

Economic Planning: Process Improvement Proposals

Jason L. Frasier

Manager, Economic Planning

Transmission Planning Advisory Subcommittee (TPAS)

August 31, 2020

Agenda

- Objectives & Timeline
- Proposed Improvements
 - Energy Deliverability
 - Economic Planning Process Phase 1: System Study Report
 - Economic Planning Process Phase 2: Solution Evaluation
- Next Steps
- Q & A

Quality comes not from inspection, but from improvement of the production process **77**

- W. Edwards Deming Early Pioneer of Process Improvement Methods

Objectives & Timeline

- Discussion of potential areas for improvement in the economic planning process
- Discussion of ideas on process improvements to resolve inefficiencies
- Strawman proposal of tariff changes to NYISO OATT Attachment Y § 31.3
- Tariff revision review
- BIC & MC vote on tariff amendments to be implemented through a Federal Power Act Section 205 filing

Dec

Improvement Categories

Based on comments received, the improvement proposal is structured into two categories:

Economic Planning Process Phase 1

- Steer the Economic Planning Process to provide more information to guide understanding of system constraints
- Incorporate energy deliverability concepts
- Economic Planning Process Phase 2
 - Expand "Additional Study" scope and purpose
 - Revise transmission project process, such as evaluation metrics, study period, and voting criteria

Energy Deliverability Concepts

Why Include Energy Deliverability?

- Transmission expansion needs driven by the changing outlook of the system
- Generator owners, especially intermittent resources, seeking transmission expansion beyond Minimum Interconnection Standard and capacity Deliverability Interconnection Standard
- Generators in a vicinity looking for an efficient and cost effective way to deliver their power without transmission restrictions
- Production cost simulation tools used in Economic Planning Process are the best way to assess energy deliverability over any period of time
- NYISO has the databases and the technical ability

Concept

The percentage of energy produced by a resource that can be injected into the NYISO transmission system versus what the resource is capable of producing.

 $Energy \ Deliverability \ (\%) = \frac{Projected \ Energy \ Production}{Potential \ Available \ Energy \ Production} \ x \ 100$

Projected Energy Production = actual or simulated plant annual energy production subject to curtailment caused by transmission congestion

Potential Available Energy Production = actual or simulated potential annual energy production based only on projected fuel resource availability and plant characteristics

Simplified Example Background

Shadow Price

- Economic impact of transmission constraint on system
- For example, a \$10 shadow price (SP) would imply an increase in system cost of \$10 due to generator re-dispatch

Generation Shift Factor (GSF)

- Incremental impact of a generator on a transmission line
- For example, a 0.2 GSF implies that 10 MW generator output, 2 MW flows on the referenced transmission line

New York ISO

Simplified Example

- Curtailment
 - G1 = 44 GWh (10%)
 - G2 = 66 GWh (15%)
 - G3 = 88 GWh (20%)
- Energy Deliverability
 - = Actual Energy/Potential Energy x 100
 - G1 = 90% G2 = 85% G3 = 80%
- Potential LBMP Impact of Upgrade
 - = Shadow Price x GSF

- G1 = 0.5G2 = 0.6G3 = 0.7
- Generation Shift Factors (GSF)
- G1 = (0.5)(\$10/MWh) = \$5/MWh
- G2 = (0.6)(\$10/MWh) = \$6/MWh

•
$$G3 = (0.7)(\$10/MWh) = \$7/MWh$$

ew York ISO

*Assume all generators capacity = 200 MW @ 25% annual capacity factor, potential annual energy production = 438 GWh

Example of Energy Deliverability Results

Identifies energy deliverability of each generator for each scenario evaluated

Generator*	Base	Scen 1	Scen 2	
1	%	%	%	%
2	%	%	%	%
3	%	%	%	%
	%	%	%	%

*Note: Generators will be aggregated for public view but will be available for specific generators upon request

Example of Curtailment Results

Identifies annual curtailment for each generator for each scenario evaluated

Generator*	Base	Scen 1	Scen 2	
1	GWh	GWh	GWh	GWh
2	GWh	GWh	GWh	GWh
3	GWh	GWh	GWh	GWh
	GWh	GWh	GWh	GWh

*Note: Generators will be aggregated for public view but will be available for specific generators upon request

Simplified Example (cont.)

LBMP impact applies to <u>both</u>:

- Energy produced and cleared during congested hours
- Curtailed energy not cleared during congested hours

• Looking at a **single hour** from our example...

• Assume G3 produced 160MW, curtailed 40 MW, and constraint Shadow Price = \$10 before upgrade then the potential upgrade benefit is:

LBMP Impact

Shadow

GSF

• G3 Potential Benefit = (160 MWh + 40 MWh) * (0.7 * \$10/MWh) = \$1,400

Curtailed

Energy

Price

Cleared

Energy

Example of LBMP Impact Results

 Identifies economic impact of congested elements on individual generators

Generator*	Line A	Line B	Line C	
1	\$	\$\$		\$
2	\$	\$	\$	\$
3	\$	\$	\$\$	
	\$	\$	\$	\$

*Note: Generators will be aggregated for public view but will be available for specific generators upon request

Economic Planning Process – Phase 1

High Level Proposal – Phase 1

Review of Phase 1 Improvement Areas

- Base Case Study Period
- Base Case Inclusion Rules
- Scenario Analysis
- Base Case Reliability Screening
- # of Transmission Paths Evaluated
- Generic Solutions
- ICAP Metric
- Public Information Session
- Economic Planning Process Name
- Energy Deliverability

Base Case Study Period

Preliminary Idea for Consideration

Expand Phase 1 to 20-year study period

- Consistency: Phase 2 already a 20 year database
- A 10-year study period does not sufficiently capture the long term system trends and project impacts
- Transmission projects would typically be built towards the end of the 10-year study period

Base Case Inclusion Rules

Preliminary Idea for Consideration

- Adjust inclusion rules to allow more flexibility
- Move specific inclusion rules from tariff to manual

- Overly rigid inclusion rules create unrealistic and quickly outdated assumptions
- Existing state laws and mandates need to be considered
- Incorporating state policies in the Base Case could eliminate the need for extensive scenario evaluations, such as the 70x30 scenario which required significant additional time to accomplish

Scenario Analysis

Preliminary Idea for Consideration

- Allow scenario to be alternative base case
- Expand scenario simulations to simulate several futures

Rationale

• Enables more robust 20-year simulations by capturing the impact of potential future uncertainty

Base Case Reliability Screening

Preliminary Idea for Consideration

• Set load and capacity assumption thresholds for reliability screening

Rationale

• Setting minimum thresholds for system changes could reduce the amount of screening analysis

of Transmission Paths Evaluated

Preliminary Idea for Consideration

- Expand number of transmission paths included in analysis
- Adjust metrics for ranking projects

- Currently only evaluating 3 paths with the highest production cost benefits may miss lower benefit but lower cost projects with higher B/C ratios ("low hanging fruit")
- Ranking on production cost requires extra simulations

Generic Solutions

Preliminary Idea for Consideration

• Eliminate generic solution evaluation

- Transmission project benefits already estimated during current "relaxation" process, which can be applied to more paths in new process
- Generation, EE, and DR solutions cannot be evaluated as specific projects
- High variability and uncertainty in cost estimates can lead to unrealistic B/C ratios
- Large analytical time requirement with limited benefit

Energy Deliverability Assessment

Preliminary Idea for Consideration

 Include an energy deliverability calculation to be performed to identify transmission elements adversely impacting new and existing generation energy curtailment and economics

- NYISO is uniquely positioned to provide useful data and analysis to inform policymakers and developers to meet State energy targets
- Analysis can be extended beyond Phase 1 to evaluate specific generators, generator projects, and transmission projects

Improvement ICAP Cost Metric

Preliminary Idea for Consideration

• Eliminate ICAP cost metric set forth in Att. Y 31.3.1.3.5.6, specific to Economic Planning Process

- Informational only
- May be misleading; does not align with other capacity market evaluation methods
- Burdensome calculation process

Improvement Energy Deliverability Process Proposal

Economic Planning Process Name

Preliminary Idea for Consideration

Rename Congestion Assessment and Resource Integration Study
(CARIS)

- Current name does not best reflect the purpose and the value of the study being performed
- Work product of economic planning has expanded to include public policy concepts informed by reliability issues

Process Alignment

Preliminary Idea for Consideration

• Adjust economic planning study start time to align with finalization of reliability analysis findings

- Delay between reliability and economic processes results in misaligned assumptions
- Mis-aligned assumptions necessitate "reliability checks" during economic planning study

Economic Planning Process – Phase 2

DRAFT – FOR DISCUSSION PURPOSES ONLY

High Level Proposal – Phase II

Review of Phase 2 Improvement Areas

- Energy Deliverability
- Voting Criteria by Project Beneficiaries
- Scenario Analysis
- Planning Process Alignment
- Database Availability

Improvement Energy Deliverability

Preliminary Idea for Consideration

 Include an energy deliverability calculation to be performed and reported on for the base case and specific project studies

Rationale

• Energy deliverability metrics for specific projects will be informative for project beneficiaries

Voting Criteria by Project Beneficiaries

Preliminary Idea for Consideration

• Use 20-year NPV for project benefits

Rationale

 10-year project evaluation period is unrealistic compared to actual project development and financing metrics

Scenario Analysis

Preliminary Idea for Consideration

Include scenarios as part of benefit calculation

- Currently informational only
- Scenarios enable evaluation of project benefits outside of study assumption limitations and under an uncertain future

Resource Mix Assumptions

Preliminary Idea for Consideration

• For specific project solution simulations, re-calculate reliability buildout and/or capacity expansion to reflect impact of project

Rationale

• Specific projects will impact future buildout of system, which is ignored in current process

Database Availability

Preliminary Idea for Consideration

• Publish a more comprehensive set of production cost model assumption data

- Production cost tools and databases are commercially available but need to be updated to align with NYISO models
- Accurate modeling of NYISO system will allow developers to design more effective transmission solutions for Phase 2

Questions?

Our mission, in collaboration with our stakeholders, is to serve the public interest and provide benefit to consumers by:

- Maintaining and enhancing regional reliability
- Operating open, fair and competitive wholesale electricity markets
- Planning the power system for the future
- Providing factual information to policymakers, stakeholders and investors in the power system

ISO Economic Study Benchmark

ISO	Economic Planning Process	Study Horizon (years)	Years Simulated	B/C Term (years)	B/C Threshold	Benefit Metric (s)	# Approved Projects
<u>NYISO</u>	Congestion Assessment and Resource Integration Study (CARIS)	10	10	10	1.0	Production Cost	0
ISO-NE	Regional System Plan – Economic Studies	10	1	-	-	-	-
<u>PJM</u>	Regional Transmission Expansion Plan (RTEP) Market Efficiency	10	4	15	1.25	Production Cost	<u>12</u>
<u>IESO</u>	Annual Planning Outlook (APO)	20	20	-	-	-	-
<u>MISO</u>	Market Congestion Planning Study (MCPS)	15	3	20	0.9/1.0	Production Cost	3
<u>SPP</u>	Integrated Transmission Plan (ITP10/ITP20)	10/20	2	40	1.0	Production Cost	<u>3+</u>
<u>ERCOT</u>	Regional Transmission Plan (RTP) & Long Term System Assessment (LTSA)	10	3	*	1.0	Production Cost	-
<u>CAISO</u>	Transmission Plan	10	1	40-50	1.0	Production Cost	-

*annual production cost savings are compared to the first-year annual revenue requirement of the proposed project

睘 New York ISO