NYISO Voltage-constrained Transfer Limit Analyses

CRPP studies Summer Operating studies ATR studies

• • • • • • •

Issues

- 1. Pre-contingency assessment
- 2. Post-contingency assessment
- 3. Design criteria

Pre-contingency assessment

1. Inaccuracies in the Con Edison system representation

- ✓ A/S over-voltages pre-contingency
- ✓ Approx. 150 MVARs lower capacitive compensation at A/S
- ✓ Substantial overspill on the A line (Linden-Goethals), aprox. 200 MW
- Other topography errors in the Astoria pocket
- 2. NYCA system representation only partially a "level 5" representation, especially in the SENY area (except Zones I and J)
 - Does not <u>effectively</u> assess the voltage profile of the entire study area
- **3.** Severe underutilization of installed system resources in supporting system voltages under high transfers
 - 375 MVAR of BPS shunt reactors erroneously dispatched I/S in Con Ed
 - Some QMAX. Capabilities modeled lower than latest VSS points
 - Underutilization of generators VAR support, due to inappropriate choice of GSU taps and/or Vterm
 - Flows on regulated feeders of the I-to-J interface artificially held back

Post-contingency voltage assessment

- 1. Lack of clarity as to time frame for monitoring post-contingency voltage:
 - On-going discussion as to exact monitoring time frame
 - The NYISO has committed to clarify its criteria in writing.

2. Use of inaccurate power flow solution:

- Transfer limits unnecessarily degraded

3. Con Edison's assessment of the NYISO power flow solution:

- Benchmark tests of the NYISO's <u>post-contingency</u> system assessment against a fully detailed stability solution shows the NYISO power flow solution technique to be <u>significantly underestimating</u> the strength of the interconnected system
- Shared results w/ the NYISO on September 16, 2005 asking their comments and requesting an independent evaluation

NYISO Design Criteria

- 1. The NYISO has verbally stated that it designs for "the loss of the largest generating unit when dispatched at its Max. MW capability, while at peak demand <u>and</u> transfer limits"
- 2. The following issues arise out of the aforementioned NYISO statement:
 - 1. The written NYSRC criteria does not have any such language.
 - 2. With its statement, the NYISO is subordinating system performance to deliverability of the largest generating unit(s).
 - 3. The NYISO is significantly underutilizing other available generating capacity in order to have Ravenswood #3 dispatched at at max.
 - 4. Unlikely concomitance of the aforementioned three conditions. In fact, operationally, the system would be dispatched to <u>avoid</u> such conditions.

NYISO Post-Contingency Voltage criteria

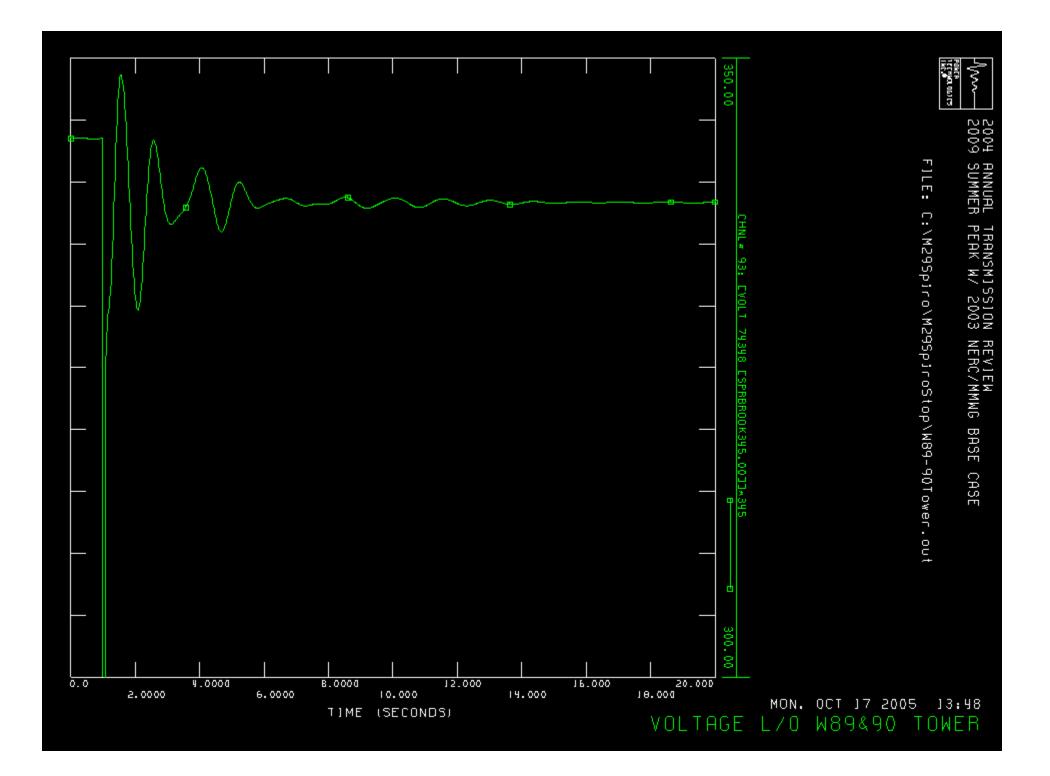
- Voltages monitored 30-60 seconds after the contingency occurs
- Recognizes only the automatic response of the system:
 - Generators' excitation & governor systems
 - SVC contribution

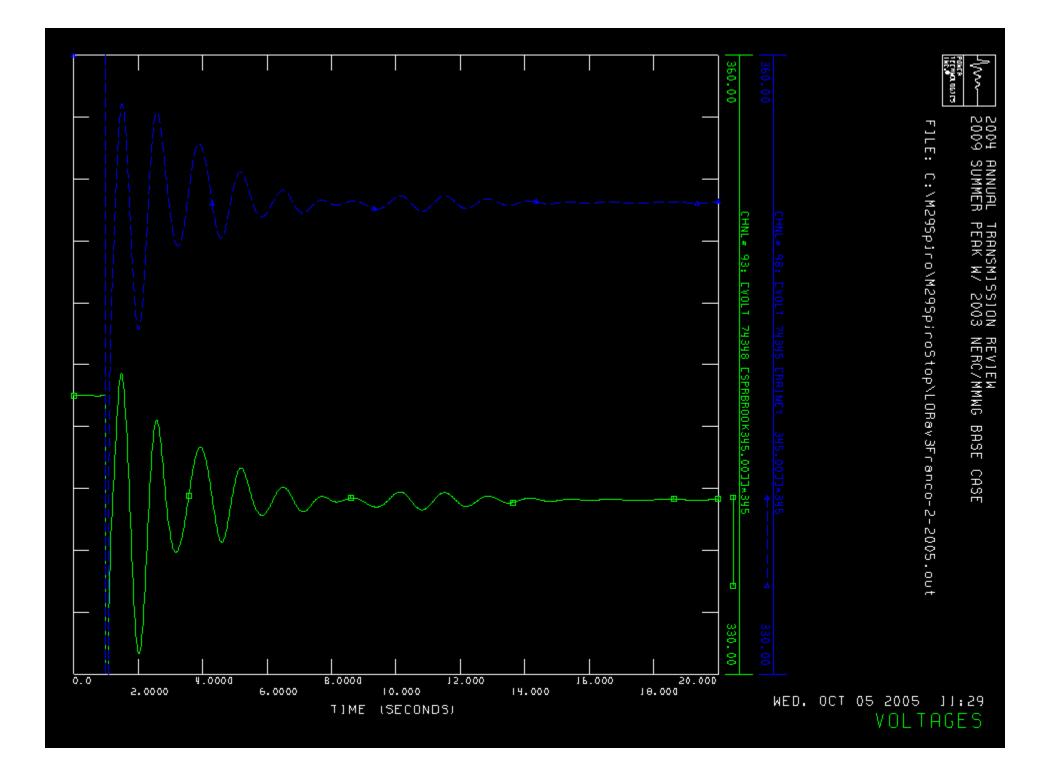
• Other (slower-acting) controls frozen

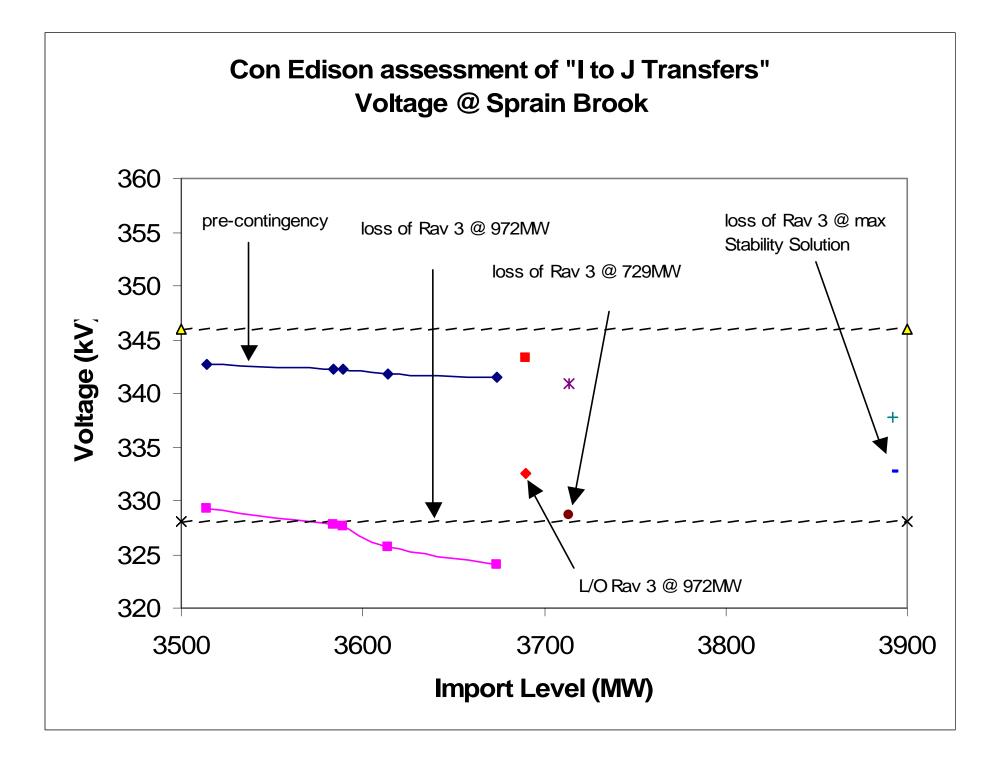
- PARs and LTC transformers fixed at their pre-contingency solved tap position
- Transmission switched shunts are locked
- DC terminals locked
- Operators' actions (e.g. dispatching/committing generation ramping steam units, turning on GTs)
- Area Interchange disabled
- Load represented as constant power (except for Con Ed loads)
- The above conditions describe post-transient conditions best evaluated via 6 stability simulations

Post-contingency assessment

<u>NYISO voltage criteria</u>		NYISO power flow solution	<u>Stability solution</u>		
1.	Generators' Excitation system action	<u>Not</u> represented	Represented		
2.	Generators' Governor system action	<u>Not</u> represented	Represented		
3.	SVC action	Represented	Represented		
4.	Load model	Constant MVA	Constant impedance		
5.	No other operator action	Yes	Yes		


Approximate power flow solutions


- 1. Variety of approaches:
 - INLF
 - FDNS
 - FNSL
- 2. Good computational speed.
- 3. Useful as a screening tool.
- 4. Need to be benchmarked against much more robust stability simulations.
- 5. Current practice for benchmarking DC thermal analysis with a detailed power flow.


Stability solution

1. Combines power flow with detailed representation of generation sources

- Stator and rotor parameters
- Excitation system
- Governor system
- 2. Monitors a great variety of system parameters (during and post-events):
 - Frequency
 - Voltage
 - Machines' rotor angles
 - Generators' MW and MVAR output
- 3. Widely available
- 4. Used in critical studies by the NYISO
 - ATR
 - Blackout re-construction
 - Establishment of relay protection system for old and new generation projects.
 - ٠
- 5. More conservative than power flow solution
 - Fault simulation (e.g. 3-phase-to-ground fault)
 - Stability-constrained T-Lims need to be 11% above thermal Limits

	Sum	mer	2006	- I to) J tra	nsfer	's at 3	3680	MW
			Rave	enswood #3	3 at max. ou	tput: 972 N	177		
			(the NYISO calls 3300 MW the limit on I-to_j transfers)						
Pre-continger		ncy				Post-conti	ngency		
				L/O	Rav 3 at 972	2 MW	L/O W	89/W90 cc	mmon towe
V _{Sprain Bi}	rook	343.3 kV			332.6 kV			333.3 kV	
SVCLeed	ls	81 MVARs			270 MVARs		200 MVARs		
SVC _{Fraz}	er	42 MVARs			247 MVARs		51 MVARs		
Note: SV/C	Frazer's O	max - 325	5 MV/ARs	SV/CI pode	' Qmax = 27	// M\/ARe			
			· ·		approximat		w solution.		