

EPEI ELECTRIC POWER RESEARCH INSTITUTE

Central Station Solar: What's the Future?

Cara Libby Project Manager, Solar Generation NYISO Environmental Advisory Council Meeting May 10, 2012

Outline

- Solar industry background and trends
- Central vs. distributed deployment
- Grid integration considerations
- Market outlook
- EPRI R&D focus

U.S. Electricity Generation 2010

© 2012 Electric Power Research Institute, Inc. All rights reserved.

RESEARCH INSTITUTE

Renewable Energy Generation 2010

Technology	U.S. Growth Rate (World)	2010 U.S. Installed GW (World)
Wind	15% (25%)	40 (198)
Biomass Combustion	11% (7%)	10 (62)
Geothermal	0% (2%)	3.1 (11)
Solar PV	54% (74%)	2.5 (40)
Concentrating Solar Thermal	16% (83%)	0.5 (1.1)

• Utility-driven growth increased ~185% from 2010 levels

Source: Renewables 2011 Global Status Report, GTM, SEIA

PV Technology Overview

- Status
 - Crystalline silicon commercial
 - Thin film early commercial
 - CPV early commercial
- Approximately 70 GW deployed worldwide
 - Largest central station plant: 214 MW in India
 - 20 projects of >50 MW each in operation worldwide
- Key attributes
 - Modular
 - Run-of-sun generation (no storage)
 - Large ramp rates possible

ELECTRIC POWER RESEARCH INSTITUTE

Technology Development Assessment Solar Photovoltaic (PV) and Solar Thermal

What is the Future of PV Technology?

- Gen I (crystalline silicon) and Gen II (thin film) single-junction devices have max efficiencies of ~31%, limited by the Shockley-Queisser Limit
 - 41% efficiency feasible under concentration.
 - Incremental efficiency and cost improvements will continue
- Gen-III technologies side-step the S-Q efficiency limitations by utilizing more of the incident energy
 - Multijunction devices available today have achieved >40% in the field; only economical for CPV systems
 - Breakthrough devices can theoretically approach 68% (87% under max concentration) through use of novel materials (organic materials, carbon nanotubes, etc.) and manufacturing techniques

Whether or not breakthrough PV can realize those efficiencies, *when, and at what cost* remains to be seen.

PV Module Price Trends

- The chart, on logarithmic scale, illustrates how the average module price has declined by about 20% with each doubling of sales over several decades.
- Average selling price for modules dropped ~46% in 2011; installed costs dropped 20%

PV Cost Outlook

Comparison of Solar Technologies

	Worldwide	Capacity	Install Cost	Projected Near-Term	
Technology	Market Share*	Factor	(\$/kW)	Global Growth	
Flat-plate PV -	87%				
Silicon-based	(~58 GW)	Up to 27%	~\$3,200 ^a	20 GW+/year	
Flat-plate PV -	11%				
Thin Film	(~7 GW)	Up to 27%^	~\$3,000 ^b	3.5 GW+/year	
				~60 MW to be completed	
	<0.01%			by mid-2012, ~700 MW in	
CPV	(~33 MW)	Up to 31%	\$3,600+ ^c	pipeline; outlook variable	
		Up to 28%	\$4,100+		
Concentrating		(wo/storage);	(wo/storage);	2.8 GW under	
Solar Thermal	2%	>70%	\$5,000+	construction; 12 GW	
Power (CSP)**	(2 GW)	(w/storage)	(w/storage)	pipeline (outlook variable)	

* As of end-2011.

** Based on solar trough and central receiver technologies, does not include Stirling dish or linear Fresnel reflector.

^a Based on the national weighted-average of installed utility system prices in the U.S. at end-2011.

^b Based on average reported First Solar install costs

^c Based on vendor-provided data

[†] Depends on whether storage is used; land use with 9 hrs storage is ~10.5 acres/MW.

^ Thin-film fixed solar PV (20 MW+)

Sources: EPRI, SEPA, NREL, CPV Consortium, GreenTech Media, McKinsey & Co., EPIA

Central vs. Distributed

Ground-Mounted vs. Rooftop PV

Central Station – Ground Mounted

- Pros
 - Lower upfront capital cost
 - Flexibility of location
 - Greater design flexibility, e.g., tracker vs. fixed
 - Lower power output variability

Cons

- Typically higher O&M costs
- May require new/upgraded transmission
- Potential environmental impacts
- Potentially more difficult to finance

Distributed – Rooftop

- Pros
 - Generation closer to load
 - Environmentally friendly
- Cons
 - Labor, transaction, and implementation costs are higher
 - Customized designs drive up cost
 - Requires relatively new roof with sufficient structural integrity
 - Potentially limited usable space
 - Potential for shading issues
 - Requires willing owner
 - Intermittency

PV's modularity is applicable to both central and distributed plants and allows rapid deployment. Large plants are often brought online in phases.

Go Big or Go Home

Utility-owned projects represented 39% of new deployment in 2011 and central station projects are expected to dominant the future market
In early 2012 utility activity includes >9 GW under contract, >3 GW under construction, and ~32 GW pipeline

Source: GTM Research and SEIA

Recent U.S. Utility-Scale PV Projects

Plant Name	Capacity (MW _{DC})	Location	Technology	Op. Date	Constr. Start
PV - Placed in Service					
Mesquite Solar 1	42	Arlington, AZ	Multi c-Si	Dec-11	Jun-11
Agua Caliente	38	Yuma County, AZ	CdTe	Jan-12	Aug-11
San Luis Valley Solar Ranch	38	Alamosa County, CO	Mono c-Si	Nov-11	Dec-10
Long Island Solar Farm LLC	37	Upton, NY	Multi c-Si	Nov-11	Oct-10
FRV Webberville Plant	34	Webberville, TX	Multi c-Si	Dec-11	Apr-11
Paloma Solar Plant	21	Gila Bend, AZ	CdTe	Oct-11	Mar-11
Cotton Center Solar Plant	21	Gila Bend, AZ	Mono c-Si	Oct-11	Jan-11
Bagdad Solar Project	19	Bagdad, AZ		Dec-11	Aug-11
McGraw Hill	14	East Windsor, NJ	Multi PV	Jan-12	Aug-11
APS - Prescott	13	Prescott, AZ	Multi c-Si	Nov-11	Dec-10
SPS - Lea	11	Lea, NM	Multi c-Si	Dec-11	Dec-10
SPS - Monument	11	Lea, NM	Multi c-Si	Dec-11	Dec-10
Hartz Solar Hamilton	9	Hamilton, NJ	Multi c-Si	Dec-11	Jun-11
Alamogordo Solar Energy Ctr	7	Deming, NM	CdTe	Oct-11	Jan-11
Las Vegas Solar Energy Ctr	7	Las Vegas, NM	CdTe	Nov-11	Jan-11
Stanton Solar Farm	6	Orange County, FL		Dec-11	Apr-11
Sky Harbor Airport	5	Phoenix, AZ	Mono c-Si	Dec-11	Oct-11
Arizona Western College	5	Yuma, AZ	Mixed	Dec-11	May-11
PV - Beginning Construction					
First Solar, Inc. (Topaz)	688	San Luis Obispo County, CA	CdTe		Nov-11
Copper Mountain 2	188	Boulder City, NV	CdTe		Dec-11
Imperial Energy Center S.	163	Imperial County, CA	CdTe		Jan-12
Matinee Energy	120	Benson, AZ			Dec-11
Recurrent -SMUD	50	Sacramento, CA			Oct-11
Sorrento Solar Farm	50	Lake County, FL	Mono c-Si		Nov-11
McHenry Solar Farm	31	Modesto, CA	Mono c-Si		Dec-11
Cupertino - Huron	25	Huron, CA	Multi c-Si		Oct-11
Grand Ridge Solar Plant	23	LaSalle County, II	CdTe		Dec-11
Tinton Falls Solar Farm	20	Tinton Falls, NJ			Nov-11
Utech Solar Plant	20	New Jersey	Multi c-Si		Feb-12
NAWS China Lake	14	China Lake, CA	Mono c-Si		Jan-12
LADWP Solar Project	12	Los Angeles, CA	Multi PV		Dec-11
UA Tech / Astrosol	6	Tucson, AZ	a-SI		Dec-11
Lawrenceville School	6	Lawrence Township, NJ			Oct-11
Canton Solar Farm	6	Canton, MA	Mono c-Si		Dec-11
Princeton University	5	Princeton NJ	Mono c-Si		Oct-11

28 utilityscale PV projects (>10 MW) were placed in service in 2011

Source: NREL

© 2012 Electric Power Research Institute, Inc. All rights reserved.

ELECTRIC POWER RESEARCH INSTITUTE

Distributed PV Markets

Savings-to-Investment Ratio for \$7/W PV before *Incentives*

Residential Retail Electricity Rates

- With incentives, DG PV can represent a profitable investment in several states
- Unclear what economic thresholds are required to entice adoption and what barriers to customer adoption may exist after 'breakeven' is reached

Source: Denholm et al. 2010 (NREL)

 $\ensuremath{\mathbb{C}}$ 2012 Electric Power Research Institute, Inc. All rights reserved.

Distributed PV Ownership Also Growing

Third-party owned PV gaining market share in LA and Orange counties, CA

5,000

- Distributed PV economics depend on incentives, retail rates and rate design, e.g., net metering
- Third party residential PV markets growing rapidly, > 60% market share in CA in 2012
- PV leasing products appear to be enticing new demographics to adopt PV in LA
- Third-party adoption trends likely to extend to other states

CA Market only

Source: Drury et al. 2012 (NREL)

Cost as a Function of System Size

System Size Range (kW_{DC})

Figure 11. Variation in Installed Cost of Behind-the-Meter PV According to System Size (All Sizes)

Source: LBNL

- Systems with trackers have higher upfront costs, but may achieve lower LCOE
- Larger projects benefit from volume purchases and the ability to spread fixed project costs and transaction costs over more electricity generation
- 10-250 kW systems may have higher costs due to lower levels of standardization, but larger plant sizes experience economies of scale

System Costs as a Function of Project Size

- Utility scale plants have lowest costs, but this has an effect on margins
- Residential scale systems have value-efficient panels and high margins

Source: Goodrich et al. 2012 (NREL)

Massachusetts Pricing Trends

MA Weighted Avg. System Price, by System Size

Source: Massachusetts Solar Carve-Out Program (accessed 03/09/12), as reported by NREL

FLECTRIC POWER **RESEARCH INSTITUTE**

California Pricing Trends

Source: CSI Database (accessed, 03/07/12), as reported by NREL

Solar Integration

Variability & Uncertainty Bulk Power Issues

Sample AC Power Production – 1MW PV System (Oct 1-17, 2011) in Tennessee

Power Ramp Events on Partly Cloudy Day

High definition power profile of 1MW system at 1-sec resolution

Informed Plant Design and Siting to Reduce Cloud-Induced Variability

- Cloud shading may cause fast ramps exceeding 50% of capacity
- Cloud transients are smoothed by geographic diversity and larger plant sizes
- EPRI R&D to evaluate design and siting options to reduce variability
 - Selection of PV technology and mounting configuration
 - Inverter sizing
 - Project siting/sizing

Variability for 1-MW Plant Over 30 Minutes Based on 1-Second Irradiance Data

Grey lines show sensor irradiance measurements
Orange line shows average irradiance
Blue line shows AC power production

Many Sources of Flexibility to Address Variability

Conventional Resources

- Peaking and cycling units
- Emerging Resources
 - Demand response
 - Energy storage
 - Plug-in electric vehicles
- VG Power Management
 - Control VG output
- Institution/Market Flexibility
 - Coordination among Balancing Authorities (BAs)
 - Shorter scheduling
- More Transmission

EPRI Working with Industry to Meet Challenges -Renewable Integration Research

Bringing together collaborative engagement, technical resources and lab capabilities

Distributed Renewables Integration Variable Generation & Controllable Loads

P94 Energy Storage

Smart Grid as Virtual Power Plant & Compressed Air Energy Storage (CAES) Demonstrations

ELECTRIC POWER RESEARCH INSTITUTE

Industry Outlook

PV Trajectory Follows Nuclear, Gas, Wind Industries

U.S. PV Market Forecast

Inv. Banks: Barclays Capital (2/14/11), Citigroup Global Markets (5/11/11), Goldman Sachs Group (5/16/11), Jefferies & Co. (6/2011), Lazard Capital Markets (4/13/11), Macquarie (4/1/11), Piper Jaffray (1/2011), Stofel Nicolaus & Co. (5/5/11), UBS Securities, LLC (3/31/11), Wedbush Securities (2/8/11) GTM/SEIA: GTM/SEIA 2011

- Projections consistent with about a 1 GW/yr increase in U.S. PV demand through 2015
- Several projections dominated by utility PV markets
- Could lead to about 20 GW PV by 2015 (~1% of US electricity demand)

Source: NREL

Historic and Near-term Pricing Trends

MODULE PRICING TRENDS, 1989-2011, ESTIMATE FOR 2012 Current \$/Wp

-Small Quantity Buyers -Mid Range Buyers -Large Quantity Buyers -Weighted Average ASP

Source: Paula Mints – Navigant PV Services Program

Outlook

- Utilities will increasingly lead the way in spurring new U.S. PV capacity additions
- PV pricing is not likely to rebound in 2012 given the widely mismatched supply/demand equation
- Growing PV installations will require U.S. utilities to devise strategies for managing grid penetration that maintain overall network reliability
- The consolidating PV market in 2012 through 2014 will beget a new technology landscape
- Uncertainty due to polarized political situation which affects incentives

EPRI Approach to Address PV R&D Gaps Technology Development & Systems Improvements

Develop third generation PV cell designs

- Monitor technology developments
- Partner with academic institutions, national laboratories and industry to accelerate technology development
- Review PV stakeholder technology roadmaps to understand potential efficiency improvements and cost reductions

Optimize plants to maximize output and reduce variability

- Model effects of location, sizing, PV module, balance of system components, module layout and mounting configurations on plant output
- Verify with field testing

LECTRIC POWER

EPRI Approach to Address PV R&D Gaps Reliability & Performance Improvements

Assess long-term performance and reliability

- Provide independent, third-party test data to guide technology assessment and inform resource planning
- Conduct independent, long-term field testing to assess reliability of key PV system components

Optimize PV O&M

- Provide comprehensive assessment of O&M needs for PV generation connected to utility grid systems
- Identify best practices employed for utilityowned systems vs. customer- or third-partyowned assets

Together...Shaping the Future of Electricity

