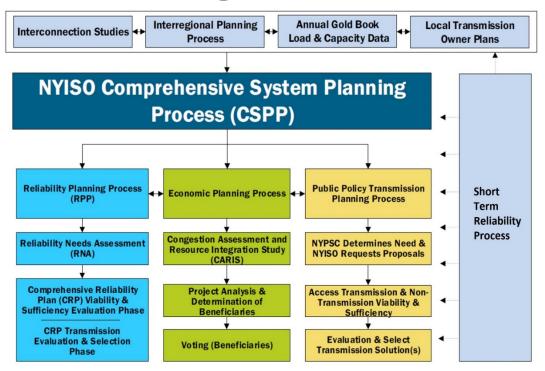


Economic Planning Process 2019 CARIS Phase 1 Report

Jason Frasier

Manager, Economic Planning

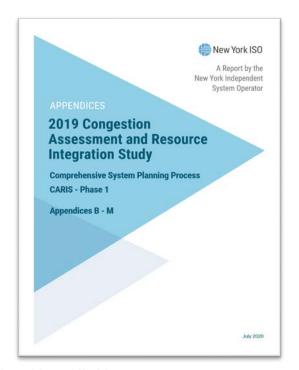
Public Information Session


August 13th, 2020

Agenda

- NYISO Economic Planning Process Overview
- CARIS Process Overview
- 2019 CARIS Phase 1
 - Base Case
 - "70x30" Scenario
- 2020 CARIS Phase 2

Economic Planning Process


What is CARIS?

- Main Component of the Economic Planning Process
 - <u>C</u>ongestion <u>A</u>ssessment and <u>R</u>esource <u>I</u>ntegration <u>S</u>tudy
- In 2007, the Federal Energy Regulatory Commission (FERC) mandated via Order 890 that all ISO/RTO's complete an economic planning study
- NYISO OATT Attachment Y Section 31.3 establishes the CARIS to fulfill Order 890 requirements

2019 CARIS Phase 1 Report Links

(Click Report to Follow Hyperlink)

CARIS Process Overview

CARIS Process

CARIS Phase 1 Objectives

- Identify and report transmission congestion
 - 5-year "historic"
 - 10-year "projected"
- Provide information to stakeholders, developers & other interested parties
 - Select top congested transmission elements
 - Project benefits of relieving the most congested elements or groupings using generic solutions
 - Identify factors that produce or increase congestion

CARIS Phase 2 Objectives

- Evaluate specific proposed projects for potential cost allocation and cost recovery through the NYISO tariff
 - New York Control Area production costs savings must exceed project costs over first ten years of operation
 - Sum of LBMP savings (for zones with savings) over first ten years of operation must exceed project costs
 - Qualified transmission projects mus receive 80% vote of the identified beneficiaries
- Perform additional CARIS studies for all interested parties and for all solution types

2019 CARIS Phase 1 Base Case

Base Case Development

- All assumptions developed pursuant to CARIS procedures and in collaboration with stakeholders at ESPWG
- 10-Year Study Period (2019-2028)
- Based on 2019-2028 Comprehensive Reliability Plan (CRP)
- 2019 Gold Book Load and Capacity Forecasts
- Resource changes pursuant to base case inclusion screening rules
- Assumption lockdown date of August 1, 2019

Base Case Key Assumptions

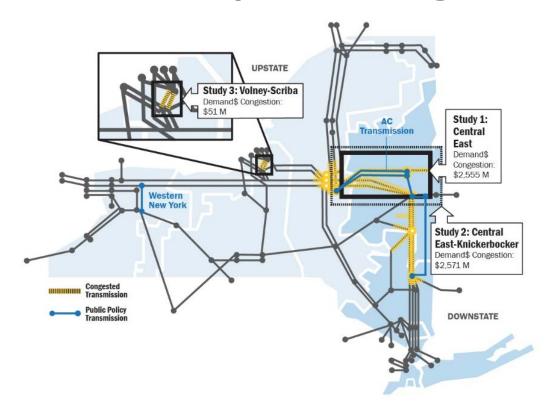
- Fuel & Emission Price Forecasts as of 8/1/2019
- 2019-2028 CRP transmission model with actual operating limits
- Transmission upgrades
 - Empire State Line Project / Western New York Public Policy project (2022)
 - NYPA rebuild of Moses-Adirondack 230 kV circuits (2023)
 - AC Transmission Public Policy projects Segments A and B (2024)
 - Expanding monitoring and securing of lower voltage system consistent with NYISO operations

Resource Assumptions

- Cricket Valley Energy center modeled in-service (2020)
- Indian Point 2 and 3 are retired (2020/2021)
- Other generation projects that met inclusion rules

Selection of Studies

- Rank and group elements based on five-year historic and 10-year projected Demand\$ Congestion
 - Historic Demand\$ Congestion data drawn from NYISO's posted congestion reports
 - Forecasted Demand\$ Congestion estimated using General Electric's Multi-Area Production Simulation (MAPS) software
- Select three study areas based on potential ten-year projected production cost savings



Historic and Projected Demand\$ Congestion (\$M)

Constraint Group (Nominal \$M)		Н	listoric							Project	ed				
Constraint Group (Norminal \$10)	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
CENTRAL EAST	1,136	915	641	598	540	668	508	521	411	183	188	84	84	114	167
DUNWOODIE TO LONG ISLAND	155	138	164	88	133	41	36	28	25	25	31	25	26	25	28
LEEDS PLEASANT VALLEY	42	111	63	101	9	2	1	2	3	3	-	-	-	-	-
EDIC MARCY	7	0	32	125	107	-	-	-	-	-	-	-	-	-	-
DUNWOODIE MOTTHAVEN	40	2	2	30	65	8	9	10	7	5	14	13	14	18	15
CHESTR SHOEMAKR	-	-	-	-	-	9	34	79	68	52	-	-	-	-	-
GREENWOOD	13	19	31	18	62	12	10	6	6	6	8	8	10	11	10
PACKARD HUNTLEY	7	41	54	30	41	-	-	-	-	-	-	-	-	-	-
PACKARD 115 NIAGBLVD 115	-	-	-	-	-	85	53	29	0	0	0	-	-	-	0
NIAGARA PACKARD	18	22	44	12	9	19	16	10	0	-	0	-	-	-	-
EGRDNCTY 138 VALLYSTR 138 1	20	18	8	17	20	6	5	3	2	5	4	5	4	5	4
NEW SCOTLAND LEEDS	9	32	13	18	5	0	-	-	0	0	-	-	-	-	-
N.WAV115 LOUNS 115	-	-	-	-	-	2	2	3	4	4	13	10	13	12	11
VOLNEY SCRIBA	0	1	0	1	1	6	7	6	7	7	6	5	7	9	9
NORTHPORT PILGRIM	-	-	-	-	-	6	4	9	10	8	5	4	5	4	4

2019 CARIS Study Groupings

Project Benefits

- Implement transmission, generation, demand response and energy efficiency generic solutions
 - Feasibility of each solution is not evaluated
- Estimate the potential benefits associated with relieving congestion for each solution type using GE-MAPS production cost simulation software
- Per the NYISO's Tariff, benefits are limited to NYCA-wide production cost savings for the purpose of determining the eligibility of a project for cost allocation and recovery

Generic Solutions

Generic Solutions							
Studies	Central East (Study 1)	(C					
TRANSMISSION							
Transmission Path	Edic-New Scotland	Edic-New Scotland-Knickerbocker	Volney-Scriba				
Voltage	345 kV	345 kV	345 kV				
Miles	85	100	10				
	GENERATION						
Unit Siting	New Scotland	Pleasant Valley	Volney				
Blocks	340 MW	340 MW	340 MW				
	DEM	IAND RESPONSE					
	Zone F: 100 MW	Zone F : 100 MW	Zone F : 100 MW				
Blocks	Zone G: 100 MW	Zone G : 100 MW	Zone G : 100 MW				
	Zone J : 200 MW	Zone J : 200 MW					
	ENERGY EFFICIENCY						
	Zone F : 100 MW	Zone F : 100 MW	Zone F : 100 MW				
Blocks	Zone G: 100 MW	Zone G : 100 MW	Zone G : 100 MW				
	Zone J: 200 MW	Zone J : 200 MW					

Generic Solution Cost Estimates

- Low, mid, and high estimates for each solution type
- Cost Estimate Sources
 - Transmission: NYSDPS's AC Transmission proceeding and other third-party sources
 - Generation: 2016 NYISO Demand Curve Reset study for combined cycle unit
 - Energy Efficiency: PSC Comprehensive Energy Efficiency Initiative (Case 18-M-0084)
 - Demand Response: PSC Proceeding on Motion of the Commission to Develop Dynamic Load Management Programs (Case 14-E-0423)

Ten-Year Production Cost Savings for CARIS Studies (\$2019M)

	Ten-Year Production Cost Savings (\$2019M)							
Study	Transmission Solution	Generation Solution	Demand Response Solution	Energy Efficiency Solution				
Study 1: Central East	115	103	17	1,061				
Study 2: Central East-Knickerbocker	117	110	17	1,061				
Study 3: Volney-Scriba	22	137	9	530				

Benefit/Cost Analysis

- Benefit/Cost ratios are reported for each solution, based upon ten years of projected NYCA-wide Production Cost Savings (CARIS primary metric) compared to the estimated ten years of project costs
 - 7.08% Discount Rate
 - 16% Capital Recovery Factor

Generic Solution Benefit/Cost Results

Study	2019-2023			2024-2028			
Transmission Solution	Low	Mid	High	Low	Mid	High	
Study 1: Central East	0.37	0.25	0.20	0.18	0.12	0.09	
Study 2: Central East-Knickerbocker	0.37	0.25	0.20	0.16	0.11	0.09	
Study 3: Volney-Scriba	0.44	0.30	0.24	0.52	0.35	0.28	
Generaton Solution	Low	Mid	High	Low	Mid	High	
Study 1: Central East	0.15	0.11	0.09	0.26	0.20	0.16	
Study 2: Central East-Knickerbocker	0.15	0.11	0.09	0.24	0.18	0.15	
Study 3: Volney-Scriba	0.20	0.15	0.12	0.44	0.33	0.26	
Demand Response Solution	Low	Mid	High	Low	Mid	High	
Study 1: Central East	0.08	0.06	0.05	0.11	0.08	0.06	
Study 2: Central East-Knickerbocker	0.08	0.06	0.05	0.11	0.08	0.06	
Study 3: Volney-Scriba	0.17	0.13	0.11	0.25	0.19	0.15	
Energy Efficiency Solution	Low	Mid	High	Low	Mid	High	
Study 1: Central East	0.32	0.24	0.19	0.43	0.32	0.26	
Study 2: Central East-Knickerbocker	0.32	0.24	0.19	0.43	0.32	0.26	
Study 3: Volney-Scriba	0.41	0.31	0.25	0.55	0.41	0.33	

- Additional benefit metrics report the change between the generic solution-case value and the base case value over the ten-year study period
 - For 2019 CARIS Phase 1, these include changes to generator payments, load payments, TCC payments, electric loss costs, ICAP costs and emissions
 - For information only

10-Year NYCA Change*

Study	Solution	LOAD PAYMENT	NYCA LOAD PAYMENT	EXPORT PAYMENT	GENERATOR PAYMENT	NYCA GENERATOR PAYMENT	IMPORT PAYMENT		LOSSES COSTS
	TRA	NSMISSIO	N SOLUTI	ONS					
Study 1: Central East	Edic-New Scotland	\$215	\$112	\$103	\$233	\$214	\$20	(\$212)	(\$25)
Study 2: Central East-Knickerbocker	Edic-New Scotland-Knickerbocker	\$264	\$141	\$123	\$271	\$251	\$20	(\$206)	(\$16)
Study 3: Volney Scriba	Volney-Scriba	(\$54)	(\$72)	\$18	\$384	\$398	(\$15)	(\$432)	\$13
GENERATION SOLUTIONS									
Study 1: Central East	New Scotland	(\$117)	(\$176)	\$59	(\$88)	(\$11)	(\$77)	(\$26)	\$17
Study 2: Central East-Knickerbocker	Pleasant Valley	(\$109)	(\$163)	\$55	(\$61)	\$13	(\$74)	(\$38)	(\$17)
Study 3: Volney Scriba	Volney	(\$228)	(\$313)	\$85	\$122	\$234	(\$111)	(\$319)	\$55
	DEMAND RESPONSE SOLUTIONS								
Study 1: Central East	F(100) G(100) J(200)	(\$69)	(\$70)	\$1	(\$51)	(\$47)	(\$4)	(\$15)	(\$3)
Study 2: Central East-Knickerbocker	F(100) G(100) J(200)	(\$69)	(\$70)	\$1	(\$51)	(\$47)	(\$4)	(\$15)	(\$3)
Study 3: Volney Scriba	F(100) G(100)	(\$29)	(\$30)	\$1	(\$23)	(\$21)	(\$2)	(\$5)	(\$1)
ENERGY EFFICIENCY SOLUTIONS									
Study 1: Central East	F(100) G(100) J(200)	(\$1,316)	(\$1,497)	\$182	(\$1,165)	(\$1,002)	(\$163)	(\$99)	(\$64)
Study 2: Central East-Knickerbocker	F(100) G(100) J(200)	(\$1,316)	(\$1,497)	\$182	(\$1,165)	(\$1,002)	(\$163)	(\$99)	(\$64)
Study 3: Volney Scriba	F(100) G(100)	(\$612)	(\$715)	\$103	(\$562)	(\$475)	(\$87)	(\$43)	(\$12)

^{*}Values in red indicate a reduction or savings

10-Year NYCA Emissions Change*

		S	$0_{\scriptscriptstyle 2}$	C	$0_{\scriptscriptstyle 2}$	NO	Ox
Study	Solution	Tons	Cost (\$2019M)	1000 Tons	Cost (\$2019M)	Tons	Cost (\$2019M)
	TRANSMISSIO	ON SOLUTIO	ONS				
Study 1: Central East	Edic-New Scotland	2,071	\$0	455	\$3	381	(\$0)
Study 2: Central East-Knickerbocker	Edic-New Scotland-Knickerbocker	2,189	\$0	650	\$4	465	(\$0)
Study 3: Volney Scriba	Volney-Scriba	203	\$0	163	\$1	(387)	(\$0)
	GENERATION SOLUTIONS						
Study 1: Central East	New Scotland	615	\$0	1,319	\$8	738	\$0
Study 2: Central East-Knickerbocker	Pleasant Valley	563	\$0	1,149	\$7	462	\$0
Study 3: Volney Scriba	Volney	(303)	(\$0)	1,718	\$10	632	(\$0)
	DEMAND RESPO	NSE SOLU	ΓIONS				
Study 1: Central East	F(100) G(100) J(200)	6	\$0	(173)	(\$1)	(221)	(\$0)
Study 2: Central East-Knickerbocker	F(100) G(100) J(200)	6	\$0	(173)	(\$1)	(221)	(\$0)
Study 3: Volney Scriba	F(100) G(100)	(52)	(\$0)	(77)	(\$0)	(66)	(\$0)
ENERGY EFFICIENCY SOLUTIONS							
Study 1: Central East	F(100) G(100) J(200)	(153)	(\$0)	(11,177)	(\$61)	(4,043)	(\$0)
Study 2: Central East-Knickerbocker	F(100) G(100) J(200)	(153)	(\$0)	(11,177)	(\$61)	(4,043)	(\$0)
Study 3: Volney Scriba	F(100) G(100)	(14)	(\$0)	(5,234)	(\$29)	(1,567)	(\$0)

^{*}Values in red indicate a reduction or savings

Capacity Market Impacts

Charden	Colution	MW Impact (MW)					
Study	Solution	J	G-J	K	NYCA		
	Transmission	0	0	0	0		
Study 1. Control Foot	Generation	54	81	29	220		
Study 1: Central East	Energy Efficiency	142	212	77	574		
	Demand Response	122	182	66	493		
	Transmission	0	0	0	0		
Study 2: Central East-	Generation	54	81	29	220		
Knickerbocker	Energy Efficiency	142	212	77	574		
	Demand Response	122	182	66	493		
	Transmission	0	0	0	0		
Charles O. Walanas Carella	Generation	54	81	29	220		
Study 3: Volney Scriba	Energy Efficiency	36	54	19	145		
	Demand Response	30	44	16	120		

Ctudu	Solution	ICAP Saving (\$2019M)			
Study	Solution	V1	V2		
	Transmission	0	0		
Study 1. Control East	Generation	66	524		
Study 1: Central East	Energy Efficiency	173	1,345		
	Demand Response	149	1,158		
	Transmission	0	0		
Study 2: Central East-	Generation	66	524		
Knickerbocker	Energy Efficiency	173	1,345		
	Demand Response	149	1,158		
	Transmission	0	0		
Ctudy 2. Volnov Coribo	Generation	66	524		
Study 3: Volney Scriba	Energy Efficiency	44	347		
	Demand Response	36	288		

2019 CARIS 1 Scenarios

Scenario	Description
High Load Forecast	Higher penetration of electric vehicles and electric heat pumps
Low Load Forecast	Higher energy efficiency levels achieved
Higher Natural Gas Prices	Derived from 2019 EIA Annual Energy Outlook High Forecast
Lower Natural Gas Prices	Derived from 2019 EIA Annual Energy Outlook Low Forecast

Key Findings: Base Case

- Generic solutions offered a measure of congestion relief and production cost savings
- Transmission projects studied did not result in Benefit/Cost ratios in excess of 1.0, based on generic cost estimates and production cost savings only
- With the inclusion of the AC Transmission Public Policy Projects starting in year 2024, congestion levels decreased substantially compared with prior study years
- Central East is still, however, the most congested transmission corridor over the ten-year study period (2019-2028) because of high congestion during the five-year period preceding the AC Transmission projects (2019-2023)

2019 CARIS Phase 1 "70x30" Scenario

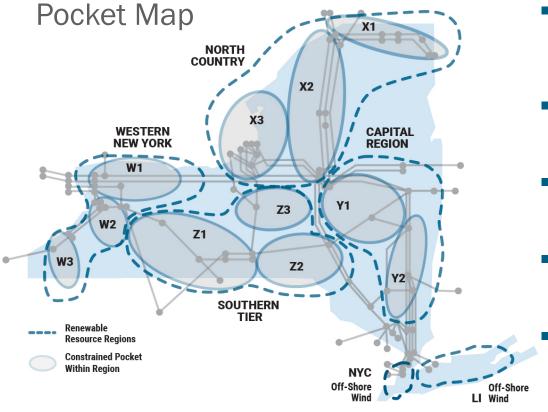
70x30 Scenario Description

- The Climate Leadership and Community Protection Act (CLCPA) mandates that 70% of New York's end-use energy consumption be served by renewable energy by 2030 ("70x30")
 - Distributed solar goal of 6,000 MW by 2025
 - Energy storage goal of 3,000 MW by 2030
 - Offshore wind goal of 9,000 MW by 2035
- The 70x30 Scenario is not intended as a roadmap for compliance with the mandates of the CLCPA, but does provide insights into renewable generation pockets that are likely to form due to limited transmission capability in the areas where wind and solar resources are likely to be constructed

70x30 Scenario Description

- The 70x30 Scenario models these targets through 2030 for two potential load forecasts and identifies system constraints, renewable generation curtailments, and other potential operational limitations
- Renewable capacity build-out assumptions were developed in collaboration with stakeholders utilizing the NYISO interconnection queue as a reference point

70x30 Scenario Key Assumptions


- All coal plants retired by 2021
- "Peaker" rule replacements corresponding to local Compensatory MW additions identified in 2019-2028 CRP
- Renewable resource modeling
 - Includes hydro, utility-scale solar, behind-the-meter solar, land-based wind, and offshore wind total capacity
 - Additional HQ import into NYC via HVDC
- Approximately 1,000 new transmission contingencies were added as identified in the MAPS/TARA contingency screening process

Constrained Pockets

- Renewable generation pockets are likely to develop throughout the state as the existing transmission grid would be overwhelmed by the significant renewable capacity additions
- In each of the five major pockets observed, renewable generation is curtailed due to the lack of sufficient bulk and local transmission capability to deliver the power
 - 11% of annual renewable energy production curtailed
- Additional transmission expansion, at both bulk and local levels, will be necessary to efficiently deliver renewable power to New York consumers

Western New York (Pocket W)

- Mainly 115 kV in Buffalo and Rochester
- Up to 18% Solar Curtailment

North Country (Pocket X)

- 115 kV & 230 kV in Northern NY
- Up to 63% Wind Curtailment

Capital Region (Pocket Y)

- Mainly 115 kV in the Capital Region
- Up to 54% Solar Curtailment

Southern Tier (Pocket Z)

- Mainly 115 kV in the Finger Lakes
- Up to 37% Wind Curtailment

Offshore Wind

- New York City and Long Island
- Up to 9% OSW Curtailment

Load Impacts

- Two scenarios with varying energy forecasts and associated renewable build-outs were simulated
- The level of renewable generation investment necessary to achieve 70% renewable end-use energy by 2030 could vary greatly as energy efficiency and electrification adoption unfolds
 - Base Load 37,600 MW of renewable resources
 - Scenario Load 31,000 MW of renewable resources
- In both scenarios significant transmission constraints exist when adding the necessary volume of renewable generation to achieve the 70% target

Fossil Fleet Impacts

- The large amount of renewable energy additions to achieve the CLCPA goals would change the operations of the fossil fuel fleet
 - Decrease in annual energy output of the fossil fleet
 - Flexible generators are dispatched more often while inflexible units are dispatched less or not at all
- Sensitivity analysis indicates that if the statewide nuclear generation fleet retired, emissions from the fossil fuel fleet would likely increase; the degree of that impact is dependent on the timing of nuclear retirements and the pace of renewable resource additions

Energy Storage

- Sensitivity analysis performed including energy storage resources
- Results indicate that energy storage could decrease congestion, and when dispatched effectively, would help to increase the utilization of the renewable generation, particularly the solar generation tested
- The targeted analysis showed that energy storage likely cannot by itself completely resolve the transmission limitations in the pockets analyzed

2020 CARIS Phase 2

Next Steps

Study Kickoff

August 20th ESPWG - Kickoff Presentation

Database Development

September 24th ESPWG - Assumptions Review

Review of Results

- October 23rd ESPWG Preliminary Results
- November 19th ESPWG Final Results

Final CARIS Phase 2 Database

- Presentation at BIC
- "Additional CARIS Study" and "Specific Project" studies available to use 2020 CARIS Phase 2 database

^{*}All stakeholder meeting dates are based on preliminary estimates and are subject to change

Questions?

CARIS Data Catalog

Previously presented at ESPWG

September 11, 2019

CARIS Preliminary 70 x 30 Scenario Development

October 4, 2019

CARIS Scenario Load Forecast Development
CARIS 1 70x30 Scenario ESR Modeling

October 23, 2019

CARIS 70x30 Scenario Assumptions and Calculation

November 18, 2019

Preliminary Scenario Results (High/Low Gas Prices and Loads)

February 27, 2020

Review of Assumptions and Resource Mix

March 16, 2020

<u>Preliminary Scenario Load Constraint Modeling, Nuclear Sensitivity and Additional Results</u>

April 6, 2020

Preliminary Base Load Constraint Modeling, Nuclear Sensitivity and Additional Results

April 23, 2020

Constraint Modeling, Energy Storage Sensitivity and Additional Case Results

May 4, 2020

2019 CARIS Draft Report - 70x30 Section

May 22, 2020

CARIS Draft Report, Appendix, & Data Tutorial

Previously presented at ESPWG (cont.)

June 4, 2020

CARIS Report and Appendix

June 24, 2020 (BIC)

CARIS Report and Appendix

Posted to ESPWG Meeting Materials

March 16, 2020

Monthly Case Energy Output MWh – Updated 70x30 Build Out Scenario Load

April 6, 2020

Case Output By Type and By Zone
Monthly Case Type Energy MWh
70x30 RE Buildout Base Load

Preliminary 70x30 Scenario Pocket Map

April 23, 2020

Case Output By Type and By Zone
Case Output By Type and By Pocket
Monthly Case Type Energy MWh
Monthly Average Zonal LBMP

Hourly Information By Pocket

May 22, 2020

Hourly Wind Solar Curtailments By Pocket

Hourly Zonal Net Load

Fuel Forecast

Our mission, in collaboration with our stakeholders, is to serve the public interest and provide benefit to consumers by:

- Maintaining and enhancing regional reliability
- Operating open, fair and competitive wholesale electricity markets
- Planning the power system for the future
- Providing factual information to policymakers, stakeholders and investors in the power system

