Fuel Assurance & Pipeline Adequacy Study Presentation of Results

Electric-Gas Coordination Working Group New York Independent System Operator *October 23, 2013* R.L. Levitan, P.L. Curlett, S.Wilmer

Task 1 Fuel Assurance Study

- Identify dual-fuel capacity in NYCA
- Assess the cost of providing fuel assurance through dual-fuel capability and oil supply provisions
- Derive the incremental cost for primary FT entitlement(s) along discrete pathways to four zones
- Perform an economic comparison of dual-fuel capability
 v. pipeline transportation under a range of scenarios

Existing Dual Fuel Capacity – Zones F through K

Cost of Dual Fuel Capability

- Incremental costs for a 600 MW CC and a 200 MW SC were developed
- Capital cost categories include:
 - Power Island scope manifold and burners, atomizing air, water injection, purge system, fuel conditioning skid, related instrumentation and controls
 - Fuel receiving and storage facilities receiving bays (truck or barge), transfer pumps, storage tanks with containment walls, etc.
 - Balance of plant, i.e., demineralized water, receiving and storage systems

Cost of Dual Fuel Capability (Cont'd)

- Operating costs include:
 - Fixed operating costs, i.e., fuel and water quality staff, property taxes, and insurance
 - Variable operating costs, i.e., higher gas turbine overhaul accrual rates, water costs for injection water (CC only)
 - Costs of ULSD supply, delivery and storage
 - High cost of fuel
 - Potential reservation charges for delivery capacity
 - Volumetric delivery charges
 - Inventory carrying cost

Cost of Dual Fuel Capability – Combined Cycle

(2013\$)

Zone	Capital			Long
	District	LHV	NYC	Island
Capital Costs (\$ million)				
Power Island	\$ 5.1	\$ 5.1	\$ 5.1	\$ 5.1
Field Erected Tanks	\$ 2.8	\$ 2.8 \$ 2.8		\$ 2.8
Balance of Plant	<u>\$ 9.8</u>	<u>\$11.0</u>	<u>\$14.4</u>	<u>\$13.7</u>
Subtotal	\$17.7	\$18.9	\$22.3	\$21.6
Financing Costs <u>\$ 1.3</u>		<u>\$ 1.4</u>	<u>\$ 1.7</u>	<u>\$ 1.6</u>
Total Incremental Cost	\$19.0	\$20.3	\$24.0	\$23.3
Incremental Unit Cost	\$29/kW	\$31/kW	\$37/kW	\$36/kW
Fixed O&M Cost				
(\$ 1,000 / year)	\$ 563	\$ 593	\$1,508	\$ 691
Incremental Unit Cost	\$0.86/kW-yr	\$0.90/kW-yr	\$2.30/kW-yr	\$1.05/kW-yr

Cost of Dual Fuel Capability – Simple Cycle

(2013\$)

Zone	Capital	1117		Long
	District	LHV	NYC	Island
Capital Costs (\$ million)				
Power Island	\$ 3.1	\$ 3.1	\$ 3.1	\$ 3.1
Field Erected Tanks	\$ 1.1	\$ 1.1	\$ 1.1 \$ 1.1	
Balance of Plant	<u>\$ 3.2</u>	<u>\$ 3.6</u>	<u>\$ 4.5</u>	<u>\$ 4.4</u>
Subtotal	\$ 7.4	\$ 7.8	\$ 8.7	\$ 8.6
Financing Costs	<u>\$ 0.5</u>	<u>\$ 0.5</u>	<u>\$ 0.6</u>	<u>\$ 0.6</u>
Total Incremental Cost	\$ 7.9	\$ 8.3	\$ 9.3	\$ 9.2
Incremental Unit Cost	\$44/kW	\$45/kW	\$52/kW	\$50/kW
Fixed O&M Cost				
(\$1000 / year)	\$ 250	\$ 259	\$ 665	\$ 295
Incremental Unit Cost	\$1.38/kW-yr	\$1.41/kW-yr	\$3.68/kW-yr	\$1.61/kW-yr

Unitized Cost of Firm Transportation Entitlements

		100%	Combined Cycle		Simple Cycle	
Zone	Selected Path	Load Factor Rate (\$/Dth)	Annual Fixed Charges (\$MM/yr)	Unitized Variable Charge (\$/MWh)	Annual Fixed Charges (\$MM/yr)	Unitized Variable Charge (\$/MWh)
F	Dominion (from South Point)	\$0.6159	\$23.8	\$0.16	\$9.7	\$0.22
G-H-I	Millennium → Algonquin	\$1.0920	\$43.6	\$0.04	\$17.8	\$0.05
J	Tennessee → Texas Eastern (→ NYFS)	\$1.1255	\$45.0	\$0.03	\$18.4	\$0.03
К	Millennium → Algonquin → Iroquois (→ NYFS)	\$1.6325	\$65.2	\$0.05	\$26.7	\$0.07

Incremental Cost of Firm Transportation to NYC

Pipelines Serving NYC and Long Island

Pipeline Utilization Levels Serving NYC and Long Island

Financial Results – 600 MW CC

Financial Results – 200 MW SC

Fuel Assurance Conclusions

- Total incremental cost to add dual-fuel capability
 - CC: ~\$19 million in Capital District / LHV, ~\$24 million in NYC / Long Island
 - Peaker: ~\$8 million in Capital District / LHV, ~\$9 million in NYC / Long Island
- For new CC plants:
 - FT strategy is economic in relation to non-firm gas + ULSD in Capital District and LHV
 - FT upstream of the NYFS is economic for NYC, neutral for Long Island
- For new peakers:
 - FT strategy is economic in relation to non-firm transportation + ULSD for Capital District, uneconomic in LHV
 - FT to NYC / Long Island is uneconomic

Fuel Assurance Conclusions (cont'd)

- Most gas-fired generators across NYCA rely on short-term capacity releases and/or IT
- Generator reliance on non-firm transportation coupled with oil back-up promotes, but does not guarantee, fuel adequacy during critical conditions
- Major new P/L resources sure to improve "quality" of non-firm transportation in the Capital District & NYC
- Known and potential retirements in LHV heighten concerns re infrastructure adequacy for new CCs
- Timing of new P/L receipt point capability on Long Island into the NYFS remains uncertain
- Energy / capacity price signals and penalty structure for nonperformance appear insufficient to induce generators to hold maximum oil inventory

Task 2 Pipeline Congestion and Infrastructure Adequacy Assessment

Study Objectives

- Study & Market Design Fuel Assurance
- Analyze historical pipeline congestion patterns across NYCA
- Forecast supply / demand to determine available capacity to serve gas-fired generation
- Assess the impact of pipeline additions over a five-year study horizon into and across New York State
- Identify potentially disruptive gas-side contingencies across the supply chain from the producing area to the market center (CEII)

Historical Congestion Analysis Key Findings

- Infrastructure serving NYFS and NYCA-at-large has been frequently constrained, Nov - March
- High oil-to-gas price ratios and environmental restrictions have increased NYC's reliance on natural gas during the summer
- Utilization levels on Empire, Algonquin and Tennessee are increasingly high, reflecting downstream demand for shale gas (core and non-core) in Ontario and New England
- Planned maintenance scheduled during shoulder months minimizes disruption to FT shippers, but can cause short term disruptions for non-core
- Forced outages rare / short duration

Heating Season Peak Day Congestion (Current)

Cooling Season Peak Day Congestion (Current)

NYFS Deliveries Into NYFS

Tennessee Station 245

22 Heating Season Map Cooling Season Map LEVITAN & ASSOCIATES, INC.

Regional Supplies – Production & Storage

Peak Day Boundary Flows Into and Out of NYCA

LEVITAN & ASSOCIATES, INC.

24

Canadian Boundary Flow Dynamics

- Previously, gas delivered into NYCA at Niagara (Tennessee), Chippawa (Empire) and Waddington (Iroquois)
 - Niagara is now an export point
 - Chippawa poised for exports not imports
 - Waddington operating at full capacity only on peak days
- Canadian gas into New England materially lower
 - Decline from western Canada into Tennessee and Iroquois
 - Decline from Atlantic Canada from Sable Island
 - Very low exports from Deep Panuke
 - Low utilization of Repsol Canaport LNG terminal
 - Destination flexible LNG cargoes headed to EU / Asia

Pipeline Expansion Projects

LEVITAN & ASSOCIATES, INC.

26

Boundary Flow Changes Over Study Horizon

In-State Storage and Production

Total Supply Available to Serve Demand

Core (LDC) Demand Forecast

30

LDC Service Territories

Supply Relative to Core Demand

32

Non-Core Demand Forecast

Supply v. Non-Core Demand (Base Case)

NYFS Deliverability (Base Case)

State-Wide Infrastructure Adequacy Results

- Infrastructure and supplies sufficient to meet non-core demand
 - Intra-state constraint point analysis not part of study scope
- Generation demand differential between Base and +1,000-MW Cases does not significantly impact results
- New P/L facilities to come online 11/13 will relieve downstate infrastructure constraints, but not on the NYFS
 - During January 2013 cold snap, over 500 MW of generation experienced fuel-related de-rates (Jan 22nd)

Contingency Analysis

- Active coordination between pipelines and LDCs to manage contingency response
- Identification of potential anomalies during shoulder season inspections reduces contingency occurrence during peak demand periods
- Compressor station contingencies generally resolved much faster than P/L contingencies
- Repair times were consistently underestimated

Contingency Event Durations and Causes

