Load Forecast Methodology

John Pade NYISO

ICAP WG October 25, 2005

Draft - For Discussion Only

NYCA — Coincident Peak vs CTHI Low=63, Med=65, High=67 Year=2003

Draft - For Discussion Only

NYCA — Coincident Peak vs CTHI Low=63, Med=65, H gh=67 Year=2004

Draft - For Discussion Only

Dates of NYCA Peaks 1975 - 2005								
<u>Year</u>	<u>Peak</u>	<u>Mon</u>	<u>Day</u>	<u>Year</u>	<u>Peak</u>	<u>Mon</u>	<u>Day</u>	
1975	20,001	8	1	1990	24,985	7	19	
1976	19,262	6	24	1991	26,839	7	23	
1977	21,214	7	21	1992	24,951	8	26	
1978	20,418	8	16	1993	27,139	7	8	
1979	20,402	8	2	1994	27,065	7	21	
1980	21,742	7	21	1995	27,206	8	4	
1981	21,437	7	9	1996	25,585	7	18	
1982	21,444	7	19	1997	28,699	7	15	
1983	21,842	9	6	1998	28,161	7	22	
1984	21,870	6	11	1999	30,311	7	6	
1985	22,926	8	15	2000	28,138	6	26	
1986	22,942	7	7	2001	30,982	8	9	
1987	24,427	7	24	2002	30,664	7	29	
1988	25,720	8	12	2003	30,333	6	26	
1989	25,390	7	27	2004	28,433	6	9	
				2005	32,075	7	26	

June Peaks	5
July Peaks	17
August Peaks	8
September Peaks	<u>1</u>
	31

2004 Forecast = 31,800 MWW/N = 31,400 MW

Draft - For Discussion Only

Draft - For Discussion Only

Draft - For Discussion Only

Would 2004 "July" Peak Have Been Higher than June 9 Peak?

- Determine Most Likely Peak Period
- Estimate effect of MLPP vs. non-MLPP occurrence

Draft - For Discussion Only

Coefficients of Peak vs. CTHI Regressions

Summary of Regressions of Peak vs CTHI 2003 2004 2005

Jul 11 - Aug 16	74.14338	-144.63983	615.0131
DayofWeek	3217.909	3049.1329	3286.402
4-Jul	-4172.525	-3464.6791	-3432.028
CTHI <=65	117.1702	84.630351	189.1414
CTHI > 65	403.9754	404.79266	377.1632
Blackout	-1805.339	-	-

Regressions Through the Origin

Jul 11 - Aug 16	61.6515	-160.79597	627.9806
DayofWeek	3261.497	2994.336	3294.006
4-Jul	-4123.008	-3342.6753	-3449.834
CTHI <=65	267.1154	279.48608	275.3053
CTHI > 65	234.8994	177.45693	286.2719
Blackout	-1730.715	_	_

Total MW/Degree

•2003: 502.0 – 521.2

•2004: 457.0 – 490.0

 $\bullet 2005: 561.9 - 566.3$

- Jul11 Aug6 insignificant for 2003
- weakly significant for 2004
 - significant for 2005

Would 2004 "July" Peak Have Been Higher than June 9 Peak?

- Probably not. The low 2004 peak was most likely caused by the absence of hot weather in the Most Likely Peak Period.
- Normalization for 2003 and 2004 did not reveal any additional load associated with peaks occurring in the Most Likely Peak Period
- Any additional load in the MLPP is most likely associated with more extreme CTHI's, longer heat waves, and/or seasonal heat wave build up effects.
- Also aggravated by extreme difference between actual (28,433 MW) and W/N (31,400 MW)