 - - - - 1.002 0.700 0.998 0.628 GEN:GINNA 135871 SENCAP 115.0 2 173 0.900 1.100 - - - - - 0.993 0.831 0.990 0.750 GEN:GINNA 135873 SMDN-111 115.0 2 173 0.900 1.100 - - - - 0.996 0.848 0.994 0.775 GEN:GINNA 135874 SMDN-111 115.0 2 173 0.900 1.100 - - - - 0.996 0.848 0.994 0.775 GEN:GINNA 135875 MUVRSTY 115.0 2 173 0.900 1.100 - - - - 0.996 0.846 0.996 0.803 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>_</td><td></td><td>_</td><td>_</td><td>_</td><td></td><td></td><td></td><td></td><td></td></th<>								-	_		_	_	_					
135870 PTSFD-25 115.0 2 153 0.900 1.100 - - - - 1.006 0.717 1.002 0.646 GEN:GINNA 135871 SENECAP 115.0 2 173 0.900 1.100 - - - - 0.993 0.831 0.990 0.750 GEN:GINNA 135873 SOUR-111 115.0 2 173 0.900 1.100 - - - - 0.993 0.831 0.990 0.750 GEN:GINNA 135873 SOUR-111 115.0 2 173 0.900 1.100 - - - - 0.995 0.848 0.994 0.755 GEN:GINNA 135874 SUDN-113 115.0 2 173 0.900 1.100 - - - - 0.975 0.735 0.972 0.687 GEN:GINNA 135875 TELRDTP1 115.0 2 173 0.900 1.100 - - - - 0.995 0.895 0.996 0.823 GEN:GINNA				-				-	-	-	-	-	-					
135871 SENECAP 115.0 2 173 0.900 1.100 - - - - 0.993 0.831 0.990 0.750 GEN:GINNA 135873 SOUR-111 115.0 2 173 0.900 1.100 - - - - 0.996 0.848 0.994 0.756 GEN:GINNA 135873 SNDN-113 115.0 2 173 0.900 1.100 - - - - 0.996 0.848 0.994 0.756 GEN:GINNA 135873 SNDN-113 115.0 2 173 0.900 1.100 - - - - 0.975 0.735 0.972 0.658 GEN:GINNA 135873 SNDN-113 115.0 2 173 0.900 1.100 - - - - 0.995 0.875 0.996 0.803 GEN:GINNA 135877 UNVRSTY 115.0 2 173 0.900 1.100 - - - - 0.996 0.827 0.805 0.972 0.855				-				-	-	-	-	-	-					
135872 SOUR-111 115.0 2 173 0.900 1.100 - - - - 0.996 0.848 0.994 0.775 GEN:GINNA 135873 SWDN-111 115.0 2 173 0.900 1.100 - - - 0.908 0.746 0.977 0.667 GEN:GINNA 135874 SWDN-113 115.0 2 173 0.900 1.100 - - - 0.975 0.735 0.972 0.675 GEN:GINNA 135874 SWDN-113 115.0 2 173 0.900 1.100 - - - 0.998 0.896 0.996 0.822 GEN:GINNA 135875 TELRDTP1 115.0 2 173 0.900 1.100 - - - - 0.999 0.875 0.996 0.801 0.801 0.864 0.897 0.946 0.837 0.969 0.841 0.965 0.841 0.965 0.648 GEN:GINNA 13587 UNIVRSTY 115.0 2 173 0.900 1.100 </td <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>				-				-	-	-	-	-	-					
135873 SWDN-111 115.0 2 173 0.900 1.100 - - - - 0.980 0.746 0.977 0.667 GEN:GINMA 135874 SMDN-113 115.0 2 173 0.900 1.100 - - - - 0.975 0.735 0.977 0.667 GEN:GINMA 135875 TERDTP1 115.0 2 173 0.900 1.100 - - - 0.995 0.896 0.996 0.802 GEN:GINMA 135875 TERDTP1 115.0 2 173 0.900 1.100 - - - - 0.999 0.875 0.996 0.803 GEN:GINMA 135877 UNIVRSTY 115.0 2 173 0.900 1.100 - - - 0.970 0.843 0.969 0.821 0.965 0.837 135874 SUDN-113 115 135877 UNIVRSTY 115.0 2 173 0.900 1.100 - - - 0.970 0.843 0.969 0.727 0.965 0.648				-					-		-	-						
135874 SWDN-113 115.0 2 173 0.900 1.100 - - - - 0.975 0.735 0.972 0.658 GEN:GINNA 135875 TELRDTP1 115.0 2 173 0.900 1.100 - - - - 0.995 0.875 0.996 0.823 GEN:GINNA 135875 TELRDTP1 115.0 2 173 0.900 1.100 - - - - 0.998 0.896 0.996 0.823 GEN:GINNA 135875 TELRDTP1 115.0 2 173 0.900 1.100 - - - - 0.999 0.815 0.996 0.827 0.989 0.972 0.965 0.837 13587 MUNVRSTY 115.0 2 173 0.900 1.100 - - - - - - 0.969 0.727 0.965 0.648 GEN:GINNA 135807 BINDEYE 115.0 2 173 0.900 1.100 - - - - 0.992 0.68								- 1	-	-	-	-	-					
135875 TELEDTP1 115.0 2 173 0.900 1.100 - - - - 0.998 0.896 0.996 0.822 GEN:GINNA 135876 TELRDTP1 115.0 2 173 0.900 1.100 - - - - 0.998 0.896 0.996 0.822 GEN:GINNA 135877 UNIVRSTY 115.0 2 173 0.900 1.100 - - - - 0.999 0.875 0.996 0.831 135874 WDN-113 115 135877 UNIVRSTY 115.0 2 173 0.900 1.100 - - - 0.970 0.843 0.969 0.841 0.965 0.648 GEN:GINNA 13587 UNIVRSTY 115.0 2 173 0.900 1.100 - - - - 0.992 0.862 0.990 0.784 GEN:GINNA 135895 BARILA 115.0 2 173 0.900 1.100 - - - - 0.992 0.982 0.620 GEN:GINNA 115				2				- 1	-	-	-	-	-					
135876 TELEDTP1 115.0 2 173 0.900 1.100 - - - - 0.999 0.875 0.996 0.803 GEN:GINNA 135877 UNIVRSTY 115.0 2 173 0.900 1.100 0.966 0.877 0.964 0.835 0.970 0.843 0.969 0.841 0.965 0.833 GEN:GINNA 135877 UNIVRSTY 115.0 2 173 0.900 1.100 0.966 0.877 0.969 0.643 0.969 0.841 0.965 0.833 GEN:GINNA 135877 UNIVRSTY 115.0 2 173 0.900 1.100 - - - 0.970 0.899 0.650 0.871 0.664 GEN:GINNA 1358787 UNIVRSTY 115.0 2 173 0.900 1.100 - - - - 0.992 0.862 0.990 0.784 GEN:GINNA 135895 BARILA 115.0 2 173 0.900 1.100 - - - - 0.982 <td< td=""><td></td><td></td><td></td><td>2</td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td></td<>				2				-	-	-	-	-	-					
135877 UNIVRSTY 115.0 2 173 0.900 1.100 0.986 0.877 0.964 0.835 0.970 0.843 0.969 0.841 0.965 0.837 135877 SUNTRSTY 115.0 115.135877 UNIVRSTY 115.0 2 173 0.900 1.100 - - - 0.970 0.899 0.969 0.727 0.965 0.640 GEN:GINBA 135807 UNIVRSTY 115.0 2 173 0.900 1.100 - - - 0.970 0.899 0.969 0.727 0.965 0.640 GEN:GINBA 135808 BARILA 115.0 2 173 0.900 1.100 - - - - 0.992 0.862 0.990 0.799 13589 50.795 0.982 0.620 GEN:GINBA 135805 BARILA 115.0 2 173 0.900 1.100 - - - - 0.995 0.795 0.982 0.620 GEN:GINBA 147870 AKRON 115.0 2 160 0.900 <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>				2				-	-	-	-	-	-					
135877 UNIVRSTY 115.0 2 173 0.900 1.100 - - - 0.970 0.899 0.969 0.727 0.965 0.648 GEN:GINNA 135807 BIRDSEYT 115.0 2 173 0.900 1.100 - - - - 0.992 0.862 0.990 0.748 GEN:GINNA 135808 BARILA 115.0 2 173 0.900 1.100 - - - - 0.992 0.862 0.990 0.748 GEN:GINNA 135895 BARILA 115.0 2 173 0.900 1.100 - - - - 0.982 0.795 0.982 0.620 GEN:GINNA 135895 BARILA 115.0 2 160 0.900 1.100 - - - - - 0.985 0.699 0.982 0.620 GEN:GINNA 147701 SPENCPRT 115.0 2 160 0.900 1.100 - - 0.975 0.984 0.886 0.982 0.630				2				0.986	0.877	0.964	0.835	0.970	0.843					
13580 BIRDSEYE 115.0 2 173 0.900 1.100 - - - - 0.992 0.862 0.990 0.784 GEN:GINNA 135895 BARILLA 115.0 2 173 0.900 1.100 1.003 0.864 0.982 0.789 0.985 0.795 0.982 0.780 0.781 IS849 F.GOLAH 115.15895 BARILLA 115.15895 BARILA 115.151151151151151151151151151151151151				2	173			-	-	-	-							
135895 BARILLA 115.0 2 173 0.900 1.100 - - - - 0.985 0.699 0.982 0.620 GEN:GINNA 14780 ARRON 115.0 2 160 0.900 1.100 - - - - 0.994 0.699 0.982 0.620 GEN:GINNA 147941 SPENCPRT 115.0 2 160 0.900 1.100 - - 0.979 0.879 0.992 0.803 GEN:GINNA 147941 SPENCPRT 115.0 2 160 0.900 1.100 - - 0.979 0.873 149014 8418 115 115 149016 867-1115 115 2 14900 PCN:BAT 115.0 2 160 0.900 1.000 - - 0.974 0.882 0.982 0.684 0.979 0.555 GEN:GINNA 14900 PCN:345 345.0 2 153 0.951 1.049 - - - - 1.038 0.873 1.023 0.801 GEN:GINNA 149001				2				-	-	-	-	-	-					
147870 AKRON 115.0 2 160 0.900 1.100 - - - - 0.994 0.879 0.992 0.803 GEN:GINNA 147941 SPENCPRT 115.0 2 160 0.900 1.100 - - 0.979 0.886 0.992 0.803 GEN:GINNA 147941 SPENCPRT 115.0 2 160 0.900 1.100 - - 0.979 0.886 0.992 0.803 GEN:GINNA 147941 SPENCPRT 115.0 2 160 0.900 1.100 - - 0.979 0.882 0.890 0.979 0.873 149014 S418 115 115 149016 S67-1115 115 2 147901 SPENCPRT 115.0 2 160 0.900 1.004 - - - 0.984 0.882 0.982 0.634 0.979 0.565 GEN:GINNA 149000 PCH 345 345.0 2 153 0.951 1.049 - - - 1.038 0.873 1.023 0.821 GEN:GINNA <	135895	BARILLA	115.0	2	173	0.900	1.100	1.003	0.864	0.982	0.789	0.987	0.799	0.985	0.795	0.982	0.789	135849 E.GOLAH 115 135895 BARILLA 115 1
147941 SPENCPRT 115.0 2 160 0.900 1.100 - - 0.979 0.886 0.982 0.880 0.979 0.873 149014 SA18 115 115 149016 S67-1115 115 2 147941 SPENCPRT 115.0 2 160 0.900 1.100 - - 0.984 0.886 0.982 0.634 0.979 0.555 GEN:GINA 149000 ROCH 345 345.0 2 153 0.951 1.049 - - - 1.038 0.8873 1.023 0.821 GEN:GINA 149001 PANNELL3 345.0 2 153 0.951 1.049 - - - 1.038 0.873 1.026 0.821 GEN:GINA	135895	BARILLA	115.0	2	173	0.900	1.100	-	-	-	-	-	-	0.985	0.699	0.982	0.620	GEN:GINNA
147941 SPENCPRT 115.0 2 160 0.900 1.100 - - - 0.984 0.882 0.982 0.634 0.979 0.556 GEN:GINNA 14900 ROCH 345 345.0 2 153 0.951 1.049 - - - - 1.038 0.873 1.023 0.805 GEN:GINNA 149001 PANNELL3 345.0 2 153 0.951 1.049 - - - - 1.038 0.873 1.023 0.805 GEN:GINNA	147870	AKRON	115.0	2	160	0.900	1.100	-	-	-	-	-	-	0.994	0.879	0.992	0.803	GEN:GINNA
149000 ROCH 345 345.0 2 153 0.951 1.049 - - - - 1.038 0.873 1.023 0.805 GEN:GINNA 149001 PANNELL3 345.0 2 153 0.951 1.049 - - - - 1.038 0.873 1.023 0.805 GEN:GINNA	147941	SPENCPRT	115.0	2	160	0.900	1.100	-	-	0.979	0.875	0.984	0.886	0.982	0.880	0.979	0.873	149014 S418 115 115 149016 S67-1115 115 2
149001 PANNELL3 345.0 2 153 0.951 1.049 1.038 0.878 1.026 0.821 GEN:GINNA	147941	SPENCPRT	115.0	2	160	0.900	1.100	-	-	-	-	0.984	0.882	0.982	0.634	0.979	0.556	GEN:GINNA
	149000	ROCH 345	345.0	2	153	0.951	1.049	-	-	-	-	-	-	1.038	0.873	1.023	0.805	GEN:GINNA
149002 3T@\$122 115.0 2 153 0.900 1.100 1.026 0.738 1.020 0.673 GEN:GINNA	149001	PANNELL3	345.0	2	153	0.951	1.049	-	-	-	-	-	-	1.038	0.878	1.026	0.821	GEN:GINNA
	149002	3T@S122	115.0	2	153	0.900	1.100	-	-	-	-	-	-	1.026	0.738	1.020	0.673	GEN:GINNA

Part Part Part Part P										Horizon	n Year	Horizo	on Year	Horizo	on Year	Horizo	on Year	
1989 Abs 7 M 1989 Abs 7 M 1989 Abs 7 M 1989 Abs 7 M 1999 Abs 7 M 1999 Abs 7 M 1999 Abs 7 M																		
1998 0.27 0.2 0.19	Bus #	Bus Name	kV	Area	Zone	Vlow	Vhigh	Intact	Cont.	Intact	Cont.	Intact	Cont.	Intact	Cont.	Intact	Cont.	Contingency
16400 178819 1.5 1.5 1.5 1.5 1.55				2				-	-	-	-	-	-					
1388 1387 110 1								-	-	-	-	1.024	0.913					
14000 Norman 11.00 2 11.00 2 2 1									-									
1999 1993 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td>1.027</td><td>0.875</td><td></td><td></td><td></td><td></td><td></td></th<>									-		-	1.027	0.875					
19490 971 148 1950 2 1950 1950 1								-	-		-	-	-					
1949.1 97.142 195.1 2 195.1 1								-	-	-	-	0.979	0.867					
1900. 1900. <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td></th<>								-	-	-	-	-	-					
1913 1913 1 1 1 0 0 1 0 0 0 0 <td></td>																		
14912 0131 11 115.4 2 15.4 0 0 1.0 - - 0																		
14913 397 15 15.5 2 15.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									-									
19934 6131 15.0 2 15.0 1.00 1.00 0.744 0.797 0.780 0.784 0.794 0.781 131 14014 813 115 131 14014 897-1151 131 2 14005 848 213 115.0 2 150 0.800 1.00 0.797 0.780 0.794 0.780 0.797 0.780 0.794 0.780 0.797 0.780 0.797 0.780 0.797 0.780 0.797 0.780 0.797 0.780 0.797 0.780 0.797 0.780 0.797 0.781								-	-		-							
1993. 913. <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>_</td><td></td><td>0.863</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								-	_		0.863							
19935 98.315 11.0 2 13 0.90 1.0 1.0 0.90 0.80 0.80 0.80 0.70 Macroma Macroma Macroma 04000 70 11.0 0.2 13 0.80 1.00 0.80 0								-	-		0.803	0.333	0.874					
19856 957-113 13.0 2 13.0 2 13.0 2 13.0 2.0 13.0 13.00												0 990	0 889					
19901 1901 190 1									-			-						
19917 97 15 1 </td <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>0.967</td> <td>0.882</td> <td>0.972</td> <td>0.893</td> <td></td> <td></td> <td></td> <td></td> <td></td>				-				-	-	0.967	0.882	0.972	0.893					
14908 97.115 115. 12 135 0.90 1.00 - - - - - - - 0.90 1.00 10.101.001.007.115 115.1001.007.115								-	-									
14910 97 115 115.0 2 150 0.900 1.00 0.0 0.900																		
14910 80 178 1.15.0 2 133 0.900 1.100 - - - - 1.000 0.756 1.005 0.668 DENGLA 140201 80 778 15.0 2 133 0.900 1.100 - - - - 1.000 0.756 1.005 0.668 DENGLA 140201 80.718 115.0 2 133 0.900 1.100 - - - - - - - - 0.669 0.661 0.075 0.613 DENGLA DENGLA <thdengla< th=""></thdengla<>								-	-	-	-	0.969	0.860	0.967	0.596			
19492 80 27R 115.0 2 133 0.990 1.000 - - - - 1.090 0.777 1.095 0.666 BHCINNA 149021 80.778 15.0 2 133 0.990 1.100 - - - - 0.990 0.565 0.996 0.613 0.996 0.810 INNA 149023 023-00 15.0 2 133 0.900 1.00 - - - 0.900 0.656 0.900 0.566 0.540 0.810 INNA 149024 01804 1.550 2 133 0.900 1.00 - - - - 0.011 1.03 0.610 1.034 0.518								-	-	-	-							
14002 90 378 115.0 2 55 0.900 1.100 - - - - 1.009 0.756 1.009 0.649 Genvalman 149022 57.2 15.0 2 55.0 0.900 1.100 - - - 0.999 0.655 0.950 0.520 GENValma - - - 0.999 0.655 0.950 0.500 GENValma - - - 0.999 0.655 0.950 0.500 GENValma - - - 0.999 0.655 0.950 0.500 GENValma - - - - 0.999 0.655 0.950 0.650 GENValma GENValma - - - - 1.032 0.759 1.018 0.513 GENValma - - - 1.032 0.759 1.018 0.513 GENValma - - 1.033 0.759 1.014 0.513 GENValma - - 1.033 0.759 1.014 0.513 GENValma - - 1.033 0.759 1.014<	_			2				-	-	-	-	-	-					
14902 27. 2 1 115.0 2 153 0.900 1.00 - - - 0.966 1.019 0.464 0816 0.108A 149023 01390.1 15.0 2 153 0.900 1.00 - - - 1.02 0.989 1.025 0.564 0.520 0.512 0.510 0.510 0.510 0.510 149025 0.900 1.00 - - - 1.023 0.793 1.017 0.673 0.510 0.510 0.510 0.510 0.510 149025 0.904 11 15.0 2 153 0.900 1.00 - - 1.012 0.91 1.023 0.695 1.042 0.553 0.556 0.5104A 0.551 0.510 0.5100A - - 1.012 0.691 1.062 0.551 0.510 0.510 0.510 0.510 - - - 1.013 0.691 1.061 0.501 0.510 0.510 0.510 0.510 0.510 0.510 0.510 0.510 0.510 0.510 0.510 0.510 0.510 0.510 0.510 0.510 0.510 0.510 0.510 0.510 0.510 0.510 0.510 0.510 0.5100A 0.510 0.5100A 0.510 0.510 0.510A				2				-	-	-	-	-	-					
14902 232-901 115.0 2 153 0.909 1.010 - - - - - 0.999 0.682 0.996 0.612 DBM L DBM L <thdbm l<="" th=""> <thdbm l<="" th=""> <thdbm l<="" th=""> DBM L</thdbm></thdbm></thdbm>								-	-			1.020						
14902 2115.0 2 153 0.900 1.000 - - - 1.025 0.0.100 1.000 0.000								-	-	-	-	-	-					
14902 PANNELLI 11.50 2 15.3 0.000 1.00 - - - - - 1.023 0.023 0.013 <th< td=""><td></td><td></td><td></td><td>2</td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>1.052</td><td>0.898</td><td></td><td></td><td></td><td></td><td></td></th<>				2				-	-	-	-	1.052	0.898					
14022 QUAKER 11:0 2 13 0.90 1.00 - - - - 1.024 0.913 1.033 0.603 GRN:GTNMA 149027 STA 44 115.0 2 133 0.900 1.100 - - - 1.035 0.686 1.034 0.537 GRN:GTNMA 149028 S204 991 115.0 2 133 0.900 1.100 - - - 1.044 0.587 1.044 0.553 GRN:GTNMA 149028 S204 911 115.0 2 133 0.900 1.100 - - - 1.044 0.587 1.044 0.553 GRN:GTNMA 149033 S33 115.0 2 133 0.900 1.100 - - - - 0.587 0.997 0.687 0.997 0.687 0.998 0.687 0.998 0.587 0.996 0.857 0.996 0.857 0.9976 0.585 0.997 <t< td=""><td></td><td></td><td></td><td>2</td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td></t<>				2				-	-	-	-	-	-					
14902 STA 424 115.0 2 13 0.900 1.100 - - - 1.035 0.886 1.035 0.606 1.044 0.503 BENGTENNA 149028 S204 911 115.0 2 133 0.900 1.100 - - - 1.044 0.897 1.044 0.505 1.044 0.518 BENGTENNA 149035 S135 115.0 2 133 0.900 1.100 - - - 1.038 0.581 1.038 0.562 1.084 0.593 1.044 0.518 BENGTENNA 149035 S13 901 115.0 2 133 0.900 1.100 - 0.997 0.692 0.997 0.616 BENGTENNA - - - - 0.997 0.597 0.996 0.616 B				2				-	-	-	-	1.024	0.913					
14020 204 908 115.0 2 153 0.900 1.100 - - - 1.043 0.627 1.042 0.553 ENTICINAL 140203 513 115.0 2 153 0.900 1.100 - - - 1.043 0.891 1.038 0.541 ENTICINAL 149031 513 0.900 1.100 - 0.680 0.999 0.697 0.696 0.695 1.990 0.697 0.696 0.699 0.697 0.696 0.697 0.696 0.697 0.696 0.697 0.696 0.697 0.696 0.697 0.696 0.697 0.696 0.697 0.696 0.697 0.696<				2	153			-	-	-	-							
14903 8135 115.0 2 133 0.900 1.100 - - - - 1.039 0.616 1.018 0.541 GENIGTMA 14903 833 902 115.0 2 153 0.900 1.100 - - - - 1.000 0.626 0.997 0.519 GENIGTMA 14903 832 902 115.0 2 153 0.900 1.100 - - - - 0.999 0.687 0.996 0.616 GENIGTMA 14903 842 115 115.0 2 153 0.900 1.100 - - - - 0.999 0.697 0.692 0.955 0.616 GENIGTMA 14903 842 115 15.0 2 153 0.900 1.100 - - - 0.971 0.662 0.971 0.510 GENIGTMA 14903 847 15.0 2 153 0.900 1.100 - - - 0.974 0.595 0.950 0.516	149028		115.0	2		0.900		-	-	-	-	1.043						GEN:GINNA
14920 8135 115.0 2 133 0.900 1.100 - - - - 1.038 0.811 1.038 0.616 1.038 0.610 0.612 0.938 0.613 0.810 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>								-	-	-	-							
14901 131.0 2 153 0.900 1.100 - - - - - 0.997 0.619 BN:GINAN 149021 S13 0.900 1.100 0.105 0.902 0.888 0.899 0.888 0.996 0.654 ENGINAN 151.49049.82.B81 115.04049.82.B81	149030		115.0	2	153			-	-	-	-				0.616		0.541	
14902 S3 902 115.0 2 153 0.900 1.100 0.999 0.697 0.996 0.643 BEN:GINMA 14903 S4 115 115.0 2 153 0.900 1.100 1.021 0.869 1.09 0.644 BEN:GINMA 149034 SCT 921 115.0 2 153 0.900 1.100 0.973 0.862 0.917 0.596 0.516 GEN:GINMA 149035 SFA 93 115.0 2 153 0.900 1.100 0.976 0.864 0.917 0.596 0.961 0.519 GEN:GINMA 149035 SFA 93 115.0 2 153 0.900 1.100 0.976 0.864 0.917 0.590 0.519 GEN:GINMA 149045 SFA 93 115.0 2 153 0.900 1.100 0.989 0.620 0.910 0.733 GEN:GINMA 149046 SE2-2115 115.0 <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				2				-	-	-	-							
14902 S3 902 115.0 2 153 0.900 1.100 0.999 0.697 0.996 0.643 BR:GINNA 14903 S4 15 115.0 2 153 0.900 1.100 1.021 0.686 1.019 0.646 10.191 0.464 BR:GINNA 14903 S69 917 115.0 2 153 0.900 1.100 0.973 0.862 0.917 0.956 0.915 GBN:GINNA 14903 S74 93 115.0 2 153 0.900 1.100 0.977 0.862 0.971 0.956 0.915 GBN:GINNA 14903 S74 93 115.0 2 153 0.900 1.100 0.976 0.864 0.911 0.956 0.910 0.519 GEN:GINNA 14904 S74 89 115.0 2 153 0.900 1.100 0.988 0.619 0.690 0.503 GEN:GINNA	149032	S33 902	115.0	2	153	0.900	1.100	1.015	0.902	0.996	0.859	1.000	0.860	0.999	0.858	0.996	0.855	149032 S33 902 115 149049 S82 B#3 115 02
14904 MCT 921 115.0 2 153 0.900 1.100 - - - - 0.998 0.698 0.995 0.616 ENTGINNA 149035 569 917 115.0 2 153 0.900 1.100 - - 0.976 0.862 0.971 0.596 0.616 ENTGINNA 149036 STA 93 115.0 2 153 0.900 1.100 - - - 0.976 0.664 0.974 0.596 0.640 ENTGINNA 149036 STA 93 115.0 2 153 0.900 1.100 - - - 0.976 0.640 0.971 0.519 GENGINNA 149045 STA 93 115.0 2 153 0.900 1.100 - - - 0.989 0.722 1.000 0.640 GENGINNA 149045 STA 93 115.0 2 153 0.900 1.100 - - - 0.991 0.734 0.990 0.734 GENGINNA 149046 Sta -2115	149032	S33 902	115.0	2	153	0.900		-	-	-	-	-	-	0.999			0.624	GEN:GINNA
14903 569 917 115.0 2 153 0.900 1.100 - - 0.973 0.862 0.974 0.595 0.968 0.517 GEN:GINNA 149036 SKAMIN15 115.0 2 153 0.900 1.100 - - 0.976 0.964 0.971 0.517 GEN:GINNA 149038 KAMIN15 115.0 2 153 0.900 1.100 - - - 0.978 0.962 0.990 0.751 GEN:GINNA 149040 ALLGEENY 115.0 2 153 0.900 1.100 - - - 0.988 0.819 0.980 0.750 GEN:GINNA 149044 KAMIN15 115.0 2 153 0.900 1.100 - - - 0.991 0.712 1.001 0.639 GEN:GINNA 149046 567-2115 115.0 2 153 0.900 1.100 - - - 1.003 0.704 1.001 0.639 GEN:GINNA 149046 567-2115 115.0	149033	S42 115	115.0	2	153	0.900	1.100	-	-	-	-	1.021	0.869	1.019	0.544	1.019	0.464	GEN:GINNA
14908 STA 92 115.0 2 153 0.900 1.100 - - - 0.976 0.864 0.974 0.596 0.971 0.519 GEN:GINNA 149038 KAMIN115 115.0 2 153 0.900 1.100 - - - 0.986 0.820 0.990 0.751 GEN:GINNA 149038 KAMIN15 115.0 2 153 0.900 1.100 - - - 0.988 0.810 0.990 0.750 GEN:GINNA 14904 KLKERNY 115.0 2 153 0.900 1.100 - - - 0.988 0.819 0.989 0.750 GEN:GINNA 149048 S82-2115 115.0 2 153 0.900 1.100 - - - 0.990 0.888 0.645 0.985 0.570 GEN:GINNA 149048 S82-B13 115.0 2 153 0.900 1.100 - - 0.997 0.888 0.645 0.985 0.570 GEN:GINNA 149048	149034		115.0	2	153	0.900	1.100	-	-	-	-	-	-	0.998	0.689	0.995	0.616	
149038 KAMIN115 115.0 2 153 0.900 1.100 - - - - 0.989 0.820 0.990 0.751 GEN:GINNA 14903 STA 89 115.0 2 153 0.900 1.100 - - - - 1.003 0.711 1.000 0.640 GEN:GINNA 14904 LALGENY 115.0 2 153 0.900 1.100 - - - - - 0.988 0.712 1.000 0.640 GEN:GINNA 14904 StA 89 115.0 2 153 0.900 1.100 - - - - 0.988 0.723 GEN:GINNA 14904 StA 2115 115.0 2 153 0.900 1.100 - - - - 1.001 0.713 GEN:GINNA 14904 StA 215 115.0 2 153 0.900 1.100 - - - 0.990 0.888 0.645 0.9570 GEN:GINNA 149048 St2 215.0 115.0	149035	S69 917	115.0	2	153	0.900	1.100	-	-	-	-	0.973	0.862	0.971	0.595	0.968	0.517	GEN:GINNA
149039 STA 89 115.0 2 153 0.900 1.100 - - - - - 1.003 0.712 1.000 0.640 GEN:GINNA 149040 ALEQENY 115.0 2 153 0.900 1.100 - - - - 0.988 0.819 0.989 0.750 GEN:GINNA 149045 STA 158 115.0 2 153 0.900 1.100 - - - - 0.991 0.794 0.999 0.750 GEN:GINNA 149046 S82-2115 115.0 2 153 0.900 1.100 - - - - - 1.004 0.712 1.001 0.630 GEN:GINNA 149047 S48-115 115.0 2 153 0.900 1.100 - - - - 1.003 0.794 0.980 0.640 GEN:GINNA 149048 S67-2115 115.0 2 153 0.900 1.100 - - - - 1.003 0.794 0.958 0.974	149036	STA 93	115.0	2	153	0.900	1.100	-	-	-	-	0.976	0.864	0.974	0.596	0.971	0.519	GEN:GINNA
149040 ALLGGENY 115.0 2 153 0.900 1.100 - - - - - 0.988 0.819 0.989 0.750 GEN:GINNA 149045 STA 1585 115.0 2 153 0.900 1.100 - - - - 0.991 0.794 0.990 0.733 GEN:GINNA 149045 STA 1585 115.0 2 153 0.900 1.100 - - - - 0.991 0.794 0.990 0.733 GEN:GINNA 149045 STA 1585 115.0 2 153 0.900 1.100 - - - - 1.001 0.704 0.985 0.570 GEN:GINNA 149049 S48-115 115.0 2 153 0.900 1.100 - - - 1.004 0.713 1.001 0.600 GEN:GINNA 149049 S2 B#3 115.0 2 153 0.900 1.100 - - - 1.001 0.677 0.586 0.974 0.521 GEN:GINNA <td>149038</td> <td>KAMIN115</td> <td>115.0</td> <td>2</td> <td>153</td> <td>0.900</td> <td>1.100</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>0.989</td> <td>0.820</td> <td>0.990</td> <td>0.751</td> <td>GEN:GINNA</td>	149038	KAMIN115	115.0	2	153	0.900	1.100	-	-	-	-	-	-	0.989	0.820	0.990	0.751	GEN:GINNA
149045 STA 1585 115.0 2 153 0.900 1.100 - - - - - 0.991 0.794 0.990 0.723 GEN:GINNA 149046 882-2115 115.0 2 153 0.900 1.100 - - - - 1.004 0.791 0.990 0.635 GEN:GINNA 149047 884-1115 115.0 2 153 0.900 1.100 - - - - - 1.004 0.712 1.001 0.630 GEN:GINNA 149048 867-2115 115.0 2 153 0.900 1.100 - - - - - 1.003 0.704 1.000 0.630 GEN:GINNA 149048 862 B3 115.0 2 153 0.900 1.100 - - - - - 1.001 0.704 1.001 0.640 GEN:GINNA 149063 8230115 115.0 2 153 0.900 1.100 - - - 1.031 0.899 1.030 </td <td>149039</td> <td>STA 89</td> <td>115.0</td> <td>2</td> <td>153</td> <td>0.900</td> <td>1.100</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>1.003</td> <td>0.712</td> <td>1.000</td> <td>0.640</td> <td>GEN:GINNA</td>	149039	STA 89	115.0	2	153	0.900	1.100	-	-	-	-	-	-	1.003	0.712	1.000	0.640	GEN:GINNA
149046 S82-2115 115.0 2 153 0.900 1.100 1.004 0.712 1.001 0.639 GENGINNA 149047 S48-1115 115.0 2 153 0.900 1.100 0.990 0.889 0.645 0.986 0.635 GENGINNA 149048 S67-2115 115.0 2 153 0.900 1.100 1.003 0.704 0.645 0.639 GENGINNA 149048 S82 B43 115.0 2 153 0.900 1.100 1.004 0.713 1.001 0.640 GENGINNA 149063 S23 0115 115.0 2 153 0.900 1.100 1.031 0.867 0.977 0.588 0.974 0.510 GENGINNA 149056 S230 115 115.0 2 153 0.900 1.100 1.031 0.867	149040	ALLEGENY	115.0	2	153	0.900	1.100	-	-	-	-	-	-	0.988	0.819	0.989	0.750	GEN:GINNA
149047 \$48-1115 115.0 2 153 0.900 1.100 - - - 0.990 0.889 0.988 0.645 0.985 0.570 GEN:GINNA 149048 \$67-2115 115.0 2 153 0.900 1.100 - - - - 1.003 0.704 1.000 0.630 GEN:GINNA 149048 \$87-2115 115.0 2 153 0.900 1.100 - - - - 1.003 0.704 1.000 0.630 GEN:GINNA 149048 \$87-2115 115.0 2 153 0.900 1.100 - - - - 1.004 0.713 1.001 0.640 GEN:GINNA 149063 \$230 115 115.0 2 153 0.900 1.100 - - - 1.031 0.899 1.030 0.650 1.028 0.570 GEN:GINNA 149063 \$230 115 115.0 2 153 0.900 1.100 - - - 1.031 0.670 1.029 0	149045	STA 158S	115.0	2	153	0.900	1.100	-	-	-	-	-	-	0.991	0.794	0.990	0.723	GEN:GINNA
149048 \$67-2115 115.0 2 153 0.900 1.100 - - - - 1.003 0.704 1.000 0.630 GEN:GINNA 149048 \$82 B#3 115.0 2 153 0.900 1.100 - - - - 1.004 0.713 1.001 0.640 GEN:GINNA 149063 \$711582 115.0 2 153 0.900 1.100 - - - - 0.979 0.667 0.977 0.598 0.974 0.610 GEN:GINNA 149063 \$230 115 115.0 2 153 0.900 1.100 - - - - 0.979 0.667 0.977 0.598 0.974 0.630 GEN:GINNA 149063 \$230 115 115.0 2 153 0.900 1.100 - - - - 1.011 0.620 1.028 0.510 GEN:GINNA 149063 \$242421 115.0 2 153 0.900 1.100 - - - - - <td< td=""><td>149046</td><td>S82-2115</td><td>115.0</td><td>2</td><td>153</td><td>0.900</td><td>1.100</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>1.004</td><td>0.712</td><td>1.001</td><td>0.639</td><td>GEN:GINNA</td></td<>	149046	S82-2115	115.0	2	153	0.900	1.100	-	-	-	-	-	-	1.004	0.712	1.001	0.639	GEN:GINNA
149049 82 B#3 115.0 2 153 0.900 1.100 - - - - 1.004 0.713 1.001 0.640 GEN:GINNA 149062 S7 1152 115.0 2 153 0.900 1.100 - - - 0.979 0.867 0.977 0.598 0.974 0.521 GEN:GINNA 149063 S230 115 115.0 2 153 0.900 1.100 - - - 1.031 0.899 1.030 0.650 0.977 0.598 0.974 0.521 GEN:GINNA 149063 S230 115 115.0 2 153 0.900 1.100 - - - 1.031 0.867 0.670 0.630 GEN:GINNA 149196 S1240913 115.0 2 153 0.900 1.100 - - - - 1.011 0.762 1.029 0.481 GEN:GINNA 149200 S424-2 115.0 2 153 0.900 1.100 - - - 1.035 0.686 1.	149047	S48-1115	115.0	2	153	0.900	1.100	-	-	-	-	0.990	0.889	0.988	0.645	0.985	0.570	GEN:GINNA
149062 S7 115B2 115.0 2 153 0.900 1.100 - - 0.979 0.867 0.977 0.598 0.974 0.521 GEN:GINNA 149063 S230 115 115.0 2 153 0.900 1.100 - - - 1.031 0.899 1.030 0.650 1.028 0.577 GEN:GINNA 149063 S230 115 115.0 2 153 0.900 1.100 - - - 1.031 0.899 1.030 0.650 1.028 0.577 GEN:GINNA 14916 S124C913 115.0 2 153 0.900 1.100 - - - 1.031 0.897 1.030 0.650 1.028 0.570 GEN:GINNA 149206 S124C913 115.0 2 153 0.900 1.100 - - - 1.030 0.877 1.029 0.560 1.029 0.481 GEN:GINNA 149206 S424-2 115.0 2 153 0.900 1.100 - - - -	149048	S67-2115	115.0	2	153	0.900	1.100	-	-	-	-	-	-	1.003	0.704	1.000	0.630	GEN:GINNA
149063 S230 115 115.0 2 153 0.900 1.100 - - 1.031 0.899 1.030 0.650 1.028 0.577 GEN:GINNA 149063 S80 4TR 115.0 2 153 0.900 1.100 - - - - 1.011 0.762 1.007 0.693 GEN:GINNA 14916 S1240913 115.0 2 153 0.900 1.100 - - - 1.011 0.762 1.028 0.633 GEN:GINNA 149206 S1240913 115.0 2 153 0.900 1.100 - - - 1.035 0.560 1.029 0.633 GEN:GINNA 149206 S424-2 115.0 2 153 0.900 1.100 - - - - - 0.695 GEN:GINNA 130757 WATRC345 345.0 3 150 0.900 1.100 - - - - 0.995 0.898 0.954 0.955 0.898 0.954 0.955 0.898 0.954	149049	S82 B#3	115.0	2	153	0.900	1.100	-	-	-	-	-	-		0.713	1.001	0.640	GEN:GINNA
149067 80 4TR 115.0 2 153 0.900 1.100 - - - - 1.011 0.762 1.007 0.693 GEN:GINNA 149106 \$124C913 115.0 2 153 0.900 1.100 - - - 1.030 0.877 1.029 0.560 1.029 0.481 GEN:GINNA 149200 \$424-2 115.0 2 153 0.900 1.100 - - - 1.035 0.806 1.029 0.481 GEN:GINNA 130751 ChKOJA_T 230.0 3 150 0.900 1.100 - - - - 0.907 0.693 GEN:GINNA 130751 ChKOJA_T 230.0 3 150 0.900 1.100 - - - - 0.997 0.807 GEN:GINNA 130754 MEYER230 230.0 3 150 0.900 1.100 - - - - 0.995 0.893 130755 OKKDL345 345 130757 WATRC345 345 130757 WATRC345 345 130757 WATRC345 <td< td=""><td>149062</td><td>S7 115B2</td><td>115.0</td><td>2</td><td>153</td><td>0.900</td><td>1.100</td><td>-</td><td>-</td><td>-</td><td>-</td><td>0.979</td><td>0.867</td><td>0.977</td><td>0.598</td><td>0.974</td><td>0.521</td><td>GEN:GINNA</td></td<>	149062	S7 115B2	115.0	2	153	0.900	1.100	-	-	-	-	0.979	0.867	0.977	0.598	0.974	0.521	GEN:GINNA
149196 \$124C913 115.0 2 153 0.900 1.100 - - 1.030 0.877 1.029 0.560 1.029 0.481 GEN:GINNA 149206 \$424-2 115.0 2 153 0.900 1.100 - - - 1.035 0.886 1.035 0.600 1.034 0.530 GEN:GINNA 130751 CMDGUA_T 230.0 3 150 0.900 1.100 - - - - - - 0.986 1.035 0.600 1.034 0.530 GEN:GINNA 130751 CMDGUA_T 230.0 3 150 0.900 1.100 - - 0.954 0.895 0.894 0.954 0.893 130755 OAKDL345 345 130757 WATRC345	149063	S230 115	115.0	2		0.900		-	-	-	-	1.031	0.899	1.030	0.650	1.028	0.577	GEN:GINNA
149200 8424-2 11.5 2 15.3 0.909 1.100 - - - 1.035 0.886 1.035 0.606 1.034 0.530 GEN:GINNA 130751 CMDGUA_T 23.0 3 150 0.900 1.100 - - - - 0.997 0.897 GEN:GINNA 130757 WATRC345 345.0 3 150 0.900 1.100 - - - - 0.997 0.893 10755 0ARDL345 345 13075 WATRC345 345 345 345 13075 WATRC345 345 </td <td>149067</td> <td></td> <td>115.0</td> <td>2</td> <td></td> <td></td> <td>1.100</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>1.011</td> <td>0.762</td> <td>1.007</td> <td>0.693</td> <td>GEN:GINNA</td>	149067		115.0	2			1.100	-	-	-	-	-	-	1.011	0.762	1.007	0.693	GEN:GINNA
130751 CNDGUA_T 230.0 3 150 0.900 1.100 0.997 0.897 GEN:GINNA 130757 WATRC345 345.0 3 150 0.900 1.100 0.954 0.892 0.894 0.955 0.893 130755 0.803 130755 0.801345 345 130757 WATRC345 345 1 130764 MEYER230 230.0 3 150 0.900 1.100 - - - 0.955 0.898 0.954 0.893 130755 0.801345 345 130757 WATRC345 345 1 130764 MEYER230 230 3 150 0.900 1.100 - - - 0.955 0.898 0.954 0.893 0.8075 0.801345 345 130757 345 13 345 13 130776 MEYER30 3 150 0.900 1.100 - - - - - 0.995 0.883 0.883 0.881 0.881 0.881 0.881 0.881 0.881<								-	-	-	-							GEN:GINNA
130757 WATRC345 345.0 3 150 0.900 1.100 - - 0.954 0.892 0.956 0.894 0.959 0.898 0.954 0.893 130755 OAKDL345 345 130757 WATRC345 345 1 130764 MEYER230 230.0 3 150 0.900 1.100 - - - - - 0.995 0.898 0.954 0.893 130755 OAKDL345 345 130757 WATRC345 345 1 130774 BATH 115 115.0 3 150 0.900 1.100 - - - - 0.995 0.898 0.954 0.893 130755 OAKDL345 345 130757 WATRC345 345 1 130776 BATRC1 115.0 3 150 0.900 1.100 - - - - 0.955 0.893 0.893 0.8750 OAKDL345 345 130757 WATRC345 345 1 130776 BATRC1 115.0 3 150 0.900 1.100 - - - - 1.018 0.893 0.853 GENGINNA 130776 BATRC1 <t< td=""><td>149200</td><td></td><td></td><td>2</td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>1.035</td><td>0.886</td><td>1.035</td><td>0.606</td><td></td><td></td><td>GEN:GINNA</td></t<>	149200			2				-	-	-	-	1.035	0.886	1.035	0.606			GEN:GINNA
130764 MEYER230 230.0 3 150 0.900 1.100 - - - - - 0.995 0.885 GEN:GINNA 130774 BATH 115.0 3 150 0.900 1.100 - - - - - 1.018 0.882 GEN:GINNA 130774 BORDR115 115.0 3 150 0.900 1.100 - - - - 1.018 0.882 GEN:GINNA	130751	CNDGUA_T	230.0	3	150	0.900	1.100	-	-	-	-				-	0.997	0.897	GEN:GINNA
130774 BATH 115 115.0 3 150 0.900 1.100 - - - - - 1.018 0.802 GEN:GINNA 130776 BORDR115 115.0 3 150 0.900 1.100 - - - - 1.000 0.806 0.998 0.753 GEN:GINNA	130757	WATRC345	345.0	3	150	0.900	1.100	-	-	0.954	0.892	0.956	0.894	0.959	0.898	0.954	0.893	130755 OAKDL345 345 130757 WATRC345 345 1
130776 BORDR115 115.0 3 150 0.900 1.100 1.000 0.806 0.998 0.753 GEN:GINNA	130764	MEYER230	230.0	3	150	0.900	1.100	-	-	-	-	-	-	-	-	0.995	0.885	GEN:GINNA
	130774	BATH 115	115.0	3	150	0.900	1.100	-	-	-	-	-	-	-	-	1.018	0.882	GEN:GINNA
130798 EELPOI15 115.0 3 150 0.900 1.100 1.015 0.907 1.014 0.857 GEN:GINNA	130776	BORDR115	115.0	3	150	0.900	1.100	-	-	-	-	-	-	1.000	0.806	0.998	0.753	GEN:GINNA
	130798	EELPO115	115.0	3	150	0.900	1.100	-	-	-	-	-	-	1.015	0.907	1.014	0.857	GEN:GINNA

									Horizon	1 Year	Horizo	on Year	Horizo	on Year	Horizo	on Year	
							Intermed:	iate Year	Scena	riol	Scen	ario2	Scen	ario3	Scen	ario4	Limiting
Bus #	Bus Name	kV	Area	Zone	Vlow	Vhigh	Intact	Cont.	Intact	Cont.	Intact	Cont.	Intact	Cont.	Intact	Cont.	Contingency
130803	FLATS115	115.0	3	150	0.900	1.100	-	-	-	-	-	-	1.020	0.898	1.020	0.852	GEN:GINNA
130809	HALEY115	115.0	3	150	0.900	1.100	-	-	-	-	-	-	1.010	0.844	1.008	0.794	GEN:GINNA
130811	HAMLT115	115.0	3	150	0.900	1.100	-	-	-	-	-	-	-	-	1.009	0.900	GEN:GINNA
130813	HICK 115	115.0	3	150	0.900	1.100	-	-	-	-	-	-	-	-	1.025	0.922	GEN:GINNA
130816	HYATT115	115.0	3	150	0.900	1.100	-	-	-	-	-	-	1.000	0.850	0.997	0.807	GEN:GINNA
130823	GUARD115	115.0	3	150	0.900	1.100	-	-	-	-	-	-	1.001	0.811	0.999	0.758	GEN:GINNA
130826	MEYER115	115.0	3	150	0.900	1.100	-	-	-	-	-	-	-	-	1.017	0.868	GEN:GINNA
130830	MONTR115	115.0	3	150	0.900	1.100	-	-	i	-	-	-	-	-	1.018	0.905	GEN:GINNA
130831	MORAI115	115.0	3	150	0.900	1.100	-	-	-	-	-	-	-	-	1.024	0.874	GEN:GINNA
130855	STATE115	115.0	3	150	0.900	1.100	-	-	-	-	-	-	1.000	0.876	0.999	0.843	GEN:GINNA
130863	WILET115	115.0	3	150	0.900	1.100	-	-	1.002	0.853	1.003	0.851	1.003	0.851	1.002	0.851	130800 ETNA 115 115 130863 WILET115 115 1
130871	CANADIAC	115.0	3	150	0.900	1.100	-	-	1.103	1.115	1.107	1.119	1.105	1.117	1.105	1.116	131345 S.PER115 115 149010 STA 162 115 1
130871	CANADIAC	115.0	3	150	0.900	1.100	-	-	1.103	1.121	1.107	1.122	1.105	1.119	1.105	1.121	130770 SHLDN230 230 131122 WTHRS230 230 1
130871	CANADIAC	115.0	3	150	0.900	1.100	-	-	1.103	1.136	1.107	1.137	1.105	1.134	1.105	1.136	130767 STOLE230 230 130770 SHLDN230 230 1
130871	CANADIAC	115.0	3	150	0.900	1.100	-	-	1.103	1.115	1.107	1.118	1.105	1.116	1.105	1.115	130762 GARDV230 230 130767 STOLE230 230 1
130871	CANADIAC	115.0	3	150	0.900	1.100	-	-	1.103	1.126	1.107	1.127	1.105	1.124	1.105	1.126	130751 CNDGUA_T 230 130764 MEYER230 230 1
130872	CANADIAS	115.0	3	150	0.900	1.100	-	-	1.105	1.116	1.109	1.120	1.107	1.119	1.106	1.118	131345 S.PER115 115 149010 STA 162 115 1
130872	CANADIAS	115.0	3	150	0.900	1.100	-	-	1.105	1.122	1.109	1.124	1.107	1.121	1.106	1.122	130770 SHLDN230 230 131122 WTHRS230 230 1
130872	CANADIAS	115.0	3	150	0.900	1.100	-	-	1.105	1.137	1.109	1.138	1.107	1.136	1.106	1.137	130767 STOLE230 230 130770 SHLDN230 230 1
130872	CANADIAS	115.0	3	150	0.900	1.100	-	-	1.105	1.116	1.109	1.120	1.107	1.118	1.106	1.117	130762 GARDV230 230 130767 STOLE230 230 1
130872	CANADIAS	115.0	3	150	0.900	1.100	-	-	1.105	1.127	1.109	1.129	1.107	1.126	1.106	1.128	130751 CNDGUA_T 230 130764 MEYER230 230 1
130874	GLOBALNY	115.0	3	150	0.900	1.100	-	-	-	-	-	-	1.016	0.905	1.016	0.856	GEN:GINNA
130880	AUBST115	115.0	3	150	0.900	1.100	-	-	-	-	-	-	1.000	0.876	0.999	0.842	GEN:GINNA
130881	CLNTN115	115.0	3	150	0.900	1.100	-	-	-	-	-	-	0.998	0.819	0.996	0.776	GEN:GINNA
130882	WRIGH115	115.0	3	150	0.900	1.100	-	-	-	-	-	-	1.005	0.889	1.004	0.857	GEN:GINNA
130883	AUB HY \$	115.0	3	150	0.900	1.100	-	-	-	-	-	-	1.005	0.889	1.004	0.857	GEN:GINNA
130885	ECOGENNY	115.0	3	150	0.900	1.100	-	-	-	-	-	-	1.017	0.904	1.016	0.855	GEN:GINNA
131156	SULLIVAN PAR	115.0	3	150	0.900	1.100	-	-	-	-	-	-	-	-	1.027	0.916	GEN:GINNA
131161	ERWIN	115.0	3	150	0.900	1.100	-	-	-	-	-	-	-	-	1.027	0.916	GEN:GINNA
131163	TEXAS115	115.0	3	150	0.900	1.100	-	-	-	-	-	-	-	-	1.019	0.897	GEN:GINNA
131164	WERIE115	115.0	3	150	0.900	1.100	-	-	-	-	-	-	-	-	1.029	0.918	GEN: GINNA
131241	GRNDG115	115.0	3	150	0.900	1.100	-	-	-	-	-	-	1.027	0.903	1.026	0.858	GEN:GINNA
131242	MACDN115	115.0	3	150	0.900	1.100	-	-	-	-	1.023	0.913	1.022	0.697	1.018	0.628	GEN: GINNA
131243	SLEIG115	115.0	3	150	0.900	1.100	-	-	-	-	-	-	1.005	0.719	1.002	0.656	GEN: GINNA
131342	BENET115	115.0	3	150	0.900	1.100	-	-	-	-	-	-	-	-	1.037	0.887	GEN:GINNA
131344	PALMT115	115.0	3	150	0.900	1.100	-	-	-	-	-	-	-	-	1.036	0.885	GEN: GINNA
131345	S.PER115	115.0	3	150	0.900	1.100	-	-	-	-	-	-	0.998	0.826	0.998	0.758	GEN:GINNA
131346	INDEC115	115.0	3	150	0.900	1.100	-	-	-	-	-	-	0.999	0.833	0.999	0.764	GEN: GINNA
135860	LAWLER-1	115.0	3	146	0.900	1.100	-	-	-	-	0.975	0.890	0.974	0.676	0.972	0.608	GEN:GINNA
136159	BRIDGE 7	115.0	3	146	0.900	1.100	1.016	0.902	1.009	0.884	1.010	0.884	1.009	0.884	1.009	0.884	136159 BRIDGE 7 115 136189 DEWITT 1 115 1
136166	A/B LY13	115.0	3	146	0.900	1.100	0.991	0.747	0.982	0.696	0.982	0.693	0.982	0.693	0.982	0.695	136166 A/B LY13 115 136173 ANHBS-13 115 1
136167	HOOKRD	115.0	3	146	0.900	1.100	-	-	-	-	0.975	0.893	0.974	0.685	0.972	0.622	GEN:GINNA
136183	CLTNCORN	115.0	3	146	0.900	1.100	-	-	-	-	-	-	0.998	0.819	0.996	0.777	GEN:GINNA
136186	CRUCIBLE	115.0	3	146	0.900	1.100	0.999	0.653	0.997	0.590	0.997	0.588	0.997	0.588	0.997	0.589	136200 GERES LK 115 136270 CRUC TAP 115 1
136194	FARMGTN1	115.0	3	146	0.900	1.100	-	-	-	-	-	-	0.978	0.700	0.977	0.640	GEN:GINNA
136197	FRMGTN-4	115.0	3	146	0.900	1.100	-	-	-	-	-	-	1.001	0.740	0.996	0.678	GEN:GINNA
136206	HDSN-7	115.0	3	146	0.900	1.100	1.016	0.902	1.009	0.885	1.009	0.884	1.009	0.884	1.009	0.884	136159 BRIDGE 7 115 136189 DEWITT 1 115 1
136208	HOGAN-1	115.0	3	146	0.900	1.100	-	-	-	-	0.976	0.891	0.974	0.678	0.972	0.611	GEN:GINNA
136209	HOGAN-2	115.0	3	146	0.900	1.100	-	-	-	-	0.979	0.900	0.978	0.702	0.975	0.636	GEN:GINNA
136213	LAWLER-2	115.0	3	146	0.900	1.100	-	-	-	-	0.978	0.897	0.977	0.696	0.974	0.629	GEN:GINNA
136230	PEAT-7	115.0	3	146	0.900	1.100	1.015	0.901	1.007	0.883	1.008	0.883	1.008	0.883	1.007	0.883	136159 BRIDGE 7 115 136189 DEWITT 1 115 1
136238	SOLVAY-B	115.0	3	146	0.900	1.100	0.999	0.734	0.997	0.691	0.997	0.689	0.997	0.689	0.997	0.690	136238 SOLVAY-B 115 136269 SOLVTAP2 115 1
136239	SOLVAY-N	115.0	3	146	0.900	1.100	1.000	0.654	0.998	0.591	0.998	0.589	0.998	0.589	0.998	0.590	136200 GERES LK 115 136270 CRUC TAP 115 1
136270	CRUC TAP	115.0	2	146	0.900	1.100	1.000	0.654	0.998	0.591	0.998	0.588	0.998	0.588	0.998	0.589	136200 GERES LK 115 136270 CRUC TAP 115 1 136200 GERES LK 115 136270 CRUC TAP 115 1
147897	SOLVMATT	115.0	3	146	0.900	1.100	0.999	0.653	0.998	0.591	0.998	0.588	0.997	0.588	0.997	0.589	136200 GERES LK 115 136270 CRUC TAP 115 1
136783	MALONE	115.0	4	146	0.900	1.100	0.555	0.000	1.010	0.904	1.010	0.903	1.010	0.904	1.010	0.904	136200 GERES LK 115 136270 CRUC TAP 115 1 136783 MALONE 115 147856 WILL 115 115 1
130/03	PIREUNE	110.0	"	110	0.900	1.100	-	-	1.010	0.504	1.010	0.203	1.010	0.504	1.010	0.704	T 20102 HEDDEL TT TT 14/020 MILL TT 112 112

									Horizor	1 Year	Horizo	on Year	Horiza	on Year	Horiza	on Year			
							Intermed	iate Year	Scena	riol		ario2		ario3		ario4		Limiting	
Bus #	Bus Name	kV	Area	Zone	Vlow	Vhigh	Intact	Cont.	Intact	Cont.	Intact	Cont.	Intact	Cont.	Intact	Cont.		Contingency	
147925	PMLD 3	115.0	4	158	0.900	1.100	1.014	0.874	1.008	0.845	1.007	0.844	1.008	0.844	1.008	0.845	147923 PMLD 1	115 147925 PMLD 3	115 1
125056	VINEGAR	115.0	5	177	0.900	1.100	-	-	1.009	0.877	1.009	0.874	1.009	0.874	1.008	0.877	130804 DEL T115	115 130805 FRASR115	115 1
125056	VINEGAR	115.0	5	177	0.900	1.100	-	-	1.009	0.877	1.009	0.875	1.009	0.875	1.008	0.878	130753 FRASR345	345 130805 FRASR115	115 1
130771	MADISONT	115.0	5	151	0.900	1.100	-	-	0.998	0.875	0.998	0.874	0.998	0.874	0.998	0.874	130800 ETNA 115	115 130863 WILET115	115 1
130778	BROTH115	115.0	5	151	0.900	1.100	-	-	0.999	0.876	0.999	0.875	0.999	0.875	0.999	0.875	130800 ETNA 115	115 130863 WILET115	115 1
130779	C.LIN115	115.0	5	151	0.900	1.100	-	-	0.993	0.872	0.994	0.871	0.994	0.870	0.993	0.870	130800 ETNA 115	115 130863 WILET115	115 1
130789	COLER115	115.0	5	151	0.900	1.100	-	-	0.995	0.889	0.995	0.886	0.995	0.886	0.995	0.889	130804 DEL T115	115 130805 FRASR115	115 1
130789	COLER115	115.0	5	151	0.900	1.100	-	-	0.995	0.887	0.995	0.885	0.995	0.884	0.995	0.888	130789 COLER115	115 130804 DEL T115	115 1
130789	COLER115	115.0	5	151	0.900	1.100	-	-	0.995	0.889	0.995	0.887	0.995	0.886	0.995	0.890	130753 FRASR345	345 130805 FRASR115	115 1
130794	DELHI115	115.0	5	151	0.900	1.100	-	-	1.013	0.890	1.013	0.887	1.013	0.887	1.013	0.890	130804 DEL T115	115 130805 FRASR115	115 1
130794	DELHI115	115.0	5	151	0.900	1.100	-	-	1.013	0.890	1.013	0.888	1.013	0.888	1.013	0.891	130753 FRASR345	345 130805 FRASR115	115 1
130796	E.NOR115	115.0	5	151	0.900	1.100	-	-	0.981	0.865	0.981	0.864	0.981	0.864	0.981	0.864	130800 ETNA 115	115 130863 WILET115	115 1
130804	DEL T115	115.0	5	151	0.900	1.100	-	-	1.015	0.889	1.015	0.887	1.015	0.887	1.014	0.890	130804 DEL T115	115 130805 FRASR115	115 1
130804	DEL T115	115.0	5	151	0.900	1.100	-	-	1.015	0.890	1.015	0.888	1.015	0.887	1.014	0.890	130753 FRASR345	345 130805 FRASR115	115 1
130805	FRASR115	115.0	5	151	0.900	1.100	-	-	1.026	0.890	1.026	0.888	1.026	0.888	1.025	0.891	130753 FRASR345	345 130805 FRASR115	115 1
130851	SIDNT115	115.0	5	151	0.900	1.100	-	-	0.987	0.899	0.986	0.897	0.986	0.897	0.986	0.899	130804 DEL T115	115 130805 FRASR115	115 1
130851	SIDNT115	115.0	5	151	0.900	1.100	-	-	0.987	0.900	0.986	0.898	0.986	0.897	0.986	0.900	130753 FRASR345	345 130805 FRASR115	115 1
130852	SIDNY115	115.0	5	151	0.900	1.100	-	-	0.986	0.898	0.986	0.896	0.986	0.896	0.985	0.898	130804 DEL T115	115 130805 FRASR115	115 1
130852	SIDNY115	115.0	5	151	0.900	1.100	-	-	0.986	0.899	0.986	0.897	0.986	0.896	0.985	0.899	130753 FRASR345	345 130805 FRASR115	115 1
130856	STILV115	115.0	5	151	0.900	1.100	-	-	0.975	0.894	0.975	0.892	0.975	0.892	0.975	0.894	130804 DEL T115	115 130805 FRASR115	115 1
130856	STILV115	115.0	5	151	0.900	1.100	-	-	0.975	0.894	0.975	0.893	0.975	0.892	0.975	0.895	130753 FRASR345	345 130805 FRASR115	115 1
130859	VIN T115	115.0	5	151	0.900	1.100	-	-	1.009	0.877	1.009	0.874	1.009	0.874	1.008	0.877	130804 DEL T115	115 130805 FRASR115	115 1
130859	VIN T115	115.0	5	151	0.900	1.100	-	-	1.009	0.877	1.009	0.875	1.009	0.875	1.008	0.878	130753 FRASR345	345 130805 FRASR115	115 1
130864	WNDHT115	115.0	5	151	0.900	1.100	-	-	1.009	0.876	1.009	0.874	1.009	0.874	1.008	0.877	130804 DEL T115	115 130805 FRASR115	115 1
130864	WNDHT115	115.0	5	151	0.900	1.100	-	-	1.009	0.877	1.009	0.875	1.009	0.874	1.008	0.877	130753 FRASR345	345 130805 FRASR115	115 1
131012	AFTON115	115.0	5	151	0.900	1.100	-	-	0.979	0.900	0.979	0.898	0.979	0.898	-	-	130804 DEL T115	115 130805 FRASR115	115 1
131012	AFTON115	115.0	5	151	0.900	1.100	-	-	-	-	0.979	0.898	0.979	0.898	-	-	130753 FRASR345	345 130805 FRASR115	115 1
131655	ANDES115	115.0	5	151	0.900	1.100	-	-	1.013	0.886	1.013	0.884	1.013	0.883	1.012	0.886	130804 DEL T115	115 130805 FRASR115	115 1
131655	ANDES115	115.0	5	151	0.900	1.100	-	-	1.013	0.887	1.013	0.884	1.013	0.884	1.012	0.887	130753 FRASR345	345 130805 FRASR115	115 1
131656	ARKVL115	115.0	5	151	0.900	1.100	-	-	1.012	0.884	1.012	0.882	1.012	0.881	1.012	0.884	130804 DEL T115	115 130805 FRASR115	115 1
131656	ARKVL115	115.0	~	151	0.900	1.100	-	-	1.012	0.884	1.012	0.882	1.012	0.882	1.012	0.885	130753 FRASR345	345 130805 FRASR115	115 1
131657	AXTEL115	115.0	5	151	0.900	1.100	-	-	1.009	0.884	1.010	0.882	1.009	0.881	1.009	0.884	130804 DEL T115	115 130805 FRASR115	115 1
131657	AXTEL115	115.0	5	151 151	0.900	1.100	-	-	1.009	0.884	1.010	0.882	1.009	0.882	1.009	0.885	130753 FRASR345	345 130805 FRASR115	115 1
131658 131658	BELAY115 BELAY115	115.0 115.0	-	151	0.900	1.100	-	-	1.011	0.881	1.011	0.879	1.011	0.879	1.011	0.882	130804 DEL T115 130753 FRASR345	115 130805 FRASR115	115 1 115 1
131658	GRNGR115	115.0	5	151	0.900	1.100	-	-	1.000	0.883	1.011	0.881	1.011	0.879	1.011	0.883	130755 FRASR345 130804 DEL T115	345 130805 FRASR115 115 130805 FRASR115	115 1
131659	GRNGR115 GRNGR115	115.0	5	151	0.900	1.100	-	-	1.009	0.884	1.009	0.881	1.009	0.881	1.008	0.884	130753 FRASR345	345 130805 FRASR115	115 1
131660	HANCO115	115.0	5	151	0.900	1.100	-	-	0.973	0.891	0.973	0.881	0.973	0.889	0.973	0.892	130804 DEL T115	115 130805 FRASR115	115 1
131660	HANCO115 HANCO115	115.0	5	151	0.900	1.100	-	_	0.973	0.891	0.973	0.890	0.973	0.889	0.973	0.892	130753 FRASR345	345 130805 FRASR115	115 1
131661	SHAND115	115.0	5	151	0.900	1.100	-	-	1.010	0.872	1.010	0.890	1.010	0.876	1.010	0.892	130804 DEL T115	115 130805 FRASR115	115 1
131661	SHAND115 SHAND115	115.0	5	151	0.900	1.100	-	-	1.010	0.879	1.010	0.877	1.010	0.876	1.010	0.880	130753 FRASR345	345 130805 FRASR115	115 1
131663	WNDHM115	115.0	5	151	0.900	1.100	-	-	1.009	0.875	1.010	0.873	1.010	0.873	1.010	0.876	130804 DEL T115	115 130805 FRASR115	115 1
131663	WNDHM115 WNDHM115	115.0	5	151	0.900	1.100	-	-	1.009	0.875	1.009	0.874	1.009	0.873	1.008	0.876	130753 FRASR345	345 130805 FRASR115	115 1
137211	TRNG STN	115.0	5	147	0.900	1.100	-	-	0.992	0.881	0.990	0.874	0.990	0.873	0.991	0.880	137211 TRNG STN	115 137233 ONEIDA	115 1
137222	CAMDNWIR	115.0	5	147	0.900	1.100	-	-	0.958	0.875	0.950	0.870	0.990	0.870	0.951	0.874	137211 TRNG SIN 137211 TRNG SIN	115 137233 ONEIDA 115 137237 ROME	115 1
137222	CAMDNWIR	115.0	5	147	0.900	1.100	0.970	0.892	0.958	0.861	0.957	0.857	0.957	0.857	0.958	0.860	137211 TRNG STN	115 137233 ONEIDA	115 1
137227	GRIFFISS	115.0	5	147	0.900	1.100	-	-	0.978	0.887	0.977	0.883	0.977	0.883	0.977	0.886	137211 TRNG STN	115 137233 ONEIDA	115 1
137227	GRIFFISS	115.0	5	147	0.900	1.100	-	-	-	-	0.977	0.896	0.977	0.896	0.977	0.899	137211 TRNG STN	115 137235 ONEIDA	115 1
137230	LEHIGH	115.0	5	147	0.900	1.100	-	-	0.958	0.875	0.957	0.870	0.957	0.870	0.958	0.874	137211 TRNG STN	115 137237 ROME	115 1
137230	LEHIGH	115.0	5	147	0.900	1.100	0.970	0.892	0.958	0.861	0.957	0.857	0.957	0.857	0.958	0.860	137211 TRNG STN	115 137233 ONEIDA	115 1
137231	LEVITT	115.0	5	147	0.900	1.100	-	-	0.970	0.888	0.969	0.884	0.969	0.884	0.970	0.887	137211 TRNG STN	115 137237 ROME	115 1
137231	LEVITT	115.0	5	147	0.900	1.100	-	-	0.970	0.874	0.969	0.870	0.969	0.870	0.970	0.873	137211 TRNG STN	115 137233 ONEIDA	115 1
137232	MADISON	115.0	5	147	0.900	1.100	-	-	0.978	0.889	0.977	0.886	0.977	0.886	0.977	0.888	137211 TRNG STN	115 137233 ONEIDA	115 1
137232	MADISON	115.0	5	147	0.900	1.100	-	-	-	-	0.977	0.898	0.977	0.898	-	-	137211 TRNG STN	115 137237 ROME	115 1
137236	REVERE	115.0	5	147	0.900	1.100	-	-	0.977	0.898	0.976	0.893	0.976	0.893	0.977	0.897	137211 TRNG STN	115 137237 ROME	115 1
137236	REVERE	115.0	5	147	0.900	1.100	-	-	0.977	0.884	0.976	0.880	0.976	0.880	0.977	0.883	137211 TRNG STN	115 137233 ONEIDA	115 1
			<u> </u>				-												
137237	ROME	115.0	5	147	0.900	1.100		-	0.978	0.897	0.977	0.892	0.977	0.892	0.978	0.896	137211 TRNG STN	115 137237 ROME	115 1

P P										Horizo	n Year	Horizo	on Year	Horizo	on Year	Horizo	on Year			
137230 Date 1 0.971 0.987 0.987 0.987 0.988 0.972 0.988 0.971 0.988 0.972 0.987 0.988 0.972 0.987 0.888 0.972 0.878 0.873 0.887 0.873 0.843 0.873 0.843 0.873 0.843 0.873 0.843 0.843 0.844 0.833 0.844 0.833 0.844 0.833 0.844 0.833 0.844 0.833 0.844 0.833 0.844 0.833 0.844 0.833 0.844 0.833 0.844 0.833 0.844 0.833 0.844 0.833 0.844 0.833 0.844 0.833 0.844 <th0.833< th=""> <th0.833< th=""> <th0.833<< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Intermed</th><th>iate Year</th><th>Scena</th><th>riol</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Limiting</th><th></th></th0.833<<></th0.833<></th0.833<>								Intermed	iate Year	Scena	riol								Limiting	
17729 1886 CSL 11.0 0 1.6 0.772 0.877 0.878 0.877 0.878 0.888 0.858 0.848 0.858 0.848 0.858 0.848 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 <th0.859< th=""> <th0.859< th=""> <th0.859< th=""></th0.859<></th0.859<></th0.859<>	Bus #	Bus Name	kV	Area	Zone	Vlow	Vhigh	Intact	Cont.	Intact	Cont.	Intact	Cont.	Intact	Cont.	Intact	Cont.		Contingency	
13724 182.5 5 147 0.598 0.497 0.498 0.477 0.488 0.578 0.488 0.578 0.488 0.578 0.488 0.578 0.488 0.578 0.588 0.587 0.588 0.587 0.588	137238	ROME CBL	115.0	5	147	0.900	1.100	-	-	0.973	0.891	0.972	0.886	0.971	0.886	0.972	0.890	137211 TRNG STN	115 137237 ROME	115 1
14772 MODE C 1 0.03 0.486 1.013 0.487 1.013 0.487 1.013 0.487 1.013 0.487 1.013 0.487 1.013 0.487 1.013 0.484 1.013 0.484 1.013 0.484 1.013 0.484 1.013 0.484 1.013 0.484 1.013 0.484 1.013 0.484 1.005 0.484 1.013 0.484 1.005 0.484 1.011 0.484 1.013 0.484 1.013 0.484 1.013 0.484 1.011 1.0111 1.0111 </td <td>137238</td> <td>ROME CBL</td> <td>115.0</td> <td>5</td> <td>147</td> <td>0.900</td> <td>1.100</td> <td>-</td> <td>-</td> <td>0.973</td> <td></td> <td>0.972</td> <td></td> <td></td> <td>0.873</td> <td></td> <td>0.876</td> <td>137211 TRNG STN</td> <td>115 137233 ONEIDA</td> <td>115 1</td>	137238	ROME CBL	115.0	5	147	0.900	1.100	-	-	0.973		0.972			0.873		0.876	137211 TRNG STN	115 137233 ONEIDA	115 1
14702 NUMBE C 1 0.101 0.444 1.011 0.444 0.021 0.444 0.421 0.444 0.421 0.444 0.421 0.444 0.421 0.444 0.444 0.421 0.444 0.421 0.444 0.421 0.444 0.421 0.444 0.421 0.444 0.421 0.444 0.421 0.444 0.421 0.444 0.421 0.444 0.421 0.444 0.422 0.444 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>									-											
14707 ATTEL 111,0 5 3 0 0.441 1004 0.441 1004 0.441 1004 0.441 1004 0.441 1004 0.441 1004 0.441 1004 0.441 1004 0.441 1001 0.441 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>								-												
14700 NTEL C 115.0 5 51 0.900 1.000 0.482 1.000 0.482 1.000 0.481 1.001 0.484 1.001 0.481 1.001 0.481 1.001 0.481 1.001 0.481 1.001 0.481 1.001 0.481 1.001 0.481 1.001 0.481 1.001 0.481 1.001 0.481 1.001 0.481 1.001 0.481 1.001 0.481 1.001 0.481 1.001 0.481 1.001 0.481 1.001 0.481 1.001 0.481 0.001 0.481 0.001 0.491 0.492 0.481 0.492 0.493 0.492 0.493 0.492 0.493	-							-	-											-
147933 S. (DET C 115.0 5 131 0.999 1.001 0.884 1.001 0.884 1.001 0.884 1.001 0.884 1.001 0.884 1.001 0.884 1.001 0.884 1.001 0.884 1.001 0.884 0.101 0.884 0.101 0.884 0.101 0.884 0.101 0.884 0.101 0.884 0.101 0.884 0.101 0.884 0.101 0.884 0.101 0.884 0.101 0.884 0.101 0.884 0.101 0.884 0.101 0.884 0.101								-	-											
14793 DAMP C 1.01 0.887 1.01 0.884 1.01 1.01 1.01 1.0								-	-											
114 CTMOTYSM 230.0 6 148 CTMOTYSM 230.0 6 148 CTMOTYSM 230.0 6 148 CTMOTYSM 230.0 6 148 CTMOTYSM 230.0 6 144 0.000 1.000 - 0.928 0.827 0.883 0.828 <								-	-											
114 TTMPT78W 230.0 6 144 0.900 0.800 0.90								-	-										345 130805 FRASR115	115 1
114 TUPT/TSW 233.0 6 148 0.900 1.100 - - 0 0.922 0.886 - - - 0 0.923 0.886 - - 0 0.923 0.886 - - 0 0.923 0.886 - - 0 0.923 0.886 - - - 0 0.923 0.886 0.923 0.886 0.923 0.886 0.923 0.886 0.923 0.886 0.923 0.886 0.923 0.886 0.825 0.885 0.892 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.887 0.887									-											
114 STEMP784 230-0 6 144 0.990 1.100 - - - 0.922 0.886 - - - 0.881 SEAABOOK 114 STEM7784 230.0 6 144 0.990 1.100 - - - 0.922 0.889 - - - 0.881 SEAABOOK 114 STEM7784 230.0 6 144 0.990 1.100 - - - 0.922 0.889 - - - 0.881 SEAABOOK 115 STEM97894 230.0 6 144 0.900 1.100 - - 0.922 0.881 0.895 0.897 0.895 0.897 0.895 0.897 0.895 0.897 0.895 0.897 0.895 0.897 0.895 0.897 0.895 0.897 0.895 0.897 0.895 0.897 0.898 0.898 0.898 0.898 0.898 0.898 0.898 0.898 0.898 0.898 0.898 0.898 0.898 0.898 0.898 0.898 0.898 0.898								-	-											
114 TUTY778 230.0 6 148 TUTY784 230.0 6 148 TUTY784 230.0 6 148 Open 1.00 - - - 0.922 0.899 -								-	-										230 137730 ROTRDM.2	230 1
114 RTMMT78N 220.0 6 144 0.900 1.100 - - 0.922 0.899 - - - MUS1NS97 115 RTMM999N 220.0 6 144 0.900 1.100 - - 0.922 0.899 0.927 0.898 1.376 1035 REMARK 20.177.0 0.7770.0 0.7700.0 0.770.0 0.7700.0 0.770.0 0.7700.0 0.770.0 0.7700.0 0.770.0 0.7700.0 0.770.0 0.7700.0 0.770.0 0.7700.0 0.770.0 0.7700.0 0.770.0 0.770.0 0.7700.0 0.770.0 0.7700.0 0.770.0 0.7700.0 0.770.0 0.7700.0 0.770.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>								-	-		-						-			
114 RTMYT79 220.0 6 140 0.900 1.00 - - 0.922 0.899 - - - PURPTY 115 RTMSPSW 230.0 6 140 0.900 1.100 - - 0.922 0.898 0.927 0.898 17545 RTMSPURD 345 31752 RTMSPURD 345 3175 RTMSPURD 346 3100 - - - 0.922 0.898 - - - 1013 3013 3013 3013 3013 3013 3013 3113 3113 3113 3113 3113 3113 3113 3113 31133 3113								-	-		-						-			
115 TTM999M 210.0 6 148 0.990 1.0.89 0.922 0.890 0.927 0.891 13744 ERCENCIA 345 137528 ERCENCIA 345 37752 ERCENCIA 345 37752 245 345 345 345 37752 37751 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td>								-	-		-			-		-	-			
115 RTM999M 230.0 6 148 0.900 1.00 - - 0.922 0.891 0.927 0.897 0.897 0.897 0.237 0.898 230.13770 NOTRUA.2 230.1 115 RTM999M 230.0 6 148 0.900 1.100 - - 0.922 0.896 - - - BRS1828A20K 115 RTM999M 230.0 6 148 0.900 1.000 - - 0.922 0.899 - - - BRS1878A20K 115 RTM999M 230.0 6 148 0.900 1.000 - - - 0.922 0.899 - - - BRS187.5.9 110021 RLM815 115.0 6 148 0.900 1.000 0.917 1.001 1.005 1.118 1.1005 1.115 1.1005 1.115 1.1005 1.118 1.1005 1.115 1.115 1.115 1.115 1.115								-	-		-			-		-	-		245 127520 DBV DD	115 1
115 FTM099M 230.0 6 146 0.900 1.100 - - - 0.922 0.986 - - - - OBSTREM 115. RTM095W 230.0 6 148 0.900 1.100 - - - 0.922 0.893 - - - BUSTREMATT BUSTSTREMATT BUSTSTREMATT BUSTSTEMA				~																
115 FITMOPSPW 220.0 6 148 0.900 1.100 - - - 0.922 0.997 -								-	-	0.928	0.899			0.926	0.895	0.927	0.898		230 137730 ROIRDM.2	230 1
115 PTCM99SW 230.0 6 148 0.900 1.100 - - - 0.922 0.997 - 0.922 0.929 0.609 0.9288 0.928 0.928				-				-	-	-	-			-	-	-	-			
115 RTMMP9SM 20.0 6 148 0.900 1.100 - - - 0.922 0.899 - - - BUSH S. 99 130921 RIMPELS 115.0 6 165 0.900 1.100 1.128 1.000 1.138 1.005 1.138 1.0073 CREWP11S 115.0 6 165 0.900 1.100 0.997 0.688 0.988 0.596 0.986 0.596 0.996 0.591 130331 STEWH11S 115.1 1157502 GRENELCR 115.1 137438 ELMORA 115.0 6 148 0.900 1.100 - - 0.968 0.887 0.887 0.887 0.986 0.897 13751 FRONT ST 115.13753 RFONT ST 115.137533 RFONT ST 115.137533									-											
115 RTM9998W 20.0 6 148 0.900 1.100 - - - 0.922 0.899 - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>_</td><td>-</td><td></td><td></td><td>_</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td></t<>								-	-	_	-			_	-	-	-			
13022 KLNR115 115.0 6 165 0.900 1.100 1.012 1.143 1.010 1.125 1.091 1.108 1.0173 CRARV115 115				-				-	-	-	-			-	-	-	-			
130913 STEPHILS 115.0 6 165 0.900 1.100 0.997 0.699 0.598 0.996 0.986 0.591 10091 STEPHILS 115.11517502 STEPHILS 115.11517522 STEPHILS 115.11517512 STEPHILS 115.11517512 STEPHILS 115.11517512 STEPHILS 115.11517512 STEPHILS 115.1151752 STEPHILS 115.1151751 STEPHILS STEPHILS STEPHILS STEPHILS STEPHILS STEPH									-										115 120022 WI THEILE	115 1
13922 OMER 18 115.0 6 168 0.000 1.100 0.989 0.980 0.990 0.996 0.991 10.901 11011 111111 111111 111111 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																				
137488 LIAORA 115.0 6 148 0.900 1.100 - - 0.968 0.889 0.967 0.887 0.966 0.887 137501 FRONT ST 115 137328 REXAM 115 1 137498 LIAORA 115.0 6 148 0.900 1.100 0.888 0.899 0.881 0.967 0.887 0.966 0.891 137501 FRONT ST 115 137328 REXAM 115 13732 REXAM 115 13732 REXAM 115 13732 REXAM 115 137338 REXAM REXAM 115 137338 REXAM 115																				
137498 LUXOPA 115.0 6 148 0.900 1.100 0.968 0.899 0.889 0.987 0.967 0.968 0.987 0.987 0.987 0.986 0.987 137501 PRONT ST 115.0 15 115.17531 RCAR ND 115.1 137504 GE RAD 115.0 6 148 0.900 1.100 0.888 0.984 0.975 0.884 0.974 0.882 0.973 0.697 10.691 137501 FRONT ST 115.137531 RCAR AD 115.1 115.137531 RCAR AD 115.0 6 148 0.900 1.100 0.974 0.889 0.974 0.882 0.973 0.691 137501 FRONT ST 115.137531 RCAR AD 115.0 6 148 0.900 1.100 0.975 0.883 0.974 0.882 0.973 0.681 137512 FRONT ST 115.137531 RCAR AD 115.13753 RCAR AD									0.689											-
137501 FRONT ST 115.0 6 148 0.900 1.100 0.888 0.989 0.843 0.988 0.988 0.988 0.988 0.981 0.987 0.981 0.974 0.846 0.973 0.891 0.971 0.846 0.973 0.893 137501 FRONT ST 115.137532 RTEMN 115.1 137504 GE RAD 115.0 6 148 0.900 1.100 - - 0.974 0.889 0.973 0.893 137501 FRONT ST 115.137512 ROAR RD 115.1 137504 GE RAD 115.0 6 148 0.900 1.100 - - 0.975 0.893 0.974 0.886 0.973 0.898 137501 FRONT ST 115.137512 ROAR RD 115.1 137512 ROAR RD 115.137512 ROAR RD 115.13751				-					-											
137504 GE RED 115.0 6 148 0.900 1.100 0.988 0.974 0.975 0.848 0.973 0.847 137501 FROMT ST 115 137532 FROMT ST 115 137531 ROSA RD 115 1 137504 GE RAD 115.0 6 148 0.900 1.100 - - 0.975 0.893 0.974 0.892 0.973 0.893 137504 GE RAD 115 137531 ROSA RD 115 1 137504 GE RAD 115.0 6 148 0.900 1.100 - - - 0.975 0.898 0.973 0.893 137504 GE RAD 115 137531 ROSA RD 115 1 137508 IMMAN RD 115.0 6 148 0.900 1.100 - - 0.955 0.875 0.898 0.973 0.898 137512 JOINSON 115 137531 ROSA RD 115 1 137518 JIS 6 148 0.900 1.100 - 0.975 0.897 0.987 0.973 0.881 137512 JOINSON 115 137531 ROSA RD 115 1 137513 JIS 6 148 0.900 <td></td>																				
137504 GE RAD 115.0 6 148 0.900 1.100 - - 0.974 0.895 0.974 0.892 0.973 0.892 137501 FROM TST 115.137531 ROSA RD 115.1 137504 GE RAD 115.0 6 148 0.900 1.100 - - 0.975 0.898 0.973 0.898 137512 FROM TST 115.137531 ROSA RD 115.1 137508 IRMAN RD 115.0 6 148 0.900 1.100 - - 0.965 0.898 0.965 0.898 0.964 0.898 137512 ZUGHNSON 115.1 137513 MARLMOOD 115.1 13751																				
137504 GE RAD 115.0 6 148 0.900 1.100 - - 0.975 0.899 0.974 0.898 1.3750 1.0898 1.3750.1 ROAR RD 115.1 137508 IMMAN RD 115.0 6 148 0.900 1.100 - - 0.965 0.896 0.964 0.898 13751.2 JONRON 115 1375.31 MARLMOOD 115 1 137508 IMMAN RD 115.0 6 148 0.900 1.100 - - 0.965 0.870 0.956 0.869 0.964 0.881 13751.2 JONRON 115 137532 RARLMOOD 115 1 137512 JONRSON 115.0 6 148 0.900 1.100 - - 0.977 0.881 0.977 0.876 0.877 0.976 0.881 13751.2 JONRSON 115 137532 RARLMOOD 115 1 137531 ROAR 115.0 6 148 0.900 1.100 - - 0.977 0.846 0.976 0.845 0.976 0.881 13751.2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.988</td><td>0.094</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								0.988	0.094											
117508 INNAM RD 115.0 6 148 0.900 1.100 - - 0.965 0.966 0.966 0.966 0.966 0.964 0.961 0.961 0.961 0.961 0.961 0.965 0.964 0.961 0.964 0.989 137512 JOHNSON 115 137513 TAPL HODE 115 1 137518 INNAM RD 115.0 6 148 0.900 1.100 - - 0.975 0.881 0.975 0.879 0.976 0.889 137512 JOHNSON 115 137513 MAPLMOOD 115 1 115 137513 MAPLMOOD 115 1 115 137512 JOHNSON 115 137512 JOHNSON 115 137513 MAPLMOOD 115 1 115 137513 MAPLMOOD 115 1 15331 ROSA RO 13751 FORT ST 115 137513 MAPLMOOD 115 1 15331 ROSA 0.976 0.881 0.976 0.880 0.976 0.880 0.976 0.881 0.971 0.810 <									_	0.974	0.895									
137508 INMAN RD 115.0 6 148 0.900 1.100 - - 0.965 0.872 0.965 0.965 0.869 0.964 0.861 137501 FRONT ST 115 137532 RTEDMI 115 1 137511 FRT FERY 115.0 6 148 0.900 1.100 - - 0.975 0.881 0.976 0.881 0.976 0.881 137512 JOHNSON 115 137513 MALINOOD 115 1 137513 JOHNSON 115.0 6 148 0.900 1.100 - 0.977 0.881 0.976 0.845 0.976 0.846 137512 JOHNSON 115 137513 MALNOOD 115 1 137531 ROSA RD 115.0 6 148 0.900 1.100 - - 0.977 0.846 0.976 0.845 0.976 0.841 13751 FRONT ST 115 137513 MALNOOD 115 1 137530 ROTEML2 230.0 6 148 0.900 1.100 - - 0.928 0.861 0.922 0.861 0.927 0.8								_	_	0.965	0 900									
137511 FRT FERY 115.0 6 148 0.900 1.100 - - 0.975 0.881 0.975 0.877 0.881 137512 JOHNSON 115.0 6 148 0.900 1.100 - - 0.978 0.881 0.977 0.881 0.976 0.881 137512 JOHNSON 115 137513 MAPLWOOD 115 1 137511 ROSA RD 115.0 6 148 0.900 1.100 - - 0.977 0.848 0.977 0.848 0.976 0.881 137512 JOHNSON 115 137513 MAPLWOOD 115 1 137513 MAPLWOOD 115 1 137513 MAPLWOOD 115 1 137513 MAPLWOOD 115 1 <td></td> <td></td> <td></td> <td>6</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>				6					_											
137512 JOHNSON 115.0 6 148 0.900 1.100 - - 0.978 0.880 0.977 0.976 0.880 137512 JOHNSON 115 137513 MAPLWOOD 115 1 137531 ROSA RD 115.0 6 148 0.900 1.100 0.990 0.893 0.977 0.848 0.976 0.845 0.976 0.846 0.976 0.846 0.976 0.846 0.976 0.846 0.976 0.846 0.976 0.846 0.976 0.846 0.976 0.846 0.976 0.845 0.976 0.846 0.976 0.846 0.976 0.846 0.976 0.846 0.976 0.846 0.976 0.846 0.976 0.846 0.976 0.846 0.976 0.846 0.976 0.846 0.976 0.846 0.976 0.846 0.976 0.848 0.976 0.848 0.976 0.848 0.976 0.848 0.976 0.848 0.976 0.848 0.976 0.848 0.977 0.848 0.976 0.848 0.976 0.848				6				-	-											
13731 ROSA RD 115.0 6 148 0.900 0.990 0.893 0.977 0.846 0.976 0.845 0.976 0.846 137501 FROMT ST 115 137532 RTERMI 115 1 137531 ROSA RD 115.0 6 148 0.900 1.100 - - 0.977 0.846 0.976 0.892 0.976 0.893 137501 FROMT ST 115 137532 RTERMI 115 1 137540 SIL, TAP 115.0 6 148 0.900 1.100 - - 0.971 0.884 0.976 0.882 0.976 0.884 137512 JOHNSON 115 137532 RENDMOD 115 1 137537 ROTEMU.2 230.0 6 148 0.900 1.100 - - 0.928 0.884 0.927 0.884 0.927 0.884 13751 XINTEDM 99 EUS EUS 115 137532 RENDMOD 115 1 13753 RENDMOD 15 1 13753 RENDMOD 135 13752 RENDMOD 115 1 13753 RENDMOD 115 1 13753 RENDMOD <td></td> <td></td> <td></td> <td>-</td> <td></td>				-																
137531 ROSA RD 115.0 6 148 0.900 1.100 - - 0.977 0.895 0.977 0.894 0.976 0.892 0.976 0.893 137501 FRONT ST 115 137531 ROSA RD 115 1 137540 SIL. TAP 115.0 6 148 0.900 1.100 - - 0.971 0.886 0.971 0.882 0.969 0.884 137512 MENON 115 137533 ROSA RD 115 1 137730 ROTRDM.2 230.0 6 148 0.900 1.100 - - 0.928 0.864 0.922 0.885 0.927 0.896 137454 REYNLD3 345 137528 REY. RD. 115 1 137730 ROTRDM.2 230.0 6 148 0.900 1.100 - - 0.928 0.899 0.926 0.895 0.927 0.896 137454 REYNLD3 345 137528 REY. RD. 115 1 137730 ROTRDM.2 230.0 6 148 0.900 1.100 - - 0.922 0.895 0.927 0.896 12385 RESNAPP 230 137730 ROTRDM.2 230.137730																				
137540 SIL. TAP 115.0 6 148 0.900 1.100 - - 0.971 0.886 0.971 0.882 0.969 0.884 137512 JOHNSON 115 137513 MAPLWOOD 115 1 137730 ROTEDM.2 230.0 6 148 0.900 1.100 - - 0.928 0.886 0.927 0.860 0.927 0.628 137545 RETMEM 99 BUS 137730 ROTEDM.2 230.0 6 148 0.900 1.100 - - 0.928 0.898 0.922 0.880 0.927 0.628 137545 RETMEM 99 BUS 137730 ROTEDM.2 230.0 6 148 0.900 1.100 - - 0.928 0.898 0.922 0.885 0.927 0.898 102385 RESMAMP 230 137730 ROTEDM.2 230 137730 ROTEDM.2 230 137730 ROTEDM.2 230 137730 ROTEDM.2 230.0 6 148 0.900 1.100 - - 0.922 0.895 - - - GETSEABCOK 137730 ROTEDM.2 230.0 6 148 0.900 1.100				6																
137730 ROTEDM.2 230.0 6 148 0.900 1.100 - - 0.928 0.864 0.922 0.865 0.926 0.860 0.927 0.862 BUS:RTRDM 99 BUS 137730 ROTEDM.2 230.0 6 148 0.900 1.100 - - 0.928 0.892 0.892 0.927 0.898 137454 REYRLD3 345 137528 REY. RD. 115 1 137730 ROTEDM.2 230.0 6 148 0.900 1.100 - - 0.928 0.892 0.927 0.898 102355 RENAMP 230 13730 ROTEDM.2 230 1 137730 ROTEDM.2 230.0 6 148 0.900 1.100 - - 0.922 0.896 - - - GEN:SEABEOOK 137730 ROTEDM.2 230.0 6 148 0.900 1.100 - - - 0.922 0.896 - - - BEN:SEABEOOK 137730 ROTEDM.2 230.0 6 148 0.900 1.100 - - 0.922 0.899 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td>								-	-											
137730 ROTEDM.2 230.0 6 148 0.900 1.100 - - 0.928 0.898 0.922 0.892 0.927 0.896 137454 REYNLD3 345 137528 REY.RD. 115 1 137730 ROTEDM.2 230.0 6 148 0.900 1.100 - - 0.928 0.899 0.922 0.895 0.927 0.896 10235 RESNAMP 230 137730 ROTEDM.2 230.0 6 148 0.900 1.100 - - 0.922 0.896 - - - CENTEM.2 230.0 6 148 0.900 1.100 - - 0.922 0.896 - - - CENTEMAP 230.137730 ROTEDM.2 230.0 6 148 0.900 1.100 - - 0.922 0.896 - - - CENTESABEROMS - - - CENTEMAP 230.0 6 148 0.900 1.100 - - 0.922 0.899 - - - BUSINTEDM YT BUS				-				-	-											
137730 ROTEDM.2 230.0 6 148 0.900 1.100 - - 0.928 0.899 0.922 0.891 0.926 0.895 0.927 0.898 102385 BESNAMP 230 137730 ROTEDM.2 230.1 1 137730 ROTEDM.2 230.0 6 148 0.900 1.100 - - - 0.922 0.895 - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>- 1</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>345 137528 REY. RD.</td> <td>115 1</td>								- 1	-										345 137528 REY. RD.	115 1
137730 ROTEDM.2 230.0 6 148 0.900 1.100 - - - 0.922 0.896 - - - GEN:SEABEOOK 137730 ROTEDM.2 230.0 6 148 0.900 1.100 - - - 0.922 0.896 - - - GEN:SEABEOOK 137730 ROTEDM.2 230.0 6 148 0.900 1.100 - - - 0.922 0.896 - - - BEN:SEABEOOK 137730 ROTEDM.2 230.0 6 148 0.900 1.100 - - - 0.922 0.896 - - - BEN:SEABEOOK 137730 ROTEDM.2 230.0 6 148 0.900 1.100 - - 0.922 0.899 - - - BUS:N.S97 137849 ROE DRY 115.0 6 148 0.900 1.100 - - 0.960 0.899 0.959 0.898 - - 137876 CHURCH-W 115 13791 VAIL TAP								- 1	-											
137730 ROTEDM.2 230.0 6 148 0.900 1.100 - - - 0.922 0.896 - - - GEN:SEABGOMS 137730 ROTEDM.2 230.0 6 148 0.900 1.100 - - 0.922 0.899 - - - BUS:RTEDM 77 BUS 137730 ROTEDM.2 230.0 6 148 0.900 1.100 - - - 0.922 0.899 - - - BUS:RTEDM 77 BUS 137730 ROTEDM.2 230.0 6 148 0.900 1.100 - - 0.922 0.899 - - - BUS:NS99 137730 ROTEDM.2 230.0 6 148 0.900 1.100 - - 0.922 0.899 - - BUS:NS99 137849 FAGE DRY 115.0 6 148 0.900 1.100 - - 0.960 0.898 0.959 0.898 - - 137832 RTEDM1 115 137876 CHURCH-W 115 1 115 137876 CHURCH-W 115 1				6				- 1	-											
137730 ROTEDM.2 230.0 6 148 0.900 1.100 - - - 0.922 0.899 - - - BUS:RTEM 77 BUS 137730 ROTEDM.2 230.0 6 148 0.900 1.100 - - 0.922 0.899 - - - BUS:RTEM 77 BUS 137730 ROTEDM.2 230.0 6 148 0.900 1.100 - - 0.922 0.899 - - - BUS:N.S.99 137740 ROTEDM.2 230.0 6 148 0.900 1.100 - - 0.922 0.899 - - BUS:N.S.99 137840 FAGE DRY 115.0 6 148 0.900 1.100 - - 0.960 0.898 0.959 0.898 - - 137532 RTEDM1 115 13791 VAIL TAP 115 1 137840 FAGE DRY 115.0 6 148 0.900 1.100 - - 0.960 0.899 0.898 - - 137532 RTEDM1 115 137876 CHURCH-W <				6				-	-	-	-			-	-	-	-			
137730 ROTEDM.2 230.0 6 148 0.900 1.100 - - - 0.922 0.899 - - - BUS:N.S99 137730 ROTEDM.2 230.0 6 148 0.900 1.100 - - - 0.922 0.899 - - - BUS:N.S99 137849 FAGE DRY 115.0 6 148 0.900 1.100 - - - 0.960 0.898 - - - 137640 FAGE DRY 115.0 6 148 0.900 1.100 - - - 0.960 0.898 0.959 0.888 - - 137637 CHURCH-W 115 137911 VAIL TAP 115 1 137849 FAGE DRY 115.0 6 148 0.900 1.100 - - 0.960 0.899 0.959 0.888 - - 137532 RTEDM1 115 13767 CHURCH-W 115 1 137840 AMST 115 115.0 6 148 0.900 1.100 - - 0.960 0.897 0.896				6				-	-	-	-			-	-	-	-			
137849 FAGE DRY 115.0 6 148 0.900 1.100 - - - 0.960 0.898 0.959 0.898 - - 137876 CHURCH-W 115 13791 VAIL TAP 115 137849 FAGE DRY 115.0 6 148 0.900 1.100 - - 0.960 0.898 0.959 0.898 - - 13756 CHURCH-W 115 137876 CHURCH-W 115 13787 CHURCH-W 115 13787 CHURCH-W 115 137876 CHURCH-W 115 <td>137730</td> <td></td> <td>230.0</td> <td>6</td> <td></td> <td>0.900</td> <td>1.100</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td>	137730		230.0	6		0.900	1.100	-	-	-	-			-	-	-	-			
137849 FAGE DRY 115.0 6 148 0.900 1.100 - - 0.960 0.899 0.959 0.808 - - 137532 RTRDM1 115 137876 CHURCH-W 115 1 137840 AMST 115 15.0 6 148 0.900 1.100 - - 0.985 0.870 0.984 0.869 0.984 0.875 137532 RTRDM1 115 137876 CHURCH-W 115 137876 CHURCH-W 115 137876 115 137876 115 137876 115 137876 115 1 115 1 115 137876 115 1 115 137876 115 137876 115 137876 115 1 115 137876 11	137730	ROTRDM.2	230.0	6	148	0.900	1.100	-	-	-	-	0.922	0.899	-	-	-	-	BUS:N.S77		
137849 FAGE DRY 115.0 6 148 0.900 1.100 - - 0.960 0.899 0.959 0.898 - - 137532 RTRDM1 115 137876 CHURCH-W 115 13 137840 AMST 115.0 6 148 0.900 1.100 - - 0.985 0.874 0.989 0.898 0.869 0.984 0.869 137532 RTRDM1 115 137876 CHURCH-W 115 137876 CHURCH-W 115 137876 CHURCH-W 115 137876 137874 CENTER-S 115.0 6 148 0.900 1.100 - - 0.960 0.897 0.984 0.869 0.984 0.870 137532 RTRDM1 115 137876 CHURCH-W 115 137876 137874 CENTER-S 115.0 6 148 0.900 1.100 - - 0.960 0.897 0.896 - - 137876 CHURCH-W 115 137876 CHURCH-W	137849	FAGE DRY	115.0	6	148	0.900	1.100	-	-	-	-	0.960	0.898	0.959	0.898	-	-	137876 CHURCH-W	115 137911 VAIL TAP	115 1
137874 CENTER-S 115.0 6 148 0.900 1.100 - - 0.960 0.897 0.959 0.896 - - 137876 CHURCH-W 115 137911 VALL TAP 115 1 137874 CENTER-S 115.0 6 148 0.900 1.100 - - - 0.960 0.897 0.897 - - 137532 RTRDM1 115 137876 CHURCH-W 115 137876 CHURCH-W 115 137876 <t< td=""><td>137849</td><td></td><td>115.0</td><td>6</td><td>148</td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>0.960</td><td>0.899</td><td>0.959</td><td>0.898</td><td>-</td><td>-</td><td></td><td></td><td>115 1</td></t<>	137849		115.0	6	148			-	-	-	-	0.960	0.899	0.959	0.898	-	-			115 1
137874 CENTER-S 115.0 6 148 0.900 1.100 - - 0.960 0.897 0.959 0.896 - - 137876 CHURCH-W 115 137911 VALL TAP 115 1 137874 CENTER-S 115.0 6 148 0.900 1.100 - - - 0.960 0.897 0.897 - - 137532 RTRDM1 115 137876 CHURCH-W 115 137876 CHURCH-W 115 137876 <t< td=""><td>137860</td><td>AMST 115</td><td>115.0</td><td>6</td><td>148</td><td>0.900</td><td>1.100</td><td>-</td><td>-</td><td>0.985</td><td>0.874</td><td>0.985</td><td>0.870</td><td>0.984</td><td>0.869</td><td>0.984</td><td>0.875</td><td>137532 RTRDM1</td><td>115 137860 AMST 115</td><td>115 1</td></t<>	137860	AMST 115	115.0	6	148	0.900	1.100	-	-	0.985	0.874	0.985	0.870	0.984	0.869	0.984	0.875	137532 RTRDM1	115 137860 AMST 115	115 1
			115.0	6	148	0.900	1.100	-	-	-	-	0.960	0.897	0.959	0.896	-			115 137911 VAIL TAP	115 1
	137874	CENTER-S	115.0	6	148	0.900	1.100	-	-	-	-	0.960	0.898	0.959	0.897	-	-	137532 RTRDM1	115 137876 CHURCH-W	115 1
110 110 110 110 110 110 110 110 110 110	137875	CHURCH-E	115.0	6	148	0.900	1.100	-	-	0.982	0.876	0.982	0.872	0.981	0.871	0.981	0.876	137532 RTRDM1	115 137860 AMST 115	115 1
137876 CHURCH-W 115.0 6 148 0.900 1.100 0.980 0.897 0.980 0.893 0.979 0.892 0.979 0.897 137532 RTRDM1 115 137876 CHURCH-W 115 1	137876	CHURCH-W	115.0	6	148	0.900	1.100	-	-	0.980	0.897	0.980	0.893	0.979	0.892	0.979	0.897	137532 RTRDM1	115 137876 CHURCH-W	115 1
137881 GROOMS 115.0 6 148 0.900 1.100 0.966 0.890 0.966 0.889 0.966 0.887 0.964 0.889 137512 JOHNSON 115 137513 MAPLWOOD 115 1	137881	GROOMS	115.0	6	148	0.900	1.100	-	-	0.966	0.890	0.966	0.889	0.966	0.887	0.964	0.889	137512 JOHNSON	115 137513 MAPLWOOD	115 1
137881 GROOMS 115.0 6 148 0.900 1.100 0.966 0.887 0.966 0.885 0.966 0.884 0.964 0.884 137501 FRONT ST 115 137532 RTRDM1 115 1	137881	GROOMS	115.0	6	148	0.900	1.100	-	-	0.966	0.887	0.966	0.885	0.966	0.884	0.964	0.884			115 1
137889 KNAPP 115.0 6 148 0.900 1.100 0.998 0.635 0.983 0.495 0.983 0.492 0.983 0.491 0.983 0.488 137902 SCOFIELD 115 137914 WBURG115 115 1	137889	KNAPP	115.0	6	148	0.900	1.100	0.998	0.635	0.983	0.495	0.983	0.492	0.983	0.491	0.983	0.488	137902 SCOFIELD		115 1
137896 N. CRK 115.0 6 148 0.900 1.100 0.998 0.632 0.982 0.491 0.982 0.487 0.982 0.486 0.982 0.483 137902 SCOFIELD 115 137914 WBURG115 115 1		N CDV	115.0	6	148	0.900	1,100	0.998	0.632	0.982	0.491	0.982	0.487	0.982	0.486	0.982	0.483	137902 SCOFIELD	115 137914 WBURG115	115 1

Image Image <t< th=""><th></th><th></th><th></th><th>1</th><th></th><th></th><th></th><th></th><th></th><th colspan="2">Horizon Year</th><th colspan="2">Horizon Year</th><th colspan="2">Horizon Year</th><th colspan="2">Horizon Year</th><th></th><th></th><th></th></t<>				1						Horizon Year		Horizon Year		Horizon Year		Horizon Year				
17986 1798 1798 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Intermed</th><th>iate Year</th><th>Scena</th><th>riol</th><th>Scen</th><th>ario2</th><th>Scen</th><th>ario3</th><th>Scen</th><th>ario4</th><th></th><th>Limiting</th><th></th></t<>								Intermed	iate Year	Scena	riol	Scen	ario2	Scen	ario3	Scen	ario4		Limiting	
13796 15788 116 4 4.8 1.80 - - - - - 0.400	Bus #	Bus Name	kV	Area	Zone	Vlow	Vhigh	Intact	Cont.	Intact	Cont.	Intact	Cont.	Intact	Cont.	Intact	Cont.		Contingency	
1372. 0.1.5 4. 4.9.0 1.3.0 - - - - 0.4.6 0.4.9	137906	STONER	115.0	6	148	0.900	1.100	-	-	0.961	0.897	0.961	0.893	0.959	0.892	0.961	0.897	137876 CHURCH-W	115 137911 VAIL TAP	115 1
13725 Null <i>GAP</i> 13752 Null <i>GAP</i> 13772 Null <i>GAP</i> <	137906	STONER	115.0	6	148	0.900	1.100	-	-	0.961	0.898	0.961	0.894	0.959	0.893	0.961	0.898	137532 RTRDM1	115 137876 CHURCH-W	115 1
17722 92.5.13 93.6. 9.480 <	137911		115.0	6			1.100	-	-	0.964	0.896	0.963	0.892	0.962	0.891			137876 CHURCH-W	115 137911 VAIL TAP	
1979 WG. 15 15. 4. 4. 6. 4. 6 </td <td></td> <td></td> <td></td> <td>6</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td>				6				-	-											
13792 VII. 15 4 4 0.50 1.00 0.50 0								0.975	0.898											
13794 WIRDEN 15.8 0 136 1.00 0.49								-	-											
13525 MANDE 2 108 1, 10 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																				
Siges Source Source </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.998</td> <td>0.639</td> <td></td> <td>0.501</td> <td></td> <td></td> <td>0.983</td> <td></td> <td></td> <td>0.494</td> <td></td> <td>115 137914 WBURG115</td> <td>115 1</td>								0.998	0.639		0.501			0.983			0.494		115 137914 WBURG115	115 1
Since Soundo Since Since <t< td=""><td></td><td></td><td></td><td>7</td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td>-</td><td>-</td><td></td><td></td><td></td></t<>				7				-	-		-			-		-	-			
315200 BMLLINE 48.4 7 7 <				7					-		-					-				
13426 PMCLINE 44.9 7 <																				
1474 0PTR 700 94.0 7 150 0.000 1.020 0.900 1.020 0.900 0.80				7																
14/72 OWNER 18, 0 7 155 0.900 1.00 7 0.980				/				1.044	1.057										345 126290 LADENTWN	345 I
1477 907.13 18,0 7 15 0.90 1.00 0.87 0.882 0.887 0.876				/				-	-										120 146774 DOW120	120 1
134460 INA 0 0 0 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>									-											
13440 198.0 0 0				'																
13078 WOOMA45 345.0 8 167 0.900 1.002 0.808 1.002 0.808 1.002 0.808 1.002 0.808 1.002 0.808 1.002 0.808 1.002 0.808 1.002 0.808 1.002 0.808 1.002 0.808 1.002 0.808 1.002 0.808 1.002 0.808 1.002 0.808 1.001 0.808 1.001 0.808 1.001 0.808 1.001 0.808 1.001 0.808 1.001 0.808 1.001 0.808 1.001 0.808 1.001 0.808 1.001 0.808 1.001 0.807 1.001 0.808 1.001 0.808 1.001 0.808 1.001 0.808 1.001 0.808 1.001 0.808 1.001 0.808 0.808 0.808 0.808 0.808 0.808 0.808 0.808 0.808 0.808 0.808 0.808 0.808 0.808 0.808 0.808 0.808 0.808 0.808 0.8				-																
13078 8000A45 345.0 8 167 0.900 1.100 - - 1.002 0.898 1.002 0.898 1.002 0.898 1.002 0.898 1.002 0.898 1.002 0.888 0.888 1.002 0.888				8					0.887										138 120401 38841	138 I
130759 NOCE-345 496.0 6 167 0.500 1.000 0.889 1.000 0.889 1.000 0.889 1.000 0.889 1.000 0.889 1.000 0.889 1.000 0.889 1.000 0.889 1.000 0.889 1.000 0.889 1.000 0.889 1.000 0.885 1.011 0.889 1.000 0.885 1.011 0.886 1.010 0.886 1.010 0.886 1.010 0.886 1.010 0.886 1.010 0.886 1.010 0.886 0				8				-	-										345 130758 WOOD&345	345 1
19705 constant 145.0 6 147.0 0.900 1.000 0.907 1.002 0.907 1.002 0.907 1.002 0.907 1.002 0.907 1.002 0.907 1.001 0.907 1.001 0.907 1.001 0.907 1.001 0.907 1.001 0.907 1.001 0.907 1.001 0.907 1.001 0.907 1.001 0.907 1.001 0.907 1.001 0.907 1.001 0.907 1.001 0.907 1.001 0.907 1.001 0.907 0.907 1.001 0.907 0.907 1.001 0.907 0.907 1.001 0.907 0.907 1.001 0.907									-										515 150,50 #00511515	515 1
130782 CAMM.115 115. 48 74 0.980 1.01 0.886 1.011 0.886 1.012 0.885 1.0781 CAMM.115 115 115 115 115 130424 DAMILIS 115. 8 74 0.980 1.080 0.884 0.988 0.884 0.988 0.884 0.988 0.884 0.988 0.884 0.988 0.881 0.978 0.884 0.988 0.881 0.978 0.884 0.988 0.885 0.988 0.884 0.988 0.881 0.988 0.881 0.988 0.881 0.988 0.881 0.988 0.881 0.988 0.881 0.988 0.881 0.988 0.881 0.988 0.881 0.988 0.881 0.988 0.881 0.988 0.888 0.881 0.988 0.888 0.881 0.988 0.881 0.988 0.881 0.988 0.881 0.988 0.881 0.988 0.888 0.881 0.881 0.881 0.813				8				-	-									_	345 130759 WOODB345	345 1
13042 PARLAIIS 115.0 8 174 0.900 1.00 - - 0.978 0.889 0.898 0.898 0.978 0.861 10042 PARLAIIS 115.1112 STIVUNIS 115.1 13110 CRUTNIS 115.0 8 174 0.900 1.00 - 0.888 0.989 0.884 0.988 0.880 0.890 0.880 0.880 0.880 0.890 0.880 0.880 0.880 0.890 0.880 0.890 0.880 0.890 0.880 0.890 0.880 0.890					_			-	-											
13042 PARLAIIS 115.0 8 174 0.999 0.978 0.984 0.999 0.978 0.984 0.999 0.978 0.981 0.978 0.983 0.983 0.988 0.988 0.988 0.887 0.								-	-											
13110 CROTHIS 115.0 8 174 0.900 - - 0.989 0.989 0.987 10.701 CARANLIS 115 10865 MOODELIS 115 1115 131110 TILYPIIS 115.0 8 174 0.900 1.000 0.893 0.883 <				8				0.992	0.895											
131113 YLWNI5 115.0 8 114 0.998 0.898 0.998 0.898 0.998 0.898 0.998 0.898 0.998 0.898 0.998 0.898 0.998 0.8			115.0	8	174			-	-	0.988		-	-			0.988				
131114 TLVF115 115.0 8 174 0.90 1.100 - - - - 0.983 0.989 0.989 0.989 10.989 10.989 10.980 10.981 10.115 115 13116 DV/D 10.00 0.989 10.981 0.989 0.988 0.989 0.989 0.988 0.989 0.988 0.989 0.988 0.989 0.988 0.989 0.988 0.989 0.988 0.989 0.988 0.989 0.988 0.989 0.988 0.989 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.983 0.983 0.983 0.983 0.983 0.983 0.983 0.983	131112		115.0	8	174	0.900	1.100	1.009	0.893	0.999	0.839	1.007	0.861	1.000						115 1
13111 UNCONLIS 115.0 8 174 0.900 1.000 0.897 1.010 0.887 1.011 CAMBLIS 1.15 1.10865 MODOSII 1.15 121116 CKONT 8 115.0 8 1.74 0.200 1.100 0.897 0.781 0.887 0.887 0.887 0.887 0.887 0.887 0.887 0.887 0.887 0.887 0.887 0.887 0.887 0.887 0.887 0.887 0.887 0.887 0.887 0.897 0.888 0.897 0.888 0.897 0.888 0.897 0.888 0.897 0.888 0.897 0.888 0.897 0.888 0.993 0.887 0.993 0.888 0.993 0.887 0.993 0.888 0.997 0.838 0.997 0.838 0.997 0.838 0.997 0.838 0.997 0.838 0.997 0.838 0.297 0.838 0.297 0.838 0.297 0.838 0.297 0.838 0.297 0.839 0.837	131114	TILYF115	115.0	8	174	0.900	1.100	-	-	0.982	0.895	-	-	0.983	0.893	0.982	0.892	125026 FISHKILL	115 131112 SYLVN115	115 1
13118 CROCK S 115.0 8 174 0.900 1.100 - - 0.998 0.981 0.812 0.818 0.981 131 131 131 12638 DXXX YZ 138.0 9 168 0.997 0.880 0.997 0.881 0.997 0.881 0.997 0.881 0.997 0.881 0.997 0.881 0.997 0.881 0.997 0.881 0.997 0.881 0.987 0.	131114	TILYF115	115.0	8	174	0.900	1.100	-	-	-	-	-	-	0.983	0.899	0.982	0.898	130781 CARML115	115 130865 WOODS115	115 1
126162 CEDAR TX2 138 0. 9 169 0.900 1.010 - - - 0.990 0.883 0.990 0.897 0.897 126122 CEDAR TX2 138 126512 CEDAR TX2 138 126512 CEDAR TX2 138 126312 EMSTQ2 138 1 126382 EMESTRIZ 138 0. 9 169 0.900 1.100 1.007 0.830 0.995 0.886 0.990 0.883 0.997 0.831 0.997 0.831 126372 DM SO 138 126387 MOCK VT1 138 1 126430 GRANHI T1 138.0 9 169 0.900 1.100 1.007 0.874 0.995 0.833 0.997 0.838 0.997 0.831 126372 DM SO 138 126347 MOCK VT2 138 1 126431 GRANHI T4 138.0 9 169 0.900 1.100 0.877 0.895 0.833 0.997 0.838 0.997 0.831 126372 DM SO 138 126347 MOCK VT2 138 1 126432 GRANHI T4 138.0 9 169 0.900 </td <td>131115</td> <td>UNION115</td> <td>115.0</td> <td>8</td> <td>174</td> <td>0.900</td> <td>1.100</td> <td>-</td> <td>-</td> <td>1.000</td> <td>0.892</td> <td>1.019</td> <td>0.911</td> <td>1.001</td> <td>0.890</td> <td>1.000</td> <td>0.889</td> <td>130781 CARML115</td> <td>115 130865 WOODS115</td> <td>115 1</td>	131115	UNION115	115.0	8	174	0.900	1.100	-	-	1.000	0.892	1.019	0.911	1.001	0.890	1.000	0.889	130781 CARML115	115 130865 WOODS115	115 1
12638 138.0 9 169 0.900 1.000 - - - 1.001 0.899 - - - 1.001 0.899 - - - 1.011 0.813 0.995 0.880 - - - 1.26378 EASTYLEN 1.38 1.263.8 EASTYLEN 1.38 1.263.7 EAST 1.38 1.263.7 EAST </td <td>131118</td> <td>CROTON \$</td> <td>115.0</td> <td>8</td> <td>174</td> <td>0.900</td> <td>1.100</td> <td>-</td> <td>-</td> <td>0.988</td> <td>0.900</td> <td>-</td> <td>-</td> <td>0.989</td> <td>0.898</td> <td>0.988</td> <td>0.897</td> <td>130781 CARML115</td> <td>115 130865 WOODS115</td> <td>115 1</td>	131118	CROTON \$	115.0	8	174	0.900	1.100	-	-	0.988	0.900	-	-	0.989	0.898	0.988	0.897	130781 CARML115	115 130865 WOODS115	115 1
12638 DCK V T 138.0 9 169 0.900 1.100 0.995 0.886 0.995 0.880 - - - - 126372 DUN SO 138164 DCK V T 1381 126347 DOK V T2 1381.0 9 169 0.900 1.100 1.007 0.830 0.995 0.886 0.997 0.838 0.997 0.838 126372 DUN SO 13816430 GRANHL T 1381.1 126411 GRANHL T3 138.0 9 169 0.900 1.100 1.007 0.874 0.995 0.836 0.997 0.838 0.997 0.838 16372 DUN SO 13816432 GRANHL T3 138 1381 1381 126433 GRANHL T4 138.0 9 169 0.900 1.100 0.997 0.837 0.997 0.838 0.997 0.838 1.6372 DUN SO 13816432 GRANHL T3 138 126437 JARAT 138.0 9 169 0.900 <th< td=""><td>126362</td><td>CEDAR TX2</td><td>138.0</td><td>9</td><td>169</td><td>0.900</td><td>1.100</td><td>-</td><td>1</td><td>0.994</td><td>0.888</td><td>0.990</td><td>0.883</td><td>0.996</td><td>0.889</td><td>0.993</td><td>0.887</td><td>126362 CEDAR TX2</td><td>138 126512 38W04</td><td>138 1</td></th<>	126362	CEDAR TX2	138.0	9	169	0.900	1.100	-	1	0.994	0.888	0.990	0.883	0.996	0.889	0.993	0.887	126362 CEDAR TX2	138 126512 38W04	138 1
123237 POCK V T2 138.0 9 169 0.900 1.100 1.100 0.801 0.995 0.886 0.995 0.883 0.997 0.838 0.997 0.838 1.6372 DUN SO 138 126387 ROCK V T2 138 1 126430 GRANHL T2 138.0 9 169 0.900 1.100 1.007 0.875 0.995 0.837 0.997 0.838 0.997 0.840 0.997 0.840 1.6372 DUN SO 138 126430 GRANHL T2 138 1 126433 GRANHL T3 138.0 9 169 0.900 1.100 0.875 0.995 0.837 0.997 0.838 0.997 0.838 126372 DUN SO 138 126433 GRANHL T3 138 1 126433 GRANHL T4 138.0 9 169 0.900 1.100 0.875 0.995 0.833 0.997 0.838 0.997 0.831 1.02637 DUN SO 138 126431 GRANHL T3 138 1 126433 MART TX1 138.0 9 169 0.900 1.000 0.897 0.834 1.003 0.847 1.023 0.833 1.033 0.84	126382	ELMSFD2E	138.0	9	169	0.900	1.100	-	-	-	-	1.001	0.899	-	-	-	-	126378 EASTVIEW	138 126382 ELMSFD2E	138 1
126430 GRANHL T1 138.0 9 169 0.900 1.100 1.007 0.87 0.995 0.937 0.997 0.839 12672 DDN SO 138 124430 GRANHL T1 138 1 126431 GRANHL T2 138.0 9 169 0.900 1.100 1.007 0.875 0.995 0.836 0.997 0.848 0.997 0.840 126372 DDN SO 138 126431 GRANHL T3 138 1 126432 GRANHL T4 138.0 9 169 0.900 1.100 1.007 0.875 0.995 0.833 0.997 0.838 0.997 0.839 126372 DDN SO 138 126432 GRANHL T4 138 1 126433 GRANHL T4 138.0 9 169 0.900 1.100 0.997 0.837 0.997 0.839 0.997 0.839 126372 DDN SO 138 126432 GRANHL T4 138 1 126439 HAR TX1 138.0 9 169 0.900 1.100 0.999 0.867 0.994 0.833 1.003 0.849 1.603 0.847 126374 BRATX1 138 126523 BRAT 138 1 126440 HAR TX1 13	126386	ROCK V T1	138.0	9	169	0.900	1.100	1.007	0.830	0.995	0.886	0.995	0.880	-	-	-	-	126372 DUN SO	138 126386 ROCK V T1	138 1
126431 GRANHL T2 138.0 9 169 0.900 1.100 1.007 0.875 0.995 0.837 0.997 0.840 0.997 0.840 0.997 0.840 126372 DN SO 138 126431 GRANHL T2 138 1 126433 GRANHL T4 138.0 9 169 0.900 1.100 1.007 0.875 0.995 0.833 0.997 0.838 0.997 0.838 126372 DN SO 138 126433 GRANHL T4 138 1 126433 GRANHL T4 138.0 9 169 0.900 1.100 0.995 0.837 0.995 0.833 0.997 0.838 0.997 0.839 126372 DN SO 138 126433 GRANHL T4 138 1 126433 HARR TX1 138.0 9 169 0.900 1.100 0.997 0.840 0.994 0.844 1.003 0.847 1.026 0.847 1.028 2 ELMSFD2 138 126433 GRANHL T4 138 1 126431 HARR TX1 138.0 9 169 0.900 1.100 -97 0.477 0.955 0.837 1.003 0.844 1.003 0.841 1.0				-												-				
126432 GRANHL T3 138.0 9 169 0.900 1.100 1.007 0.874 0.995 0.837 0.997 0.838 0.997 0.838 126372 DUN SO 138 126432 GRANHL T4 138.0 9 169 0.900 1.100 1.007 0.875 0.995 0.837 0.997 0.838 0.997 0.838 126372 DUN SO 138 126432 GRANHL T4 138.0 9 169 0.900 1.100 0.997 0.847 126439 HARR TX1 138.0 9 169 0.900 1.100 0.999 0.866 0.997 0.878 1.002 0.877 126322 HARR TX1 138 126524 38NH T 138 1 126440 HARR TX2 138.0 9 169 0.900 1.100 0.997 0.847 0.995 0.837 1.003 0.848 1.002 0.877 126322 HARR TX1 138 126523 38N1 T 138 1 126440 HARR TX3 138 126523 38N1 T 138 1 126440 HARR TX3 138				-																
126433 GRANHL T4 138.0 9 169 0.900 1.100 1.007 0.875 0.995 0.837 0.995 0.833 0.997 0.839 1.02372 DUN SO 138 126433 GRANHL T4 138<1		-		-																
126439 HARR TX1 138.0 9 169 0.900 1.100 0.999 0.866 0.997 0.840 1.003 0.848 1.002 0.847 126439 HARR TX1 138.126524 38N14 T 138.1 126439 HARR TX1 138.0 9 169 0.900 1.100 0.997 0.877 0.871 0.844 1.002 0.877 12632 EASTYTIEW 138.126524 38N14 T 138.1 126440 HARR TX2 138.0 9 169 0.900 1.100 0.997 0.877 0.995 0.835 1.003 0.849 1.003 0.849 12640 HARR TX2 138.126523 38N13 T 138.1 126440 HARR TX3 138.0 9 169 0.900 1.100 0.997 0.877 0.995 0.807 1.003 0.849 12640 HARR TX3 138.126523 38N13 T 138.1 138.1 138.12652 38N13 T 138.1 138.1 138.1 138.1 138.1 138.1 138.1 138.1 138.1 138.1 138.1 138.1 138.1 </td <td></td> <td></td> <td></td> <td>-</td> <td></td>				-																
126439 HARE TX1 138.0 9 169 0.900 1.100 0.999 0.897 0.997 0.871 0.994 0.864 1.003 0.877 126382 ELMSFD2E 138 126524 38/14 T 138 1 126440 HARE TX2 138.0 9 169 0.900 1.100 - - - 0.994 0.898 - 0.900 1.100 0.999 0.867 0.997 0.877 0.995 0.837 1.003 0.884 1.003 0.884 1.003 0.881 1.604 1.881 26523 38/13 T 138 1 126441 HARE TX3 138.0 9 169 0.900 1.100 0.999 0.877 0.837 1.003 0.890 1.002 0.807 1.003 0.890 1.002 0.807 1.003 0.890 1.000 </td <td></td> <td></td> <td></td> <td>-</td> <td></td>				-																
126439 HARE TX1 138.0 9 169 0.900 1.100 - - - 0.994 0.898 - - - 126378 EASTYLEW 138 126322 EASEP2E 138 1 126440 HARE TX2 138.0 9 169 0.900 1.100 0.999 0.867 0.995 0.835 1.003 0.849 1.003 0.881 126440 HARE TX2 138 126523 38013 T 138 1 </td <td></td> <td></td> <td></td> <td>-</td> <td></td>				-																
126440 HARE TX2 138.0 9 169 0.900 1.100 0.999 0.867 0.997 0.842 0.995 0.835 1.003 0.849 1.003 0.849 1.644 HARE TX2 138.0 9 169 0.900 1.100 - - 0.997 0.877 0.995 0.870 1.003 0.884 1.003 0.881 1.26342 LARE TX2 138 126523 38W13 T 138 1 126441 HARE TX3 138.0 9 169 0.900 1.100 - - 0.997 0.844 0.994 0.837 1.003 0.884 1.002 0.881 1.002 0.851 1.003 0.881 1.002 0.881 1.002 0.881 1.002 0.881 1.002 0.881 1.002 0.881 1.001 0.891 1.001 0.891 1.2632 2.8802 T 138 126519 MHTE P TXI 138 126523 3.801 T 138 138 1.26519 MHTE P TXI 138 1.26519 MHTE P TXI 138 1.26519 MHTE P TXI 138 1.26				-																
126440 HARE TX2 138.0 9 169 0.900 1.100 - - 0.997 0.877 0.995 0.870 1.003 0.881 126383 ELMSFD2W 138 126523 38013 T 138 1 126441 HARE TX3 138.0 9 169 0.900 1.100 0.997 0.869 0.997 0.881 0.994 0.877 1.003 0.881 1.26481 HARE TX3 138 126523 38013 T 138 126523				-																
126441 HARR TX 3 138.0 9 169 0.900 1.100 0.999 0.869 0.997 0.844 0.994 0.837 1.003 0.851 1.002 0.850 126411 HARR TX 3 138 126522 38W02 T 138 1 126411 HARR TX 3 138.0 9 169 0.900 1.100 - - 0.997 0.883 0.994 0.877 1.003 0.890 1.002 0.890 126381 ELMSPD1W 138 126522 38W02 T 138 1 126512 MHTE P TX1 138.0 9 169 0.900 1.100 - - 1.002 0.883 1.000 0.877 1.008 0.890 1.008 0.890 1.008 0.890 1.26380 ELMSPD1W 138 126522 38W02 T 138 1 126523 38W14 T 138.0 9 169 0.900 1.100 1.002 0.877 0.999 0.870 1.008 0.884 1.007 0.883 126382 ELMSPD2W 138 126522 38W02 T 138 1 126523 38W14 T 138.0 9 169 0.900 1.1								0.999	0.867											
126441 HARE TX 3 138.0 9 169 0.900 1.100 - - 0.997 0.883 0.994 0.877 1.003 0.890 1.002 0.680 126381 ELMSFD1W 138 126512 38W02 T 138 1 138 1 138 126519 WHTTE P TX1 138.0 9 169 0.900 1.100 1.004 0.881 1.002 0.858 1.000 0.855 1.008 0.865 1.008 0.865 1.008 0.865 1.008 0.861 1.007 0.883 1.007 0.890 126381 ELMSFD1W 138 126522 38W13 T 138 126523 38W13 T 138 0.990 1.002 0.877 0.999 0.870 1.008 0.884 1.007 0.883 126382 ELMSFD1W 138 126523 38W13 T 138 138 138 138 138 138 126524 38W14 T 138 12638 ELMSFD1W 138 126524 38W13 T 138 126524 38W14 T 138 12638 ELMSFD2W 138 12638								-	-											
126519 WHITE P TX1 138.0 9 169 0.900 1.100 1.004 0.881 1.002 0.858 1.008 0.865 1.008 0.865 126380 ELMSPDIE 138 126519 WHITE P TX1 138 1 126522 38W03 T 138.0 9 169 0.900 1.100 - - 1.002 0.858 1.000 0.877 1.008 0.865 1.007 0.801 1.26381 ELMSPDIE 138 126519 WHITE P TX1 138 1 126523 38W13 T 138.0 9 169 0.900 1.100 1.002 0.877 0.999 0.870 1.008 0.881 1.007 0.801 126381 ELMSPDIE 138 126523 38W13 T 138 1 126524 38W14 T 138.0 9 169 0.900 1.100 1.001 0.877 0.999 0.864 1.008 0.878 1.007 0.877 12632 28W14 T 138 126574 38W14 T 138 126670 1.001 1.01 1.01 0.871 0.999 0.864 1.005 0.851 1.004 0.851 <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>0.999</td> <td>0.869</td> <td></td>				-				0.999	0.869											
126522 38W02 T 138.0 9 169 0.900 1.100 - - 1.002 0.883 1.000 0.877 1.008 0.891 1.007 0.890 126381 ELMSFD1W 138 126522 38W02 T 138 1 126523 38W14 T 138.0 9 169 0.900 1.100 1.002 0.877 0.999 0.876 1.008 0.884 1.007 0.880 126383 ELMSFD2W 138 126523 38W13 T 138 1 126524 38W14 T 138.0 9 169 0.900 1.100 1.002 0.877 1.099 0.864 1.007 0.881 1.2638 ELMSFD2W 138 126523 38W13 T 138 1 126524 38W14 T 138.0 9 169 0.900 1.100 0.877 1.099 0.869 - - - 126378 ELMSFD2W 138 126524 38W14 T 138 1 126570 HARR T4 138.0 9 169 0.900 1.100 0.871 0.999 0.846 0.966 0.840 1.005 0.854 1.004 0.855 126319 88W15 T 138 126708 GRASL1 138 1				-				1 004	0 0 0 1											
126523 38W13 T 138.0 9 169 0.900 1.100 1.004 0.902 1.002 0.877 0.999 0.870 1.008 0.884 1.007 0.883 126383 ELMSFD2W 138 126523 38W13 T 138 1 138 1 138 126524 38W14 T 138.0 9 169 0.900 1.100 1.002 0.897 1.099 0.864 1.008 0.883 1.007 0.877 126382 ELMSFD2W 138 126523 38W14 T 138 1 138 1 138 126382 ELMSFD2W 138 126524 38W14 T 138 1 138 1 138 1 138 1 138 1 138 1 138 1 138 1 138 1 138 1 138 138 138 1 138 138 138 1 138 1 138 1 138 1 138 1 138 1 138 1 138 1 138 1 138 1 138 </td <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>21200</td> <td>1.004</td> <td>0.001</td> <td></td> <td>200 2</td>				-			21200	1.004	0.001											200 2
126524 38W14 T 138.0 9 169 0.900 1.100 1.003 0.897 1.002 0.871 0.999 0.864 1.008 0.878 1.007 0.877 126382 ELMSFD2E 138 126524 38W14 T 138 1 126524 38W14 T 138.0 9 169 0.900 1.100 - - - 0.999 0.890 - - - 126372 EASTVIEW 138 126524 38W14 T 138 1 126670 HAR T4 138.0 9 169 0.900 1.100 1.001 0.897 0.899 0.890 - - - - 126372 EASTVIEW 138 126574 38W14 T 138 1 126707 MAR T4 138.0 9 169 0.900 1.100 0.870 0.999 0.846 1.005 0.894 1.004 0.853 126319 38W15 T 138 126709 MAR T4 138 1 126709 GRASSL2 138.0 9 169 0.900 1.100 1.006 0.855 1.003 0.831 - - - 126378 EASTVIEW 138 126709 GRASSL2 138 1 <								1 004	0 902											
126524 38W1 T 138.0 9 169 0.900 1.100 - - - 0.999 0.899 0.899 - - - 126378 BASTVIEW 138 126382 ELMSFD2E 138 1 126670 HARR T4 138.0 9 169 0.900 1.100 1.001 0.871 0.999 0.846 0.966 0.840 1.005 0.854 1.00 0.851 1.26319 38N15 T 138 126382 ELMSFD2E 138 1 126708 GRASSL1 138.0 9 169 0.900 1.100 0.871 0.999 0.846 0.966 0.840 1.005 0.851 1.004 0.851 126378 EASTVIEW 138 12670 EARTVIEW 138 12671 SNO 138 1 EARTVIEW 138 126714 SNO <t< td=""> 138 1 138 138 1 <</t<>				-																
126670 HARE T4 138.0 9 169 0.900 1.100 1.001 0.871 0.999 0.846 0.996 0.840 1.005 0.854 1.004 0.853 126319 38N15 T 138 126670 HARE T4 138 1 126708 GRASSL1 138.0 9 169 0.900 1.100 1.006 0.850 1.003 0.831 - - - 1.26378 EASTVIEW 138 126670 HARE T4 138 1 126708 GRASSL2 138.0 9 169 0.900 1.100 1.006 0.850 1.003 0.831 - - - 1.26378 EASTVIEW 138 126709 GRASSL2 138 1 126704 GRASSL3 138.0 9 169 0.900 1.100 1.006 0.857 0.992 0.891 - - - 126378 EASTVIEW 138 126709 GRASSL2 138 1 126714 3809 T 138.0 9 169 0.900 1.100 1.006 0.857 0.992 0.897 0.898 0.994 0.895 126513 3809 138 126714 3809 T 138 1 126714				-				-		-						-	-			
126708 GRASSL1 138.0 9 169 0.900 1.100 1.006 0.850 1.006 0.835 1.003 0.831 - - - 126378 EASTVIEW 138 126708 GRASSL2 138.0 9 169 0.900 1.100 1.006 0.850 1.003 0.831 - - - 126378 EASTVIEW 138 126709 GRASSL2 138.0 9 169 0.900 1.100 1.006 0.850 1.003 0.831 - - - 126378 EASTVIEW 138 126709 GRASSL2 138.0				-				1.001	0.871	0.999	0.846			1.005	0.854	1.004	0.853			
126709 GRASSL2 138.0 9 169 0.900 1.100 1.006 0.850 1.003 0.835 1.003 0.831 - - 1.26737 1.26737 BASTVIEW 138 126709 GRASSL2 138 1 126714 38W09 138.0 9 169 0.900 1.100 - - 0.996 0.897 0.992 0.898 0.997 0.898 0.994 0.895 126513 38W09 138 126714 38W09				-																
126714 38W09 T 138.0 9 169 0.900 1.100 - - 0.996 0.897 0.997 0.898 0.994 0.895 126513 38W09 T 138 126714 38W09 T 13														-	-	-				
126718 GRASSL3 138.0 9 169 0.900 1.100 0.850 1.006 0.835 1.003 0.831 - - - 126378 EASTVIEW 138 126718 GRASSL3 138 1 126743 CEDAR TX3 138.0 9 169 0.900 1.100 - - 0.992 0.886 0.880 0.994 0.885 0.985 1.26513 38009 138 126743 CEDAR TX3 138 1				-					-					0.997	0.898	0.994				
126743 CEDAR TX3 138.0 9 169 0.900 1.100 0.992 0.885 0.988 0.880 0.994 0.886 0.991 0.885 126513 38009 138 126743 CEDAR TX3 138 1				-					0.850					-		-				
				-				-	-					0.994	0.886	0.991	0.885			
	126747	WHITE P TX2	138.0	9	169	0.900	1.100	1.003	0.882	1.002	0.859	0.999	0.855	1.008	0.867	1.007	0.867	126522 38W02 T	138 126747 WHITE P TX2	138 1

h h interverse interverse <						Horizon	Year	Horizo	n Year	Horizo	Horizon Year Horizon Year		n Year				
199 0.986 1.188 1.00 0.891 1.007 0.892 1.007 0.892 1.001 0.892 1.001 0.892 1.001 0.892 1.001 0.892 1.001 0.892 1.001 0.892 1.001 0.893 0.				Intermed	iate Year	Scena	riol	Scena	ario2	Scen	ario3	Scen	ario4	-			
168 0.900 1.000 1.000 0.877 1.000 0.877 1.000 0.877 1.000 0.877 1.000 0.877 1.000 0.877 1.000 0.877 1.000 0.877 1.000 0.877 1.000 0.877 1.000 0.877 1.000 0.877 1.000 0.877 1.000 0.878 1.000 0.878 1.000 0.878 1.000 1.812 1.001 1.812 <th1.< th=""><th>Zone</th><th>Vlow</th><th>Vhigh</th><th>Intact</th><th>Cont.</th><th>Intact</th><th>Cont.</th><th>Intact</th><th>Cont.</th><th>Intact</th><th>Cont.</th><th>Intact</th><th>Cont.</th><th>Contingency</th></th1.<>	Zone	Vlow	Vhigh	Intact	Cont.	Intact	Cont.	Intact	Cont.	Intact	Cont.	Intact	Cont.	Contingency			
164 0.900 1.100 1.001 0.871 1.848 1.000 0.878 1.007 1.87 1.2837 1.2847 1.18 1.2833 1.994 1.18 164 0.900 1.160 0.848 1.993 1.88 1.993 1.88 1.86 1.800 1.800 1.810 1.812 <th1.812< th=""> <th1.812< th=""> <th1.812< th=""></th1.812<></th1.812<></th1.812<>	169	0.900	1.100	-	-	1.002	0.883	0.999	0.877	1.008	0.891	1.007	0.890	126381 ELMSFD1W 138 126522 38W02 T 138 1			
164 9.890 1.100 1.00 0.892 1.90 1.92 <th1.92< th=""> 1.92 1.92 <t< td=""><td>169</td><td>0.900</td><td>1.100</td><td>1.003</td><td>0.877</td><td></td><td></td><td>0.999</td><td>0.848</td><td></td><td></td><td></td><td></td><td>126524 38W14 T 138 126748 WHITEP TX2 138 1</td></t<></th1.92<>	169	0.900	1.100	1.003	0.877			0.999	0.848					126524 38W14 T 138 126748 WHITEP TX2 138 1			
160 0.993 1.100 1.092 0.860 0.993 0.867 1.071 0.867 1.027 0.863 1.2021 1.101 1.102 1.102 1.102 0.993 1.101 0.103 0.864 1.027 0.863 1.20233 1.102 1.101 1.102 1.101 1.102 1.1011 1.101 1.101 <				1.003	0.897	1.001	0.871				0.878	1.007	0.877				
140 1.00 1.00 1.00 1.00 0.881 1.000 0.881 1.000 1.88 1.000 1.88 1.000 1.88 1.000 1.88 1.000 1.88 1.000 1.88 1.000 1.88 1.000 1.88 1.000 1.88 1.000 1.88 1.000 1.88 1.000 1.88 1.000 1.88 1.000 1.88 1.000 1.88 1.080 1.88 1.080 1.88 1.080 1.081 1.88 1.081 1.18 <th< td=""><td>169</td><td>0.900</td><td>1.100</td><td>-</td><td></td><td></td><td></td><td>0.999</td><td>0.899</td><td></td><td></td><td></td><td>-</td><td>126378 EASTVIEW 138 126382 ELMSFD2E 138 1</td></th<>	169	0.900	1.100	-				0.999	0.899				-	126378 EASTVIEW 138 126382 ELMSFD2E 138 1			
164 0.900 1.100 - 0.997 0.898 0.898 0.898 0.898 1.801 118 12611 1287 138 1 138	169						0.860										
168 0.903 1.101 - - 0.986 0.987 0.989 0.988 0.988 1.981 1.081 1.18 <th1.18< th=""> 1.18 1.18 <t< td=""><td></td><td>0.900</td><td></td><td>1.004</td><td>0.902</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.883</td><td></td></t<></th1.18<>		0.900		1.004	0.902								0.883				
164 0.980 1.081 0.980 0.980 0.980 0.980 0.980 0.980 0.980 0.980 1.081 1251 1381 1381 1381 1550 0.950 1.651 0.950 1.651 0.960 1.651 1.651 0.980 1.651 0.980 1.651 0.980 1.651 0.980 1.651				-	-												
155 0.950 1.050 0.946 1.26295 1.9840.000 345 1.6101 0.926 - - - - 1.003 0.946 1.26295 1.9840.000 345 1.610 0.926 - - - 1.003 0.926 - - - 1.9811.178, 47 346 159 0.950 1.050 - - 1.001 0.926 - - - 1.9811.177, 47 345 159 0.950 1.050 - - 0.950 - - 1.011 1.023 1.021 1.021 1.021 1.025 0.021 - - - 0.02111777.263 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021																	
159 0.980 1.050 - 0.000 - - - 0.000 - - - 0.000 - - - 0.0000 - - - 0.0000 - - - 0.0000 - 0.0000 0.0000 - - - 0.00000 0.00000 - 0.00000000000000000000000000000000						0.996	0.898	0.992	0.891	0.998	0.899						
150 0.860 1.600 - - 1.001 0.926 - - - - - - 0.0011702.345 150 0.950 1.600 0.920 - - - - 0.0011702.345 150 0.850 1.600 - - 1.601 0.711270.47.345 150 0.850 1.600 - - 0.0011702.365 0.850 - - 0.0011702.365 150 0.850 1.600 - - 0.980 0.980 - - 0.0011702.365 150 0.850 1.600 - - 0.986 0.980 - - - 0.0011702.365 150 0.850 1.600 - - 0.986 0.940 - - - 0.0111711.49.345 150 0.850 1.600 - - 1.022 0.927 - - - 0.0111711.49.345 150 0.850 1						-	-		-	-							
165 0.980 1.080 - 1.102 0.920 - - - - - Not T17% A^{14} 155 0.980 1.080 - - 1.031 1.0																	
150 0.980 1.080 - 1.1028 1.028 1.081 - Note Note - - Note Note - - Note Not				-	-					-	-		-				
155 0.950 1.050 - - 1.062 1.062 0.950 - 1.051 REF (44.25) 159 0.950 1.050 - - - 0.966 0.950 - - - 0.986 0.950 - - - 0.986 0.950 - - - 0.986 0.950 - - - 0.986 0.950 - - - 0.986 0.950 - - - 0.986 0.950 - - - 0.986 0.950 - - - 0.986 0.980 0.981 0.985 0.985 0.985 0.985 0.985 0.985 0.985 0.985 0.985 0.985 0.985 0.985 0.985 0.985 0.985 0.985																	
155 0.950 1.080 - - - 0.966 0.950 - - - - DENTYPE_AS 159 0.950 1.080 - - - 0.966 0.950 -																	
159 0.950 1.690 - - - - - - - - - - 0.986 0.989 - - - 0.980 1.090 - - 0.980 0.989 - - - 0.980 0.980 0.980 0.980 - - - 0.980 0.980 0.980 0.980 0.980 0.980 0.980 0.980 0.980 0.980 0.980 0.980 0.981											-						
159 0.950 1.600 - - - 0.986 0.989 - - - 0.880 NPRA_AS 159 0.950 1.050 - - - 1.026 0.943 - - - BSN NPRA_AS 159 0.950 1.050 - - - 1.045 0.998 - - - BSN NPRA_AS 159 0.950 1.050 - - 1.002 0.927 - - - BSN S1378, 47, 345 159 0.950 1.050 - 1.002 0.927 - - - - BSN S1378, 47, 345 159 0.950 1.050 - 1.002 0.927 - - - - BSN S1378, 47, 345 159 0.950 1.050 0.927 - - - - BSN S1378, 47, 345 159 0.950 1.050 0.927 - - - - BS																	
159 0.950 1.050 - <th< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>				-													
159 0.950 1.050 - <th< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>—</td></th<>				-										—			
159 0.950 1.050 - <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																	
159 0.950 1.050 - - - - - - SUBJELTH_47_345 159 0.950 1.050 - - 1.002 0.927 - - - - - - DESTELTH_47_345 159 0.950 1.050 - - 1.002 0.927 - - - - DESTELTH_47_345 159 0.950 1.050 - - 1.002 0.927 - - - - DESTELTH_47_345 159 0.950 1.050 - 1.002 0.927 - - - - DESTELTH_47_345 159 0.950 1.050 - 1.002 0.927 - - - - DESTELTH_47_345 159 0.950 1.050 - 1.010 1.013 1.076 1.018 1.135 1.016 1.145 BUSTEDMANS_3_345 159 0.950 1.050 - 1.016 <td></td>																	
159 0.980 1.050 - - 1.02 0.927 -																	
159 0.990 1.050 - - 1.022 0.927 - 0.00000000000000000000000000000000000				-	-			-	-	-	-		-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	-			-	-	-	-		-				
159 0.950 1.060 - - 1.002 0.927 - - - - - BUS:E13TH_47.345 159 0.950 1.060 - - 1.002 0.927 - - - - - BUS:E13TH_47.345 159 0.950 1.060 - - 1.002 0.927 - - - - BUS:E13TH_47.345 159 0.950 1.060 - - 1.002 0.927 - - - - BUS:E13TH_47.345 159 0.950 1.050 - - 1.002 0.927 - - - - BUS:E33TH_47.345 159 0.950 1.050 - - 1.016 1.011 1.016 1.018 1.155 1.016 1.148 BUS:E00ANDS_N_3.45 159 0.950 1.050 - - 1.014 1.075 1.020 1.154 1.018 1.144 BUS:E00ANDS_N_3.45 159 0.950 1.050 - - - - - </td <td></td>																	
159 0.950 1.050 - - 1.002 0.927 - - - - - BUSIEI3TE 47.345 159 0.950 1.050 - - 1.002 0.927 - - - - BUSIEI3TE 47.345 159 0.950 1.050 - - 1.002 0.926 - - - - BUSIEI3TE 47.345 159 0.950 1.050 - - 1.002 0.927 - - - BUSIEI3TE 47.345 159 0.950 1.050 - - 1.016 1.011 1.076 1.018 1.155 1.016 1.148 BUSIE00ARNES, M.345 159 0.950 1.050 - - 1.016 1.099 1.014 1.075 1.020 1.154 1.018 1.144 BUSIE00ARNES, M.345 159 0.950 1.050 - - 1.014 1.075 1.020 1.154 1.018 1.144 BUSIE00ARNES, M.345 159 0.950 1.050 - - -										-							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				-					-								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_			-	-				-								
159 0.950 1.050 - - 1.016 1.010 1.013 1.076 1.018 1.155 1.016 1.145 BUS:GOWANUS_N_345 159 0.950 1.050 - - 1.016 1.010 1.013 1.076 1.018 1.155 1.016 1.145 BUS:GOWANUS_N_345 159 0.950 1.050 - - 1.016 1.099 1.014 1.075 1.020 1.154 1.018 1.144 BUS:GOWANUS_S_345 159 0.950 1.050 - - 1.016 1.099 1.014 1.075 1.020 1.154 1.018 1.144 BUS:GOWANUS_S_345 159 0.950 1.050 - - 1.014 1.075 1.020 1.154 1.018 1.144 BUS:GOWANUS_S_345 159 0.950 1.050 - - 1.002 0.927 - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.002 0.927 - - - GEN:NYFA_AS 159										-	-						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										-	-						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
159 0.950 1.050 - - - - - - - BUS : GOMANUS_S_345 159 0.950 1.050 - - 1.002 0.927 - - - - - BUS : E13TH_47_345 159 0.950 1.050 - - 1.002 0.927 - - - - BUS : E13TH_47_345 159 0.950 1.050 - - 0.986 0.950 - - - - BUS : E13TH_47_345 159 0.950 1.050 - - - 0.986 0.990 - - - GEN:NYPA_AS 159 0.950 1.050 - - - 0.986 0.949 - - - GEN:NYPA_AS 159 0.950 1.050 - - 1.004 0.929 - - - BUS : E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - BUS : E13TH_47_345 159 <td></td>																	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	-			-	-	-	-		-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	-			-	-	-	-		-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
159 0.950 1.050 - - - 0.986 0.949 - - - GEN:NYPA_AS 159 0.950 1.050 - - 1.004 0.929 - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - BUS:E13TH_47_345 159 0.950 1.050 - -																	
159 0.950 1.050 - - 1.004 0.929 - - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - BUS:E13TH_47_345 159 0.950																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
159 0.950 1.050 - - 1.004 0.929 - - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - - BUS:E13TH_47_345 1																	
159 0.950 1.050 - - 1.004 0.929 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.928 - - - BUS:E13TH_47_345 159 0.950 1.050 -										_							
159 0.950 1.050 - - 1.004 0.929 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.928 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.928 - - - - BUS:E13TH_47_345 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>										_							
159 0.950 1.050 - - 1.004 0.929 - - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.928 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.928 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.928 - - - BUS:E13TH_47_345 </td <td></td>																	
159 0.950 1.050 - - 1.004 0.929 - - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.928 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.928 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.928 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.928 - - - - B																	
159 0.950 1.050 - - 1.004 0.929 - - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.929 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.928 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.928 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.928 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.928 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.008 0.763 1.005 0.797 1.010 0.795 BUS:E03MANIS_S 345 1105 0.952 1.052 1.041 1.072 1.045 1.077 1.043 1.077																	
159 0.950 1.050 - - 1.004 0.929 - - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.928 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.928 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.928 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.928 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.002 0.788 1.008 0.763 1.005 0.797 1.010 0.795 BUS:E03TH_47_345 1105 0.952 1.052 1.041 1.072 1.045 1.077 1.043 1.077 1.045 1.077 147839 MOSES E 230 155073 STLAWL34 230 1																	
159 0.950 1.050 - - 1.004 0.928 - - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.004 0.928 - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.012 0.788 1.008 0.763 1.005 0.797 1.010 0.795 BUS:GOWANUS_S_345 1105 0.952 1.052 1.041 1.072 1.045 1.077 1.043 1.077 1.045 1.077 1.045 1.077 1.043 1.077 1.045 1.077 1.045 1.077 1.045 1.077 1.043 1.077 1.045 1.077 1.045 1.077 1.045 1.077 1.045 1.077 1.045 1.077 1.045 1.077 1.045 1.077 1.045 1.077 1.045 1.077 1.045 1.077 1.045 1.077 1.045 1.077 1.045 1.077 1.045 1.077 1.045 1.077 1.045 1.077 1.045				-	-			-	-	-	-		-				
159 0.950 1.050 - - 1.004 0.928 - - - - - BUS:E13TH_47_345 159 0.950 1.050 - - 1.012 0.788 1.008 0.763 1.005 0.797 1.010 0.795 BUS:E03TH_47_345 1105 0.952 1.052 1.041 1.072 1.045 1.077 1.043 1.077 1.045 1																	
159 0.950 1.050 - - 1.012 0.788 1.008 0.763 1.005 0.797 1.010 0.795 BUS:GOWANUS_S_345 1105 0.952 1.052 1.041 1.072 1.045 1.077 1.043 1.077 1.043 1.077 1.045 1.077 1.47839 MOSES E 230 155073 STLAWL34 230 1																	
1105 0.952 1.052 1.041 1.072 1.045 1.077 1.043 1.077 1.043 1.077 1.043 1.077 1.045 1.077 147839 MOSES E 230 155073 STLAWL34 230 1									0.763	1,005	0.797	1.010	0.795				
TITO TO 202 TITO 2 TITE TITE TITE TITE TITE TITU 2 TITO 2 TO 200 114/000 MARKA MUSES W 230 T	1105	0.952	1.052	-	-	1.045	1.061	-	-	1.043	1.058	1.045	1.060	147839 MOSES E 230 147840 MOSES W 230 1			

In	terface	Forward MW Limit	Horizon Year Scenario 1	Horizon Year Scenario 2	Horizon Year Scenario 3	Horizon Year Scenario 4	Limiting Contingency
Interface	3 VOLNEY EAST	3952.0	-	-	-	3957.4	91 JEFFERSN 500 126250 RAMAPO 5 500 1
Interface	3 VOLNEY EAST		-	-	-	3956.8	126250 RAMAPO 5 500 126296 RAM PAR 345 1
Interface	3 VOLNEY EAST		4195.9	4032.6	4026.0	4204.7	HQ-NY-765-New
Interface	3 VOLNEY EAST		4140.3	3957.7	-	-	GEN:SEABROOK
Interface	3 VOLNEY EAST		4140.3	3957.7	-	-	GEN:SEAB&OMS
Interface	3 VOLNEY EAST		4094.2	-	-	4101.6	GEN:MLS3&OMS
Interface	3 VOLNEY EAST		4015.9	-	-	3995.5	GEN:MILLST 3
Interface	3 VOLNEY EAST		3994.2	-	-	3993.0	GEN:IND PT 3
Interface	3 VOLNEY EAST		3979.5	-	-	3974.8	GEN:IND PT 2
Interface	3 VOLNEY EAST		3973.8	-	-	3982.2	137454 REYNLD3 345 137558 GBSH345 345 1
Interface	3 VOLNEY EAST		3965.2	-	-	3972.2	GEN:VT YANK
Interface	5 TOTAL EAST	6270.0	7022.1	6926.7	7018.3	6754.0	GEN:MILLST 3
Interface	5 TOTAL EAST		7018.0	7033.6	7020.4	-	GEN: SEABROOK
Interface	5 TOTAL EAST		7018.0	7033.6	7020.4	-	GEN:SEAB&OMS
Interface	5 TOTAL EAST		6906.5	6910.0	6903.0	6916.5	GEN:MLS3&OMS
Interface	5 TOTAL EAST		6733.6	6707.3	6728.5	6719.7	GEN:IND PT 3
Interface	5 TOTAL EAST		6707.2	6671.9	6702.0	6685.0	GEN: IND PT 2
Interface	5 TOTAL EAST		6357.4	6360.5	6354.4	6365.9	GEN:VT YANK
Interface	5 TOTAL EAST		6327.3	6281.1	6277.3	6339.7	137454 REYNLD3 345 137558 GBSH345 345 1
Interface	5 TOTAL EAST		6295.4	6273.2	-	6284.7	126260 BOWLINE1 345 146750 WHAV345 345 10
Interface	6 CENTRAL EAST	2604.0	2743.5	2750.3	2746.7	2745.6	130750 COOPC345 345 147833 MARCY T1 345 1
Interface	6 CENTRAL EAST		2726.9	2742.8	2738.3	2729.5	130753 FRASR345 345 137200 EDIC 345 1
Interface	6 CENTRAL EAST		2703.3	2721.4	2714.8	-	GEN: SEABROOK
Interface	6 CENTRAL EAST		2703.3	2721.4	2714.8	-	GEN:SEAB&OMS
Interface	6 CENTRAL EAST		2661.4	2676.9	2670.9	2663.2	GEN:MLS3&OMS
Interface	6 CENTRAL EAST		2613.8	2622.2	2608.5	-	GEN:MILLST 3
Interface	7 CE+Fras-gilb	2916.0	3189.5	3190.8	3184.2	3184.9	130750 COOPC345 345 130753 FRASR345 345 1
Interface	7 CE+Fras-gilb		3014.8	3032.0	3015.1	-	GEN: SEABROOK
Interface	7 CE+Fras-gilb		3014.8	3032.0	3015.1	-	GEN:SEAB&OMS
Interface	7 CE+Fras-gilb		2955.7	2970.1	2954.3	2952.8	GEN:MLS3&OMS
Interface	8 CE-GROUP	4587.0	4616.7	4628.6	4622.7	-	GEN: SEABROOK
Interface	8 CE-GROUP		4616.7	4628.6	4622.7	-	GEN:SEAB&OMS
Interface	8 CE-GROUP		4589.6	4596.3	4592.3	4593.5	GEN:MLS3&OMS
Interface	9 MARCY-SOUTH	1686.0	1795.8	1780.4	1793.0	1800.8	BUS:N.S. 99
Interface	9 MARCY-SOUTH		1765.2	1740.8	1753.9	1770.8	137451 LEEDS 3 345 147831 GILB 345 345 1
Interface	9 MARCY-SOUTH		1757.0	1744.9	1758.2	1761.7	BUS:N.S. 77
Interface	9 MARCY-SOUTH		1751.1	1737.3	1738.6	1754.1	125000 HURLEY 3 345 137451 LEEDS 3 345 1
Interface	9 MARCY-SOUTH		1746.4	1729.6	1749.2	1747.3	126294 PLTVLLEY 345 137451 LEEDS 3 345 2
Interface	9 MARCY-SOUTH		1739.9	1724.4	1743.7	1741.1	126294 PLTVLLEY 345 137455 ATHENS 345 1
Interface	9 MARCY-SOUTH		1724.4	1712.1	1725.9	1729.5	137453 N.SCOT99 345 147833 MARCY T1 345 1
Interface	9 MARCY-SOUTH		1710.7	1698.4	1712.8	1715.8	137200 EDIC 345 137452 N.SCOT77 345 1
Interface	9 MARCY-SOUTH		1706.2	1692.4	1725.1	1710.0	125000 HURLEY 3 345 125002 ROSETON 345 1
Interface	9 MARCY-SOUTH		1696.3	-	1697.2	1695.6	GEN:IND PT 3
Interface	9 MARCY-SOUTH		1695.3	_	1696.0	1693.8	GEN: IND PT 2
Interface	9 MARCY-SOUTH		1688.2	-	1690.0	1694.5	91 JEFFERSN 500 126250 RAMAPO 5 500 1
Interface	9 MARCY-SOUTH		1688.0	_	1689.8	1694.2	126250 RAMAPO 5 500 126296 RAM PAR 345 1
Interface	10 F-To-G	3485.0	3732.1	3795.3	3740.6	3757.1	** Base Case **
Interface	11 UPNY-SENY OP	5124.0	5641.5	5674.4	5638.1	5674.3	** Base Case **
Interface	12 UPNY-CONED O	5392.0	-	-	-	5467.7	GEN:NYPA AS
Interface	12 UPNY-CONED 0		5897.5	5998.3	5921.2	6008.1	GEN:IND PT 3
Interface	12 UPNY-CONED 0		5889.2	5982.5	5913.2	5990.6	GEN:IND PT 2
Interface	12 UPNY-CONED 0		5394.4	5506.1	5913.2	5513.0	128842 NEPTCONV 345 128847 NWBRG 345 1
Interface	12 UPN1-CONED 0 14 I-to-K	1293.0	1360.8	1362.4	1360.7	1363.8	128842 NEPTCONV 345 128847 NWBRG 345 1 128842 NEPTCONV 345 128847 NWBRG 345 1
Interface	21 F-NE	800.0	960.1	945.4	952.3	- 1363.8	GEN:SEABROOK 345 128847 NWBRG 345 1
Interface	21 F-NE 21 F-NE	000.0	960.1	945.4	952.3	-	GEN: SEABROOK GEN: SEAB&OMS
Interface	21 F-NE 29 ZoneD-NE	150.0	210.5	211.4	210.8	-	GEN : SEAB&OMS GEN : SEABROOK
Interface	29 ZoneD-NE 29 ZoneD-NE	10.0	210.5	211.4	210.8	-	GEN:SEABROOK GEN:SEAB&OMS
Interface	29 ZoneD-NE 29 ZoneD-NE		168.0	167.5	167.2	168.2	GEN:MLS3&OMS
				159.7		154.2	GEN:MILS3&OMS GEN:MILLST 3
Interface Interface	29 ZoneD-NE 29 ZoneD-NE		164.7 160.8	161.1	163.2	161.2	GEN:WILLST 3 GEN:VT YANK
	29 ZoneD-NE 29 ZoneD-NE		0.0	0.0	0.0	0.0	GEN:VI YANK 100511 GRAND IS 115 147852 PLAT T#3 115 1
Interface				-0.1	-0.1	-0.1	
Interface		1500.0	-0.1			-0.1	
Interface	33 PJME-NYE	1500.0	1716.1 1524.6	1613.0 1527.3	1737.3	-	GEN:MILLST 3
T					1520.7	-	GEN:SEABROOK
Interface Interface	33 PJME-NYE 33 PJME-NYE		1524.6	1527.3	1520.7		GEN:SEAB&OMS

Table 5-5: Interfaces Loaded Above Emergency Transfer Limits

Note: 1. "-" indicates no violations for this scenario

6 TRANSFER LIMITS FOR INTERMEDIATE YEAR

This section describes the calculation of transfer limits for key interfaces in the New York State Transmission System for summer peak load conditions in the Intermediate Year. The purpose of these calculations is to establish emergency transfer limits for use in subsequent LOLE analysis.

Transfer limits are established for interfaces within NYCA as well as interfaces between NYCA and neighboring systems. Both thermally-constrained and voltage-constrained interfaces are studied. The limits are then compared against corresponding limits for study year 2013 posted in the NYISO 2009 Reliability Needs Assessment (RNA) Report (reference [1]).

6.1 Description of Power Flow Model

Transfer limits were computed based on the Intermediate Year power flow model described in Section 3.1 of this report.

Table 6-1 compares the summer peak generation and demand in the Intermediate Year power flow model against the corresponding values in the year 2013 (it should be noted that the transfer limits calculated in the NYISO 2009 RNA study were based on a 2013 summer peak case). Total generation increase from 2013 to the Intermediate Year is approx. 1100 MW while the corresponding load increase is approx. 2350 MW. This is an important observation and should be put in perspective when comparing the limits calculated in this section against the 2013 limits (calculated in the NYISO 2009 RNA Study).

Table 6-2 summarizes the base case interface flows in the Intermediate Year summer peak case. Table 6-3 summarizes the phase angle regulator schedules for selected PARs.

6.2 Calculation of Emergency Thermal Transfer Limits

6.2.1 Methodology

Emergency transfer limits were established using the Linear FCITC Calculation tool in the PSSTMMUST Program (version 9.0).

The emergency transfer limit is the transfer level at which:

• a branch is loaded at its normal rating (Rate A) for pre-contingency conditions, or

• a branch is loaded at its short-term emergency rating (Rate C) following a contingency

For the purposes of this analysis, transmission facilities rated 100 kV and above within NYCA (and tie-lines out of NYCA) were monitored. Engineering judgment was used to identify limiting transmission facilities. Generally, "direct tie" facilities or facilities in the

vicinity of the interface being studied that became loaded at their Rate A or Rate C ratings as described above were flagged.

The following types of contingencies were simulated based on the contingency files provided by NYISO. In addition to these contingencies, other contingencies provided by National Grid associated with wind generation in the North Country were simulated.

1. Outage of branches connected between buses with a base voltage of 100 kV and above (these included outages based on "automatic" N-1 contingency specification¹⁶ in MUST and specific pre-defined branch outages)

- 2. Generator outages
- 3. Series element contingencies
- 4. Bus contingencies
- 5. HVdc contingencies

Phase angle regulators maintain their scheduled power flow pre-contingency but are fixed at their corresponding pre-contingency angle post-contingency.

Appendix A shows the relevant subsystem description, monitored element and contingency description files used in this analysis (these files were derived based on files provided by NYISO).

Limits for interfaces within NYCA (Cross-state Interfaces) were evaluated in the predominant west-to-east/north-to-south direction based on source/sink assumptions provided by the NYISO.

For inter-area interfaces, bi-directional transfer limits were determined and the source/sink assumptions were chosen so as to stress the interface under study in the direction of the transfer. For example, when studying the NY-IESO interface, generation in NYCA was increased with a corresponding reduction in IESO generation.

6.2.2 Cross-State Interfaces

Table 6-4 summarizes the emergency thermal transfer limits obtained from the MUST analysis for the cross-state interfaces (full MUST output for the various interfaces is provided in Appendix B). For comparison purposes, corresponding limits from Table C-3 of the NYISO 2009 RNA report are also summarized (again, the RNA limits are for the year 2013). The last two columns summarize the differences between the two sets of limits both in MW and as a percentage of the 2009 RNA limits.

Also, some automatic N-1 contingencies in NYCA were excluded from analysis based on transmission owner input. See Appendix A.4 for a list of excluded monitored elements and contingencies.

¹⁶ Automatic N-1 contingencies were not simulated in the Con Edison system.

Limits for the upstate interfaces were calculated without making any adjustments to the base case. Limits for the downstate interfaces are sensitive to phase angle regulator settings in Con Edison and LIPA and were calculated as described below:

Interface limits for the UPNY-ConEd Open, Millwood South Closed, Dunwoodie South Plan and I to J interfaces were calculated with Con Edison PARs optimized based on input from Con Edison to regulate flows on following branches as follows:

- 126298 126301 (Sprainbrook to Tremont) Increase from 400 MW to 460MW
- 126298 126847 (Sprainbrook to Academy) Increase from 400 MW to 460 MW
- 126374 126485 (Dunwoodie South to East 179th Street) Increase from 120 MW to 200 MW

Limits for the "I to K" interface were computed by adjusting the E. Garden City PARs to regulate the flow on the Y49 cable (Sprainbrook-EGC 345) to its maximum flow limit of 637 MW. The limiting facility for this interface is the Y50 cable (Dunwoodie-Shore Road 345). The power flow case shows a normal rating of 599 MVA for this facility while the RNA limit is based on a normal rating of 653 MVA¹⁷. As shown in Table 6-4, the interface limit of 1238 MW is based on a normal rating of 599 MVA for Y50 where as the 1292 MW limit is based on the 653 MVA normal rating.

Limits for the "Long Island Import" interface were calculated by adjusting the PARs controlling the LIPA import to allow for maximum emergency transfer capability into LIPA as follows:

	<u>Emergency</u>
Jamaica – Lake Success 138 kV	85 MW
Jamaica – Valley Stream 138 kV	90 MW
Sprainbrook – EGC 138 kV	637 MW
Norwalk Harbor 138 kV – Northport	450 MW ¹⁸

The limiting facility for this interface is the Y50 cable (Dunwoodie-Shore Road 345). See Appendix B. As shown in Table 6-4, the interface limit of 2851 MW is based on a normal rating of 599 MVA for Y50 where as the 2905 MW limit is based on the 653 MVA normal rating. The 2905 MW limit matches the LIPA Import capability provided by LIPA.

Note: In Table 6-4, the RNA limit of 2741 MW for the LIPA Import interface is based on the old 286 MVA rating for the Norwalk Harbor-Northport 138 kV cables.

¹⁷ LIPA indicated that the 599 MVA rating for Y50 is based on a 100% loss factor while the 653 MVA rating is based on a 70% loss factor and rapid oil circulation.

¹⁸ Note: As per LIPA, the total NNC rating in the Intermediate and Horizon years would be 450 MVA.

In general, the following observations are made from Table 6-4.

1. Emergency transfer limits for the upstate interfaces increased slightly going from study year 2013 to the Intermediate Year. For example, compare the limits for Dysinger East (6.2% increase), West Central (2.8% increase), Volney East (3.8% increase) and Central East (11.4% increase). This may be a consequence of reduced load growth in the upstate zones compared to the downstate zones going from 2013 to the Intermediate Year.

2. The limits for the UPNY-ConEd interface showed an 8.3% decrease.

3. Limits for the rest of the downstate interfaces, for example, Millwood South Closed, Dunwoodie South, I to J, I to K and LIPA import did not exhibit significant changes. These interfaces are sensitive to the Con Edison and LIPA PAR schedules which were optimized based on input from the transmission owners.

It is not possible to match the RNA limits exactly because of differences in base case modeling assumptions (load levels, generation dispatches, base case interface flows etc). Again, it should be noted that the RNA limits presented in are for the year 2013 where as the limits calculated in this study are for the Intermediate Year.

6.2.3 Inter-Area Interfaces

Table 6-5 summarizes the emergency thermal transfer limits obtained from the MUST analysis for the interfaces between NYCA and neighboring control areas (full MUST output for the various interfaces is provided in Appendix C). For comparison purposes, corresponding limits from Figure C-1 (bubble diagram) of the NYISO 2009 RNA report are also summarized. The last two columns of Table 6-5 summarize the differences between the two sets of limits both in MW and as a percentage of the 2009 RNA limits.

NYISO indicated that the limits posted in Figure C-1 of the 2009 RNA report are a compilation of transfer limits obtained from several different studies at varying system load levels and dispatch Scenarios. Further details were not readily available.

For the purposes of this study, facilities external to NYCA were not monitored (other than "direct tie" facilities). It should be noted here that there may be facilities in neighboring systems that could become limiting and thus reduce the inter-area limits. However, such facilities were not considered in this analysis mainly because the results of Table 6-5 showed reasonable agreement between the Intermediate Year limits and the RNA limits (there are a few interfaces where the limits do not match and these are discussed in subsequent paragraphs).

6.2.3.1 New York – New England Analysis

<u>Note</u>: In order to be consistent with the RNA study, the Cross Sound Cable was excluded from the NY-NE and NE-NY interface definitions.

New York to New England: The transfer limit is 2044 MW and the limiting facility is the Greenbush-Reynolds Road 115 kV line that becomes loaded at its Rate C rating following the loss of the New Scotland-Alps 345 kV line.

New England to New York: Transfers from New England to New York are constrained by the Long Mountain-Pleasant Valley 345 kV line. This line becomes loaded at its normal rating at a NE-NY transfer level of 1728 MW.

Figure C-1 of the 2009 RNA report shows two sets of transfer limits for the above interfaces:

NY to NE: 2036 MW (sum of transfer limits on individual tie lines) and 1525 MW (the 1525 MW limit may be a simultaneous limit; according to reference [2], this limit was extracted from an ISO-NE report entitled "New England 2008 Analyses for Interface Limits for use in Transportation Models with Simultaneous Impacts"; this report was not available). The 2044 MW limit shown in Table 6-5 compares well with the 2036 MW limit.

NE to NY: 1686 MW (sum of transfer limits on individual tie lines) and 1200 MW. (as per reference [2], the 1200 MW limit was extracted from the ISO-NE report mentioned in the preceding paragraph). The 1728 MW limit compares well with the 1686 MW limit.

6.2.3.2 New York – Ontario IESO Analysis

There are two interconnections between NYCA and IESO: i) a free flowing interconnection at Niagara (Zone A), and ii) PAR controlled interconnections between Moses (Zone D) and St. Lawrence (L33P and L44P).

The St. Lawrence interconnection is thermally constrained and is limited to 400MW for flows into or out of Zone D. The flow on the L33P and L44P interconnections at St. Lawrence is zero MW in the base case.

The transfer limits for transfers between Zone A and Ontario given in Table 6-5 are seen to be comparable to the RNA limits.

6.2.3.3 New York – PJM Analysis

There are five interconnections between NYCA and PJM:

- 1. PAR controlled and VFT interconnections between PJM East and NY East (Zones G and J)
- 2. Neptune HVdc interconnect
- 3. Free-flowing interconnection between PJM West and Zone A
- 4. Free-flowing interconnection between PJM West and Zone C
- 5. Free-flowing interconnection between PJM Central and Zone C

<u>Note</u>: In order to be consistent with the RNA study, the Neptune HVdc interconnection was excluded from the interface definitions between New York and PJM.

The interface limits on the NY East \leftrightarrow PJM East interface were not calculated as it is a controlled interface. Appendix D gives some notes on the transfer limits for this interface.

Limits for the free-flowing interconnections between PJM and NY are calculated as described below:

<u>Zone A to PJM West</u>: This interface comprises three facilities: Stolle Road – Homer City 345 kV, Falconer-Warren 115 kV, and South Ripley – Erie 230 kV. The transfer limit is calculated to be 98 MW and the limiting facility is the Falconer-Warren 115 kV line that becomes loaded at its Rate C rating following the loss of the Erie – South Ripley 230 kV line and the N. Waverly – E. Sayre 115 kV line. The transfer limit was recalculated with the Falconer-Warren 115 kV line opened ¹⁹ and found to be 494 MW which is approximately 10% below the RNA limit of 550 MW.

National Grid indicated that the Falconer-Warren 115 line would be reconductored in the future with 795 ACSR conductor and that the line will not be opened for transfers between NY and PJM. The line ratings after reconductoring are anticipated to be:

Summer Rating (Normal/4 hour/15 minute, 35 degree C, in MVA): 220/252/280

The Zone A to PJM West transfer was repeated with the Falconer-Warren 115 line rating modeled as shown above. This increased the Zone A to PJM West transfer limit to 650 MVA.

<u>PJM West to Zone A</u>: The transfer limit is calculated to be 492 MW and the limiting facility is the Falconer-Warren 115 kV line that becomes loaded at its Rate C rating following the loss of the Homer City – SW 345 kV line. This is approximately 10% below the RNA limit of 550 MW. <u>Note</u>: Opening up the Falconer-Warren 115 kV line resulted in a limit of 957 MW which is well above the RNA limit (based on input received from National Grid, the current practice of opening the line may not be acceptable in the future after reconductoring). See results in Appendix C.

<u>Zone C to PJM West</u>: This interface comprises of a single transmission line: Watercure-Homer City 345 kV. The transfer limit is calculated to be 22 MW and the limiting facility is the Oakdale – Goudey 115 kV line that becomes loaded at its Rate C rating following the loss of the Hillside – E. Towanda 230 kV line. The transfer limit was recalculated with the three PJM-NY 115 kV lines opened (see footnote below) and found to be 177 MW which is approximately 11% below the RNA limit of 200 MW.

<u>PJM West to Zone C</u>: The analysis was performed with and without the previously mentioned three PJM-NY 115 kV lines. In each case, the transfer limit was found to be 755 MW which is approximately 6% below the RNA limit of 800 MW.

¹⁹ In accordance with NYISO and PJM Operating Procedures, the 115kV interconnections between PJM and New York (Warren - Falconer, North Waverly - East Sayre, and Laurel Lake - Goudey) may be opened provided there are no unacceptable impacts on system reliability.

<u>Zone C to PJM Central</u>: This interface comprises three transmission lines: Hillside – E. Towanda 230, Goudey – Laurel Lake 115, and N. Waverly – E. Sayre 115. The transfer limit is calculated to be 397 MW and the limiting facility is the pre-contingency overload on the N. Waverly – E. Sayre 115 kV line (32% above the RNA limit of 300 MW). No further information was available on the RNA limit. Opening up the N. Waverly – E. Sayre 115 kV line gave a limit of 483 MW (see Appendix C) which is well above the limit posted in the RNA.

<u>PJM Central to Zone C</u>: The transfer limit is calculated to be 184 MW and the limiting facility is the Watercure 345/230 kV transformer that became loaded at its Rate C rating following the loss of the Oakdale – Watercure 345 kV line. This limit is approx. 8% below the RNA limit of 200 MW.

<u>NY to PJM and PJM to NY</u>: Transfer limits were also computed for the NY-PJM and PJM-NY interfaces and are tabulated in Table 6-5. Corresponding RNA limits were not available for these interfaces.

Note: NY to PJM transfers were studied by developing a sensitivity case (with assistance from Con Edison) with Ramapo PARs exporting 1000 MW to PJM.

Table 6-1: Comparison of Generation and Load Levels in 2013 and Intermediate Year
Summer Peak Cases

ZONES	DESCRIPTION	2013 SUMMI	ER PEAK (1)		IATE YEAR R PEAK
		GEN. DISPATCH MW	DEMAND MW	GEN. DISPATCH MW	DEMAND MW
А	WEST	5036	2690	4808	2875
В	GENESEE	689	1959	738	2139
С	CENTRAL	5923	2896	6153	3090
D	NORTH	1236	856	1184	895
E	MOHAWK VAL.	642	1410	731	1486
F	CAPITAL	3466	2335	4055	2566
G	HUDSON VAL.	2918	2427	2618	2627
Н	MILLWOOD	2169	669	2125	707
I	DUNWOODIE	3	1613	3	1645
J	NYC	7477	12547	7578	13085
К	LI	3927	5377	4599	6015
NY	′CA TOTALS	33486	34779	34592	37130

(1): From Tables C-1 and C-2 of NYISO 2009 RNA Report

Table 6-2: Summary of Base Case Interface Flows in Intermediate Year Summer Peak Case

Interface	Flow (MW)
Cross-state Interfaces	(10100)
Dysinger East	1593
West Central	171
Moses South	1374
Volney East	3598
Total East (Closed)	5749
Central East	2383
Central East + Fraser-Gilboa	2600
CE Group	4218
F to G	3713
UPNY-SENY Open	5639
UPNY-ConEd Open	5082
Millwood South Closed	7862
Dunwoodie South Plan	4858
I to J	3921
I to K (Y49/Y50)	936
LI Import (includes CSC and Neptune)	1746
Inter-area Interfaces	
NY-NE (excl. Cross Sound Cable)	81
NY-PJM (excl. Neptune HVdc)	-1498
NY-IESO	743
NY-HQ	-1200
Cross Sound Cable	-330
Neptune HVDC	-666

Sign Convention for Inter-area Interfaces: Positive sign denotes export out of NYCA Negative sign denotes import into NYCA

Phase Angle Regulator	MW
Inghams (CD-E)	120
Sandbar PAR (PV-20)	105
St. Lawrence-Moses L33P	0
St. Lawrence-Moses L34P	0
Norwalk Harbor-Northport	100
Jamaica-Valley Stream	-122
Jamaica-Lake Success	-164
Hudson-Farragut (B3402)	333
Hudson-Farragut (C3403)	333
Linden-Goethals	334
Waldwick-Hawthorne	330
Waldwick-Fairlawn	345
Waldwick-Hillsdale	325
Ramapo PAR #1 (+ to NYCA)	500
Ramapo PAR #2 (+ to NYCA)	500
East Garden City #1 (+ to LIPA)	230
East Garden City #2 (+ to LIPA)	230
Sprainbrook-Tremont 345 kV	400
Sprainbrook-Academy 345 kV	400
Dunwoodie-E.179 th Street 138kV	120

Table 6-3: PAR Schedules in Intermediate Year Summer Peak Case

New York State Transmission Assessment and Reliability Study (STARS)

Table 6-4: Emergency Thermal Transfer Limits (Cross State Inter	rfaces)
---	---------

Interface	STARS 2	018	NYISO 2009	PRNA	Difference		
	Su Peak C	ase	(2013 Lim	nits)	MW	%	
Dysinger East	3266	1a	3075	1	191	6.2%	
West Central	1877	1a	1825	1	52	2.8%	
Moses South	2660	7	2675	7	-15	-0.6%	
Volney East	4540	2	4375	2	165	3.8%	
Total East (Closed)	6696	2	6625	2	71	1.1%	
Central East	3007	3	2700	3	307	11.4%	
Central East + Fraser-Gilboa	3209	2	3075	2	134	4.4%	
CE Group	5165	2	5150	2	15	0.3%	
F to G	3485	4	3450	4	35	1.0%	
UPNY-SENY Open	5124	4	5150	4	-26	-0.5%	
UPNY-ConEd Open	5821	5	6350	5	-529	-8.3%	
Millwood South Closed	9793	8	9850	8	-57	-0.6%	
Dunwoodie South Plan	5780	6a	5725	6	55	1.0%	
I to J	4460	6a	4400	6	60	1.4%	
I to K (Y49/Y50) with Y49 flow set to 637 MW	1238	10a	1290	10	-52	-4.0%	
I to K (Y49/Y50) with Y49 flow set to 637 MW	1293	10	1290	10	3	0.2%	
and Y50 RateA=653 MVA							
LI Import (with Y49 flow set to 637 MW and Y50	2090	10	2090	10	0	0.0%	
Rate A=653 MVA)							
LI Import (with LIPA imports maximized)	2686	10a	2741	10	-55	-2.0%	
LI Import (with LIPA imports maximized and Y50	2741	10	2741	10	0	0.0%	
RateA=653 MVA)							

Limi	ting Facility	Limiting Rating MVA	Contingency
1	Stolle-Meyer 230	430	Pre-disturbance
1a	Stolle-High Sheldon 230	430	Pre-disturbance
2	Coopers Corners-Frasers 345	1207	Pre-disturbance
3	New Scotland77-Leeds 345	1724	L/O New Scotland99-Leeds 345
4	Pleasant Valley-Leeds 345	1725	L/O Athens-Pleasant Valley 345
5	Middletown Tap-Coopers Corners 345	1793	L/O Rock Tavern-Coopers Corners 345
6	Dunwoodie-Mott Haven 345	795	Pre-disturbance
6a	Dunwoodie-Mott Haven 345	783	Pre-disturbance
7	Moses-Adirondack 230	440	L/O Massena-Marcy & Massena-Chateaguay
8	Roseton-Fishkill 345	1936	Pre-disturbance
9	Rainey-Mott_H 345	1196	L/O Rainey-Mott_H 345
10	Dunwoodie-Shore Rd 345	653	Pre-disturbance
10a	Dunwoodie-Shore Rd 345	599	Pre-disturbance
11	Hudson-Farragut 345 ckt 1	536	Pre-disturbance

Notes:

- a. RNA limits are based on Table C-3 in Appendix C of 2009 NYISO RNA report.
- b. Limits for interfaces "I to K" and LI Import (with LIPA Imports maximized) obtained from Figure C-1 of 2009 NYISO RNA Report
- c. Transfer limit of 5125 MW on UPNY-SENY Open is <u>without</u> Jefferson-Ramapo 500 included in the interface definition. NYISO indicated that the UPNY-SENY definition in the 2009 RNA MARS analysis did not include the Jefferson-Ramapo 500 kV line.
- d. Plattsburgh-Sandbar 115 kV line was removed from Central East, Central East + Fraser-Gilboa and CE Group interface definition at the request of NYISO.

Table 6-5: Emergency Thermal Transfer Limits (Inter-Area Interfaces)

Interface	STARS 201	8	NYISO 2009 RNA	Difference	
	Su Peak Ca	se	(2013 Limits)	MW	%
NY-NE	2044	1	2036	8	0.4%
	Note a		=150+800+800+286		
NE-NY	1728	2	1686	42	2.5%
	Note a		=0+800+600+286		
Zone A - ON	1604	3	1550	54	3.5%
ON - Zone A	1391	4	1450	-59	-4.1%
Zone A - PJM West	98	6a	550	-452	-82.2%
Zone A - PJM West (Falconer-Warren 115 O/S)	494	9	550	-56	-10.2%
Zone A - PJM West with Falconer-Warren 115	650	6b	N/A	N/A	N/A
reconductored					
PJM West - Zone A	492	6	550	-58	-10.6%
PJM West - Zone A with Falconer-Warren 115	974	13	N/A	N/A	N/A
reconductored					
Zone C - PJM West	22	11	200	-179	-89.3%
Zone C - PJM West (3-115-O/S)	177	12	200	-23	-11.3%
PJM West - Zone C	755	5	800	-45	-5.6%
PJM West - Zone C (3-115-O/S)	755	5	800	-45	-5.6%
Zone C - PJM Central	397	8	300	97	32.2%
PJM Central - Zone C	184	7	200	-16	-8.2%
NY-PJM	1156	8	Note a		
NY-PJM (3-115-O/S)	1524	10	Note a		
PJM-NY	1765	6	Note a		
PJM-NY (3-115-O/S)	2352	5	Note a		
PJM-NY with Falconer-Warren 115 reconductored	2426	5	Note a		

Note: RNA limits are based on Figure C-1 in Appendix C of 2009 NYISO RNA report.

Limiting Facility	Limiting Rating MVA	Contingency
1 Greenbush-Reynolds Road 115 kV	318	L/O Alps-New Scotland 345
2 CTNY398-Pleasant Valley 345	1195	Pre-contingency
3 Niagara - Beck (PA27) 230	528	L/O Packard-Beck (BP76) 230
3a Niagara - Beck (PA27) 230	528	L/O Niagara - Beck (PA 302) 345
4 Packard 230/115 kV (North) transformer	r 141	Pre-contingency
5 Homer City-Watercure 345	755	Pre-contingency
6 Warren-Falconer 115	116	L/O Homer City - SW 345
6a Warren-Falconer 115	116	L/O Erie-S. Ripley 230 and L/O N.Waverly-
6b Warren-Falconer 115	280	L/O Erie-S. Ripley 230 and L/O N.Waverly-
7 Watercure 345/230 kV transformer	600	L/O Oakdale-Watercure 345
8 N. Waverly-E.Sayre 115	90	Pre-contingency
9 Erie - S. Ripley 230	199	Pre-contingency
10 Hillside - E.Towanda 230	483	Pre-contingency
11 Oakdale-Goudey 115	239	L/O Hillside-E.Towanda 230
12 Goudey-S.Owego 115	143	L/O Oakdale-Watercure 345
13 Stolle Road - Pavement Road 115	179	L/O Stolle Road - Gardenville 115

Notes:

a. PJM-NY interface limit is not posted in the 2009 RNA report.

6.3 Calculation of Emergency Voltage Transfer Limits

6.3.1 Methodology

Emergency voltage transfer limits were calculated using the PV Analysis tool of PSS/ETM (version 30).

The limits were calculated by preparing a series of power flow cases with increasing MW transfers across the interfaces being studied and subjecting them to severe (voltage-wise) contingencies. The monitored buses were then reviewed for violations of post-contingency minimum voltage criteria and/or voltage collapse.

The testing followed NYISO practices and procedures discussed in Attachment E of the NYISO Transmission Expansion and Interconnection Manual [3]. MW transfers were increased until the point of voltage collapse was reached. In power flow analysis, this point is the highest transfer level for which a solution can be achieved. There is no solution beyond this transfer level because there are no more dispatchable reactive power resources available to support the transfer. Upon plotting the specific bus voltage (y-axis) against the pre-contingency MW transfer level (x-axis), the impending voltage collapse can be identified as the knee point on the PV curve. Based on the maximum sustainable pre-contingency MW transfer (i.e. the transfer level for which a solution can be achieved post contingency; with any further increases in power transfer rendering the system un-solvable due to reactive power deficiency), a reduced pre-contingency transfer level based on a 5% safety margin is determined. This reduced transfer is then compared against the pre-contingency MW transfer level which corresponds to a postcontingency minimum voltage at the monitored buses. In order to ensure that a voltagebased transfer limit is computed with a margin of safety, the lower of the two power transfers (i.e. 95% of that corresponding to voltage collapse point or that obtained by applying the relevant post-contingency low voltage limit) is chosen as the voltage-limited interface maximum transfer level.

The following assumptions were made for the analysis:

1. Phase angle regulators ("PARs"), switched shunts and LTC transformers are modeled as regulating pre-contingency and non-regulating post-contingency.

2. SVC and FACTS devices are set to near zero pre-contingency and allowed to operate full range post-contingency.

Transfer limits were evaluated in the predominant west-to-east/north-to-south direction. Monitored buses and contingencies simulated for each interface are given in Appendix E.

6.3.2 Results

Table 6-6 summarizes the emergency voltage transfer limits on the Intermediate Year summer peak case (detailed PV curves for each interface are given in Appendix E). For

comparison purposes, corresponding limits from Table C-4 of the NYISO 2009 RNA report are also summarized (as before, the RNA limits are for the year 2013). The last two columns summarize the differences between the two sets of limits both in MW and as a percentage of the RNA limits. Limits for most interfaces are comparable to the 2013 RNA limits. As mentioned previously, it is not possible to match the RNA limits exactly because of differences in base case modeling assumptions (load levels, generation dispatches, base case interface flows etc.)

Limits for Central East, CE+Fraser-Gilboa and CE-Group interfaces are shown with and without the Plattsburgh-Sandbar line included in the interface definitions. NYISO indicated that the Plattsburgh-Sandbar line was excluded from the interface definitions in the 2009 RNA MARS analysis as there is a separate transmission path between Zone D and NE to represent that line.

The UPNY-SENY interface includes the Jefferson-Ramapo 500 kV line in the interface definition.

Table 6-7 shows the PV curves for the Dysinger East interface at the Rochester 345 kV bus for different contingencies. For each contingency, the post-contingency voltage at Rochester 345 kV is plotted against the pre-contingency MW flow on the interface. The most limiting contingency is the loss of Ginna generation (LOG02). Note from Table 6-7 that for this particular contingency, the nose of the curve is approx. 2636 MW. The pre-contingency transfer that corresponds to 95% of 2636 MW is 2504 MW. The post-contingency voltage at the 2504 MW transfer level is above the post-contingency low voltage limit (328 MW). Thus, the emergency voltage transfer limit is 2504 MW which is close to the 2550 MW limit reported in the NYISO 2009 RNA report.

Similarly, Table 6-8 shows the PV curves for the West Central interface at the Rochester 345 kV bus for different contingencies. As before, the most limiting contingency is the loss of Ginna generation (LOG02). The emergency voltage transfer limit is 1132 MW which is 20% below the 1425 MW limit reported in the 2009 RNA report. This was discussed with the STARS WG and was found to be legitimate.

<u>Marcy South Interface</u>: This interface comprises the tie-lines from Zone E to Zone G (Coopers Corners-Rock Tavern 345 kV lines). NYISO indicated that this interface is voltage-constrained. Table 6-6 shows the emergency voltage transfer limits for this interface. These limits were compared against the results from the NYISO 2006 RNA and found to be comparable.

<u>TransÉnergie-New York Interface</u>: The power flow between TransÉnergie and NYISO over the Chateauguay-Massena 765 kV interconnection #7040 is controlled by the HVdc facilities at Chateauguay and radial generation at Beauharnois. NYISO indicated that this interface is voltage constrained. For transfers to New York, NYISO indicated that the operating limit is set at 1500 MW based on internal NYISO conditions particularly voltage profiles in the central New York 345 kV system. Also, NYISO

indicated that the interface limit for transfers to TransÉnergie is 1000 MW (winter voltage limit).

Table 6-6:	Emergency	Voltage	Transfer	Limits
------------	-----------	---------	----------	--------

Interfaces		Post-Contingency Low (A)			95% Voltage Collapse (B)			2018 Limit	2009 RNA	Diff %
Interfaces	MW Flow	Limiting bus	Limit. Volt.	Con	MW Flow	Con	Tip of Curve	Min(A,B)	2013 Limits	
Dysinger East	2833	Rochester 345	328	WC12	2504	LOG02	2636	2504	2550	-1.8
West Central	1400	Rochester 345	328	WC12	1134	LOG02	1194	1134	1425	-20.4
Moses South	2025	Porter 2 230	218	CE20	1971	CE08&CE07	2075	1971	2000	-1.4
Volney East	-	-	-	-	3952	CE15	4160	3952	3750	5.4
Total East	6600 ^e	New Scotland 345	328	CE08	6270	CE18	6600	6270	6425	-2.4
Central East	2925 ^e	New Scotland 345	328	CE08	2740	CE18	2884	2740	2800	-2.2
Central East (Note N)	2795 ^e	New Scotland 345	328	CE08	2604	CE18	2741	2604	2800	-7.0
CE+Fraser-Gilboa	3285 ^e	New Scotland 345	328	CE08	3059	CE18	3220	3059	3050	0.3
CE+Fraser-Gilboa (Note N)	3160 ^e	New Scotland 345	328	CE08	2916	CE18	3069	2916	3050	-4.4
CE-Group	5070 ^e	New Scotland 345	328	CE08	4722	CE18	4970	4722	4525	4.3
CE-Group (Note N)	4900 ^e	New Scotland 345	328	CE08	4587	CE18	4828	4587	4525	1.4
F to G	3893	Pleasant Valley 345	328	CE18	3760	CE18&LOG09	3958	3760	3800	-1.1
UPNY-SENY	7152	Pleasant Valley 345	328	CE18&CE19	6528	UC20&UC26	6872	6528	6150	6.2
UPNY-ConED	5636	Sprain Brook 345	328	UC20	5392	UC20&UC26	5676	5392	5500	-2.0
Millwood South Closed	8518	Sprain Brook 345	328	UC20	8161	UC20&UC26	8590	8161	8450	-3.4
I to J+K	5413	Sprain Brook 345	328	UC20	8161	UC20&UC26	8590	5413	5365	0.9
Marcy South	1740	Pleasant Valley 345	328	CE18	1686	CE18	1775	1686	1700	-0.8

2013 RNA limits based on Table C-3 in Appendix C of NYISO 2009 RNA report.

RNA Limits for Marcy South interface are for year 2011 and were extracted from NYISO 2006 RNA report.

Note: CE07 CE08

L/O M SOUTH N.

L/O M SOUTH S. STK MARCY R3108 BKR

CE15

CE18 L/O TWR 34/42 S. at Coopers Corners

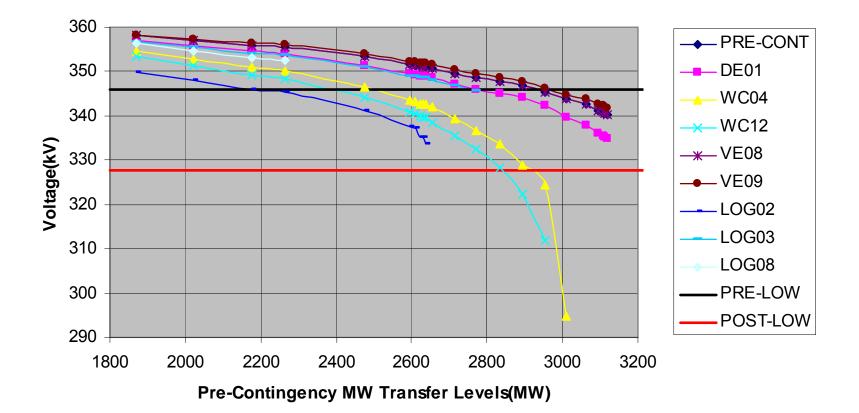
CE19 L/O TWR 34/42 N. at Coopers Corners

CE20 STK EDIC R70 BRKR

UC20 L/O TWR W89/W90 at Pleasantville

UC26 L/O TWR 67/68 at Ladentown

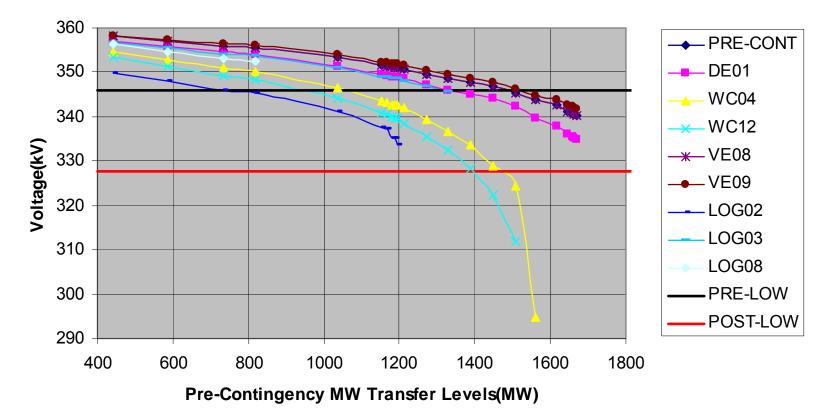
WC12 L/O KIN-ROCH-PARM L/O GINNA GENERATION


LOG02 LOG09 L/O RAVENSWOOD 3

_ Not Applicable

Extrapolated limit е

(N)


Plattsburgh-Sandbar line removed in the interface definition per NYISO input

DYSINGER EAS vs. ROCH 345kV

Table 6-7: PV Curves for Dysinger East Interface

WEST-CENTRAL vs. ROCH 345kV

Table 6-8: PV Curves for West Central Interface

6.4 Calculation of Reverse Limits

The cross-state interface limits presented in Sections 6.2 and 6.3 were evaluated in the predominant west-to-east/north-to-south direction. In addition to these limits, the STARS Working Group recommended that "reverse limits" be calculated for two interfaces by simulating transfers in the east-to-west/south-to-north direction. The two interfaces are:

- LIPA Export
- West Central

6.4.1LIPA Export

This is a thermally constrained interface and comprises ties out of Zone K (LIPA) to ISO New England, PJM and the rest of NYCA (Zones A through J). Transfers to ISO New England are regulated (PAR controlled flows on the Northport-Norwalk Harbor 138 kV cables and HVDC flows on the Cross Sound Cable) as are the transfers to PJM (over the Neptune HVDC cable). Thus, for the purposes of this study, exports to ISO-NE and PJM are not evaluated.

Exports from Zone K to the rest of NYCA are evaluated by first maximizing flows on the PAR controlled interface between Zones K and J and then simulating a transfer between Zones K and I until a transmission facility becomes limiting.

Maximum LIPA Export to NYCA is then determined as the summation of the flows on the interface between Zones K and J and Zones K and I. i.e.,

Maximum LIPA Export to NYCA = Zone K to J flow + Zone K to I flow

For the purposes of this analysis, a sensitivity case was developed by Long Island Power Authority by making the following adjustments to the Intermediate Year power flow case described in Section 3.1:

- Nassau generation is maximized
- Lake Success PAR to Jamaica 138 kV set to: 237 MW
- Valley Stream PAR to Jamaica 138 kV set to: 269 MW

A transfer was simulated from Zone K to Zones H and I using PSSTMMUST and the Zone K to I interface limit was established as 6 MW (see Appendix F). The Maximum LIPA Export to NYCA limit was established as follows:

The 512 MW limit was discussed with LIPA and found to be reasonable considering the load growth in the Western Nassau area (by way of comparison, the corresponding limit in the year 2008 was 538 MW per LIPA). The limit posted in Figure C-1 of the 2009 RNA report is given as 576 MW (this is shown as interface "LI Sum").

6.4.2 West Central

Emergency thermal and voltage transfer limits were calculated for the West Central interface in the reverse direction. Results are given below (details are given in Appendix F).

Emergency Thermal Transfer Limit (reverse):2105 MWEmergency Voltage Transfer Limit (reverse):2200 MW

By comparison, the West Central reverse limit posted in Figure C-1 of the 2009 RNA report is 1300 MW. No additional information was available on the basis of the RNA limits. It is assumed that the differences in limits are a consequence of differences in modeling assumptions (generation dispatch, load level, flows, voltages etc.).

6.5 Consolidation of Emergency Thermal and Voltage Transfer Limits

Emergency thermal and emergency voltage transfer limits for the cross-state interfaces are consolidated and presented in Table 6-9. The most limiting of the two transfer limits is shown in the last column.

Interface	STARS 2018 Summer Peak Case			e	NYISO 2009 RNA (2013 Limits)					
	Emergency Thermal Transfer Limit (MW)	Emergency Voltage Transfer Limit (MW)	Min (The Volta		Emergency Thermal Transfer Limit (MW)	Emergency Voltage Transfer Limit (MW)	Min (The Voltaç			
Dysinger East	3266	2504	2504	(V)	3075	2550	2550	(V)		
West Central	1877	1134	1134	(V)	1825	1425	1425	(V)		
Moses South	2660	1971	1971	(V)	2675	2000	2000	(V)		
Volney East	4540	3952	3952	(V)	4375	3750	3750	(V)		
Total East (Closed)	6696	6270	6270	(V)	6625	6425	6425	(V)		
Central East	3007	2604	2604	(V)	2700	2800	2700	(T)		
Central East + Fraser-Gilboa	3209	2916	2916	(V)	3075	3050	3050	(V)		
CE Group	5165	4587	4587	(V)	5150	4525	4525	(V)		
F to G	3485	3760	3485	(T)	3450	3800	3450	(T)		
UPNY-SENY Open	5124	6528	5124	(T)	5150	6150	5150	(T)		
UPNY-ConEd Open	5821	5392	5392	(V)	6350	5500	5500	(V)		
Millwood South Closed	9793	8161	8161	(V)	9850	8450	8450	(V)		
Dunwoodie South Plan	5780	N/A	5780	(T)	5725	N/A	5725	(T)		
I to J	4460	N/A	4460	(T)	4400	N/A	4400	(T)		
I to K (Y49/Y50) with Y49 flow set to 637 MW	1238	N/A	1238	(T)	1290	N/A	1290	(T)		
I to K (Y49/Y50) with Y49 flow set to 637 MW and Y50 RateA=653 MVA	1293	N/A	1293	(T)	1290	N/A	1290	(T)		
I to J+K	N/A	5413	5413	(V)	N/A	5365	5365	(V)		
LI Import (with LIPA imports maximized)	2851	N/A	2851	(T)	2741	N/A	2741	(T)		
LI Import (with LIPA imports maximized and Y50 RateA=653 MVA)	2905	N/A	2905	(T)	2741	N/A	2741	(T)		
Marcy South	N/A	1686	1686	(V)	N/A	1700	1700	(V)		

Table 6-9: Consolidation of Emergency Thermal and Voltage Transfer Limits (Cross State Interfaces)

2013 RNA limits based on Tables C-3 and C-4 of NYISO 2009 RNA report.

RNA Limits for Marcy South interface are for year 2011 and were extracted from NYISO 2006 RNA report.

(T) = Thermally-constrained

(V) = Voltage-constrained

N/A: Not applicable

PART II – LOLE ANALYSIS

BENCHMARKING OF RESOURCE RELIABILITY MODEL

GridView ²⁰ uses a sequential Monte Carlo simulation to capture a spectrum of uncertainties, such as, generator and transmission forced outages, load forecast errors, fuel forecast errors, wind forecast error, etc. It calculates two most important reliability indices, namely, Loss of Load Expectation (LOLE) and Expected Energy Not Served (EENS) for the system under study. The Monte Carlo process simulates the random outages of generating units and transmission equipment for every hour in a year at a given load for many repetitive trials. Hourly analysis of a system/market is performed by solving unit commitment and economic dispatch while observing transmission security constraints and aggregating the results for the entire year. By simulating the system condition (load – generation balance) for each hour, the expected behavior of generating resources under a variety of conditions can be studied.

The resource model utilizes the multi-area features to account for the impact of interzonal transmission constraints and the intra-zonal transmission branch thermal limit violations. In the Resource Reliability Model for GridView, the transmission system is explicitly represented; not a transportation model as used in other types of multi-area reliability assessment programs. With the detailed modeling of the transmission network, whether or not all resources are fully deliverable within each of these areas/zones is considered simultaneously with the available generation resources. Also, specific transmission interface and branch limits, utilization and required capability to achieve a target reliability index can be determined. At the beginning of this study, for the purpose of validating the Resource Reliability Model of the NYCA system, the results from the ABB's Gridview software was benchmarked against the results provided by NYISO (using GE-MARS program).

The input data for the NYCA resource model for the benchmark case was provided by NYISO in text and spreadsheet formats. The model development and testing of different conditions are discussed in Appendix-I. The calculated LOLE values from the GridView software was compared to the NYISO calculated values (from GE-MARS software) for the following conditions:

- NYCA Isolated System with Generator Multi-State Transition Rate Only- with and without EOP
- NYCA Isolated System Including Generator and Transmission Transition Rates, Derating and Load Uncertainty – again with and without EOP
- NYCA Isolated System Including Generator and Transmission Transition Rates, Derating and Load Uncertainty with Line Limit Enforced - with EOP

The results from GridView software for the NYCA system compared reasonably well with the values calculated from the other software program.

²⁰ ABB's commercial software for Resource and Transmission Studies

7 NYCA RESOURCE RELIABILITY MODEL UPDATE FOR FUTURE STUDY YEARS

The main purpose of this study is to determine long-term reliability and cost-effective alternatives for the NYCA transmission system considering different capacity and transmission expansion and retirement plans. The study will also identify zones of potential "bottled" generation on the bulk power system, and identify limitations of the current transmission system to meet future renewable generation development.

The reliability criterion (or adequacy metric) used by NYCA is Loss of Load Expectation (LOLE) Index. The LOLE value should be less than or equal to one day in 10 years (i.e. once in 10 years) or 0.1 day per year.

The primary tool used for LOLE calculation for this study is GridView, an ABB's reliability analysis and market simulation software. In this computer program a full representation of the transmission network (as in the PSS/E power flow cases) is used. In addition to the detailed transmission network representation, the GridView model contains transmission constraints, including interfaces, contingency constraints, monitored lines, nomograms and emergency operating procedures (EOP).

7.1 Reliability Model Update and Assumption

The resource model from the 2009 Reliability Needs Assessment (RNA) study was converted to GridView database and benchmarked (described in Appendix I) for the Intermediate Year of this study. Then, the database was updated with the Intermediate Year PSS/E v30 powerflow case²¹. The area loads and generation capacity was updated as described in Section 2. Main data assumptions are summarized in the following subsections.

7.1.1 Load Level

The hourly (8760 hours) load profiles from the 2009 RNA study model were used. For each NYCA zone load profile; the coincident peak demand, non-coincident peak demand and annual energy values were adjusted for the Intermediate and Horizon Years to match the values in Table 2-2. Load forecast uncertainty (seven values with its probability), as in the 2009 RNA model, was also included in the GridView model. The load level for external regions (PJM, ISONE, Ontario and Quebec) is same as in the 2009 RNA study.

7.1.2 Generation Capacity

The capacity value in the 2009 RNA study (Table 2-3) for the Intermediate Year is 40,452MW. The forced and partial outage data, for the generating units, are same as in

²¹ Siemens-PTI PSS/E 30 raw data file "sum18tr2-gb-bal-rev1-v30" provided by NYISO on March 11, 2009. Case title: 2009 CRPP 2018 GEN BALANCED CASE FROM 2008 FERC 2018 CASE 2018 SUMMER GB LOAD, WITH TO CRP FIRM PLANS

the 2009 RNA study database. Each unit is represented with multi-state outage model with "equivalent forced outage rate on demand" (EFORd). The Special Case Resource (SCR) and Emergency Operating Procedure (EOP) included in the Gridview model are same as in the 2009 RNA study. Renewable (wind) resource units are modeled with the given hourly MW wind generation, but without explicit forced outage rates.

The new capacity requirement is 5,015 MW for the Horizon Year (Table 2-4) for the first four Scenarios, 6,828MW for Scenario #5 and 7,740MW for Scenario #6 (Section 2.2).

7.1.3 Transmission System

A detailed representation of the NYISO, PJM, ISO-NE, Ontario and Hydro Quebec transmission system, as in the Intermediate Year Summer peak load power flow base case is used to model the transmission system in GridView. This loadflow contains a detailed representation of the NYISO and neighboring areas' transmission and distribution network down to the 69KV voltage level. The thermal limits of all 115kV and above transmission lines are enforced. All the interface limits and interface conditional constrains are also enforced

All NYISO transmission interfaces (Dysinger East, West Central, Volney East, Moses South, Central East, Total East, UPNY SENY, UPNY CONED, Millwood South, Dunwoodie South, LIPA Import), Inter-Area transmission interfaces to and from PJM, ISO-NE and Canada are modeled with transition rates and dynamic transition rate as in 2009 RNA study also monitored.

For the Horizon Year reference case, the transmission system is the same as in Intermediate Year Reference Case (Phase-I part of the study is under the assumption of "as is transmission").

7.1.4 External Area Modeling

For long-term planning purposes, it is important to assume that all the interconnected areas plan to achieve the target resource reliability criterion (LOLE of 1 day in ten years). This is not only customary, but also appropriate. The external areas included in the GridView model are, PJM, ISONE, Ontario and Hydro Quebec. The generating units in these external areas were represented as in the power flow case. However, the other parameters such as unit forced outage rates (FOR) for these external generating units were not available due to confidentiality issues. Hence, an equivalent representation of the external region's capacity and unit force outage rate (FOR), as described in the Appendix-J, was adopted. Load in each of the four external areas was adjusted, with repeated and iterative run of GridView, so that an LOLE of 0.1 days/year is achieved on multi-area or interconnected operation basis (mutual assistance to the area experiencing capacity shortage, but without load shedding within the provider's area). The calculated LOLE values achieved, at the end of this repetitive GridView, runs for the four external area models are shown in Table 7-1.

Area	Load (MW)	Capacity without FOR (MW)	Capacity with FOR (MW)	Intermediate Year LOLE (Days/year)
PJM- Mid-Atlantic	64,890	61,851	4,266	0.096
New England	31,660	30,286	1,830	0.119
Ontario	24,040	22,778	1,500	0.116
Quebec	34,300	33,230	1,750	0.096

Table 7-1	: External	Area	Modelina
1001011			moaomig

7.1.5 NYCA LOLE Calculation Assumptions

The LOLE is calculated both for the entire system and the individual zones by using the GridView model described in the earlier sections. All the pre-calculated interface limits and the branch limits as in the power flow cases are enforced. Sequential Monte-Carlo simulation is used for simulating the forced outages of generators. Sufficient number of Monte-Carlo trials was simulated to reach at least a standard error of 0.05 (convergence criteria).

A full transmission network of NYCA was included in the GridView model. For each hour (and Monte Carlo trial), a dc power flow solution is solved. In order to enforce the various Interface and branch flow limits simultaneously, Linear Programming algorithm (LP) is used to get a solved solution. This is similar to SCUC/SCED used for generation production cost calculations, but with no generation cost curves and other related assumptions. Any load shedding due to insufficient generation is to be resorted as a last option. In addition, it is necessary to distinguish utilization of the different power flow paths, such as internal, external assistance, loop flow or wheeling etc. Within the GridView model, the approach used to differentiate the various flow paths may be explained through a priority set-up, in the following order:

i) All available generation within each zone is utilized first to meet its zonal native load in terms of LP algorithm. This may be called priority zero.

If the load and generation balance is achieved and if there are no overloads on branches or exceeding Interface limits, the LP converges and the simulation for that Monte Carlo trial is complete. Otherwise the subsequent priorities go into effect until either NYCA load-generation balance is achieved or there are no other options (priorities) left, except load shedding.

ii) When there is generation deficiency in more than one zone (within NYCA), the surplus generation in other zones is allocated to the deficient zones in proportion to corresponding deficient generation amount. This is priority one.

If the load and generation balance is achieved and if there are no overloads on branches or exceeding Interface limits, the LP converges and the simulation for that Monte Carlo trial (and hour) is complete.

When there is a constraint, for example on Volney Interface (or any branch overload), then the generation down stream from that constraint is utilized to the maximum extent possible.

iii) If the NYCA load is still not fully met, then any resource available in the neighboring area (directly connected to NYCA) is utilized next. This is priority level two.

Assistance to a neighboring area is provided by the exporting area only when its own native load at that hour is met to the maximum extent possible. This applies to any assistance NYCA may provide to its neighbors as well.

iv) Indirect (or Wheeling) assistance is priority three.

Some examples are; Ontario to NYCA through PJM, Zone G to Zone J through PJM or Zone G to Zone K through NE. Because of the various interface limits encountered in these paths, the chances of these loops flows or wheeling occurring is the lowest; but will occur before load shedding.

7.1.6 NYCA LOLE of Intermediate Year Reference Case

With all the updates described above, the Intermediate Year reference case was simulated; LOLE was calculated and shown in Table 7-2 below.

Zone	LOLE (days/year)
А	-
В	0.07
С	-
D	-
E	0.17
F	-
G	0.14
Н	0.00
L I	0.17
J	0.19
K	0.15
NYCA	0.19

Table 7-2: LOLE of Intermediate Year Reference Case

The Intermediate Year reference case result (0.19day/year) is slightly less than the LOLE of 0.22 day/year in Table 4-8 of RNA 2009 report. The difference may be directly attributed to higher NYCA peak load in the RNA 2009 case (37,784 MW vs. 37,130 MW in the GridView Intermediate case).

7.2 New Generation for Six Scenarios for Horizon Year LOLE Calculation

The new capacity requirement (Table 7-3) is 5,015 MW for the Horizon Year for the first four Scenarios, 7,065MW for Scenario #5 and 7,740MW for Scenario #6.

The new generation units assumed for the first four Scenarios are shown in Table 7-4. Generic units of 250MW (6% FOR) are assumed for the new generation, unless only smaller amounts are indicated. For the next two Scenarios #5 and #6, the new generation units assumed are shown in Table 7-5.

	PEAK LOAD			GENER	ATION ADDITIO	N (MW)				
	(MW)	SCENARIO-1	SCENARIO-2	SCENARIO-3 SCENARIO-4		SCEN	IARIO-5	SCENARIO-6		
		Thermal	Thermal	Thermal	Thermal	Renew	Thermal	Renew	Thermal	
ZONE-A	3,123	-	500	500	250	-	-	332	500	
ZONE-B	2,365	-	500	250	-	-	-	251	500	
ZONE-C	3,323	-	500	500	250	-	-	353	500	
ZONE-D	971	-	250	-	-	-	-	103	106	
ZONE-E	1,600	-	250	250	-	-	-	170	250	
ZONE-F	2,868	-	500	250	-	-	-	305	500	
ZONE-G	2,948	-	-	250	-	-	-	-	-	
ZONE-H	782	250	-	-	-	-	250	-	-	
ZONE-I	1,753	250	-	250	-	-	250	-	-	
ZONE-J	14,326	2,500	-	1,500	500	1,400	2,210	-	-	
ZONE-K	6,757	1,250	-	750	250	700	1,000	-	-	
ZONES-TOTAL	40,816	4,250	2,500	4,500	1,250	2,100	3,710	1,514	2,356	
ISONE		500	-	170	-	240	597	-	-	
РЈМ		265	1,255	170	1,255	129	289	757	1,178	
HQ		-	1,260	175	2,510	-	-	757	1,178	
IMPORTS-TOTAL		765	2,515	515	3,765	369	886	1,514	2,356	
TOTAL		5,015	5,015	5,015	5,015	2,469	4,596	3,028	4,712	
						TOTAL	7,065	TOTAL	7,740	

Table 7-3 New Capacity Requirement Summary for Different Scenariosfor the Horizon Year.

		INTERN	IAL				EXTE	RNAL - FIRM P	JRCHASE	
	85% OF REQUIREMEN	IT (MW)	4,263		4,263	15% OF F	REQUIET	REMENT (MW	752	752
		LOAD	NEW GEN	Units	MW					
SCENARIO-1	ZONE-H	782	141	1	250	10%	ISONE	ZONE-K	500	500
(85%DOWN	ZONE-I	1,753	316	1	250	5%	PJM	ZONE-J	265	265
STATE, 15%	ZONE-J	14,326	2,586	10	2,500					
EXTERNAL)	ZONE-K	6,757	1,220	5	1,250					
,	ZONES-TOTAL	23.618	4.263	17	4.250					765
	TOTAL NEW CAPACITY		4,250		.,			TOTAL	765	
			-,							
	50% OF REQRM	Т	2,508		2.508	50	% OF RE	ORMNT	2.507	2,507
		LOAD	NEW GEN	Units	 MW				2,007	2,001
	ZONE-A	3,123	550	011115	500	25%	PJM	ZONES-A&C	1,255	1,255
	ZONE-A ZONE-B	2,365	416	2	500	25%		ZONES-A&C	1,255	1,255
SCENARIO-2	-	,	-			25%	ΠQ	ZUNE-D	1,200	1,200
(50% UPSTATE,	ZONE-C	3,323	585	2	500					
50% EXTERNAL)	ZONE-D	971	171	1	250					
,	ZONE-E	1,600	282	1	250	ļ				
	ZONE-F	2,868	505	2	500					
	ZONES-TOTAL	14,250	2,509	10	2,500					2,515
	TOTAL NEW CAPACITY		2,500					TOTAL	2,515	
	90% OF REQRM	NT	4,514		4,514	10	% OF RE	QRMNT	501	501
		LOAD	NEW GEN	Units	MW					
	ZONE-A	3,123	345	2	500	3.3%	ISONE	ZONES-F&G	170	170
	ZONE-B	2,365	262	1	250	3.3%	PJM	ZONE-J	170	170
	ZONE-C	3,323	368	2	500	3.3%	HQ	ZONE-D	175	175
SCENARIO-3	ZONE-D	971	107	0	-					
(90% ALL	ZONE-E	1,600	177	1	250					
ZONES,	ZONE-F	2,868	317	1	250					
10% EXTERNAL	ZONE-G	2,948	326	1	250					
LOW IMPORT)	ZONE-H	782	86	0	-					
	ZONE-I	1.753	194	1	250					
	ZONE-J	14,326	1,584	6	1.500					
	ZONE-K	6,757	747	3	750					
	ZONES-TOTAL	40.816	4.513	18	4.500					515
	TOTAL NEW CAPACITY	40,010	4,513	10	4,300			TOTAL	515	515
	TOTAL NEW CALACITY		4,500					IUIAL	515	
			4 05 4 1		4.054			ODUNT	0 704	
	25% OF REQRM		1,254	Linita	1,254	/5	% OF RE		3,761	
	701/5 4	LOAD	NEW GEN	Units	MW	0.50(7015 1/14/		
	ZONE-A	3,123	96	1	250		PJM	ZONE-I/J/K	1,255	1,255
	ZONE-B	2,365	73	0	-	50%	HQ	ZONE-D	2,510	2,510
005110515	ZONE-C	3,323	102	1	250	ļ				
SCENARIO-4	ZONE-D	971	30	0	-					
(25% ALL	ZONE-E	1,600	49	0	-					
ZONES,	ZONE-F	2,868	88	0	-					
75% EXTERNAL		2,948	91	0	-					
HIGH IMPORTS)	ZONE-H	782	24	0	-					
,	ZONE-I	1,753	54	0	-					
	ZONE-J	14,326	440	2	500					
	ZONE-K	6,757	208	1	250					
		,	1,255	5	1,250		1	1		3765
	ZONES-TOTAL	40,816	1.200	5	1.200					5/0

Table 7-4: New Generation Capacity for Scenarios 1 to 4

		IN	INTERNAL						XTERNAL - FIF	RM PURC	HASE	
	85% OF REQUIREMEN	IT (MW)	3,104	4,005		3,104	15% OF F	REQUIET	REMENT (MW	1,255	707	548
					CONVEN	ITIONAL						
SCENARIO-5		LOAD	NEW GEN	RENEW	Units	MW					RENEW	CNVNTNL
(85%DOWN	ZONE-H	782	123	1	1	250	10%	ISONE	ZONE-K	837	240	597
STATE, 15%	ZONE-I	1,753	276		1	250	5%	PJM	ZONE-J	418	129	289
EXTERNAL)	ZONE-J	14,326	2,253	1,400	8	2,210						
	ZONE-K	6,757	1,063	700	4	1,000						
	ZONES-TOTAL	23,618	3,715	2,100	14	3,710					369	886
	TOTAL NEW CAPACITY		5,810						TOTAL	1,255		
	50% OF REQRM	NT	3,870	1,514		2,356	50	% OF RE	QRMNT	3,870	1,514	2,356
					CONVEN	TIONAL						
						TIONAL						
SCENARIO-6		LOAD	NEW GEN	RENEW	Units	MW					RENEW	CNVNTNL
(50% UPSTATE,	ZONE-A	LOAD 3,123	NEW GEN 848	RENEW 332		-	25%	PJM	ZONES-A&C	1,935	RENEW 757	CNVNTNL 1,178
(50% UPSTATE, 50%	ZONE-A ZONE-B	-	-			MW	25% 25%	-	ZONES-A&C ZONE-D	1,935 1,935		-
(50% UPSTATE, 50% EXTERNAL) -	-	3,123	848	332	Units 2	MW 500		-		1	757	1,178
(50% UPSTATE, 50%	ZONE-B	3,123 2,365	848 642	332 251	Units 2	MW 500 500		-		1	757	1,178
(50% UPSTATE, 50% EXTERNAL) -	ZONE-B ZONE-C	3,123 2,365 3,323	848 642 902	332 251 353	Units 2	MW 500 500 500		-		1	757	1,178
(50% UPSTATE, 50% EXTERNAL) - 100% GROWTH	ZONE-B ZONE-C ZONE-D	3,123 2,365 3,323 971	848 642 902 264	332 251 353 103	Units 2	MW 500 500 500 106		-		1	757	1,178
(50% UPSTATE, 50% EXTERNAL) - 100% GROWTH ENERGY FROM	ZONE-B ZONE-C ZONE-D ZONE-E	3,123 2,365 3,323 971 1,600	848 642 902 264 435	332 251 353 103 170	Units 2 2 2 2 1 1	MW 500 500 500 106 250		-		1	757	1,178

Table 7-5: New Generation Capacity for Scenarios 5 & 6

8 NYCA SYSTEM ADEQUACY DETERMINATION FOR THE INTERMEDIATE YEAR

8.1 NYCA LOLE for the Intermediate Year

The load and generation by individual zones are shown in Table 8-1 (same as Table 2-3). The Intermediate Year reference database (Section 7) was updated with new transfer limits (calculated in Section 6). The interfaces with new transfer limits are shown in Table 8-2 and in Figure 8-1 (In NYCA bubble diagram the new transfer limits are shown in purple color. Other values are from 2009 RNA report).

The calculated LOLE values for each zone and the entire NYCA system is shown in Table 8-3. The NYCA LOLE of 0.2 day/year in the above table is almost same as the benchmarking result of 0.19.

Regarding the differences in the zonal LOLE results, in the GridView simulations the surplus zonal capacity is prorated among generation deficient (both with and without generator unit outages) zones. Our understanding is that in the RNA Studies, a preset rule is used for this sharing. This is one of the main factors that contributes to differences in zonal LOLE values shown in the Table 8-3 with the results in the RNA 2009 report.

_	Capacity at	SCR/EOP		Peak Load
Zone	Peak (MW)	(MW)	(MW)	(MW)
A	4,664	503	5,167	2,960
В	733	210	942	2,210
С	6,774	221	6,995	3,157
D	1,685	144	1,829	973
E	955	104	1,059	1,544
F	3,804	204	4,008	2,627
G	2,934	130	3,065	2,655
Н	2,116	10	2,125	738
l I	1	100	102	1,664
J	9,206	1,098	10,304	13,086
K	6,598	417	7,015	6,095
NYCA	39,469	3,141	42,610	37,130

Table 8-1: Load and Gen	eration for Intermediate Year
-------------------------	-------------------------------

Interface	New Limits (MW)	Old Limits (MW)	Change (MW)
Dysinger East	2504	2550	-46
West Central	1134	1770	-636
Moses South	1971	2600	-629
Volney East	3952	4375	-423
Total East (Closed)	6270	6425	-155
CE Group	4587	4500	87
F to G	3485	3450	35
UPNY-SENY Open	5124	5150	-26
UPNY-ConEd Open	5392	5000	392
Millwood South Closed	8161	8450	-289
I to J	4460	4400	60
I to K (Y49/Y50)	1293	1290	3
I to J+K	5413	5440	-27
Marcy South	1686	1700	-14
Zone A - Ontario	1604	1550	54
Ontario - Zone A	1391	1450	-59
Zone A - PJM West	650	550	100
PJM West - Zone A	974	550	424
Zone C - PJM West (3-115- O/S)	177	200	-23
PJM West - Zone C (3-115- O/S)	755	800	-45
Zone C - PJM Central	397	300	97
PJM Central - Zone C	184	200	-16
SWCT (NE) to K	450	286	164

Table 8-2: Interfaces with New Transfer Limits

Table 8-3: LOLE of Intermediate Year Reference Case

Zones	LOLE (days/year)
А	-
В	0.09
С	-
D	-
Е	0.18
F	0.00
G	0.15
Н	0.00
	0.19
J	0.20
K	0.15
NYCA	0.20

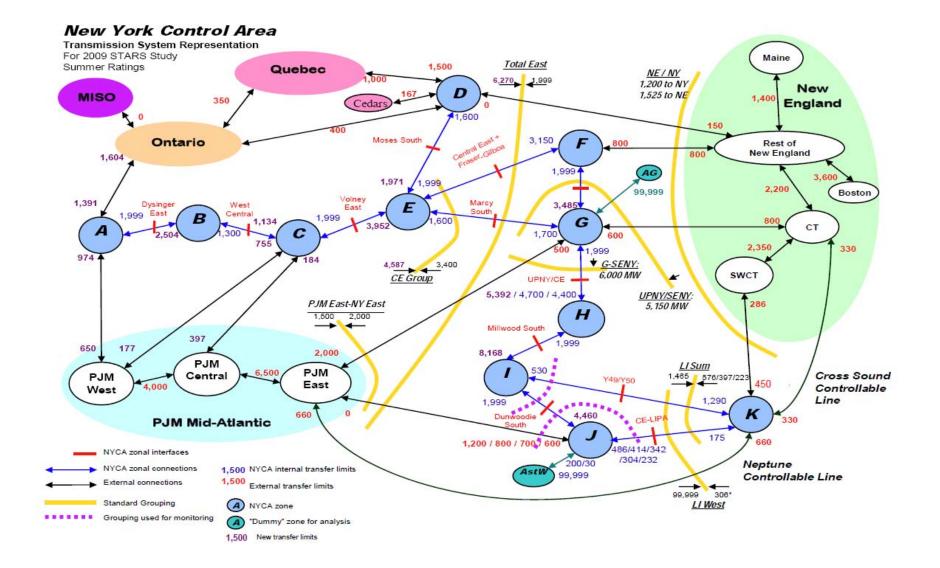


Figure 8-1: NYCA Transmission System Bubble Diagram for Intermediate Year (Newly calculated transfer limits are in purple color)

8.2 NYCA Interface Flows

The existing transmission is constrained due to the flow limits (thermal and/or voltage). Statistics for various transmission constraints, as encountered during the MonteCarlo trials, were calculated. The **number of days of hitting a limit at the daily peak hour** during the one year period is calculated; Considering only the daily peak hour is consistent with the LOLE definition. If we consider all the hours in the year, two factors obscure the effect of interface limit on the LOLE;

- i) since the instances of interface limit hits during the non-peak hours are counted, the importance of the particular interface may be exaggerated
- ii) averaging over 8760 hours will dilute the importance of the interfaces which are limiting only during the daily peak hour.

The number of days, of hitting a limit at the daily peak hour (for the Intermediate year and the various interfaces), are shown in Table 8-4.

Interface		Number of Days	probability of
Name	Limit (MW)	hitting limit per Year	hitting limit
Volney East	3952	221.1	61%
West Central	1134	95.3	26%
I to J	4460	79.6	22%
I to K (Y49/Y50)	1293	62.4	17%
F to G	3485	14.3	4%
UPNY-SENY	5124	0.6	0%
Central East +	2916	0.4	0%
Fraser-Gilboa			
Marcy South	1686	0.1	0%
CE Group	4587	0.0	0%
NE-K	450	0.0	0%
PJME-J	1200	0.0	0%
HQ-D	1500	0.0	0%
OH-D	400	0.0	0%

 Table 8-4: NYCA Interface Limiting for Intermediate Year (at daily peak hour)

The probability of Volney East Interface becoming limited is the highest among all interfaces. The average hourly flow pattern (chronological hours) for this interface is shown in Figure 8-2. This is a capacity based flow, not an economic generation dispatch based flow. The flows shown in these figures include additional flows triggered by random generation outages. The actual utilization (probable from the capacity point of view) or *"Usefulness of Interface for Reliability"* of the interface can be better observed from a duration type of curve as shown in Figure 8-3. The calculated value of utilization of Volney East interface is 97.4%. The top horizontal line part of the duration curves show the Interface flow limit enforced by GridView during the LOLE calculation.

Similarly the average hourly power flows of other limiting interfaces in Table 8-4 are shown in chronological and duration curve formats in Figures 8-4 to 8-21.

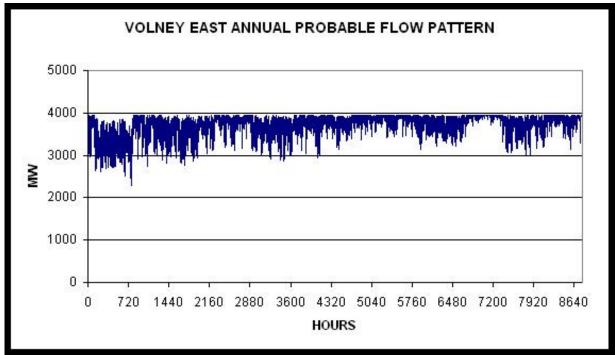


Figure 8-2

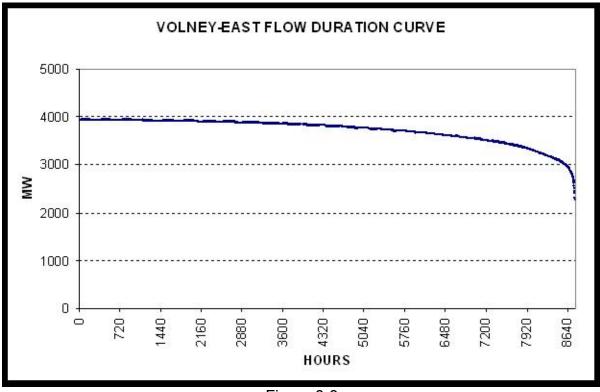


Figure 8-3

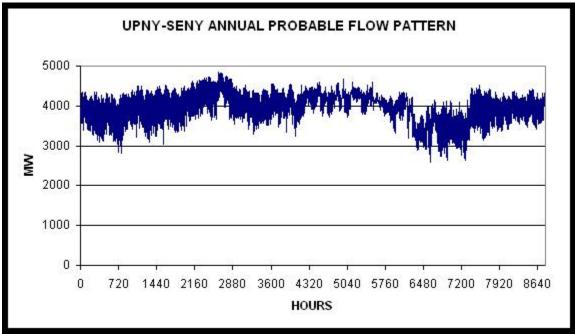


Figure 8-4

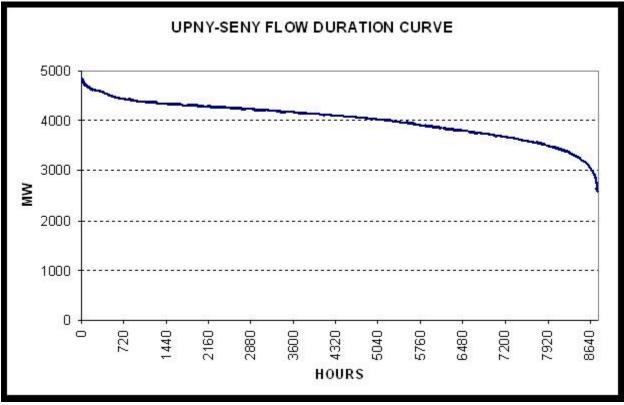


Figure 8-5

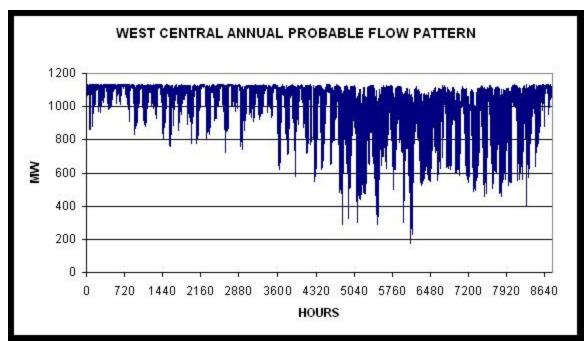


Figure 8-6

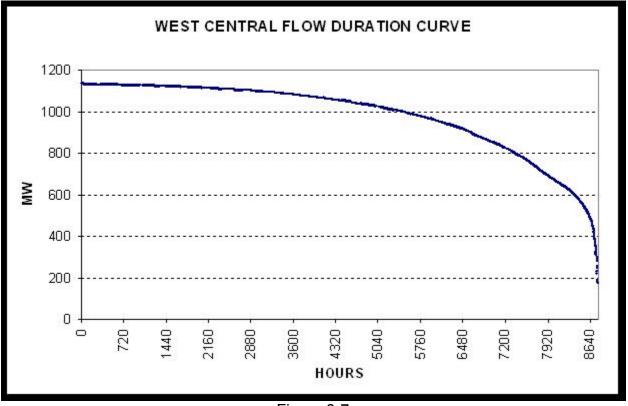


Figure 8-7

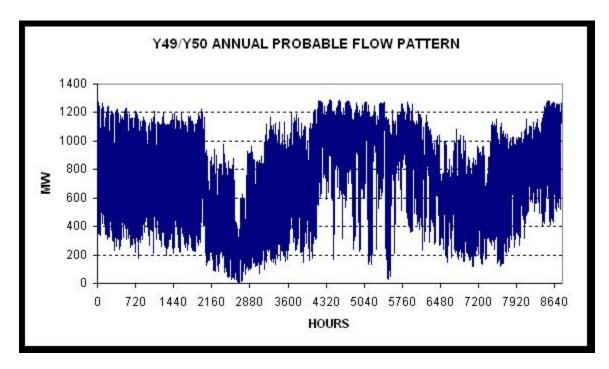


Figure 8-8

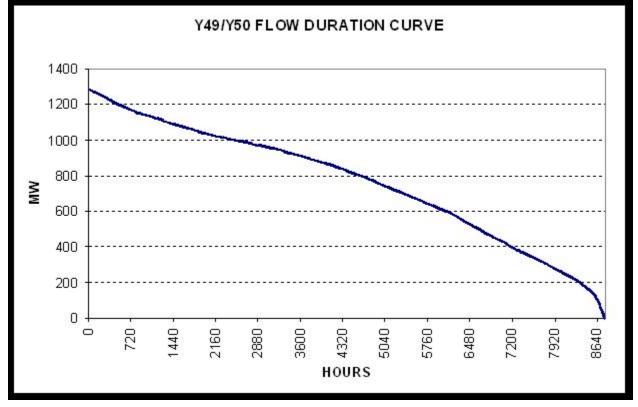


Figure 8-9

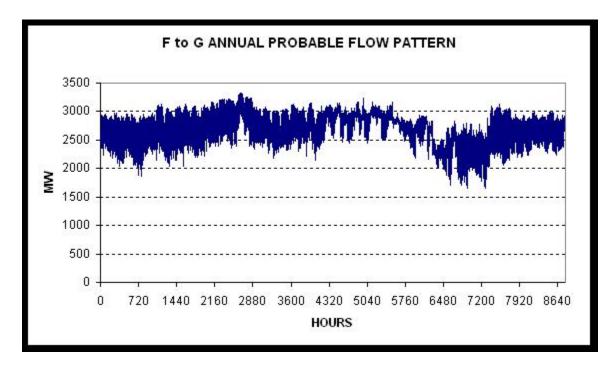


Figure 8-10

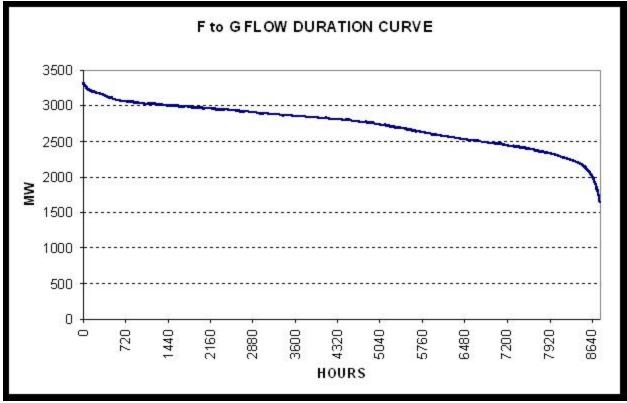


Figure 8-11

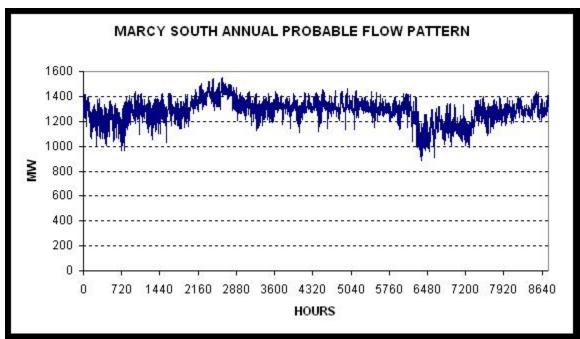


Figure 8-12

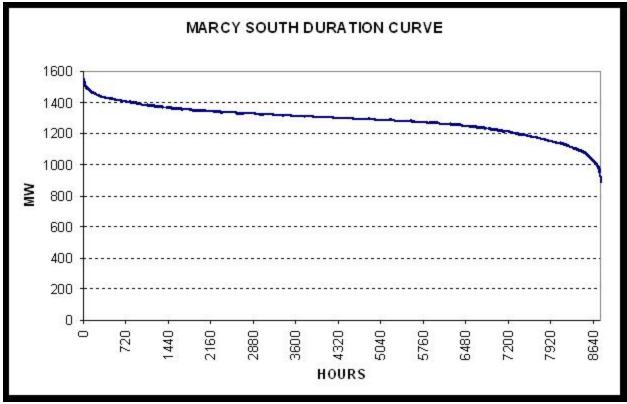


Figure 8-13

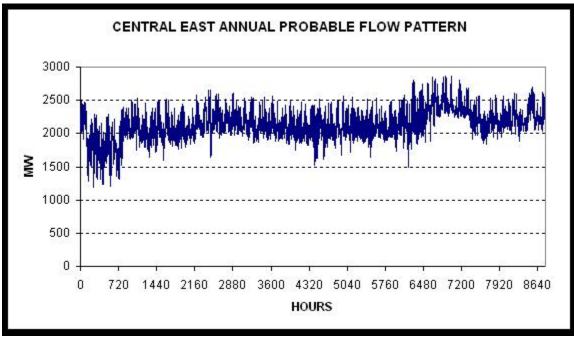


Figure 8-14

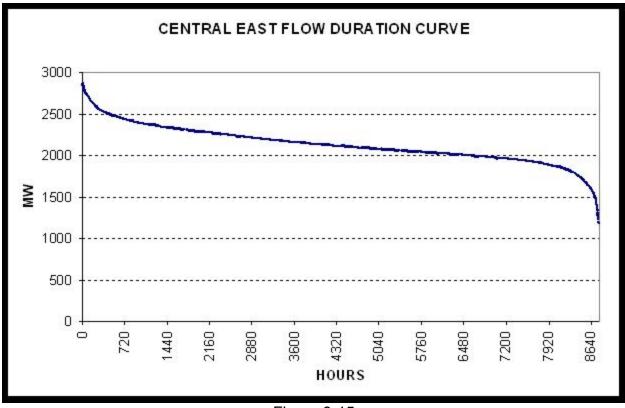


Figure 8-15

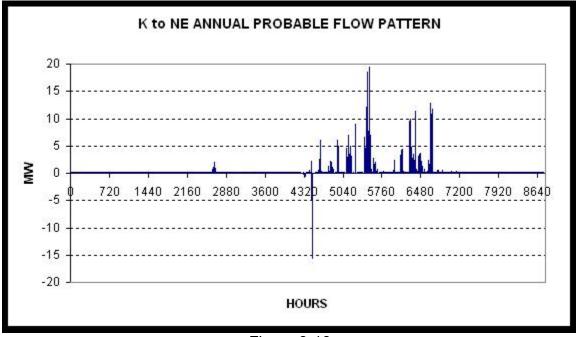


Figure 8-16

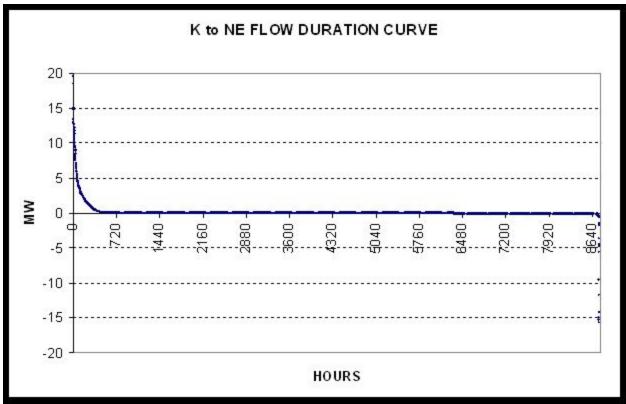


Figure 8-17

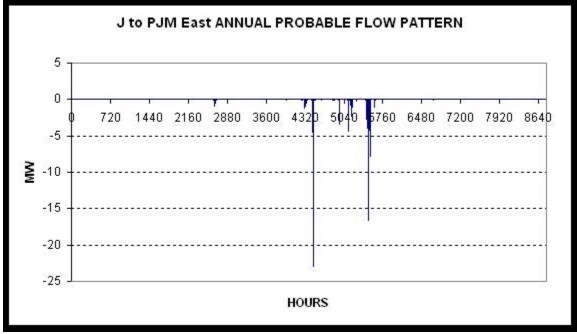


Figure 8-18

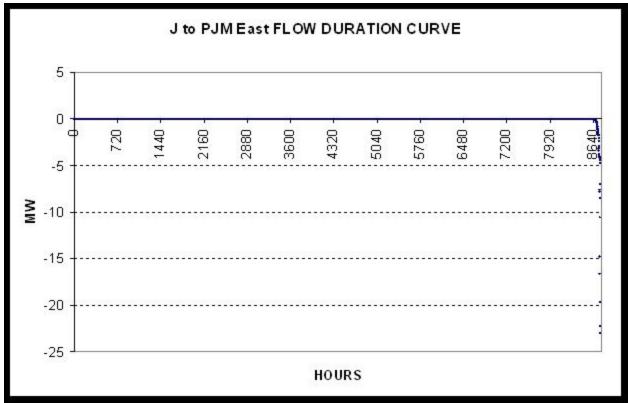


Figure 8-19

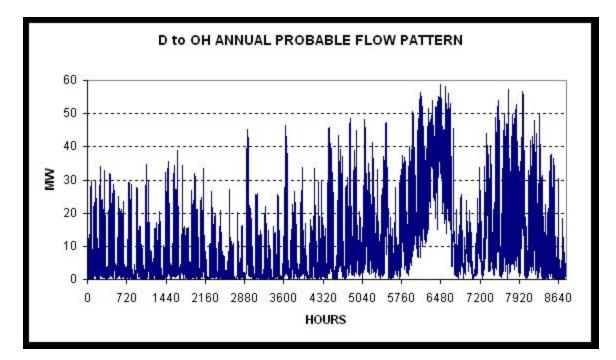


Figure 8-20

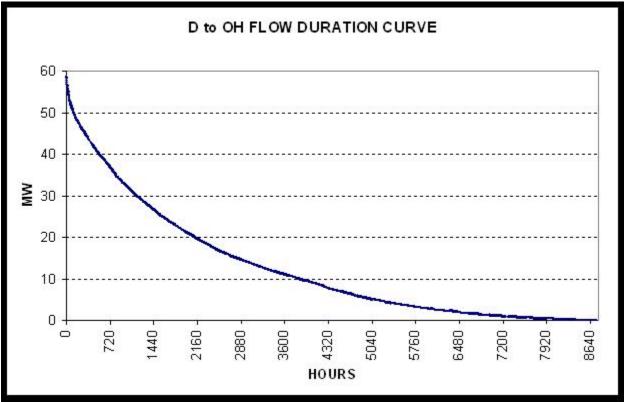


Figure 8-21

8.3 Sensitivity Case:

The calculated LOLE value of 0.2 day/year is higher than the target range. The higher LOLE value could be due to several reasons, such as, insufficient generation capacity, constrained transmission interfaces (both inside NYCA and to outside areas), transmission branch limits or a combination of these.

In order to understand the impact of transmission limits, a sensitivity case with no transmission limits (free flow) inside NYCA (both interfaces and branches) was simulated. The external tie limits were not changed. The result shows, that with no transmission constraints inside NYCA, the LOLE is reduced from 0.2 to 0.14 days/year (Table 8-5), which is closer to the LOLE target, but still higher. One of the reasons is that the reserve margin is about 14.6%, with SCR/EOP included.

Interm	Intermediate Year's LOLE (days/year)						
Zones	As Is	Without NYCA Transmission Limits					
А	-	-					
В	0.09	0.05					
С	-	-					
D	-	-					
E	0.18	0.13					
F	0.00	0.00					
G	0.15	0.10					
Н	0.00	-					
I	0.19	0.11					
J	0.20	0.14					
K	0.15	0.10					
NYCA	0.20	0.14					

 Table 8-5: Sensitivity Case LOLE for Intermediate Year (free flow)

To bring LOLE further down to the acceptable limit, sensitivity cases were run and the results showed that with HQ – D interface limit increased 250 MW, the NYCA LOLE with come down to 0.09.

9 NYCA SYSTEM ADEQUACY DETERMINATION FOR THE HORIZON YEAR

The adequacy of the NYCA system for the horizon year is determined by calculating the LOLE and comparing with reliability target of 0.1 days per year. The anticipated load and new capacity requirement are shown in Table 2-4. Horizon Year consisted of 6 specific Scenarios, as described in Section 2 of this report. The generation additions by zones, for the 6 Scenarios, are listed in Tables 2-5 and 2-6. For Scenarios 5 and 6 with 25% RPS, NYCA average wind curve was used for all on-shore new wind units and average off-shore wind curve, provided by LIPA, was used for all off-shore new wind units. An overall comparison of the reliability of the system with the "as is transmission" is presented first, followed by discussion of various sensitivity cases and the new transmission capability required for those Scenarios which do not meet the target LOLE index.

9.1 LOLE Overview for Six Scenarios

The LOLE index was calculated, similar to the Intermediate Year, for all the 6 Scenarios (Table 9-1). The calculated LOLE values show that the postulated generation development for Scenarios #1 and #5 meet NYCA's target reliability index of 0.1day/year. It may be recalled that for Scenarios #1 and #5, most (85%) of new generation capacity was added to down-state load zones. In Scenario #3 (LOLE above the reliability threshold), the new generation (90%) was distributed proportionally to each zone; there by giving an even distribution across the state. Scenario #4 with a heavy emphasis of depending on imports (75% of new need) shows that the existing transmission constraints adversely impact the reliability of the system. The lowest reliability Scenario is #2 with 50% of generation in the upstate zones and the other 50% from external imports. As far as the major load centers are concerned, this Scenario is like depending upon 100% the new capacity needs from outside. The LOLE value for Scenario #6 (similar to Scenario#2, but with more wind) is a bit higher, because the installed generation capacity considered for wind Scenarios is in up-state. Similar comparison can be made between LOLEs for Scenarios #1 and #5.

In Table 9-1, some of the zonal LOLEs are higher than the NYCA LOLE. Even though we are simulating all the 8760 hours of the year in the GridView, the LOLE is calculated based on load shedding event at the peak hour of the day. This is according to the NYCA definition of LOLE calculation. Similarly for the zonal LOLEs only load shedding at the daily peak hour of that particular zone is counted as a load shedding event. Because, the daily zonal peak hour and NYCA peak hour are not always coincident, the NYCA LOLE result could be slightly different from zonal LOLE. If we calculated LOLE on the basis of 8760 hours, then the total LOLE is sum of the load shedding incidents in all the zones through out the year.

Zones	Horizon Year's LOLE (days/year)									
Zones	Scenario 1 Scenario 2		Scenario 3 Scenario 4		Scenario 5	Scenario 6				
A	-	-	-	-	-	-				
В	0.02	0.68	0.06	0.14	0.04	0.73				
С	-	-	-	-	-	-				
D	-	-	-	-	-	-				
E	0.06	1.47	0.17	0.39	0.07	1.59				
F	-	0.00	0.00	0.01	0.00	-				
G	0.06	1.38	0.18	0.38	0.07	1.48				
Н	-	0.00	0.00	0.00	-	0.00				
	0.06	1.62	0.16	0.39	0.07	1.74				
J	0.06	1.75	0.19	0.44	0.07	1.88				
K	0.04	1.71	0.19	0.47	0.05	1.87				
NYCA	0.06	1.68	0.20	0.44	0.07	1.82				

Table 9-1: Calculated LOLE values for Six Scenarios (Horizon Year)

Scenario 1: In this Scenario, 85% of new thermal generation (4,250 MW) is added to down-state zones, the major load centers. With the As-Is transmission configuration this scenario has a higher level of reliability (indicated by a lower LOLE), with the calculated value of LOLE well below the requirement of 0.1 day/year, when compared to the other scenarios. There is no need for higher transfers from other external areas or internal zones. In fact, the amount new generation added could be reduced by a small amount. No new transmission is suggested for reliability purposes.

Scenario 2: In this Scenario, the calculated LOLE for the NYCA is 1.68 days/year which is above the reliability criterion limit of 0.1days/year. This scenario requires additional transmission to reach design criteria. With only 50% of new thermal generation (2,500 MW) added to up-state and 50% dependency on external area resources, the simulation results showed that the transmission is constraining inside NYCA as well as with the outside areas (PJM to NYCA, HQ to NYCA). New transmission is required to improve the reliability of the system.

The LOLE of zones B and E are much higher in Scenario-2 as compared to Scenario-1, even though 500 MW and 250 MW new generation was added to zones B and E as compared to no new generation in Scenario 1 for these two zones. First of all, Scenario-1 has 1,750 MW more new capacity added within NYCA than in Scenario-2

Scenario-1 has 1,750 MW more new capacity added within NYCA than in Scenario-2 and hence, more is available to share within NYCA, especially with emergency support or flow direction being from down-state to up-state (lower chances of transmission constraints). Secondly, in the GridView runs, the surplus capacity available within any zone is prorated among all the deficient zones, so the zones J and K with much higher load will get a higher share of outside help than zones B and E. The stipulation is to meet the target reliability index for the whole NYCA system, but not necessarily for individual zones, prorating the surplus capacity on zonal load basis is an appropriate allocation approach.

In the Horizon Year, both Zones B and E have a generation deficiency to meet the respective zonal peak loads. With non-coincident peaks of 2,444 MW and 1,662 MW, the generation deficiency is approximately 61% and 36% respectively. With the addition of 500 MW and 250 MW in Scenario-2, the deficiency would be reduced to about 41% and 21%, respectively; but still dependent on support from other zones. Hence, the prorating logic kicks-in to allocate a lower amount of surplus capacity (1700MW less within NYCA, as compared to Scenario-1) resulting in higher LOLEs for these two zones in Scenario-2.

Scenario 3: In this Scenario, 90% of new thermal generation (4,500 MW) is added to all zones in proportion to the respective zonal loads. The LOLE is higher than the 0.1day/yr requirement, but not much higher. The new transmission requirements in this scenario are expected to be modest. This is a somewhat uniform allocation of generation throughout the state and hence, gives an LOLE of 0.1day/year or better for certain zones.

Scenario 4: In this Scenario, only 25% of new thermal generation (1,250 MW) is added within NYCA zones and the remaining 75% of the new generation obtained from external areas. Even though the in-state generation addition is only 1250MW; about 650 MW thermal generation is added to the two dominant load zones J and K. In Scenario-2, no new generation is added in the down-state zones. Hence, the LOLE is much lower as compared to Scenario-2.

Scenario 5: This Scenario is similar to Scenario-1, but with about 540 MW conventional generation capacity (in zones J & K) replaced by 2,100MW wind generation units (off-shore). The contribution from these wind generation units, during the peak hours, is a bit higher than the 540MW of replaced conventional capacity. Hence, the calculated LOLE value is about the same; because of a major part of the new wind capacity is directly connected to zone J.

Scenario 6: This Scenario is similar to Scenario-2, but with about 144 MW conventional generation capacity is replaced by 1,514 MW wind capacity in the upstate; so the LOLE of Scenario 6 is close to value of Scenario 2. Even though wind replacement capacity is about 10 times the conventional generation capacity it is replacing, the reliability benefit is very small due to two main reasons; i) the land or terrestrial based wind farms have lower output during the peak hours with lower annual capacity factors as compared to off-shore wind farms, and ii) upstate location of wind resources are in the middle of zones with lower load.

9.2 NYCA Interface Flows:

The hourly flow (chronological hours) pattern for Volney East interface in all four Scenarios is shown in Figure 9-1. This is a capacity based flow (not an economic generation dispatch flow) and hence, includes the probability of generation outages. The flow pattern for each Scenario is seen to hang down from the limit (as enforced in the GridView simulation). As can be seen in this figure, for Scenario-1 (new generation

in down state), during the months of January and October, the Volney East interface is used below its transfer limit. Whereas for Scenario-2, the flow is almost to the limit all the time.

The actual utilization (probable from the capacity point of view) or **"Usefulness of** *Interface for Reliability"* of the interface can be better observed from a duration type of curve as shown in Figure 9-2. The curve for Scenario-2 is almost a flat curve at the Interface limit, whereas the lowest probability of being limited for Scenario-1 is clearly evident. The areas (usefulness) under these curves are 90.6%, 98.2%, 95.4% and 97.5% for the four Scenarios respectively. The hours (on the x-axis) for different scenarios are non-coincident, for example, hour#10 for Scenario-1 does not necessarily denote the same instant of time for the other scenarios.

Similarly the mean hourly powerflow of other limiting interfaces are shown in chronological and duration curve formats in Figures 9-3 to 9-26. The interface flows of Scenario 5 & 6 are almost identical to the flows of Scenario 1 & 2, so they were not plotted.

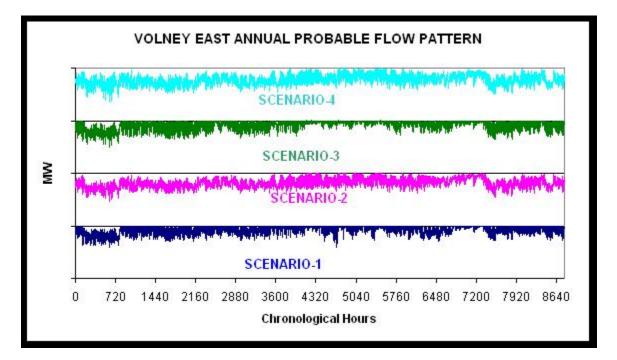


Figure 9-1

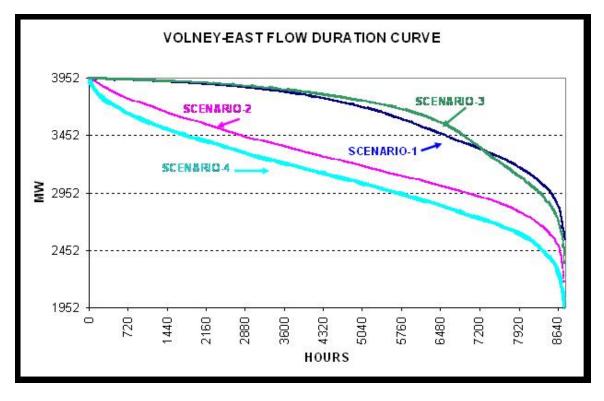


Figure 9-2

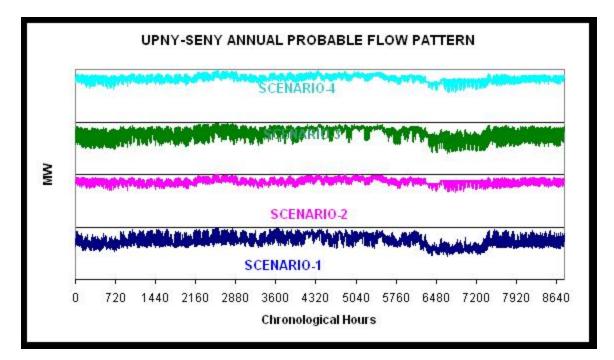


Figure 9-3

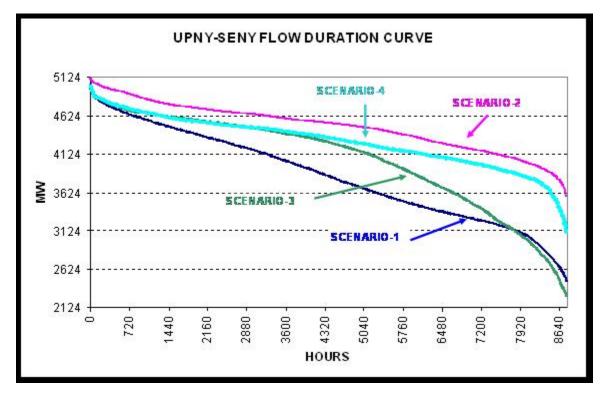


Figure 9-4

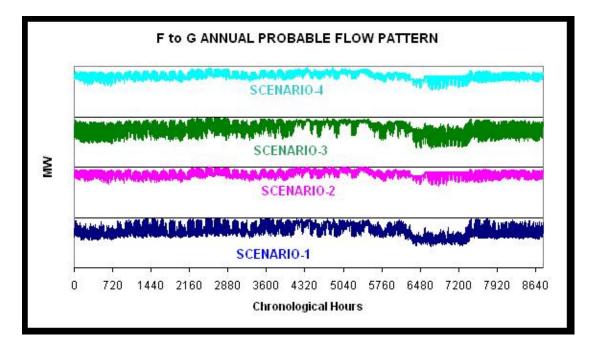


Figure 9-5

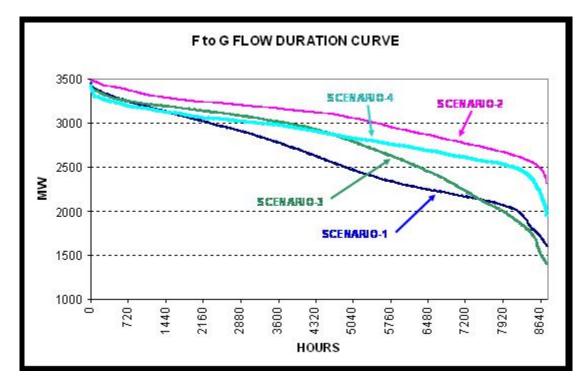


Figure 9-6

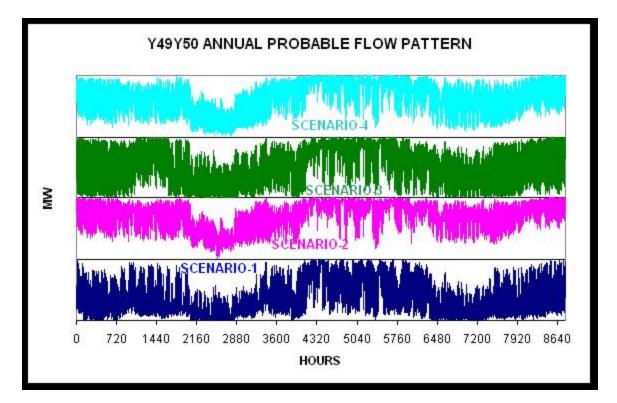


Figure 9-7

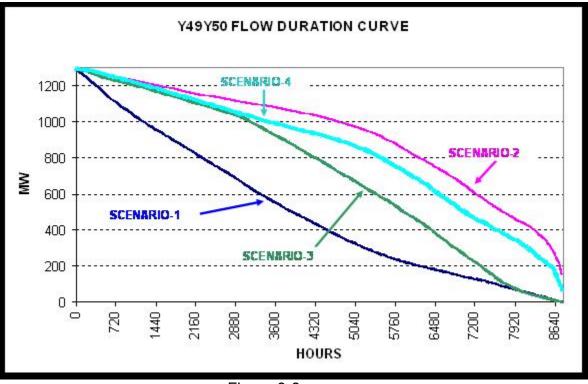


Figure 9-8

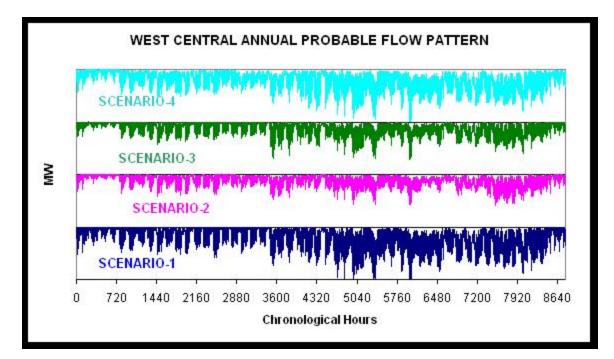


Figure 9-9

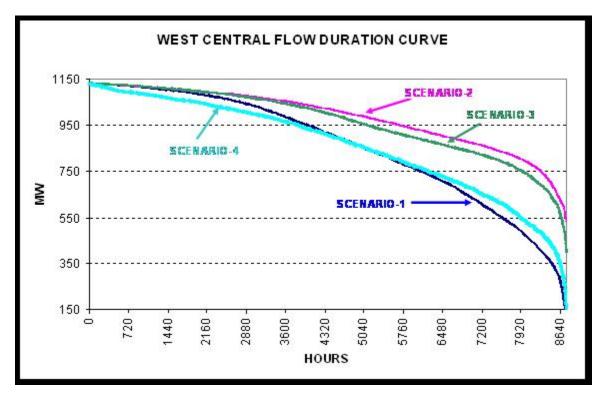


Figure 9-10

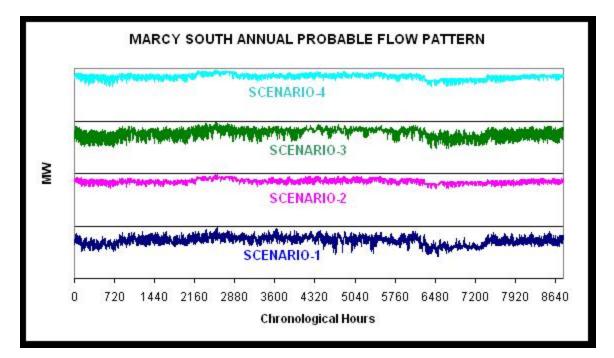


Figure 9-11

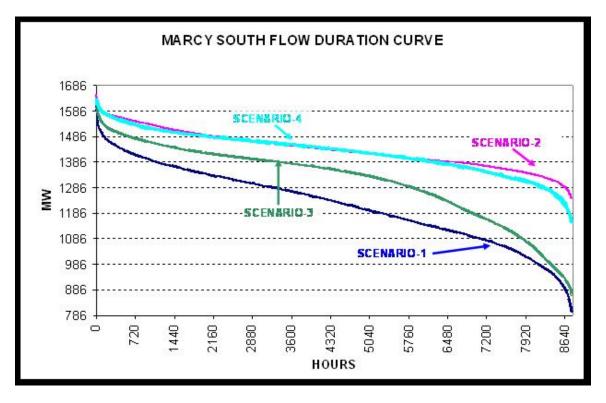


Figure 9-12

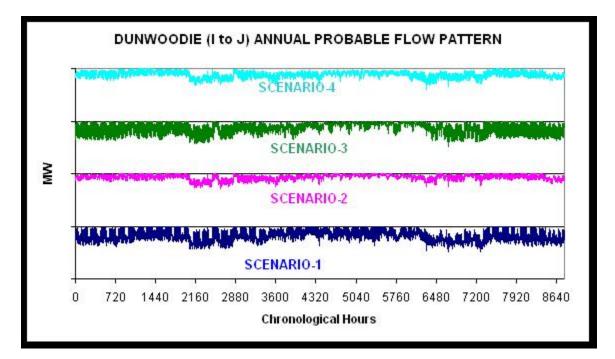


Figure 9-13

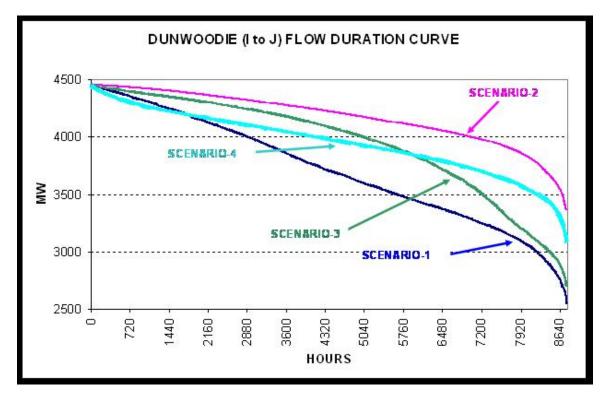


Figure 9-14

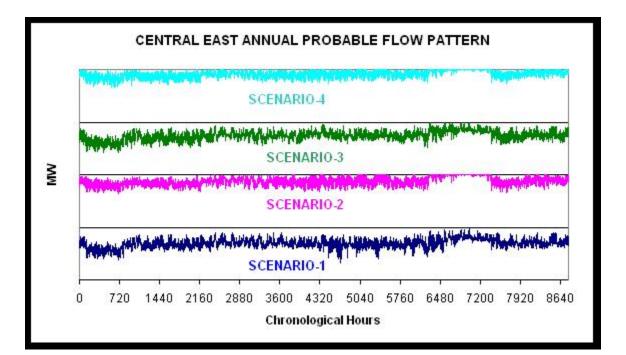


Figure 9-15

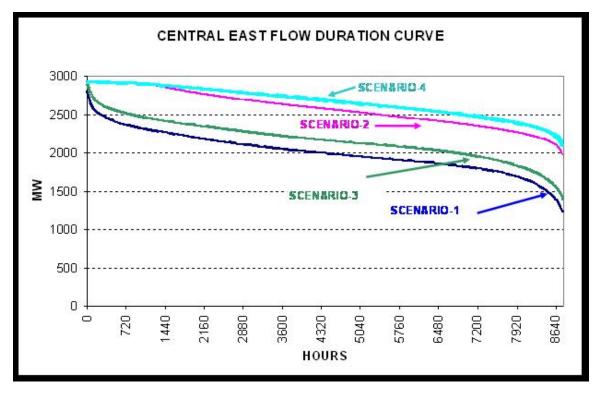


Figure 9-16

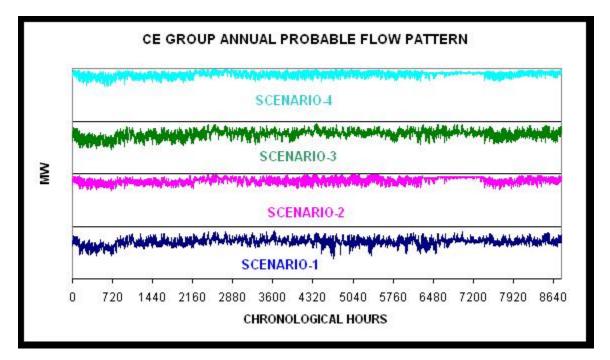


Figure 9-17

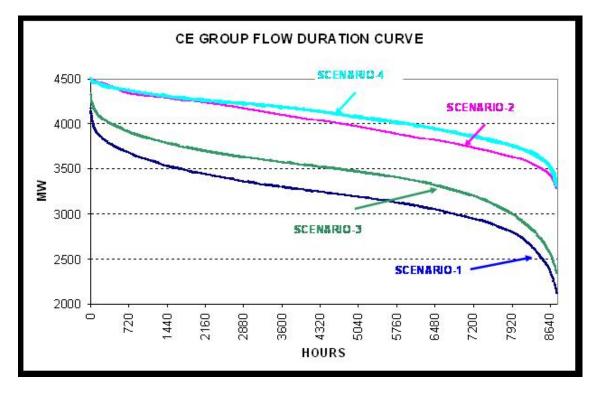


Figure 9-18

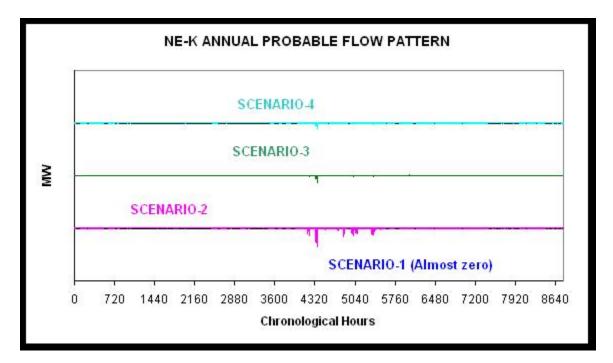


Figure 9-19

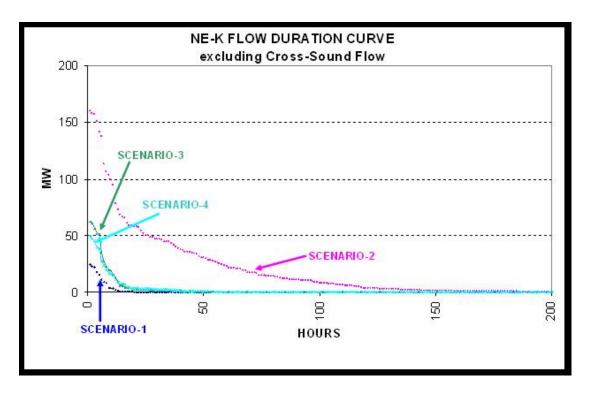


Figure 9-20

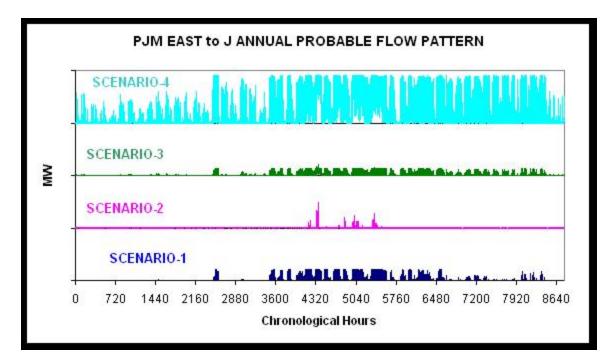


Figure 9-21

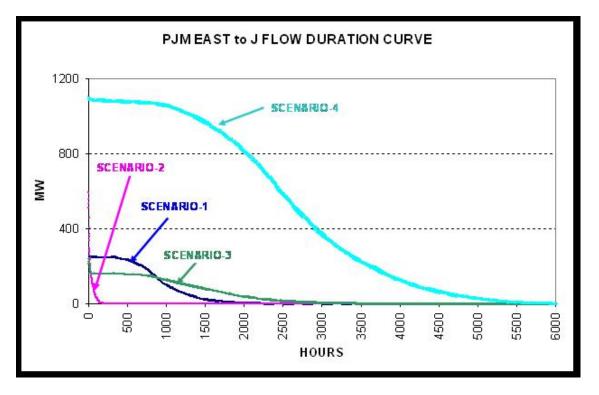


Figure 9-22

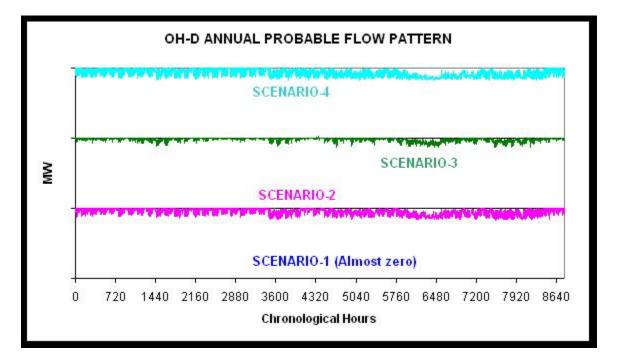


Figure 9-23

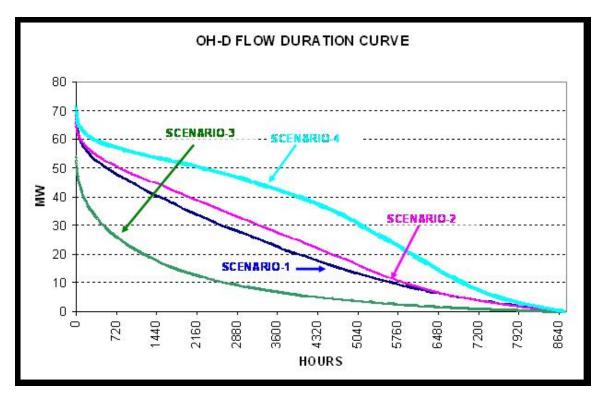


Figure 9-24

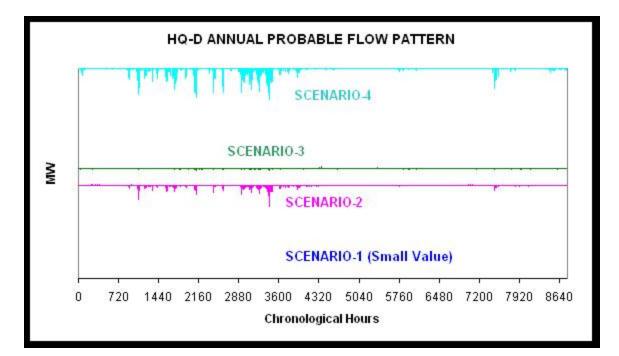


Figure 9-25

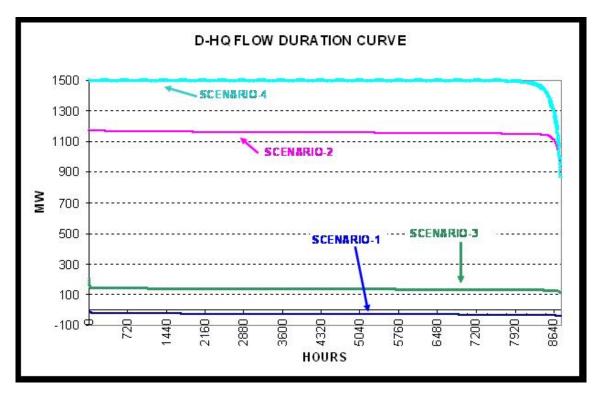


Figure 9-26

9.3 Interface Constraints Overview for Six Scenarios

The existing transmission is constrained due to the flow limits (thermal and/or voltage). Statistics for various transmission constraints, as encountered during the MonteCarlo trials, were calculated. The **number of days of hitting a limit at the daily peak hour** during the one year period was calculated. Considering only the daily peak hour is consistent with the LOLE definition. If we consider all the hours in the year, two factors obscure the effect of interface limit on the LOLE;

- iii) since the instances of interface limit hits during the non-peak hours are counted, the importance of the particular interface may be exaggerated
- ii) averaging over 8760 hours will dilute the importance of the interfaces which are limiting only during the daily peak hours.

The number of days of hitting a limit at the daily peak hours (for the Horizon year and the various interfaces) are shown in Table 9-2. In the last column, an average number of days hitting the limit for the first four scenarios are shown, in the descending order. The averaging is same as saying that the probability of any one of these four scenarios is same or equal. Other arguments for putting different weights for these scenarios can be made. But with a 20+ years horizon, treating various scenarios on an equal basis is a reasonable view, since the actual outcome will be different, but bounded by the four scenarios.

Interface		Hitting Limit (days/year)						
Name	Limit (MW)	# 1	#2	#3	# 4	# 5	#6	Avg for #1-#4
Volney East	3952	187.2	61.2	230.6	24.5	177.548	68.4	125.9
I to K (Y49/Y50)	1293	50.8	120.6	119.0	117.6	53.9	116.4	102.0
I to J	4460	63.0	151.8	118.1	45.2	45.8	147.8	94.5
F to G	3485	34.6	105.7	58.7	37.3	32.7	94.7	59.1
Central East + Fraser Gilboa	2916	0.2	108.3	2.2	118.5	0.3	100.1	57.3
West Central	1134	36.1	85.3	62.6	37.2	35.8	95.9	55.3
UPNY-SENY Open	5124	0.2	38.9	4.2	25.6	0.1	40.2	17.2
Marcy South	1686	0.0	6.7	1.2	7.2	0.0	10.3	3.8
CE Group	4587	0.0	5.9	0.0	8.0	0.0	2.2	3.5
HQ-D	1500	0.0	0.0	0.0	363.7	0.0	56.3	90.9
PJME-J	1200	0.0	0.5	0.0	99.0	0.0	0.5	24.9
NE-K	450	0.0	0.3	0.1	0.0	0.1	0.3	0.1
OH-D	400	0.0	0.0	0.0	0.0	0.0	0.0	0.0

9.4 Additional Transmission Capacity for Scenarios 2, 3, 4 and 6

As mentioned earlier, the reliability criterion is met for Scenarios 1 & 5. The LOLEs for Scenarios 2,3,4 and 6 are above the desired value. In order to estimate the additional transmission capacity needed to reduce the LOLE for these four Scenarios, the GridView simulations were repeated, but without internal NYCA transmission limits (free flow). The recalculated values of LOLE for the four Scenarios (#2, 3, 4 and #6) are 0.1, 0.03, 0.14 and 0.09 days/year, respectively. In those four sensitivity runs all transmission limits between NYCA and external systems were still enforced.

Scenario 2: the sensitivity run showed that most of unreliability is due to internal transmission constraints. By upgrading all transmission limits to the maximum free flow values the LOLE will meet reliability criteria of 0.1.

Scenario 3: the sensitivity run indicated that in this scenario all transmission constraints do not have to be alleviated in order to achieve LOLE of 0.1, mainly due to the fact that new generation was also added in down-state zones. Several sensitivity simulations were run with various transmission interface limits upgrade values and it was found that by increasing all congested internal NYCA interface limits (listed in Table 9-2) by 500 MW the LOLE will be 0.09.

Scenario 4: since only 25% of new generation capacity was added inside NYCA, even with all internal transmission upgrades the LOLE value of 0.14 is still above the limit. To identify additional MW amount that NYCA needs in order to have LOLE value down to 0.1, several sensitivities were simulated and results showed that with additional 250 MW generation's capacity NYCA LOLE would be 0.1 days/year. So in addition to all NYCA transmission upgrades HQ-D interface would need to be upgrade to 1750 MW limit in order to achieve the LOLE of 0.1 days/year.

Scenario 6: similar to scenario 2 by upgrading all transmission limits to the maximum free flow values the LOLE will be 0.09.

The LOLE of all above scenarios are shown in Table 9-3.

				Horizon Year LO	LE (days/yea	ar)		
	Scenario 2		Scenario 3		Scenario 4		Scer	nario 6
Zones	With NYCA Transmission Limits	Without NYCA Transmission Limits	With NYCA Transmission Limits	With NYCA congested Transmission Limits increased 500 MW	With NYCA Transmission Limits	Without NYCA Transmission Limits and HQ-D limit of 1750 MW	With NYCA Transmission Limits	Without NYCA Transmission Limits
А	-	-	-	-	-	-	-	-
В	0.68	0.04	0.06	0.02	0.14	0.03	0.73	0.03
С	-	-	-	-	-	-	-	-
D	-	-	-	-	-	-	-	-
E	1.47	0.09	0.17	0.07	0.39	0.10	1.59	0.08
F	0.00	-	0.00	0.00	0.01	-	-	-
G	1.38	0.10	0.18	0.08	0.38	0.10	1.48	0.09
Н	0.00	-	0.00	0.00	0.00	-	0.00	-
I	1.62	0.08	0.16	0.07	0.39	0.08	1.74	0.08
J	1.75	0.10	0.19	0.08	0.44	0.10	1.88	0.09
K	1.71	0.09	0.19	0.08	0.47	0.09	1.87	0.09
NYCA	1.68	0.10	0.20	0.09	0.44	0.10	1.82	0.09

Table 9-3: LOLE of Scenarios 2, 3, 4 and 6 with Sensitivity

9.5 Interface Upgrades Priority

In order to identify most cost effective transmission upgrade for the reliability purpose (LOLE of 0.1 days/year), several criteria are used to rank individual transmission upgrades needs for each scenarios: number of days hitting limit, maximum additional MW needed and the usefulness of additional MW upgrades.

The duration curves of all interface flows above their limits (normalized to percentage of interface limit) are shown in Figure 9-27 for scenario 2, Figure 9-28 for scenario 3 and Figure 9-29 for scenario 4.

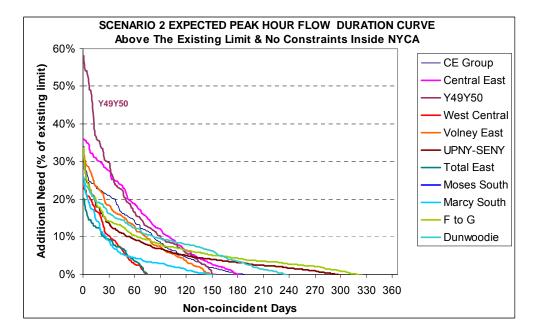


Figure 9 - 27 Expected Interface Flows above Their Limit for Scenario-2

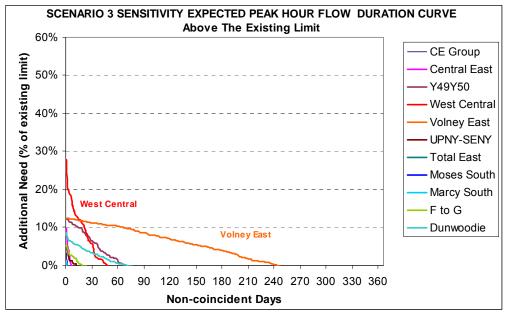


Figure 9-28 Expected Interface Flows above Their Limit for Scenario-3

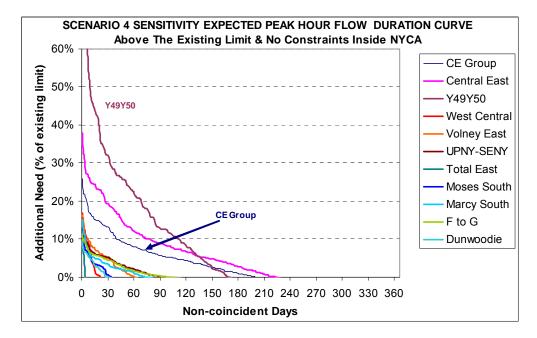


Figure 9-29 Expected Interface Flows above Their Limit for Scenario-4

The maximum additional MW transmission upgrades needed with their utilization/ usefulness are calculated, ranked and shown in Table 9-4 for scenario 2, Table 9-5 for scenario 3 and Table 9-6 for scenario 4.

The usefulness number is a measure of how much additional MW was used on average among those hours that flow went above the existing limit. For example the usefulness of 42.3% for West Central interface in Table 9-4 means on average 42.3%*265=112 MW additional MW is needed for 73 days (or daily peak hours).

INTERFACE	MAX-FLOW	LIMIT	Additional Need			
INTERFACE	(MW)	(MW)	MW	Usefulness *		
West Central	1,399	1134	265	42.3%		
Total East	7,544	6270	1,274	40.4%		
Central East	3,963	2916	1,047	39.0%		
I to J	5,595	4460	1,135	34.5%		
Volney East	5,266	3952	1,314	34.5%		
CE Group	6,047	4587	1,460	31.7%		
Y49Y50	2,045	1293	752	29.3%		
Marcy South	2,121	1686	435	21.9%		
F to G	4,656	3485	1,171	20.0%		
UPNY-SENY	6,859	5124	1,735	17.7%		
Moses South	1,751	1971	(220)	NA		

	MAX-FLOW	LIMIT	Additio	nal Need
INTERFACE	(MW)	(MW)	MW	Usefulness *
Marcy South	1,701	1686	15	100.0%
CE Group	4,737	4587	150	56.4%
Volney East	4,444	3952	492	54.0%
Y49Y50	1,452	1293	159	49.1%
Central East	3,195	2916	279	45.5%
F to G	3,672	3485	187	40.5%
I to J	4,846	4460	386	35.4%
UPNY-SENY	5,373	5124	249	34.3%
West Central	1,450	1134	316	31.1%
Total East	4,984	6270	(1,286)	NA
Moses South	593	1971	(1,378)	NA

Table 9-5: Maximum MW Interface Upgrades for Scenarios 3

Table 9-6: Maximum MW Interface Upgrades for Scenarios 4

	MAX-FLOW	LIMIT	Additio	nal Need
INTERFACE	(MW)	(MW)	MW	Usefulness *
Total East	6,726	6270	456	72.4%
I to J	4,884	4460	424	37.6%
West Central	1,326	1134	192	37.5%
Moses South	2,199	1971	228	33.7%
Volney East	4,600	3952	648	31.0%
F to G	3,884	3485	399	26.4%
UPNY-SENY	5,826	5124	702	26.3%
CE Group	5,772	4587	1,185	25.5%
Y49Y50	2,265	1293	972	25.1%
Central East	4,022	2916	1,106	24.6%
Marcy South	1,943	1686	257	21.9%
HQ - D	1,750	1500	550**	99%

To understand transmission upgrade needs, the results of all four scenarios were put together (scenarios 5 and 6 are very similar to scenarios 1 and 2, hence were not included) by various measures. Table 9-7 shows the interface ranking based on number of days hitting limit. Table 9-8 shows the maximum additional MW needs for each interface and average additional MW needs based of all four scenarios, since each of

scenarios has equal probability. Since scenario 1 does not require any transmission upgrade in order to meet LOLE requirement, the average additional MW needs for scenarios (2-4), that require transmission upgrade were also computed and shown in the table. Similarly Table 9-9 shows utilization percentage of additional MW needs for each interface and average value of all four scenarios and average value for only 3 upgrade –required scenarios (2-4).

Priority Ba	Priority Based on Number of Days Hitting the Limit									
	#1	#2	#3	#4						
I to J	2	1	3	3						
Y49Y50	3	2	2	2						
Volney East	1	6	1	7						
Central East	7	3	7	1						
F to G	5	4	5	4						
West Central	4	5	4	5						
UPNY-SENY	6	7	6	6						
Marcy South	-	8	8	9						
CE Group	-	9	-	8						

Table 9-7: Priority based on number of Days Hitting the Limit

 Table 9-8: Priority based on MW Interface Upgrade Need

	Priority Based on new MW Need								
Interface	#1	#2	#3	#4	AVG (1-4)	AVG (2-4)			
CE Group	0	1,460	150	1,185	699	932			
UPNY-SENY	0	1,735	249	702	672	895			
Volney East	0	1,314	492	648	613	818			
Central East	0	1,047	279	1,106	608	811			
I to J	0	1,135	386	424	486	648			
Y49Y50	0	752	159	972	471	628			
F to G	0	1,171	187	399	439	586			
Total East	0	1274	0	456	432	576			
West Central	0	265	316	192	193	258			
Marcy South	0	435	15	257	177	236			
Moses South	0	0	0	228	57	76			
HQ - D	0	0	0	550	138	183			

	Priority Ba	sed on Util	ization abo	ve Existin	g Limit	
Interface	#1	#2	#3	#4	AVG (1-4)	AVG (2-4)
Marcy South	0%	21.9%	100.0%	21.9%	36.0%	47.9%
Volney East	0%	34.5%	54.0%	31.0%	29.9%	39.8%
CE Group	0%	31.7%	56.4%	25.5%	28.4%	37.9%
Total East	0%	40%	0%	72.4%	28.2%	37.6%
West Central	0%	42%	31%	37.5%	27.7%	37.0%
Central East	0%	39%	46%	24.6%	27.3%	36.4%
I to J	0%	35%	35%	37.6%	26.9%	35.8%
Y49Y50	0%	29%	49%	25.1%	25.9%	34.5%
F to G	0%	20%	41%	26.4%	21.7%	29.0%
UPNY-SENY	0%	18%	34%	26.3%	19.6%	26.1%
Moses South	0%	0%	0%	33.7%	8.4%	11.2%
HQ - D	0%	0%	0%	99%	25%	33.0%

Table 9-9: Priority based on Utilization of MW Interface Upgrade

9.6 Key Findings

The need for long term expansion of the NYCA transmission grid is highly dependent on assumptions of load growth, location and magnitude of future resource capacity additions, and assumed emergency assistance from neighboring control areas.

New resource capacity, assumed in Downstate (Scenario 1), was shown to mitigate or eliminate the need for transmission expansion for the study horizon (without consideration of aged infrastructure, which is considered in Phase II). Conversely assumption with new resource capacity in Upstate (Scenario 2), showed the need to expand the transmission system to satisfy system reliability requirements. Even with 90% of new resource capacity added to all zones in proportion to the respective zonal loads (Scenario 3) there is need to upgrade the transmission system in order to meet system reliability requirement. Relying on external import for new resource capacity will require not only NYCA transmission system upgrade but also import/export interfaces.

10 REFERENCES

- [1] 2009 Reliability Needs Assessment Final Report, issued by the New York Independent System Operator, January 13, 2009.
- [2] New York Controlled Area Installed Capacity Requirements for the Period May 2009 through April 2010. Technical Study Report issued by the New York State Reliability Council, LLC, December 5, 2008.
- [3] NYISO Transmission Expansion and Interconnection Manual, September 1999.
- [4] IEEE Reliability Test System. IEEE Transactions on PAS, Vol. PAS-98, No. 6, 1979. pp. 2047- 2054.
- [5] The IEEE Reliability Test System Extensions to and Evaluation of the Generating System. IEEE Transactions on Power System, Vol. PWRS-1, No. 4, November 1986. pp 1-7.
- [6] Roy Billinton. Power System Reliability Evaluation. Gordon and Breach. 1970.

This page intentionally left blank

