DNV·GL

NYISO DER Study

Project Update

4 April 2014

PRELIMINARY CONTENT - FOR DISCUSSION ONLY

Discussion Topics

3 Findings to Date

4 Next Steps

PRELIMINARY CONTENT - FOR DISCUSSION ONLY

Project Objectives

A comprehensive review of Distributed Energy Resource (DER) technologies, market potential and drivers, regulatory and environmental policies, and treatment in other balancing authority and utility regions.

- Categorize DER technologies
- Identify DER uses, configurations and customer motivations
- Describe regulatory and market-based drivers for DER adopters
- Detail current and potential DER market penetrations in New York
- Assess the treatment of DERs in other ISOs/RTOs and utility regions in their various forms

Study Definition of DER

- Distributed Energy Resource technologies are "behind-the-meter" power generation and storage resources typically located on an end-use customer's premises and operated for the purpose of supplying all or a portion of the customer's electric load, and may also be capable of injecting power into the transmission and/or distribution system, or into a non-utility local network in parallel with the utility grid.
- Distributed energy resources includes such technologies as solar photovoltaic, combined heat and power or cogeneration systems, microgrids, wind turbines, micro turbines, back-up generators and energy storage.

Study Outline

- 1. Introduction
- 2. Behind-the-Meter Applications
 - i. DER Applications & Benefits
 - ii. Challenges and Constraints
 - iii. Looking at the Full Picture
- 3. State of Distributed Resources
 - i. Technology Assessment
 - ii. Market Penetration
 - iii. Market Potential
 - iv. Environmental Requirements
- 4. Retail Rates, Regulations and Incentives for Distributed Energy Resources
 - i. Retail Rates and Regulations
 - ii. Government Incentive Programs
- 5. Comparative Analysis & Identification of Potential Best Practices in ISO/RTO Treatment of DERs
 - i. Market and Business Rules for DERs
 - ii. Metering Configurations
 - iii. Telemetry Requirements
 - iv. Measurement & Verification

PRELIMINARY CONTENT - FOR DISCUSSION ONLY

Discussion Topics

3 Findings to Date

4 Next Steps

PRELIMINARY CONTENT - FOR DISCUSSION ONLY

DER Investments Are Prompted for Numerous Reasons Behind-the-Meter Applications

- Economic Benefits. Avoided costs, increased efficiencies, and gained revenues. For customers, benefits are tied to incentive payments as well as avoided costs associated with electricity bills. For utilities and regulators, benefits are tied to more efficient utilization of the grid and deferred investments.
- Deferred or Avoided Network Investments. Avoided cost of expanding generation, transmission or distribution. This benefit applies to utilities, and indirectly benefits customers. Apart from providing economic benefits, DERs can also help avoid lengthy siting processes. For some cases, DERs can provide a quick means for addressing grid challenges.
- **Resiliency.** Uninterrupted service in the event of loss of grid service. This can be applied to both customers and utilities.
- **Power Quality.** Ability to ride through transients and short-term interruptions. This can support both customers and utilities.
- Clean Energy. Social, regulatory, and economic reasons to invest in low or noemission DERs. Many customers are motivated to purchase clean DERs to support clean energy goals. Likewise, many utilities are doing the same (often, motivated by goals or explicit targets). The net effect on emissions, however, has to be investigated per system because the displacement of centralized generation can have different effects on total emissions.

PRELIMINARY CONTENT - FOR DISCUSSION ONLY

DRAFT

DER Value Varies by Region & Across Studies Behind-the-Meter Applications

Regional Circumstances

- Resource characteristics (location, quantity, coincidence with demand, etc.)
- Load growth
- Level of congestion
- Utilization & need for upgrades / increased capacity
- Reliability standards & market rules

(e.g., reserve requirements, penalties)

- Generation mix (emissions, ramping ability)
- Information about marginal resources, ancillary needs, and value of capacity versus energy (existence of markets, market structures that explicitly value capacity, etc.)

PRELIMINARY CONTENT - FOR DISCUSSION ONLY

DER Applications – Key Requirements Behind-the-Meter Applications

- DER applications have different technology requirements, such as power vs. energy
- Choosing the right technology is paramount for cost effectiveness and performance

Just	lust			Characteristics							Duration			Frequency of use		
Tu	Application	High Efficiency	Low Emissions	Environment (temp / noise)	High Thermal Output	Islanding	Start-Up Time	Ramping Time	Continous	2-6 hours	< 2 hours	Daily (> 2000 h)	Seasonal (500-2000h)	Yearly (< 500 h)		
	Continuous Power / Base Load	х	Х						Х			Х				
	Uninterrupted Power Supply (UPS)						Х	Х			Х			Х		
	Back Up						Х			Х				Х		
	Back-up with Islanding	Х		Х		Х			Х					Х		
	Renewables							Х		Х	х	Х	Х			
	Peak Shaving						Х	Х			х	Х	Х			
	Demand Response						Х			Х				Х		
	Regulation						х	х				х				
	Reserves						Х			Х	Х			Х		
	Supply Capacity								Х	Х	Х					
	T&D Deferral									Х			Х			

PRELIMINARY CONTENT - FOR DISCUSSION ONLY

A variety of distributed energy resources exist today, ranging from those with extensive use and history to newer technologies.

PRELIMINARY CONTENT - FOR DISCUSSION ONLY

Sample Load Profiles State of Distributed Resources

Non-Utility PV

1

8

Market Penetrations State of Distributed Resources

Non-Bulk Storage

PRELIMINARY CONTENT - FOR DISCUSSION (

12 DNV GL © 2013 4 April 2014

Sources: CHP: www.eea-inc.com/chpdata; PV: DOE NREL Open PV; ES: www.energystorageexchange.org

DNVGL

CHP Tech Potential

PV Rooftop Tech Potential

Non-Bulk Storage

TO BE COMPLETED

PRELIMINARY CONTENT - FOR DISCUSSION ONLY

DRAFT

13 DNV GL © 2013 4 April 2014

Source: US Renewable Energy Technical Potentials: A GIS-Based Analysis. 2012

Economic Signals to Customers – Capital Investments Retail Rates, Regulations and Incentives

Economic incentives exist that influence customers decisions about investing in or operating DERs. These derive from energy and demand prices, program opportunities and financial policy incentives. The types of prices, program opportunities and incentives can vary significantly, influencing the economic calculation for DERs.

Income

Cost

Notes: \$/KW installed cap rebates **Direct Capital Rebate** DG incentive provider Federal programs State programs Notes:% of \$/KW as tax deduction Tax rebate DG incentive provider Federal programs State programs Notes: years Accelerated depreciation DG incentive provider Federal programs State programs Notes: Costs in \$/KW or \$/KWhr Equipment **Generation and Storage** installed vendor, EPC Equipment Installation contractor Equipment Notes: Depends on existing Controls and communication infrastructure, desired functionality, as vendor, EPC well as distribution utility Equipment Installation contractor interconnection regulations Notes: Depends on existing Equipment Telemetry and protection infrastructure, desired functionality, as vendor, EPC well as ISO visibility and control Aggregator Internal SourcentigatorGL, NYSERDA SOC interim deliverable requirements

PRELIMINARY CONTENT - FOR DISCUSSION ONLY

Economic Signals to Customers – Operating Decisions

Retail Rates, Regulations and Incentives

Income Cost	Rebate	
DG incentive	Production incentives	Notes: \$/KWh rebates. Might be related to fuel source and type for conventional
provider	Federal programs State programs LSE programs	generation sources
Self	Market Products	Notes: \$/KW and/or \$/KWhr incentives
DR aggregator / LSE / Self	DR programs	Notes: \$/KW and/or \$/KWhr incentives
Electric energy	Sell back rates	Notes: \$/KWhr sold back
purchaser	Net metering Buy back Sellback rate Emergency generation	
Electric energy	Electric energy charge	Notes: \$/KWhr charge
provider	Hourly DAP TOU rate Flat rate	
T&D provider	Demand charge	Notes: \$/KW charge
T&D provider	TOU Flat rate Standby rate	
T&D provider	Distribution charge	Notes: \$/KWhr charge
Gas provider	Flat rate gas cost	Notes: \$/MMBtu charge

PRELIMINARY CONTENT - FOR DISCUSSION ONLY

Retail Rates Structures Retail Rates, Regulations and Incentives

- There are a variety of possible retail rate structures, mostly differentiated by the division of risk between customer and retail organization
 - **Fixed:** Customer pays a set \$/kWh value for all energy consumed
 - Variable: Customer pays based on dynamic \$/kWh value. This value can change hourly or by peak / off-peak
 - Combination: Customer pays a fixed rate for the pre-decided amount, then an indexed price for the remainder
- In addition to energy charges, demand charges apply.
- Large, utility-served loads in New York are defaulted to a Mandatory Hourly Pricing though other pricing options are available.

Increased variability in a customer's retail rates can provide an incentive to increase management of demand and energy use

PRELIMINARY CONTENT - FOR DISCUSSION ONLY

4 April 2014

DRAFT

DNV GL © 2013

CONFIDENTIAL

0 2013

Examples of T&D Owner/Operator Incentives Retail Rates, Regulations and Incentives

- Transmission and Distribution owners / operators may have reason to incentivize specific DER adoption
- Con Edison & NYSERDA are incentivizing 100 MW of storage and other DSM as well as 25 MW

-	Total IPEC Market Forecast MW	EE/DR Budget (in Millions)
Load Management	44	\$77
Permanent Demand	40	\$54
Fuel Switching	16	\$15
Performance & Verification Services		\$15
CHP*	25	\$65
Total	125	\$226

of CHP as a contingency for the possible 2016 summer closing of the Indian Point Energy Center

- NYSERDA currently offers a 10% bonus to standard DER incentives in "Targeted Zones", which are subject to change annually
- In June 2011, the PSC approved a new 4-year, \$100M Targeted Incentive Program for Con Edison. Since 2003, Con Edison has solicited a total of 515 MW of demand reduction within 49 of its 82 network load areas.

* 25 MW of CHP is in addition to 60 MW of on-going EE/DR/CHP, 30 MW of which has been approved PRELIMINARY CONTENT – FOR DISCUSSION ONLY
DRAFT

The Role of Incentives Retail Rates, Regulations and Incentives

- Motivate investment in particular locations or shift in operations to align customer benefits with grid benefits
 - Capacity Deferral: Deferral of distribution or generation capacity investments
 - Relies on coincidence of DER with local delivery system peaks or with system peaks (where demand for supply is high and supply is more limited)
 - Some locations are more valuable than others

18 DNV GL © 2013 4 April 2014

Source: Con Ed: http://www.iea.org/media/workshops/2013/energyproviders/RebeccaCroftOttawaSection1..pdf

- To motivate a shift in operations or location, or investment in certain types of DERs or integration equipment.
 - Operational Savings: T&D loss reductions, avoided energy purchases
 - The benefit of avoided energy depends on alternative costs for supply (which can vary by time of day)
 - Timing and location can influence loss reductions
 - Emissions, Voltage Management, Resiliency are dependent on the type of DER and other supporting equipment.

Several NY Initiatives are Supporting DER Adoption Retail Rates, Regulations and Incentives

Local Initiatives

PRELIMINARY CONTENT - FOR DISCUSSION ONLY

DRAFT

Source: Con Edison, NYC Mayor's Office

DRAFT Sample Case Input Summary – Common Area with PV & Storage Retail Rates, Regulations and Incentives

Analysis considers the following inputs:

- Facility characteristics:
 - Peak demand, load profiles, and load growth, etc.
- Equipment characteristics:
 - PV size, storage size, storage duration, storage efficiency, etc.
- Technology cost and financial parameters:
 - PV installed cost, storage installed cost, cost of debt, rebates or incentives, tariffs, etc.

Analysis outputs include:

- Multi-year cash flows
- IRR, NPV, etc.
- Net load profiles
- Scenarios explore:
- Storage costs, Storage characteristics, Role of incentives, Tariff changes, etc.

DERs – Looking at the Full Picture Analysis & Identification of ISO/RTO Treatment of DERs

DERs can potentially reduce production costs by lowering net load or offering relatively low-cost supply.

DERs – Looking at the Full Picture Analysis & Identification of ISO/RTO Treatment of DERs

However, DERs also have the potential to affect demand for some centralized units with higher costs which also represent high flexibility assets.

Source: Image adapted from Dynegy bondholder presentation, 2012.

* This does not represent a NYISO bid stack

DNVGL

- FERC has published guidelines for interconnection policy, but each ISO Tariff includes a unique process
- Depending on the size and complexity of the proposed resource, more lenient interconnection processes may exist
 - For example, CAISO provides a Fast Track Process for resources under 5 MW that takes around a year, an Independent Study process that takes around two years, and the standard requests in a Queue Cluster that take around three years.
 - By comparison, NYISO has a Large Generator Interconnection Process (>20MW), a Small GIP (between 2 and 20MW) and a Fast Track (<2MW)
- Distribution operators also have their own interconnection requirements, which vary by territory and often depend on unit size
- FERC Order 792 amends the pro formal Small Generator Interconnection Procedures (SGIP) to expand and accelerate the Fast Track procedure. NYISO is currently preparing a compliance filing to modify its SGIP.

PRELIMINARY CONTENT - FOR DISCUSSION ONLY

DRAFT

24 DNV GL © 2013 4 April 2014

DNVGL

Sources: California ISO Generator Interconnection Procedures Overview, New York ISO Large Generator Interconnection

Precedent for DERs in Wholesale Markets Analysis & Identification of ISO/RTO Treatment of DERs

Many ISO/RTOs are not yet explicitly integrating DERs into their markets.
 However, there is precedent for use of non-generation assets in the market

Limited Energy Resource Policies

PJM – Capacity Value for Storage Resources

- PJM is considering two procedures for evaluating the capacity value of a storage resource; one based on the existing DR capacity model, and another based on Loss of Load Expectation
- CAISO Regulation Energy Management
 - A new product that allows fast but energy limited resources to take advantage of their flexibility

ERCOT – Wholesale Storage Load Settlement

- Program that allows storage resources to pay wholesale prices when charging, rather than retail

Applies to thermal storage as well as batteries, flywheels, compressed air, and hydro facilities

Demand Response Products

- There are a variety of demand response products already available across the ISO/RTOs
- The requirements for participation in each market varies from region to region

NYISO	Service Type	Minimum Size	Primary Driver
am	Energy	1 MW	Economic
AS	Reserve	1 MW	Economic
de AS m	Regulation	1 MW	Economic
Program	Energy	100 kW	Reliability
/ Special ces onent)	Energy	100 kW	Reliability
y Special rces ponent)	Capacity	100 kW	Reliability

PRELIMINARY CONTENT - FOR DISCUSSION ONLY

DRAFT

Source: DNV GL Baseline Consumption Methodology, Phase I Report.

Discussion Topics

PRELIMINARY CONTENT - FOR DISCUSSION ONLY

Aligning Interests

- Market rules, incentives and tariffs can align customer interests with grid interests
 - System benefits can be realized with grid operator management of DER integration, and customer adoption of DERs can be prompted by related incentives (operational, locational, etc.).
- Present structures, however, may not fully align grid and customer interests
 - Misalignment can lead to uncertainty and volatility of net loads.
 - There is also a tension between dropping sales volume and upward pressure on rates, but this can be addressed with alternative compensation methods for lost volume and DER integration costs.

→ Policy and regulatory structures will be key to aligning interests and maximizing benefits for all parties

PRELIMINARY CONTENT - FOR DISCUSSION ONLY

Additional Observations

- There is large variation across DER types with regards to capabilities and costs, and suitability for DER adoption varies by geographic location and customer type.
- There is potential for DERs to affect customer energy consumption patterns, and the relationship of such changes on long-term capacity forecasts and, short-term energy forecasts.
- DERs can also potentially impact costs and incentives for bulk generation.

Discussion Topics

PRELIMINARY CONTENT - FOR DISCUSSION ONLY

DRAFT

Study Timing

- Workshop December 2013
- A *presentation* on the findings of the draft report on April 4, 2014
- Draft report in mid May 2014
- Comments back by early June 2014
- A final report by end of June of 2014
- A presentation to the NYISO's stakeholders on the findings in the final report during the second quarter of 2014

Next Steps

- Additional details on topics today
- Additional sample use cases
- More on telemetry & metering, emissions, interconnection, etc.

PRELIMINARY CONTENT - FOR DISCUSSION ONLY

Jessica Harrison

www.dnvgl.com

SAFER, SMARTER, GREENER

PRELIMINARY CONTENT - FOR DISCUSSION ONLY

DRAFT Sample Case Input Summary – Common Area with PV & Storage Retail Rates, Regulations and Incentives

Facility inputs

Parameter	Unit	Value								
Peak Demand (2013)	kW	22.5								
Capacity factor of PV (without derating or losses	%	23.92%								
Storage & PV technology parameters										
Parameter Unit	Value									
 Storage technology —	High en	ergy Li-Ion								
 Rated power KW	5									
 Discharge duration at rated power hours	2									
 Round trip storage & inverter efficiency %	87.0%	%, 94.0%								
Installed capacity of PV k W		50								
Accelerated depreciation term for solar PV years		5								

Technology cost and investment financial parameters

Parameter	Unit		Value	
Installed cost of storage	2012 ¢ /VM	Low	Med	High
installed cost of storage	2012 3/ KVV	3,000	3, 500	4, 500
Storage system O&M cost	2013 \$/KW		\$20	
PV Installation cost (full cost)	2013 \$/KW		\$5,440	
PV Installation cost (only panels)	2013 \$/KW		\$3,260	
PV O&M cost	2013 \$/KW		25	
Cost of debt	%		7.49%	
Federal income tax rate	%		35%	
Direct rebate on storage	2013 \$/KW		1800	
Direct rebate on solar PV	2013 \$/KW		350	
Income tax rebate on solar PV	%		30%	
 PRELIMINARY CONTENT - Income tax rebate on storage 	For Discussi	ON ONLY	22.50%	

DRAFT Sample Case Results Summary – Common Area with PV & Storage Retail Rates, Regulations and Incentives

Sc #	Sce	enario Ch	aracteristics	Installation			Incentives					Financial Results								
	Configuration	Customer type	er Primary function	Storage	Facility Ins Peak Stora	Installed	Installed PV	Storage	Solar	Income Tax Credit										
				cost		Storage (KW,		Direct	Direct	PV	Storage	MACRS*	IRR	NPV						
				(\$/KW)	Demand	KWhr)		Rebate	Rebate		Storage									
1	Storage and Solar PV dc- coupled Solar PV dc- residence	Common area meter Den blar PV dc- of multi- ener coupled family rea	on eter Demand and	Low - \$3000/KW								13.12%	\$3,702							
				Med - \$3500/KW				YES	YES	YES	YES	YES	10.24%	\$2 <i>,</i> 025						
				High - \$/4500/KW									5.99%	(\$1,329)						
2			coupled family residence	family	of multi- family	of multi- family	of multi- family	of multi- family	energy charge reduction	Low - \$3000/KW	22.5	5 KW, 10 KWhr	5 KW						4.97%	(\$2,346)
				e	Med - \$3500/KW				NO	NO	YES	YES	YES	3.47%	(\$4,023)					
				High - \$/4500/КW									1.01%	(\$7,377)						

