Demand-Side Ancillary Services

PRLWG October 21, 2005

Alternatives

- 1. Use the Current System (RTS)
 - 3-part bid (start-up, minimum generation, and incremental energy) is used to represent a supplier's costs.
 - Currently RTS assumes that all RT costs of providing reserves can be represented in the normal 3-part bid \rightarrow no RT availability bid.
- 2. Modify RTS to provide additional bidding flexibility to demand-side reserve providers
 - Permit demand-side reserve suppliers to specify a RT availability bid to cover costs of supplying reserve that cannot be recovered through the normal RT 3-part bid.
 - Discussions to date with some potential demand-side reserve suppliers suggests that no additional bidding flexibility is necessary.
- 3. Create an out-of-market 30-minute reserve product modeled on Special Case Resources

Eligibility - Spinning Reserve

- NERC approval
- Synchronized to the network
- Two MW minimum
- Full response required within 10 minutes
 - Must be able to respond to activation order issued by the ISO
- Must be able to perform for at least 30 minutes
- Metering
 - Load MW telemetry (as today)
 - Response MW telemetry (non-zero when supplying service)
- Periodic test to verify capability to provide service

Eligibility - 10-Minute Nonsynchronized Reserve

- Two MW minimum
- Full response required within 10 minutes
 - Must be able to respond to activation order issued by the ISO
- Must be able to perform for at least 30 minutes
- Metering
 - Load MW telemetry (as today)
 - Response MW telemetry (non-zero when supplying service)
- Periodic test to verify capability to provide service

Eligibility - 30-Minute Reserve

- Two MW minimum
- Full response required within 30 minutes
 - Must be able to respond to activation orders issued by the ISO
- Must be able to perform for at least one hour*
- Metering
 - Load MW telemetry (as today)
 - Response MW telemetry (non-zero when supplying service)
- Periodic test to verify capability to provide service

*Minimum duration of performance has not (yet) been established for 30-minute reserve suppliers

Estimated Upper Bound on Annual Revenue

Per MW of Reserve (based on March 1 – September 27, 2005 actual)

- DA West of Central-East
 - 10-minute spinning reserve
 - 10-minute nonsynchronized reserve
 - 30-minute reserve

\$42,500 \$6,300 \$2,800

- DA East of Central-East
 - 10-minute spinning reserve
 - 10-minute nonsynchronized reserve
 - 30-minute reserve

\$55,000 \$12,500 \$3,000

Estimated Upper Bound on Annual Revenue

Per MW of Reserve (based on March 1 – September 27, 2005 actual)

- RT West of Central-East
 - 10-minute spinning reserve
 - 10-minute nonsynchronized reserve
 - 30-minute reserve

\$24,000 \$8,000 \$2,700

- RT East of Central-East
 - 10-minute spinning reserve
 - 10-minute nonsynchronized reserve
 - 30-minute reserve

\$58,000 \$35,000 \$4,000

Scheduling of Reserve

- Reserve and energy are co-optimized → minimizes as-bid production cost for the load served
 - The most expensive energy suppliers tend to be held in reserve
- Reserve clearing price reflects
 - Marginal lost opportunity cost
 - Reserve demand curves
 - Availability bid (day-ahead only)
- In real-time and only when activated, RTD/CAM calls on energy providers to respond to a reserve pick-up. The "least cost" energy providers are selected
 - The resource called upon to respond to a reserve pick-up may or may not have a RT reserve award.
 - RT reserve clearing price (which is a result of the energy/reserve cooptimization) will be zero if this happens – so it doesn't matter.

Example

Supplier A Marginal Cost of next MW = \$70.00 RT reserve schedule = 10 MW

> Supplier B Marginal Cost of next MW = \$60.00 RT reserve schedule = 0 MW

Suppose LMP = \$50.00 Reserve clearing price = \$0.00

> RTD/CAM will require additional energy from Supplier B in the event of a reserve pick-up. Supplier A would have been more expensive than supplier B.

Actual reserve payment to Supplier A:\$0.00Forgone reserve payment to Supplier B:\$0.00

Draft – for discussion only

10/21/2005

Direct ISO Customer

	NetMW	measured (analogous to Subzone Load)
	ResponseMW	measured
	DemandMW	calculated (NetMW + ResponseMW)

RT Energy Settlement

No change, nothing new

- DemandMW: demand MW (calculated)
- NetMW: net load MW telemetry
- ResponseMW: response MW telemetry
- LMP: real-time energy price
- Payment (by load) for energy consumed by the load

DemandMW = (NetMW + ResponseMW) Payment = DemandMW x LMP

• Payment (to supplier) for energy provided by the demand-side reserve supplier when asked to respond

Payment = ResponseMW x [higher of (LMP, Supplier's Energy Bid)]

That is, supplier is eligible for a RT bid production cost guarantee (also covers startup & minimum generation costs)

Example

Payment (by industrial

site) for energy consumed

Payment (to industrial site)

Industrial Site

Normal consumption100 MWOn-site generation (load reduction)10 MW

Start-up Mingen Mingen cost Marginal energy cost \$1,000 10 MW \$5,000/hr \$500/MWh

\$20,000.00

100 MWh x \$200.00/MWh =

10 MWh x \$200.00/MWh =

Industrial site is called upon during a reserve pick-up to provide 10 MW of generation (load reduction) and complies.

<i>LMP is constant at \$200.00 One-hour run time</i>	for energy produced as a result of the reserve pick- up	\$2,000.00
NetMW: 90 MW ResponseMW: 10 DemandMW: (90+10) = 100 Net Net Net Net Net	Cost (to industrial site) of providing energy as a result of the reserve pick- up	\$1,000.00 + (10 MWh x \$200.00) = \$3,000.00
MW	Guarantee payment (to industrial site)	\$3,000.00 - \$2,000.00 = \$1,000
Response MW	<i>Net payment (by industrial site)</i>	\$20,000.00 - \$3,000.00 = \$17,000.00

10/21/2005

Draft – for discussion only

Indirect ISO Customer

- Retail energy purchased by the demand-side resource is not normally visible to the ISO. However, metering of retail purchases may be required to verify performance.
- NetMW (energy purchased from the ISO) is zero.
- An equivalent DemandMW for each demand-side resource is ResponseMW

10/21/2005

Draft – for discussion only Response MW

Net MW

RT Energy Settlement

- DMW: demand MW (calculated)
- NMW: net load MW = zero
- RMW: response MW telemetry
- LMP: real-time energy price
- Payment to ISO (by each demand-side resource) for energy consumed by its load

DMW = (0 + RMW) Payment = (DMW x LMP) = (RMW x LMP)

• Payment by ISO (to each demand-side resource) for energy provided by the demand-side reserve supplier when asked to respond

Payment = RMW x [higher of (LMP, Supplier's Energy Bid)]

That is, supplier is eligible for a RT bid production cost guarantee (also covers startup & minimum generation costs)

 Agreement between LSE and demand-side resource is unknown to the ISO. Presumably demand-side resource benefits from reduction in retail energy purchase (from LSE).

10/21/2005

Example

Industrial Site

Normal consumption **On-site generation (load reduction)**

> Start-up Mingen Mingen cost Marginal energy cost

\$1,000 10 MW \$2,000/hr

\$200/MWh

100 MW

10 MW

	Payment (by industrial site) for energy consumed	10 MWh x \$200.00/MWh = \$2,000.00
	Payment (to industrial site) for energy produced as a result of the reserve pick- up	10 MWh x \$200.00/MWh = \$2,000.00
	Cost (to industrial site) of providing energy as a result of the reserve pick- up	\$1,000.00 + (10 MWh x \$200.00) = \$3,000.00
esponse MW	<i>Guarantee payment (to industrial site)</i>	\$3,000.00 - \$2,000.00 = \$1,000
	<i>Net payment (to industrial site)</i>	\$2,000.00 - \$2,000.00 + \$1,000 = \$1,000.00
Drait -	for discussion only	

Industrial site is called upon during a reserve pick-up to provide 10 MW of generation (load reduction) and complies.

LMP is constant at \$200.00 **One-hour run time** Net MW NetMW: 0 ResponseMW: 10 DemandMW: (0+10) = 10

10/21/2005

Response MW

Example (cont.)

Industrial Site

Normal consumption **On-site generation (load reduction)**

Marginal energy cost

Start-up Mingen cost

\$1,000 10 MW \$2,000/hr \$200/MWh

100 MW

10 MW

Payment (by LSE) for energy consumed

90 MWh x \$200.00/MWh = \$18,000.00

Payment (by industrial site to LSE) for energy consumed

Unknown

\$18,000.00 assuming energy @ \$200.00/MWh, then

Response MW

Net

MW

Mingen

16

Response Verification

- Expect to see a decrease in NMW upon activation
- Expect that the decrease in NMW and the increase in RMW will be (approximately) equal
- Details are yet to be worked out
- Sanctions for non-performance are yet to be worked out.