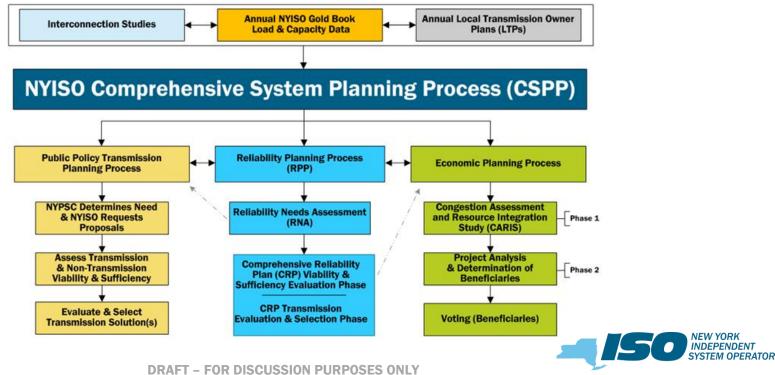
Congestion Assessment and Resource Integration Study (CARIS)

Zach Smith Vice President, System and Resource Planning

Timothy Duffy Manager, Economic Planning

CARIS Public Forum

May 1, 2018



Agenda

- NYISO Planning
- CARIS Objectives
- CARIS Process
- 2017 CARIS Phase 1 Report
- Next Steps Congestion Relief Solutions

NYISO Planning

+++

NYISO Planning Activities

- Reliability Planning Studies (RNA/CRP)
- Economic Planning Studies (CARIS)
- Public Policy Transmission Planning Studies (PPTPP)
- Interregional Planning
- Interconnection Studies (Feasibility, System Reliability Impact and Class-Year Facilities studies)
- Transmission Expansion and Reinforcement Studies (System Impact Studies)

What is CARIS?

- A process designed to evaluate transmission system efficiency in order to facilitate the development of costeffective, economic transmission projects with cost-recovery through the NYISO's billing and settlement processes.
- One measure of "transmission system efficiency" is system congestion cost which is the cost of being unable to dispatch the lowest-priced generation available due to limitations on the transmission system

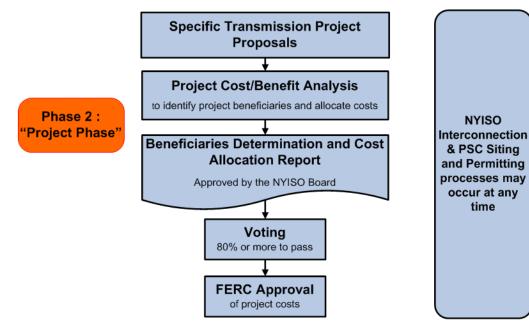
What does CARIS provide?

- Information to interested parties, *e.g.*, transmission developers, policymakers
 - On where constraints exist on the New York State bulk power system leading to congestion
 - On the potential benefits and costs to alleviating congestion through investments in transmission, generation, demand response or energy efficiency
- A means for Developers to propose and for benefitting entities to approve *specific* transmission projects to relieve congestion



Current CARIS Process Limitations

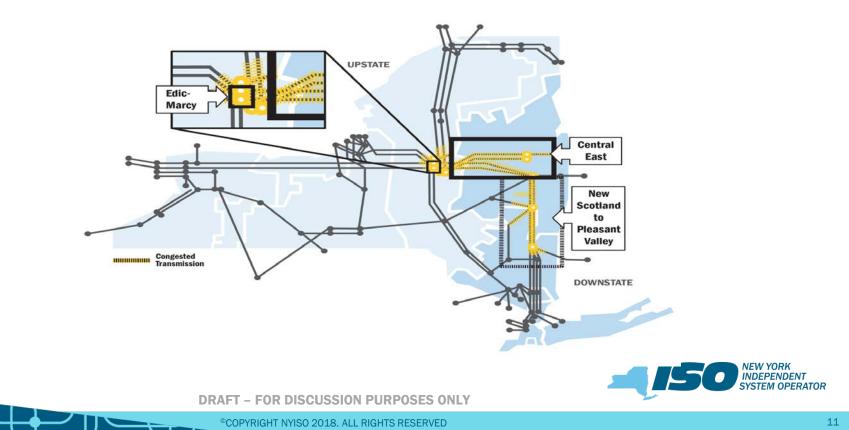
- Project benefits utilized in determining eligibility for regulated cost recovery are restricted to Production Cost Savings
- Other benefits, *e.g.*, reduced energy and capacity payments, reduced emission levels, lower transmission losses, are calculated and reported but not included as in the benefits/costs ratio for cost recovery.
- Other quantifiable benefits, *e.g.*, avoided transmission refurbishment costs, increased tax revenues and employment impacts, and non-quantifiable benefits, *e.g.*, enhanced system operability and flexibility, are not considered as well


CARIS Process Phase 1

 \rightarrow

NEW YORK INDEPENDENT SYSTEM OPERATOR

CARIS Process Phase 2


CARIS Phase 1

Data provided:

- Historic and projected congestion
- Key drivers of system congestion
- Top congested elements or groupings of elements
- Estimated cost-effectiveness of generic solutions (i.e., transmission generation, demand response, energy efficiency), based on production cost savings and generic solution costs
- Other benefits of resolving top constraints
- Top congested corridors identified based on an analysis of historic and projected congestion and projected potential for production cost savings

2017 CARIS Groupings

Key Cases Studied

"Business as Usual" BAU Case

- Reflects only near-term updates known at the onset of the study
- Indian Point, Fitzpatrick and Ginna in-service
- CPV Valley (2018), Bayonne Expansion (2018) and Cricket Valley (2019) in-service

"System Resource Shift" Case

- Indian Point units retired (2020/2021)
- All New York coal units retired (2020)
- Resource mix and energy efficiency impacts consistent with Clean Energy Standard attainment by 2026

"System Resource Shift"/"Public Policy" Scenario

- SRS Assumptions
- Western and AC Transmission Public Policy transmission projects in-service

Key Findings

"Business as Usual" (BAU) Case

- The results are consistent with prior CARIS studies
- Solutions studied offered a measure of congestion relief and production cost savings
- Transmission projects studied did not result in B/C ratios in excess of 1.0, based on generic cost estimates and production cost savings only.

┿┿┥

System Resource Shift" (SRS) Case

- Congestion across New York increases by \$450M relative to the BAU Case
- Generic transmission lines built across Central NY produced higher production cost savings (by 61%) and higher Demand\$ Congestion savings (by 79%) than in BAU Case
- Projected shift towards greater renewable resources materially enhances the value of new transmission

System Resource Shift"/"Public Policy" Scenario

- Projects built to meet Western and AC Transmission Public Policy Needs will reduce congestion by \$284 across Central NY
- Transmission built will mitigate congestion impacts associated with large-scale buildout-out of renewables upstate; enabling more lower-cost resources to be disptached tio meet New York loads

Next Steps

- NYISO is engaging its stakeholders in identifying opportunities for improving the CARIS process in conjunction with its broader review of its overall planning processes
- NYISO is preparing its software databases for specific project evaluations and studies
- NYISO will then perform upon request:
 - Additional CARIS Studies
 - Project-Specific CARIS Phase 2 studies for NYISO tariff-based cost recovery

The Mission of the New York Independent System Operator, in collaboration with its stakeholders, is to serve the public interest and provide benefits to consumers by:

- Maintaining and enhancing regional reliability
- Operating open, fair and competitive wholesale electricity markets
- Planning the power system for the future
- Providing factual information to policy makers, stakeholders and investors in the power system

www.nyiso.com

