How Customers Adapt to RTP-based Default Electricity Service: Niagara Mohawk Case Study

Catherine McDonough Niagara Mohawk A National Grid Company

Chuck Goldman Lawrence Berkeley National Laboratory

Bernie Neenan Neenan Associates/A UtiliPoint Company

> Presented to: NYISO PRL Working Group Washington DC August 13, 2005

Overview of Presentation

- Why price responsive load is important to competitive electricity markets
- Why a case study of Niagara Mohawk's largest customers provides valuable lessons
- Key Findings from the Case Study

Why Is Price Responsive Demand Important for Electricity Markets?

- Current Situation Most Place: Wholesale electricity prices change hourly but most retail loads are not billed on their actual hourly usage and therefore have no incentive to respond to the hourly price: Leads to excess generating capacity and more frequent price spikes
- FERC Standard Market Design NOPR: "participation of demand in the market is critical for an effective wholesale market"
- Vernon Smith on California Energy Crisis: "Root cause of crisis in CA and high temporary spikes elsewhere has been failure in spot market design to encourage provision of strategic demand side bidding by wholesale buyers, ..."
- Cato Institute: Rethinking Electricity Restructuring: "we should go backwards to a world of vertical integration and incentised rate regulation; a regulated system could introduce RTP for large C/I users"
- Energy Bill 2005

Practical DR Considerations

- Will customers actually respond to the hourly prices if they are billed based on their actual hourly usage?
- What is the most cost effective strategy to elicit demand response?
- How much price-responsive load do we need to reap most of the benefits of demand response?
- What type of customers should be targeted?
- How elastic is the true underlying demand curve for electricity at the retail level ?

Niagara Mohawk Power Company (NMPC): Case Study of Default Service RTP Program

NMPC RTP Tariff: Market Situation

NMPC SC-3A Customers: Market Segments

	All SC-3A Customers		Customers Facing Hourly Prices		Survey Respondents
Business Class	# of	Peak Demand	# of	Peak Demand	# of
	Accounts	(MW)	Accounts	(MW)	Accounts
Commercial / Retail	17	55	17	49	11%
Gov't / Education	44	206	34	166	30%
Health Care	17	78	8	38	13%
Manufacturing	46	233	44	221	33%
Public Works	22	70	16	40	13%
Totals	146	642	119	514	76

- NMPC billing system and customer surveys used to determine whether customers exposed to hourly varying prices
- 119 (of 146) customers saw SC-3A or comparable hourly-varying prices at some point during the study period (Summers 2000 2004) these were included in the demand modeling exercise

Trends in Day-Ahead Market Prices: Summer, Eastern New York

- Less price volatility since 2002 compared to summers of 2000 and 2001
- Average hourly prices for summer period are relatively stable over 5 years

*On-Peak defined as 2pm-5pm on weekdays

Key Policy Questions in Case Study

- How satisfied are customers with the RTP as a default service tariff?
 - Did they switch and are they hedged?
- What do customers say about their price response?
 - How often do customers monitor prices?
 - Do they shed or shift load ?
 - Why don't they respond to price ?
- Does RTP deliver Demand Response?
 - How elastic is demand?
 - Which customers respond most?
 - Do customers respond more when price levels are high ?
 - Do customers respond less when they operate close to their peak demand ?

Customer Satisfaction with NMPC RTP Tariff

- Customers are relatively satisfied
- Interviews reveal greater disappointment with limited offerings by competitive retailers

Trends in Customer Switching from NMPC to ESCO

- Customer switching from NMPC to ESCO has accelerated since 2003
 - Number of customers with ESCOs more than doubled from 46 in 2000 to 94 in 2004
- Likely explanations
 - End of Option 2 tariff in 2003
 - In 2000, 45% of Option 2 customers were with ESCO; in 2004, it was 82%
 - Some customers watched retail market develop for a few years before deciding to switch along with more attractive contract options
 - Takes time for some customers to overcome internal procurement barriers

Trends in Customer Switching by Business Type

- Healthcare customers most likely to switch to ESCO
- Switching rates increased significantly for manufacturing customers after 2001/2002
- Majority of the commercial/ retail and public works customers have preferred to stay with NMPC

Hedging Trends among SC-3A Customers

- About 15-22% of customers are fully or partially hedged over the last five years
 - Relatively stable over time
 - But more uncertainty because more customers have switched in last 2 years

What do customers say about their price response or lack of price response ?

How Often Do Customer's Monitor the Next Day's Hourly Prices?

- ~30% of customers monitor day-ahead hourly prices routinely or during hot weather/system emergencies
- ~70% rarely or never monitor prices

Customer Response Strategies: Forego Usage vs. Load Shift

Customers' assess their DR potential: discretionary vs. nondiscretionary usage

- Some customers shift load from the peak, and make it up offpeak
- Some customer's maximum load curtailment is often limited to discretionary loads; unwilling to curtail more even if prices rise

Self-Reported Price Response Capability: What Customers Told Us

- ~30% of customers say they are unable to curtail load
- ~70% can either forego or shift load or utilize onsite generation
 - Government/education customers forego usage as their curtailment strategy
 - Manufacturing customers can shift or forego load, or both

Customer Barriers to Responding to High Hourly Electricity Prices: Survey Results

(N=76)	Frequency
No Barriers Encountered	9
Barriers	
Organization/Business Practices	
• Insufficient time or resources to pay attention to hourly prices	39
• Institutional barriers in my organization make responding difficult	23
Inflexible labor schedule	16
Inadequate Incentives	
 Managing electricity use is not a priority 	17
• The cost/inconvenience of responding outweighs the savings	17
Risk Averse/Hedged	
 My organization's management views these efforts as too risky 	10
• Flat-rate or time-of-use contract makes responding unimportant	9

Does RTP Deliver Price-Mitigating Load Changes?

Modeling Price Response

Approach

- Estimate a demand model to explain how customers adjust usage in response to price changes
 - Divide day into peak (2:00 5:00 p.m.) and off-peak periods
 - Quantify how customers substitute off-peak usage for peak usage when the peak to off-peak ratio increases
 - Estimate substitution elasticities for each customer, and then develop pooled segment estimates

Data and Models

- Hourly price and usage data for 119 customers for 2000-2004
- Estimated model for summer months
- Employed the Generalized Leontif demand model
 - Places no restrictions on character of response, unlike the Constant Elasticity of Substitution model

Distribution of Elasticities: Customers

- About ¼ of customers exhibit fixed proportion elect use, Elast. = 0.
- About 16% show Elast. > .10

Price Responsiveness by Business Category

- Manufacturing customers have the highest average substitution elasticity followed by govt/edu customers
- Relative price responsiveness also varies substantially within each business sector
 - Manufacturing: 27% are highly responsive; but 63% have low elasticities
 - Government: Greater fraction of customers show price responsive behavior (24% are highly responsive and ~35% are moderately responsive)
 - Healthcare, Commercial/Retail, and Public Works: >70-80% have low elasticities ((<0.05)

Aggregate Demand Response Curve Peak 2 PM – 5 PM

For the 119 SC-3A customers, 50 MWs, or 11%, of peak demand would be reduced if the peak to off-peak price ratio was 5, the maximum observed between 2000 - 2004

Character and Texture of Price Response Characteristics and Circumstances

A secondary equation was estimated to quantify the impact on price elasticity of:

- The nominal level of price. Some firms may be more price responsive at higher price levels than at lower price levels
 - They respond by turning on a DG unit that can carry only some of the facility load, so the price must be high enough to compensate for foregone usage.
 - Indivisibilities associated with processes or activates require that prices exceed a threshold in order to justify curtailment, analogous to generation units that factor in start-up costs in setting bid prices.
- The customer's relative usage level. Some firms may be more willing to respond more at higher prices, while others respond less

Impact of Price Level and Usage Relative to Customer's Max. Demand

	Increase in price Ratio	Usage Relative to Max kW
Com/Retail	14.5%	1.2%
Gov't/Ed	13.4%	-3.2%
Health	-8.01%	0.0%
Manufacturing	-1.4%	-0.3%
Public Works	-9.5%	-0.2%
	Change in the price ratio from 2:1 to 3:1	Change in usage from .6 to .7 of Max kW

- Com/Retail and Gov't Ed are more responsive (13 to 14%) at higher nominal prices, Public Works and Health are less responsive (- 8 to 9%).
- Only Com/Retail is more responsive (1.2%) as peak demand is approached. Response for Gov't Ed declines (-3.2%) noticeable as peak usage is approached

Summary of Key Findings

- NMPC large customers are generally satisfied with day-ahead, hourly pricing as default service RTP
- Price response is modest overall (0.11)
 - Manuf and gov't/ed are most responsive
 - 20% of customers account for 80% of price response
 - Aggregate DR potential is 11% of customer's summer peak demand at historic prices
 - Comm/Retail and Gov't/Ed customers are more responsive at higher prices
- Large diversity of response, both between and within business sectors
 - Elasticities vary substantially
 - Diverse types of load response foregoing, shifting, DG