

SMD2/RTS

Qualitative Review of RTS Price Impacts

Presentation to the Market Structure Working Group 09/26/2003

Background

- > This project was designed to overcome the limitations of the NYISO's real-time legacy systems and to realize increased market efficiencies through improvements in real-time scheduling and dispatch.
- > RTS is designed to increase liquidity in energy, reserves and regulation products and enhance system reliability by appropriately valuing all three products through a co-optimized solution that is consistent throughout the scheduling timeframes and reflective of system conditions from day-ahead through real-time.

Background

- > Some participants have raised questions regarding the potential pricing impacts of moving to the RTS design.
- ➤ In the absence of the end-state software, price impact discussions are qualitative.

Project Assessment - Review

- > The RTS design will improve market efficiency in:
 - Seams Improvement
 - Improve transaction opportunities between NYISO and its neighbors
 - Market standardization
 - Price signals tied more closely to system conditions
 - ▶ To better provide long-run incentives for generation expansion and load responsiveness
- > In addition, the design will provide reductions in uplift.

Project Assessment - Review

- > Uplift Analysis
 - Categories of uplift impacted include:
 - ▶ Balancing NYISO BPCG & DAM Contract Balancing
 - *Uplift reductions result from:*
 - ▶ Price consistency between real-time scheduling and dispatch
 - Ancillary service scheduling
 - ▶ Reduced out-of-merit requests
 - ▶ ¼ hour scheduling and commitment of supply
 - ▶ Improved load forecast accuracy for Real-Time Scheduling.
 - Annual reduction in uplift projected to be \$16+M

- > All latent reserves are visible and available to the optimization programs for scheduling as energy or reserves
 - Eliminates artificial scarcity sometimes seen in hourly scheduling by BME today.
 - Eliminates price inconsistencies between commitment and dispatch programs as both are operating with consistent energy, reserve and regulation constraints.
 - Real-time availability bids are \$0

> Demand curves for Reserve and Regulation

- Incorporates shortage cost into both the reserve and energy prices (both day-ahead and real-time).
- Except for an EDRP/SCR call, scarcity pricing is fully integrated into the pricing algorithms rather than administratively determined.
- Recognition of all latent reserves to ensure shortage conditions are valid.

- > Clearing price for ancillary services more accurately reflects the true cost of acquiring these services
 - Eliminates separate Lost Opportunity Cost payments recovered as uplift via RS-1.
 - Marginal LOCs incorporated into a published, and therefore more readily hedgeable clearing price.
- > Two settlement system for Ancillary Services
 - Loads **can** purchase full ancillary service requirement in the dayahead market.
 - Real-time balancing obligation lies with suppliers with a day-ahead schedule.
 - Eliminates additional costs in today's market due to reoptimization or procurement of replacement services in real-time.

> Load forecast at 1/4 hour increments

- New more robust real-time load forecasting tool
- 15 minute versus hourly granularity allows greater refinement of forward load profile to better match scheduling and commitment of resources.

> 1/4 hour commitment/de-commitment and scheduling of supply

- 10 & 30 minute start resources are brought online closer to when they are actually needed.
- Minimizes delay in shutting down uneconomic resources that have run out their min-run times.

> Real Time Market Power Mitigation

AMP style conduct and impact testing

- > Units dispatched and responding consistent with pricing.
 - RTD ability to re-optimize dispatch of energy, reserves and regulation every 5 minutes.

> 3-part bidding in real-time

 Start-Up, Min Gen Cost & Incremental Cost are part of RTD-CAM evaluation to commit fast-start resources.

> Real-Time Demand Response for Reserves

- Potential to increase competition in reserve markets.
- Provides a means for a load to be truly price responsive. Loads capable of responding to real-time prices would receive the reserve clearing price for the option to call on them and avoid high energy prices when actually dispatched.

Recent Historical BME Prices

> May represent a reasonable upper bound for RTS realtime prices given that RTD, unlike SCD today will see explicit reserve and regulation constraints.

NYISO Markets 2003 Energy Statistics

	January	February	March	April	May	June	July	August
DAY AHEAD LBMP								-
Unweighted Price	\$61.33	\$72.81	\$73.18	\$51.58	\$46.43	\$51.45	\$57.10	\$63.43
Standard Deviation	\$20.09	\$21.12	\$29.70	\$12.47	\$14.03	\$21.27	\$11.88	\$17.67
Load Wtg.Price	\$63.81	\$75.03	\$76.25	\$53.14	\$48.47	\$55.52	\$58.93	\$66.16
BME * LBMP								
Unweighted Price	\$63.19	\$80.25	\$74.27	\$59.22	\$50.27	\$53.84	\$59.99	\$66.70
Standard Deviation	\$25.43	\$41.53	\$32.77	\$25.00	\$16.37	\$22.27	\$14.82	\$77.04
Load Wtg.Price	\$65.54	\$82.65	\$77.33	\$61.45	\$52.31	\$57.49	\$61.94	\$70.24
REAL TIME LBMP								
Unweighted Price	\$61.53	\$74.03	\$70.54	\$53.94	\$46.74	\$48.96	\$55.94	\$63.37
Standard Deviation	\$30.16	\$37.46	\$37.97	\$28.70	\$23.03	\$21.57	\$13.68	\$36.73
Load Wtg.Price	\$64.43	\$76.41	\$74.02	\$56.14	\$49.44	\$52.82	\$57.79	\$66.44
Average Daily Energy Sendout/Month GWh	458	450	418	393	382	432	497	498

Scarcity Pricing

> Proposed Demand Curves target price levels consistent with today's scarcity pricing levels for 10 and 30 minute shortages.

	NYCA	East	LI
Spin	\$850	\$1,400	\$1,750
10-Total	\$350	\$875	\$1,200
30-Total	\$200	\$225	\$525

Recapping the Benefits

Market Features Incorporated	Market Efficiencies
 Robust Ancillary Service Markets Increased Control Area Interchange Greater Security and Flexibility Increased Capabilities for Demand Response 	 Ancillary Service market pricing and settlement Improved in-day scheduling and dispatch Long-term incentives for generation expansion and load responsiveness
Market Leadership	Solution Quality
 Build upon strength of SCUC Compliance with FERC SMD Establish NYISO markets in an SMD leadership role 	 Improvements in billing, metering and auditability Delivers software modification and enhancement flexibility

Recapping the Benefits

Operational Improvements	Reliability Enhancements		
• ¼ hour unit and transaction scheduling (where possible)	 ¼ hour reliability assessments Consistent security analysis 		
• Forward looking unit ramping	routines		
Reduced Out-of-Merit	Minimize seams issues		
Improved GT management	■ Reduce need for reserve pickups		
Architecture	Tools		
 Improved system reliability 	■ State Estimator		
 Integrated fail over and redundancy 	■ Load Forecast		
Simulator / Training Environment	■ Market power analysis study mode		

Questions?