Progress Report Study Approach and Assumptions

Presentation to NYISO Installed Capacity Working Group Christopher D. Ungate, Senior Principal Consultant January 22, 2013

Topics

- Technology screening results
- Responses to comments on Approach and Assumptions presentation at December 3, 2012, ICAP Working Group meeting

Note: Abbreviations Summary provided on last slide

Revised Criteria for Screening Technologies

- Can meet environmental requirements
- Commercially available
- Plant scale
- Available to most developers
 - Excludes resources that have limited availability, e.g., hydro, MSW, LFG
- COD no later than Capability Year beginning May 1, 2016
- Dispatchable; has peaking or cycling characteristics
 - Capable of cycling off during off-peak hours on a daily basis
 - In NYC, tax abatement available if unit qualifies as a peaking unit (annual average of less than 18 hours per start)
 - Starts and achieves minimum load within an hour
- Reflecting the above factors, the plant would have 100-400 MW, depending on technology
 - Need MWs of at least two generators (CT, ST or RICE driven) to cover common costs

Application of Technology Screening Criteria

- These technologies will not be reviewed in more detail:
 - Intermittent power resources (wind, solar) because they are not dispatchable and have low Unforced Capacity Percentage in summer (for wind) and winter (for solar).
 - Dispatchable renewable technologies (hydropower, biomass, MSW, LFG) because they have limited fuel availability and are not available to most developers
 - Fuel cells and storage technologies because they are not economically viable or available to most developers (e.g., CAES)
 - Nuclear technologies because of long lead times and dispatchability
 - Coal technologies because of long lead times, emissions requirements, and commercial status of carbon sequestration and storage technologies
- Several natural gas technologies have industry proven designs and have been reviewed in more detail:
 - Simple cycle combustion turbines
 - Combined cycle
 - Reciprocating internal combustion engines

Gas Technologies Reviewed in More Detail

(to date)

Units Technologies

- 1 Siemens SGT6-PAC5000F(5) Simple Cycle
- 1 Siemens SGT6-PAC5000F(5) Simple Cycle
- 1 Siemens SGT6-PAC5000F(5) 1x1x1 CC w/TC2F STG
- 2 General Electric LMS100-PA
- 2 General Electric LMS100-PA
- 12 Wartsila 18V50SG

Notes

Catalyst

No Emission Controls SCR/CO Catalyst w/tempering air

SCR/CO Catalyst; wet cooling, no duct firing No Emission Controls; wet cooling SCR/CO Catalyst; wet cooling

Plant Rating at Heat Rate (Btu/kWh) HHV	Full Load (Net) Capacity (MW)
10,641	222.5
10,641	222.5
6,909	339.0
9,062	206.3
9,082	205.8
8,370	220.2

- Evaluated for Albany and NYC at ISO conditions
 - 59 °F dry bulb; 51.5 °F wet bulb; 60% relative humidity
 - Altitude of 275 ft for Albany and 20 feet for NYC
- Technologies chosen for evaluation are representative of frame and aeroderivative combustion turbines and Reciprocating Internal Combustion Engines (RICE) used in recent US projects
 - Frame: Siemens SGT6-5000F(5) in Simple or Combined Cycle
 - Aeroderivative: GE LMS100 PA
 - RICE: Wartsila 18V50SG
- Capacity and heat rate values shown above are for Albany
 - NYC values are similar

Emissions Rates of Reviewed Gas Technologies

				Plant full load emissions rate (lb/hr)					
# Un	nits	s Technologies	Notes	NOx	VOC	СО	PM `	CO2e	
1		Siemens SGT6-PAC5000F(5) - Simple Cycle	No Emission Controls	75.5	5.8	45.9	10.6	271,778	
1		Siemens SGT6-PAC5000F(5) - Simple Cycle	SCR/CO Catalyst w/tempering air	21.3	4.5	10.4	16.1	271,780	
1		Siemens SGT6-PAC5000F(5) - 1x1x1 CC w/TC2F STG	SCR/CO Catalyst; wet cooling, no duct firing	17.1	4.5	10.4	11.9	271,627	
2	2	General Electric LMS100-PA	No Emission Controls; wet cooling	107.3	9.5	497.8	12.4	223,949	
2	2	General Electric LMS100-PA	SCR/CO Catalyst; wet cooling	17.0	4.8	24.9	16.8	224,758	
12	2	Wartsila 18V50SG	Catalyst	31.8	57.6	58.1	65.8	209,511	

- Emissions based on 100% load and 100% natural gas for Albany, and excludes start-up and shut-down emissions
 - NYC emissions rates are similar
- PM emission rates include both filterable and condensable particulate matter. All PM emitted is assumed to be PM2.5
- CO2e (CO2 equivalents) emissions includes total greenhouse gases taking into account each greenhouse gas's global warming potential
 - To exceed the Major Source threshold for CO2e emissions, only 736 955 hours of full load annual operation is required in Albany, depending on technology
 - Equivalent to a capacity factor of 8% 11%
 - We have assumed that all technologies will qualify as Major Sources, requiring an evaluation of whether the emissions will exceed LAER and PSD thresholds for Non-Attainment and PSD Pollutants

New York Air Non Attainment Areas

LAER and PSD Operating Hour Thresholds for Non-Attainment and PSD Pollutants Albany

			Non-Attainment Pollutants				PSD Pollutants			
			NOx VOC		00	CO	PM	CO2e		
			LAER	PSD	LAER	PSD	PSD	PSD	PSD	
		Major Source Threshold (tpy):	100	40	50	40	100	10	100,000	
# Units	Technologies	Notes								
1	Siemens SGT6-PAC5000F(5) - Simple Cycle	No Emission Controls	2,651	1,060	8,760	8,760	4,353	1,895	736	
1	Siemens SGT6-PAC5000F(5) - Simple Cycle	SCR/CO Catalyst w/tempering air	8,760	3,760	8,760	8,760	8,760	1,244	736	
1	Siemens SGT6-PAC5000F(5) - 1x1x1 CC w/TC2F STG	SCR/CO Catalyst; wet cooling, no duct firing	8,760	4,687	8,760	8,760	8,760	1,679	736	
2	General Electric LMS100-PA	No Emission Controls; wet cooling	1,174	470	8,760	8,417	402	1,608	893	
2	General Electric LMS100-PA	SCR/CO Catalyst; wet cooling	8,760	4,696	8,760	8,760	8,035	1,109	890	
12	Wartsila 18V50SG	Catalyst	6,293	2,517	1,735	1,388	3,445	304	955	

Exceeding threshold triggers Non-Attainment Area requirements for pollutant: LAER, emissions offsets, and an analysis of alternative sites, sizes, environmental control techniques and technologies.

Exceeding threshold triggers PSD requirements for pollutant: BACT, air quality impact analysis, and additional impact analysis.

Does not exceed Non-Attainment Area or PSD thresholds.

Sargent & Lundy

 The annual hours of operation for Simple Cycle turbines with No Emissions Controls will likely exceed the threshold triggering LAER for NOx

8

- The annual hours of operation for RICE will likely exceed the threshold triggering LAER for VOCs
- The annual operating hours for all alternatives will likely exceed the thresholds triggering BACT for NOx, PM, and CO2e

LAER and PSD Operating Hour Thresholds for Non-Attainment and PSD Pollutants New York City

			Non-Attainment Pollutants					PSD Pollutants		
			NOx		VC	VOC		PM		CO2e
			LAER	PSD	LAER	PSD	LAER	PSD	PSD	PSD
		Major Source Threshold (tpy):	100	40	50	40	100	10	100	100,000
# Units	Technologies	Notes								
1	Siemens SGT6-PAC5000F(5) - Simple Cycle	No Emission Controls	-	-	-	-	-	-	-	-
1	Siemens SGT6-PAC5000F(5) - Simple Cycle	SCR/CO Catalyst w/tempering air	-	-	-	-	-	-	-	-
1	Siemens SGT6-PAC5000F(5) - 1x1x1 CC w/TC2F STG	SCR/CO Catalyst; dry cooling, no duct firing	2,903	290	8,760	1,110	8,760	1,676	8,760	730
2	General Electric LMS100-PA	No Emission Controls; dry cooling	295	29	5,285	529	8,760	1,608	404	897
2	General Electric LMS100-PA	SCR/CO Catalyst; dry cooling	2,949	295	8,760	1,057	8,760	1,192	8,073	894
12	Wartsila 18V50DF	Catalyst	1,447	145	1,245	124	2,945	294	3,803	1,049
		-								

Exceeding threshold triggers Non-Attainment Area requirements for pollutant: LAER, emissions offsets, and an analysis of alternative sites, sizes, environmental control techniques and technologies.

Exceeding threshold triggers PSD requirements for pollutant: BACT, air quality impact analysis, and additional impact analysis.

Does not exceed Non-Attainment Area nor PSD thresholds.

- Simple cycle frame technology was not evaluated for New York City
- The annual hours of operation for the simple cycle aeroderivative with no emissions controls will likely exceed the threshold triggering LAER for NOx and VOC
- The annual hours of operation for RICE will likely exceed the threshold triggering LAER for NOx, VOC, and PM
- The annual operating hours for all alternatives will likely exceed the thresholds triggering BACT for CO2e

Technologies Eliminated from Further Evaluation

- The permitting process for LAER and BACT will likely eliminate:
 - Simple cycle turbines with No Emission Controls
 - Analysis of alternative environmental control technologies would likely conclude that controls could be added
- The permitting process for BACT will likely eliminate:
 - Simple cycle frame turbines with Emission Controls
 - Analysis of BACT would likely conclude that Combined Cycle frame turbines can reduce CO2e emissions per MWh

Technologies Proposed for Evaluation

- Technologies proposed for evaluation in the DCR study:
 - General Electric LMS100 PA
 - Simple Cycle aeroderivative combustion turbine
 - 2 unit configuration
 - Siemens SGT6-PAC5000F(5)
 - Combined Cycle based on frame combustion turbine
 - 1x1x1 configuration
 - Both technologies must have SCR and CO catalyst
 - Purchase of NOx ERCs required in NYC
- RICE technology can be included for evaluation in the DCR study recognizing that obtaining an emissions permit will be more challenging than for Combined Cycle and aeroderivative technologies
 - Under New York LAER regulations, an analysis of alternative "environmental control techniques and technologies" is required for proposed major sources of NOx and/or VOC emissions
 - This analysis may conclude that aeroderivative turbines could provide the same duty with less emissions, excluding RICE from consideration
 - RICE will be required to have NOx and CO catalyst and to purchase ERCs (VOC, NOx and possibly PM in NYC; VOC and possibly NOx in Albany)

Responses to Comments on December 3 Presentation on Approach and Assumptions

- As with previous DCRs, any stakeholder wishing to provide actual cost or other data for consideration can do so.
- We previously evaluated 4 vs. 2 vs. single unit plants (for 2007 DCR) and determined that capital cost per kW was not significantly reduced by adding units to a 2-unit facility
- Comments on technology screening criteria were addressed in previous slides
 - Operations more than 16 hours per day revised
 - Scalable, generic, and readily available technology agreed
 - Efficiency of reciprocating internal combustion engines provided
- Incremental capital cost of dual fuel capability will be provided
- Cost of new entry in both attainment and non-attainment areas in Zone G will be provided for consideration
 - Labor rates, emissions control requirements, and transmission lines available for interconnection vary by county within Zone G, and will impact costs

Abbreviation Summary

- AF Attachment Facility
- A&G Administrative & General
- BACT Best Available Control Technology
- CAES Compressed Air Energy Storage
- CC Combined Cycle
- CO Carbon Monoxide
- CO2 Carbon Dioxide
- CO2e Carbon Dioxide Equivalents
- COD Commercial Operation Date
- CT Combustion Turbine
- CTG Combustion Turbine Generator
- CTO Connecting Transmission Owner
- CY Class Year
- DCR Demand Curve Reset
- ERC Emissions Reduction Credit
- GE General Electric
- GIS Gas Insulated Substation
- GHG Green House Gas
- HHV High Heating Value
- ISO International Organization for Standardization

- kV Kilovolt
- kW Kilowatt
- LAER Lowest Achievable Emissions Rate
- LFG Landfill Gas
- LIPA Long Island Power Authority
- MSW Municipal Solid Waste
- MW Megawatt
- NOx Nitrogen Oxides
- NYC New York City
- PM Particulate Matter
- POI Point of Interconnection
- PSD Prevention of Significant Deterioration
- RICE- Reciprocating Internal Combustion Engine
- SA Stand Alone
- SCR Selective Catalytic Reduction
- SUF System Upgrade Facilities
- SDU System Deliverability Upgrades
- STG Steam Turbine Generator
- TC2F Tandem Compound Dual Flow
- tpy Tons per year
- VOC Volatile Organic Compounds