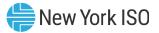
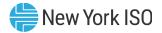



Short-Term Assessment of Reliability: 2022 Quarter 2


A Report by the New York Independent System Operator

July 14, 2022



Contents

EXECUTIVE SUMMARY	4
PURPOSE	6
ASSUMPTIONS	7
Generation Assumptions	7
Generator Deactivation Notices Peaker Rule: Ozone Season Oxides of Nitrogen (NOx) Emission Limits for Simple Cycle and Regenerative Combustion Turbines	d 10
Generator Return-to-Service Generator Additions	
Load Assumptions	12
Transmission Assumptions	13
Existing Transmission Proposed Transmission	13
FINDINGS	14
Resource Adequacy Assessments	14
Transmission Security Assessments	14
Steady State Assessment Dynamics Assessment Short Circuit Assessment	16
Additional Transmission Owner Local Criteria Assessments (For Information Only)	17
RELIABILITY METRICS	18
Transmission Security Margins	18
Resource Adequacy	20
CONCLUSIONS AND DETERMINATION	20
APPENDIX A: LIST OF SHORT-TERM RELIABILITY NEEDS	21
APPENDIX B: SHORT-TERM RELIABILITY PROCESS SOLUTION LIST	21
APPENDIX C: SUMMARY OF STUDY ASSUMPTIONS	22
Generation Assumptions	22
Load Assumptions	25
Transmission Assumptions	26
APPENDIX D: RESOURCE ADEQUACY ASSUMPTIONS	42

2022 Q2 STAR MARS Assumptions Matrix	
Resource Adequacy Topology from the 2021 Reliability Planning Models	57
APPENDIX E: TRANSMISSION SECURITY MARGINS (TIPPING POINTS)	62
New York Control Area (NYCA) Tipping Points	62
Lower Hudson Valley (Zones G-J) Tipping Points	68
New York City (Zone J) Tipping Points	74
Long Island (Zone K) Tipping Points	80

Executive Summary

This report sets forth the 2022 Quarter 2 Short-Term Assessment of Reliability ("STAR") findings for the five-year study period of April 15, 2022 through April 15, 2027. Included in this STAR are the proposed retirements of the following units:

- Nassau Energy LLC's Trigen CC unit (Zone K, 55 MW) proposing to deactivate on March, 31, 2022¹ and entry into an IIFO effective May 24, 2022,
- Eastern Generation LLC's Gowanus 1-1 through 1-8 and 4-1 through 4-8 units (Zone J, 320 MW) proposing to deactivate on November 1, 2022,
- Consolidated Edison Company of New York, Inc.'s Hudson Ave 3 and Hudson Ave 5 units (Zone J, 32.6 MW) proposing to deactivate on November 1, 2022, and its 74th Street GT 1 and GT 2 units (Zone J, 37 MW) proposing to deactivate on May 1, 2023, and
- Astoria Gas Turbine Power, LLC's Astoria GT 2-1 through 2-4, 3-1 through 3-4, and 4-1 through 4-4 units (Zone J, 558 MW) proposing to deactivate on May 1, 2023.

This STAR also includes the ICAP Ineligible Forced Outage of Exelon Generation Company, LLC's Madison County LF unit (Zone E, 1.6 MW).

This assessment finds the planned Bulk Power Transmission Facilities ("BPTF") through the study period are within applicable reliability criteria under the assumed and forecasted base case system conditions. The NYISO assessed the resource adequacy of the overall system. Additionally, the NYISO performed a transmission security assessment of the BPTF. No Short-Term Reliability Needs were identified for the BPTF system. No generator deactivation reliability needs were observed in the local assessments performed by Consolidated Edison Company of New York, Inc. ("Con Edison"), National Grid, LLC ("National Grid"), and the Long Island Power Authority ("LIPA").

At the May 5, 2022 and May 23, 2022 joint meetings of the Transmission Planning Advisory Subcommittee and the Electric System Planning Working Group (TPAS/ESPWG), the NYISO discussed with stakeholders several enhancements to the reliability planning practices. The proposed changes to reliability planning practices include; (1) modeling intermittent resources according to their expected availability coincident with the represented system condition, (2)_ accounting for the availability of thermal generation based on NERC class average five-year outage rate data in transmission security assessments, (3) the ability to identify reliability needs through the spreadsheet-based method of calculating transmission security margins (aka "tipping points") within the Lower Hudson Valley (Zones G-J), New York City (Zone J), and Long Island (Zone K) localities, as well as other enhancements to

¹ The submitting entity has proposed to deactivate the generator on March 31, 2022, which is less than 91 days after the STAR Start Date. The earliest possible retirement date for the generator is July 15, 2022. *See* OATT Section 38.3.7 for additional requirements.

reliability planning practices. At its June 23, 2022 meeting, the Operating Committee approved revisions to the Reliability Planning Process Manual to reflect these enhancements. The reliability planning changes will be implemented in the 2022 Reliability Needs Assessment and 2022 Quarter 3 STAR.

The 2022 Quarter 2 STAR transmission security margin analysis is included in Appendix E for informational purposes only. This "tipping point" analysis accounts for expected generator availability, transmission limitations, and demand forecasts focusing on baseline expected weather forecasts consistent with the 2021 Load & Capacity Data report ("Gold Book"). Using those demand forecasts published in April 2021, the New York City transmission security margin would be deficient beginning in 2025 following the unavailability of generation affected by the New York State Department of Environmental Conservation's "Peaker Rule." The deficiency would be more severe during heatwave and extreme heatwave conditions. However, a revised demand forecast that will affect these findings was published in the 2022 Gold Book on April 27, 2022, after the start of this 2022 Quarter 2 STAR. Updated transmission security margin analysis utilizing the 2022 Gold Book forecasts will be included in the 2022 Quarter 3 STAR and 2022 Reliability Needs Assessment.

Central Hudson identified transmission security issues in its transmission district on its non-BPTF system. The issues identified by Central Hudson are primarily driven by the assumed unavailability of certain generation in its district affected by the DEC Peaker Rule. Given that those generators have not yet provided complete Generator Deactivation Notices to the NYISO, the local non-BPTF criteria violations identified by Central Hudson are not being assessed to identify possible Generator Deactivation Reliability Needs at this time.

As generators that are subject to the DEC Peaker Rule submit their Generator Deactivation Notices, the NYISO and the responsible Transmission Owners will continue to evaluate in future STARs whether Generator Deactivation Reliability Needs arise from the deactivation of Initiating Generators.²

² Per OATT 38.1, an "Initiating Generator" is "a Generator with a nameplate rating that exceeds 1 MW that submits a Generator Deactivation Notice for purposes of becoming Retired or entering into a Mothball Outage or that has entered into an ICAP Ineligible Forced Outage pursuant to Section 5.18.2.1 of the ISO Services Tariff, which action is being evaluated by the ISO in accordance with its Short-Term Reliability Process requirements in this Section 38 of the ISO OATT."

Purpose

In 2019, the NYISO established a quarterly Short-Term Reliability Process ("STRP") with its requirements prescribed in Attachments Y and FF of the NYISO's Open Access Transmission Tariff ("OATT"). The STRP evaluates the first five years of the planning horizon, with a focus on needs arising in the first three years of the study period. With this process in place, the biennial Reliability Planning Process focuses on identifying and resolving longer-term needs through the Reliability Needs Assessment ("RNA") and the Comprehensive Reliability Plan ("CRP").

The first step in the STRP is the Short-Term Assessment of Reliability ("STAR"). STARs are performed quarterly to proactively address reliability needs that may arise within five years ("Short-Term Reliability Needs")³ due to various changes to the grid such as generator deactivations, revised transmission plans, and updated load forecasts. Transmission Owners also assess the impact of generator deactivations on their local systems. A Short-Term Reliability Need that is observed within the first three years of the study period constitutes a "Near-Term Reliability Need."⁴ Should a Near-Term Reliability Need be identified in a STAR, the NYISO solicits and selects the solution to address the need. If a need arises beyond the first three years of the study period, the NYISO may choose to address the need within the STRP or, if time permits, through the long-term Reliability Planning Process.

This STAR report sets forth the 2022 Quarter 2 findings for the study period from the STAR Start Date (April 15, 2022) through April 15, 2027. The NYISO assessed the potential reliability impacts to the Bulk Power Transmission Facilities ("BPTF") considering system changes, including the availability of resources and the status of transmission plans in accordance with the NYISO Reliability Planning Process Manual.⁵ As part of this STAR, the NYISO performed analysis in coordination with Con Edison, National Grid, and LIPA to determine whether any observed violation or potential violation of one or more reliability criteria and applicable local criteria could be addressed by the continued availability or operation of a deactivating generator (*i.e.* a Generator Deactivation Reliability Need⁶). For this STAR, the deactivating generators included in this assessment are listed in Figure 1. The NYISO along with Con Edison, National Grid, and LIPA timely completed this analysis within the 90-day period that commenced

³ OATT Section 38.1 contains the tariff definition of a "Short-Term Reliability Process Need."

⁴ OATT Section 38.1 contains the tariff definition of a "Near-Term Reliability Need." See also, OATT Section 38.3.6.

⁵ NYISO Reliability Planning Process Manual, April 2, 2021. See: <u>https://www.nyiso.com/documents/20142/2924447/rpp_mnl.pdf</u>

⁶ Per OATT 38.1, a "Generator Deactivation Reliability Need" is "a condition identified by the ISO in a STAR or a Generator Deactivation Assessment as a violation or potential violation of one or more Reliability Criteria and applicable local criteria. Violations and potential violations identified in a STAR are only Generator Deactivation Reliability Needs if the need can be resolved, in whole or in part, by the continued availability or operation of an Initiating Generator. A Generator Deactivation Reliability Need is a type of Short-Term Reliability Process Need."

on April 15, 2022 ("STAR Start Date").

Assumptions

The NYISO evaluated the study period using the most recent Reliability Planning Process base case and data available as of April 14, 2022 before the April 15, 2022 Q2 STAR start date. In accordance with the base case inclusion rules,⁷ generation and transmission projects are added to the base case if they have met significant milestones such that there is a reasonable expectation of timely completion of the project. A summary of key projects is provided in Appendix C.

This assessment used the major assumptions included in the 2020 RNA. Consistent with the NYISO's obligations under its tariffs, the NYISO provided information to stakeholders on the modeling assumptions employed in this assessment. Details regarding the study assumptions were reviewed with stakeholders at the April 26, 2022 Electric System Planning Working Group ("ESPWG")/Transmission Planning Advisory Subcommittee ("TPAS"). The meeting materials are posted on the NYISO's public website.⁸

Generation Assumptions

Generator Deactivation Notices

For this STAR, the deactivating generators included in this assessment are listed in Figure 1. A list of all generator deactivations, including those evaluated in prior STARs, is provided in Appendix C. The posting of generator deactivation notices for retirement, mothball outage, or ICAP ineligible forced outage are available on the NYISO website under the Short-Term Reliability Process.⁹

⁷ See NYISO Reliability Planning Process Manual Section 3.

⁸ Short-Term Assessment of Reliability: 2022 Q2 Key Study Assumptions

⁹ See <u>https://www.nyiso.com/short-term-reliability-process</u> then Generator Deactivation Notices/Planned Retirement Notices or Generator Deactivation Notices/IIFO Notifications

Figure 1: 2022 Quarter 2 STAR Generator Deactivations

Generating Unit	Submitting Entity	PTID	Responsible Transmission Owner	Zone	Nameplate MW	Unit Type	Date of Completed Deactivation Notice	Retire/Mothball Outage/ICAP Ineligible Forced Outage (IIFO)	Proposed Deactivation/IIFO Date
Trigen CC (2)	Nassau Energy, LLC	323695	LIPA	к	55	Combined Cycle	4/6/2022	Retire	3/31/2022 (1)
Madison County LF (2)	Exelon Generation Company, LLC	323628	National Grid	E	1.6	Internal Combustion	N/A	IIFO	4/1/2022
Gowanus 1-1	Eastern Generation, LLC	24077	Con Edison	J	20	Gas Turbine	3/29/2022	Retire	11/1/2022
Gowanus 1-2	Eastern Generation, LLC	24078	Con Edison	J	20	Gas Turbine	3/29/2022	Retire	11/1/2022
Gowanus 1-3	Eastern Generation, LLC	24079	Con Edison	J	20	Gas Turbine	3/29/2022	Retire	11/1/2022
Gowanus 1-4	Eastern Generation, LLC	24080	Con Edison	J	20	Gas Turbine	3/29/2022	Retire	11/1/2022
Gowanus 1-5	Eastern Generation, LLC	24084	Con Edison	J	20	Gas Turbine	3/29/2022	Retire	11/1/2022
Gowanus 1-6	Eastern Generation, LLC	24111	Con Edison	J	20	Gas Turbine	3/29/2022	Retire	11/1/2022
Gowanus 1-7	Eastern Generation, LLC	24112	Con Edison	J	20	Gas Turbine	3/29/2022	Retire	11/1/2022
Gowanus 1-8 (3)	Eastern Generation, LLC	24113	Con Edison	J	20	Gas Turbine	3/29/2022	Retire	11/1/2022
Gowanus 4-1	Eastern Generation, LLC	24130	Con Edison	J	20	Gas Turbine	3/29/2022	Retire	11/1/2022
Gowanus 4-2	Eastern Generation, LLC	24131	Con Edison	J	20	Gas Turbine	3/29/2022	Retire	11/1/2022
Gowanus 4-3	Eastern Generation, LLC	24132	Con Edison	J	20	Gas Turbine	3/29/2022	Retire	11/1/2022
Gowanus 4-4	Eastern Generation, LLC	24133	Con Edison	J	20	Gas Turbine	3/29/2022	Retire	11/1/2022
Gowanus 4-5	Eastern Generation, LLC	24134	Con Edison	J	20	Gas Turbine	3/29/2022	Retire	11/1/2022
Gowanus 4-6	Eastern Generation, LLC	24135	Con Edison	J	20	Gas Turbine	3/29/2022	Retire	11/1/2022
Gowanus 4-7	Eastern Generation, LLC	24136	Con Edison	J	20	Gas Turbine	3/29/2022	Retire	11/1/2022
Gowanus 4-8	Eastern Generation, LLC	24137	Con Edison	J	20	Gas Turbine	3/29/2022	Retire	11/1/2022
Hudson Ave 3	Consolidated Edison Company of New York, Inc	23810	Con Edison	J	16.3	Gas Turbine	4/6/2022	Retire	11/1/2022
Hudson Ave 5	Consolidated Edison Company of New York, Inc	23657	Con Edison	J	16.3	Gas Turbine	4/6/2022	Retire	11/1/2022
74th Street GT 1	Consolidated Edison Company of New York, Inc	24260	Con Edison	J	18.5	Gas Turbine	4/14/2022	Retire	5/1/2023
74th Street GT 2	Consolidated Edison Company of New York, Inc	24261	Con Edison	J	18.5	Gas Turbine	4/14/2022	Retire	5/1/2023
Astoria GT 2-1	Astoria Gas Turbine Power LLC	24094	Con Edison	J	46.5	Jet Engine	3/30/2022	Retire	5/1/2023
Astoria GT 2-2	Astoria Gas Turbine Power LLC	24095	Con Edison	J	46.5	Jet Engine	3/30/2022	Retire	5/1/2023
Astoria GT 2-3	Astoria Gas Turbine Power LLC	24096	Con Edison	J	46.5	Jet Engine	3/30/2022	Retire	5/1/2023


Generating Unit	Submitting Entity	PTID	Responsible Transmission Owner	Zone	Nameplate MW	Unit Type	Date of Completed Deactivation Notice	Retire/Mothball Outage/ICAP Ineligible Forced Outage (IIFO)	Proposed Deactivation/IIFO Date
Astoria GT 2-4	Astoria Gas Turbine Power LLC	24097	Con Edison	J	46.5	Jet Engine	3/30/2022	Retire	5/1/2023
Astoria GT 3-1	Astoria Gas Turbine Power LLC	24098	Con Edison	J	46.5	Jet Engine	3/30/2022	Retire	5/1/2023
Astoria GT 3-2	Astoria Gas Turbine Power LLC	24099	Con Edison	J	46.5	Jet Engine	3/30/2022	Retire	5/1/2023
Astoria GT 3-3	Astoria Gas Turbine Power LLC	24100	Con Edison	J	46.5	Jet Engine	3/30/2022	Retire	5/1/2023
Astoria GT 3-4	Astoria Gas Turbine Power LLC	24101	Con Edison	J	46.5	Jet Engine	3/30/2022	Retire	5/1/2023
Astoria GT 4-1	Astoria Gas Turbine Power LLC	24102	Con Edison	J	46.5	Jet Engine	3/30/2022	Retire	5/1/2023
Astoria GT 4-2	Astoria Gas Turbine Power LLC	24103	Con Edison	J	46.5	Jet Engine	3/30/2022	Retire	5/1/2023
Astoria GT 4-3	Astoria Gas Turbine Power LLC	24104	Con Edison	J	46.5	Jet Engine	3/30/2022	Retire	5/1/2023
Astoria GT 4-4	Astoria Gas Turbine Power LLC	24105	Con Edison	J	46.5	Jet Engine	3/30/2022	Retire	5/1/2023

Notes

1. The submitting entity has proposed to deactivate the generator on March 31, 2022, which is less than 91 days after the STAR Start Date. The earliest possible retirement date for the generator is July 15, 2022. See OATT Section 38.3.7 for additional requirements. Additionally, this unit entered into an IIFO effective 5/24/2022.

2. This unit is not a DEC peaker unit.

3. The Gowanus 1-8 unit has been IIFO since February 1, 2021. The IIFO for this generator was evaluated in the 2021 Quarter 1 Short-Term Assessment of Reliability.

Peaker Rule: Ozone Season Oxides of Nitrogen (NOx) Emission Limits for Simple Cycle and Regenerative Combustion Turbines

In 2019, the New York State Department of Environmental Conservation ("DEC") adopted a regulation to limit nitrogen oxides (NOx) emissions from simple-cycle combustion turbines (referred to as the "Peaker Rule")¹⁰. Combustion turbines known as "peakers" typically operate to maintain bulk power system reliability during the most stressful operating conditions, such as periods of peak electricity demand. The Peaker Rule will impact turbines located mainly in the lower Hudson Valley, New York City and Long Island. Many of these units also maintain transmission security by supplying energy within certain areas of the grid referred to as "load pockets." Load pockets represent transmission-constrained geographic areas where a portion of electrical demand can only be served by local generators due to transmission limitations that occur during certain operational conditions.

The Peaker Rule provides a phased reduction in emission limits, in 2023 and 2025, during the ozone season (May 1-September 30) and allows several options for achieving compliance with the new lower limits applicable during the ozone season. The rule required peaking unit owners to submit compliance plans to the DEC in March 2020. Compliance plans submitted to the DEC were provided to the NYISO for assessment and inclusion in the Reliability Planning Process base case. Considering all peaker unit compliance plans, approximately 1,600 MW of peaker generation capability would be unavailable during the summer by 2025 to comply with the emissions requirements. A subset of those generators would be unavailable starting in 2023. Remaining peaker units have stated either that they comply with the emission limits as currently operated, or proposed equipment upgrades to achieve the emissions limits.

A summary of the list of peaker generation removals is provided in Figure 2. Peaker generators that have already completed a Generator Deactivation Notice or entered an IIFO are indicated in the table. Additionally, the table notes the STAR study or other assessments where these generators have been evaluated once the generator completed their generator deactivation notice or entered into an IIFO.

The DEC regulations include a provision to allow an affected generator to continue to operate up to two years, with a possible further two-year extension, after the compliance deadline if the generator is designated by the NYISO or by the local transmission owner as needed to resolve a reliability need until a permanent solution is in place.

¹⁰ DEC Peaker Rule

Figure 2: Status Changes Due to DEC Peaker Rule

				CRIS (N	/W) (1)	Capability	(MW) (1)		STAR
Owner/Operator	Station	Zone	Nameplate (MW)	Summer	Winter	Summer	Winter	Status Change Date (2)	Evaluation or Other Assessment
National Grid	West Babylon 4	К	52.4	49.0	64.0	41.2	63.0	12/12/2020 (R)	Other (6)
Astoria Generating Company, L.P.	Gowanus 1-8 (7)	J	20.0	16.1	21.0	16.0	21.0	2/1/2021 (IIFO)	2021 Q1
National Grid	Glenwood GT 01 (4)	К	16.0	14.6	19.1	13.0	15.3	2/28/2021 (R)	2020 Q3
Helix Ravenswood, LLC	Ravenswood 11	J	25.0	20.2	25.7	16.1	22.2	12/1/2021 (IIFO)	2022 Q1
Helix Ravenswood, LLC	Ravenswood 01	J	18.6	8.8	11.5	7.7	9.4	1/1/2022 (IIFO)	2022 Q1
Central Hudson Gas & Elec. Corp.	Coxsackie GT	G	21.6	21.6	26.0	19.3	24.8	5/1/2023	
Central Hudson Gas & Elec. Corp.	South Cairo	G	21.6	19.8	25.9	18.4	22.9	5/1/2023	
Consolidated Edison Co. of NY, Inc.	74 St. GT 1 & 2	J	37.0	39.1	49.2	39.3	42.4	5/1/2023	2022 Q2
Astoria Generating Company, L.P.	Astoria GT 01	J	16.0	15.7	20.5	13.6	19.3	5/1/2023	
NRG Power Marketing, LLC	Astoria GT 2-1, 2-2, 2-3, 2-4	J	186.0	165.8	204.1	140.4	181.7	5/1/2023	2022 Q2
NRG Power Marketing, LLC	Astoria GT 3-1, 3-2, 3-3, 3-4	J	186.0	170.7	210.0	142.3	180.8	5/1/2023	2022 Q2
NRG Power Marketing, LLC	Astoria GT 4-1, 4-2, 4-3, 4-4	J	186.0	167.9	206.7	133.7	178.4	5/1/2023	2022 Q2
Astoria Generating Company, L.P.	Gowanus 1-1 through 1-7	J	140.0	122.6	160.1	124.7	159.7	5/1/2023	2022 Q2
Astoria Generating Company, L.P.	Gowanus 4-1 through 4-8	J	160.0	140.1	182.9	142.5	184.5	5/1/2023	2022 Q2
Consolidated Edison Co. of NY, Inc.	Hudson Ave 3	J	16.3	16.0	20.9	16.6	19.5	5/1/2023	2022 Q2
Consolidated Edison Co. of NY, Inc.	Hudson Ave 5	J	16.3	15.1	19.7	14.2	18.5	5/1/2023	2022 Q2
Helix Ravenswood, LLC	Ravenswood 10	J	25.0	21.2	27.0	16.0	21.8	5/1/2023	
National Grid	Glenwood GT 03 (3) (4)	К	55.0	54.7	71.5	53.1	68.1	5/1/2023	
National Grid	Northport GT	К	16.0	13.8	18.0	11.9	15.6	5/1/2023	
National Grid	Port Jefferson GT 01	К	16.0	14.1	18.4	12.7	17.5	5/1/2023	
National Grid	Shoreham 1 (3) (4)	К	52.9	48.9	63.9	42.7	65.5	5/1/2023	
National Grid	Shoreham 2 (3) (4)	К	18.6	18.5	23.5	15.7	20.4	5/1/2023	
Consolidated Edison Co. of NY, Inc.	59 St. GT 1	J	17.1	15.4	20.1	15.6	19.5	5/1/2025	
NRG Power Marketing, LLC	Arthur Kill GT 1	J	20.0	16.5	21.6	12.2	15.8	5/1/2025	
Astoria Generating Company, L.P.	Gowanus 2-1 through 2-8 (5)	J	160.0	152.8	199.6	144.1	185.0	5/1/2025	
Astoria Generating Company, L.P.	Gowanus 3-1 through 3-8 (5)	J	160.0	146.8	191.7	136.5	179.4	5/1/2025	
Astoria Generating Company, L.P.	Narrows 1-1 through 2-8 (5)	J	352.0	309.1	403.6	291.5	376.2	5/1/2025	
	Prior t	o 2023	132.0	108.7	141.3	94.0	130.9		
Ē	202	3 Total	1,170.3	1,065.6	1,348.3	957.1	1,241.4		
Ē	202	5 Total	709.1	640.6	836.6	599.9	775.9		
ſ		Total	2,011.4	1,814.9	2,326.2	1,651.0	2,148.2		

Notes

1. MW values are from the 2021 Load and Capacity Data Report

2. Dates identified by generators in their DEC Peaker Rule compliance plan submittals for transitioning the facility to Retired, Blackstart, or will be out-of-service in the summer ozone season or the date in which the generator entered (or proposed to enter) Retired (R) or Mothball Outage (MO) or the date on which the generator entered ICAP Ineligible Forced Outage (IIFO)


3. Generator changed DEC peaker rule compliance plan as compared to the 2020 RNA and all STARs prior to 2021 Q3

4. Long Island Power Authority (LIPA) has submitted notifications to the DEC per part 227-3 of the peaker rule stating that these units are needed for reliability allowing these units to operate until at least May 1, 2025. Due to the future nature of these units being operated only as designated by the operator as an emergency operating procedure the NYISO will continue to plan for these units be unavailable starting May 2023

5. These units have indicated they will be out-of-service during the ozone season (May through September) in their comliance plans in response to the DEC peaker rule.

6. This unit was evaluated in a stand-alone generator deactivation assessment prior to the creation of the Short-Term Reliabilty Process

7. The retirement of this unit is evaluated in the 2022 Q2 STAR

Study assumptions for this STAR are derived from the 2020 RNA, except for the changes to generation assumptions specified below.

Generator Return-to-Service

There are no generators that have returned-to-service beyond those included in prior STARs. A list of generators that have returned-to-service included in prior STARs is provided in Appendix C.

Generator Additions

There are no generation additions beyond those included in prior STARs. However, North Country Solar (Q#0589) has withdrawn from the interconnection queue. Additionally, the commercial operation dates of several projects have changed. Additional corrections are also made to the requested CRIS for several units. A list of generator additions, including updates to planned commercial operation dates as included in prior STARs, are provided in Appendix C.

Load Assumptions

The NYISO used the baseline load forecasts for this assessment consistent with the 2021 Gold Book with the addition the following load projects in the NYISO interconnection queue: Q0580 – WNY STAMP, Q0776 – Greenidge Load, Q0849 – Somerset Load, Q0850 – Cayuga Load, and Q0979 – North Country Data Center (load increase). These load projects have been included in the STAR evaluations since the 2021 Quarter 3 assessment. However, as compared to the prior STAR there have been changes in forecast assumptions for these queue projects. Figure 3 provides a summary of the load and energy forecast of these additional load queue projects included in the prior STAR (as compared to the 2021 Gold Book) as well as the load projects forecasts that are included in this STAR (also as compared to the 2021 Gold Book). Details of the load assumptions included in prior STARs are also provided in Appendix C.

Figure 3: Load and Energy Forecast of Additional Load Queue Projects

						Pi	rior STAR (As Compar	ed to 2021	Gold Book	()						
		Annual	Energy GW	/h Delta				Summe	Summer Peak MW Delta					Winter Peak MW Delta			
Year	Α	В	С	D	Total	Year	A	В	С	D	Total	Year	A	В	С	D	Total
2022	320	0	0	0	320	2022	0	0	0	0	0	2022-23	245	0	0	0	245
2023	1,950	0	580	490	3,020	2023	245	0	110	75	430	2023-24	255	0	110	125	490
2024	2,100	0	860	1,110	4,070	2024	270	0	110	135	515	2024-25	285	0	110	145	540
2025	2,340	0	860	1,280	4,480	2025	300	0	110	155	565	2025-26	315	0	110	165	590
2026	2,580	0	860	1,440	4,880	2026	330	0	110	175	615	2026-27	345	0	110	185	640

	2022 Q2 STAR (As Compared to 2021 Gold Book)																
		Annual	Energy GW	/h Delta				Summe	er Peak MV	V Delta				Winte	r Peak MW	/ Delta	
Year	A	В	С	D	Total	Year	A	В	С	D	Total	Year	A	В	С	D	Total
2022	120	200	0	20	340	2022	0	0	0	0	0	2022-23	95	150	0	30	275
2023	760	1,190	580	250	2,780	2023	95	150	110	30	385	2023-24	100	155	110	30	395
2024	850	1,250	860	250	3,210	2024	110	160	110	30	410	2024-25	120	165	110	30	425
2025	1,010	1,330	860	250	3,450	2025	130	170	110	30	440	2025-26	140	175	110	30	455
2026	1,170	1,410	860	250	3,690	2026	150	180	110	30	470	2026-27	160	185	110	30	485

Transmission Assumptions

Existing Transmission

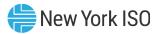

Figure 4 provides a summary of the planned return-to-service dates of the Moses-St. Lawrence (L33P) 230 kV circuit, which was updated to July 2022. Additionally, the Sprain Brook – East Garden City 345 kV (Y49) circuit is planned to be out-of-service starting October 2022 through May 2023. A list of changes in existing transmission assumptions included in prior STARs are also provided in Appendix C.

Figure 4: Changes to Planned Return-to-Service Dates

From	То	kV	ID	Prior STAR	Current STAR	
Moses	St. Lawrence	230	L33P	05/2022	07/2022	
Sprain Brook	East Garden City	345	Y49	10/2/2022 through 5/31/20		

Proposed Transmission

There are no other changes to proposed transmission assumptions beyond those included in prior STARs. Details of the proposed transmission assumptions included in prior STARs are provided in Appendix C.

Findings

Grid reliability is determined by assessing transmission security and resource adequacy. Transmission security is the ability of the electric system to withstand disturbances such as electric short circuits or unanticipated loss of system elements without involuntarily disconnecting firm load. Resource adequacy is the ability of electric systems to supply the aggregate electrical demand and energy requirements of their customers, taking into account scheduled and reasonably expected unscheduled outages of system elements.

This assessment finds that reliability criteria would be met for the BPTF throughout the five-year study period under the assumed and forecasted base case system conditions.

Resource Adequacy Assessments

The NYISO assessed the resource adequacy of the New York Control Area ("NYCA") system, against the one-day-in-ten-years (*i.e.*, 0.1 days per year) loss of load expectation ("LOLE") NYSRC and NPCC criterion, which measures the probability of disconnecting firm load due to resource deficiencies. This assessment finds that the planned system through the study period meets the resource adequacy criterion.

Transmission Security Assessments

The NYISO performed a transmission security assessment of the BPTF and identified no Short-Term Reliability Needs. The responsible transmission owners that evaluated the impact of generator deactivations on their non-BPTF are National Grid, Con Edison, and LIPA. The NYISO reviewed and verified the analyses performed by the transmission owners. This assessment finds that the planned BPTF system through the study period is within transmission security criteria. No non-BPTF generator deactivation reliability needs were observed by National Grid, Con Edison, or LIPA.

Steady State Assessment

In the NYISO's evaluation of the BPTF, thermal overloads are observed on the National Grid Clay-Woodard (#17) (specifically the Clay-Euclid segment of the line) 115 kV transmission line. This observation is summarized in Figure 5. This issue was first observed in the 2021 Quarter 3 STAR.¹¹ At the October 1, 2021 ESPWG/TPAS meeting, National Grid presented an LTP update to install a 3% series reactor at the Woodard 115 kV substation on the Clay-Woodard 115 kV line.¹² This series reactor is planned to be in-service by December 31, 2023. As such, the observed thermal overload in summer 2023

¹¹ <u>https://www.nyiso.com/documents/20142/16004172/2021-Q3-STAR-Report-vFinal2.pdf/</u>

¹²<u>https://www.nyiso.com/documents/20142/25058472/03</u>National%20Grid%20NY%20Local%20Transmission%20Plan%20Update%20 10-2021.pdf/

is still observed. However, the changes in load queue projects forecasts as well as the Zone B generator deactivations included in 2022 Quarter 1 STAR have exacerbated the observed overload from what was initially observed in the 2021 Quarter 3 STAR.¹³ As discussed in the 2021 Quarter 3 STAR, National Grid will utilize an interim operating procedure to address this overload until the permanent series reactor solution is placed in-service. Although the overload on the Clay-Woodard (#17) 115 kV line has increased, the proposed interim operating procedure continues to be sufficient to address this overload. As such there are no thermal criteria violations.

Figure 5:	Summary	of BPTF	N-1-1	Thermal	Overloads
-----------	---------	---------	-------	---------	------------------

Zo	one	Owner	Element	Normal Rating (MVA)	Contingen cy Rating (MVA)	1st Contingency	2nd Contingency	Peak	2023 Summer Peak Flow (%)	Peak	2026 Summer Peak Flow (%)
	С	National Grid	Clay-Woodard (Clay-Euclid) (#17) 115 kV	220	252	Elbridge 345/115 kV	Geres Lock Stuck Breaker R815	-	107	-	-

As reported in the NYISO's evaluation of the BPTF in the 2021 Quarter 3 STAR, certain non-BPTF thermal violations were observed for informational purposes on the National Grid Mortimer-Pannell (#24 and #25) 115 kV transmission lines following the N-1-1 contingency combination of the loss of both Rochester-Pannell 345 kV lines (RP1 and RP2) for all study years through year 2025. These overloads are sensitive to the additional load queue projects included in this assessment. The thermal violations were not observed in year 2026 due to a National Grid LTP update included in the 2021 Gold Book to reconductor the existing Mortimer-Pannell (#24 and #25) 115 kV transmission lines.

In the NYISO's evaluation of the BPTF, certain non-BPTF thermal violations were observed for informational purposes on the NYSEG Delhi-Colliers-Fraser (#951) 115 kV (specifically on the Delhi-Delhi tap segment of the line) following several different N-1-1 contingency combinations in 2022 and 2023. The worst-case combination is the loss of Lafayette-Clarks Corners (#4-46) 345 kV followed by the loss of Oakdale-Fraser (#32) 345 kV. These overloads are sensitive to the additional load queue projects included in this assessment. The thermal violations were not observed after summer 2023 due to a NYSEG LTP update included in the 2021 Gold Book to remove the Delhi 115 kV substation and terminate the existing lines to the Fraser 115 kV substation.

Figure 6 summarizes the worst overload on each non-BPTF element along with the contingency combination resulting in the overload.

¹³ The 2021 Quarter 3 STAR observed a thermal overload in summer 2023 of 102% of the contingency rating (1,344 MVA).

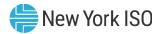


Figure 6: Summary of Non-BPTF N-1-1 Thermal Overloads

Zone	Owner	Element	Normal Rating (MVA)	Contingen cy Rating (MVA)	1st Contingency	2nd Contingency	2022 Summer Peak Flow (%)	Peak	Peak	2026 Summer Peak Flow (%)
	National	Mortimer-			Rochester-	Rochester-				
В	Grid	Pannell (#25)	114	142	Pannell (RP2)	Pannell (RP1)	118	136	136	-
	Gilu	115 kV (1)			345	345				
	National	Mortimer-			Rochester-	Rochester-				
В	Grid	Pannell (#24)	129	160	Pannell (RP1)	Pannell (RP2)	115	131	131	-
	Gild	115 kV (2)			345	345				
		Delhi-Colliers-			Lafayette-	Oakdale-				
с	NIVSEC	Fraser (#951)	164	164	Clarks Corners	Fraser (#32)	109	118		
	NYSEG	115 kV (Delhi-	104	104	(4-46) 345 kV	345 kV	109	110	-	-
		Delhi Tap)			(4-40) 345 KV	545 KV				

Notes:

1. The Mortimer-Pannell (#25) 115 kV line ratings and percentage loadings reported in this table are for the Station 89-Pittsford line segment.


2. The Mortimer-Pannell (#24) 115 kV line ratings and percentage loadings reported in this table are for the Pittsford-Pannell line segment.

Dynamics Assessment

No BPTF dynamic criteria violations were observed for this assessment. Additionally, no dynamic non-BPTF generator deactivation reliability needs were observed for this assessment.

Short Circuit Assessment

No BPTF short-circuit criteria violations were observed for this assessment. Additionally, no shortcircuit non-BPTF generator deactivation reliability needs were observed for this assessment.

Additional Transmission Owner Local Criteria Assessments (For Information Only)

As described in the following sections, Con Edison and Central Hudson each identified transmission security issues in their service territories on their non-BPTF systems, as recorded in prior STARs. The local non-BPTF criteria violations identified below are not Generator Deactivation Reliability Needs and are provided for information only.¹⁴

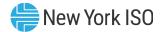
Central Hudson Assessment

Central Hudson currently owns and operates two 25 MVA (nameplate) combustion turbines that are subject to the DEC Peaker Rule, namely the Coxsackie and South Cairo generators. Both of these generators provide local substation reserve capacity for transformer outages and post-contingency voltage support for the Westerlo transmission loop. Without these generators, there is no reserve capability for local transformer outages and the Westerlo loop is voltage constrained. These transmission security issues, first identified in the 2020 Quarter 3 STAR, arise on non-BPTF facilities beginning in 2023 and continuing through 2025. At the October 25, 2021 ESPWG/TPAS meeting, Central Hudson updated its LTP to address the Westerlo transmission loop voltage issue.¹⁵ The LTP includes the installation of a STATCOM and capacitor bank and the South Cairo and Freehold substations with a planned in-service date by December 2024.

¹⁴ See OATT §§ 38.1 (definition of Generator Deactivation Reliability Need) 38.2 (scope of Short-Term Reliability Process), 38.10.1.2 (other reliability needs that arise on non-BPTFs may be reported in a STAR for informational purposes).

¹⁵ <u>https://www.nyiso.com/documents/20142/25620932/02 Central Hudson Local Transmission Plan.pdf/</u>

Reliability Metrics


With the plans and assumptions described above, the BPTF system as planned meets all currently applicable reliability criteria through the study period. The increased load (see Figure 11) due to large load queue projects and generator deactivations have narrowed the available system margins reported in the 2021-2030 Comprehensive Reliability Plan ("CRP").¹⁶

Transmission Security Margins

For the study conditions included in this STAR, Figure 7 shows the statewide system margin under expected weather, normal transfer criteria conditions. The statewide system margin (line item H) prior to consideration of generation unavailability rates or operating reserves ranges between 3,116 MW in 2022 to 1,779 MW in 2031. When considering class-average unavailability rates of generation, the margin reduces to as little as 42 MW in 2031.

It is possible that other combinations of events such as heatwaves, additional generator deactivations, and additional load interconnections could tip the system over its reliability margin. Details regarding the impact of heatwaves on transmission security margin are provided in Appendix E. Additional details on transmission security margins in the Lower Hudson Valley, New York City, and Long Island localities are also provided in Appendix E.

¹⁶ <u>https://www.nyiso.com/documents/20142/2248481/2021-2030-Comprehensive-Reliability-Plan.pdf/</u>

Figure 7: Statewide System Margin (Baseline Expected Weather, Normal Transfer Criteria)


				System Pea	k - Baseline	Expected V	Weather, N	ormal Trans	sfer Criteria		
Line	Item	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
Α	NYCA Generation (1)	35,045	34,139	34,130	33,530	33,525	33,525	33,520	33,515	33,510	33,505
В	External Area Interchanges (2)	1,559	1,844	1,844	1,844	1,844	1,844	1,844	1,844	1,844	1,844
C	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0	0
D	Total Resources (A+B+C) (3)	36,604	35,983	35,974	35,374	35,369	35,369	35,364	35,359	35,354	35,349
E	Load Forecast	(32,178)	(32,340)	(32,156)	(32,035)	(31,941)	(31,943)	(31,979)	(32,043)	(32,148)	(32,260)
F	Largest Loss-of-Source Contingency	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)
G	Total Capability Requirement (E+F)	(33,488)	(33,650)	(33,466)	(33,345)	(33,251)	(33,253)	(33,289)	(33,353)	(33,458)	(33,570)
Н	Statewide System Margin (D+G)	3,116	2,333	2,508	2,029	2,118	2,116	2,075	2,006	1,896	1,779
1	Unavailable Generation (3)	(1,891)	(1,799)	(1,799)	(1,737)	(1,737)	(1,737)	(1,737)	(1,737)	(1,737)	(1,737)
J	Statewide System Margin with Generation Unavailability (H+I)	1,225	534	709	292	381	379	338	269	159	42
К	Operating Reserve	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)
L	Statewide System Margin with Full Operating Reserve (J+K)	(85)	(776)	(601)	(1,018)	(929)	(931)	(972)	(1,041)	(1,151)	(1,268)

Notes:

1. Reflects the 2021 Gold Book existing summer capacity plus projected additions, deactivations, and de-rates. For this evaluation wind generation is assumed to have 0 MW output, solar generation is based on the ratio of solar PV nameplate capacity (2021 Gold Book Table I-9a) and solar PV peak reductions (2021 Gold Book Table I-9c). De-rates for run-of-river hydro are included as well as the Oswego Export

2. Interchanges are based on ERAG MMWG values.

3. Includes de-rates for thermal resources based on NERC class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx)

Resource Adequacy

While the NYCA LOLE is below the 0.1 event-days/year, the system margin has been decreasing, and the additional large loads forecasted in upstate New York significantly contribute to the decrease in the system's resource adequacy margin.

For instance, the 2021-2030 Comprehensive Reliability Plan (CRP) indicated that the zonal resource adequacy margin (ZRAM) as measured in "perfect capacity¹⁷" in Zone A was around 950 MW away from violating NYCA LOLE criterion of 0.1 event-days/year under the study assumptions for study year 2026; lower margins were identified in the outer study years. This relative value did not take into consideration the addition of large loads listed in Figure 11. For instance, a 450 MW large load added in Western New York can have an impact of close to 1-to-1 on decreasing the margin in Zone A, bringing its margin to around 500 MW. Other potential modeling and assumption changes under consideration can further decrease this relative margin to as low as 250 MW in Zone A. Similar impacts could be observed in other zones if the zonal load increases or the zonal resources decrease. The 2022 RNA will provide updated results.

Conclusions and Determination

This assessment finds the planned BPTF system through the study period meets applicable reliability criteria. This assessment does not identify a Generator Deactivation Reliability Need following the IIFO of the Madison County LF unit or the Trigen CC unit. This assessment does not identify any Generator Deactivation Reliability Need following the retirement of the units evaluated in this STAR. As such, Nassau Energy LLC, Eastern Generation LLC, Consolidated Edison Company of New York, and Astoria Gas Turbine Power LLC have satisfied the applicable requirements under the NYISO's Short-Term Reliability Process to retire their units on or after the date indicated in their respective generator deactivation notices.¹⁸

¹⁷ "Perfect capacity" is capacity that is not derated (*e.g.*, due to ambient temperature or unit unavailability), not subject to energy durations limitations (*i.e.*, available at maximum capacity every hour of the study year), and not tested for transmission security or interface impacts.

¹⁸ Consistent with Section 38.3.7 of the OATT, the earliest possible retirement date for Nassau Energy LLC's generator is July 15, 2022. Nassau Energy LLC, Eastern Generation LLC, Consolidated Edison Company of New York Inc, and Astoria Gas Turbine Power LLC must complete all required NYISO administrative processes and procedures prior to retirement of their generating units. See Technical Bulletin 185 Generator Deactivation Process and Technical Bulletin 250 Short-Term Reliability Process. The NYISO's determination in this Short-Term Reliability Process does not relieve Nassau Energy LLC, Eastern Generation LLC, Consolidated Edison Company of New York Inc, or Astoria Gas Turbine Power LLC of any obligations it has with respect to its participation in the NYISO markets. If Nassau Energy LLC, Eastern Generation LLC, Consolidated Edison Company of New York Inc, or Astoria Gas Turbine Power LLC rescinds its Generator Deactivation Notice or do not retire their units within 730 days of April 15, 2022, then it will be required to submit a new Generator Deactivation Notice in order to deactivate the Generator(s) and will be required to repay study costs in accordance with Section 38.14 of the OATT.

Appendix A: List of Short-Term Reliability Needs

No short-term reliability needs are observed for this assessment.

Appendix B: Short-Term Reliability Process Solution List

The Short-Term Reliability Process solution list and the status of these solutions is posted on the NYISO website at the following location:

https://www.nyiso.com/documents/20142/19556596/SolutionStatus-03092021.pdf/

Appendix C: Summary of Study Assumptions

This assessment used the major assumptions included in the 2020 RNA. Consistent with the NYISO's obligations under its tariffs, the NYISO provided information to stakeholders on the modeling assumptions employed in this assessment. Details regarding the study assumptions were reviewed with stakeholders at the April 26, 2022 Electric System Planning Working Group ("ESPWG")/Transmission Planning Advisory Subcommittee ("TPAS"). The meeting materials are posted on the NYISO's public website.¹⁹ The figures below summarize the changes to generation, load, and transmission.

Generation Assumptions

Figure 8: Generator Deactivations

Owner/ Operator	Plant Name	Zone	CRIS	(MW)	Capabili	ty (MW)	Departmention data (C)	
Owner/ Operator	Plant Name	Zone	Summer	Winter	Summer	Winter	Status	Deactivation date (6
International Paper Company	Ticonderoga (1)	F	7.6		9.5	9.8	I	05/01/2017
Helix Ravenswood, LLC	Ravenswood 09	J	21.7	27.6	16.3	22.8	R	11/01/2017
Binghamton BOP, LLC	Binghamton	С	43.8	57.2	43.7	47.1	1	01/09/2018
	Ravenswood 2-1	J	40.4	51.4	31.4	41.7	I	04/01/2018
	Ravenswood 2-2	J	37.6	47.8	29.9	41.9	I	04/01/2018
	Ravenswood 2-3	J	39.2	49.9	28.9	37.3	1	04/01/2018
Helix Ravenswood, LLC	Ravenswood 2-4	J	39.8	50.6	30.7	41.6	I	04/01/2018
	Ravenswood 3-1	J	40.5	51.5	31.9	40.8	I	04/01/2018
	Ravenswood 3-2	J	38.1	48.5	29.4	40.3	I	04/01/2018
	Ravenswood 3-4	J	35.8	45.5	31.2	40.8	I	04/01/2018
Lyonsdale Biomass, LLC	Lyonsdale	E	20.2	20.2	19.3	19.7	R	07/18/2019
Exelon Generation Company LLC	Monroe Livingston	В	2.4	2.4	2.4	2.4	R	09/01/2019
Innovative Energy Systems, Inc.	Steuben County LF	С	3.2	3.2	3.2	3.2	R	09/01/2019
Consolidated Edison Co. of NY, Inc	Hudson Ave 4	J	13.9	18.2	14.0	16.3	R	09/10/2019
New York State Elec. & Gas Corp.	Auburn - State St	С	5.8	6.2	4.1	7.3	R	10/01/2019
Somerset Operating Company, LLC	Somerset	A	686.5	686.5	676.4	684.4	R	02/15/2020
Entergy Nuclear Power Marketing, LLC	Indian Point 2	н	1,026.5	1,026.5	1,011.5	1,029.4	R	04/30/2020
Cayuga Operating Company, LLC	Cayuga 1	С	154.1	154.1	151.0	152.0	R	05/15/2020
Cayuga Operating Company, LLC	Cayuga 2	С	154.7	154.7	139.6	158.0	R	05/15/2020
Albany Energy, LLC	Albany LFGE (3)	F	4.5	4.5	5.6	5.6	I	07/01/2020
National Grid	West Babylon 4	K	49.0	64.0	50.2	65.4	R	12/11/2020 (2)
Eastern Generation, LLC	Gowanus 1-8 (4)	J	16.1	21.0	15.3	21.7	I	02/01/2021
National Grid	Glenwood GT 01 (3)	K	14.6	19.1	11.4	14.5	R	2/28/2021 (2)
Entergy Nuclear Power Marketing, LLC	Indian Point 3	н	1040.4	1040.4	1036.3	1038.3	R	04/30/2021
Helix Ravenswood, LLC	Ravenswood GT 11 (5)	J	20.2	25.7	16.1	22.2	I	12/01/2021
Helix Ravenswood, LLC	Ravenswood GT 1 (5)	J	8.8	11.5	7.7	9.4	I	01/01/2022
Nassau Energy, LLC	Trigen CC	K	51.6	60.1	41.6	54.1	I	05/24/2022
		Total	3,617.0	3,748.3	3,488.6	3,668.0		

Notes

(1) Part of SCR program

(2) This date is the proposed Generator Deactivation Date stated in the generator deactivation notice.


(3) The Generator Deactivation Assessment for this facility was included in the 2020 Quarter 3 STAR

(4) The Generator Deactivation Assessment for this facility was included in the 2021 Quarter 1 STAR

(5) The Generator Deactivation Assessment for this facility was included in the 2022 Quarter 1 STAR

(6) This table only includes units that have entered into IIFO or have completed the generator deactivation process.

¹⁹ Short-Term Assessment of Reliability: 2022 Q2 Key Study Assumptions

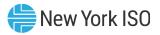


Figure 9: Generator Return-to-Service

	STAR Assessment	NOLES
Hudson Ave 3 J 16.3 10-Jul-20	2020 Q4	1

Notes

1. This generator status changes May 2023 to comply with the DEC Peaker Rule

Figure 10: Generator Additions

Queue	Proposed Generator Project	Zone	Prior STAR COD	Current STAR COD (if changed from prior STAR)	Requested CRIS (MW)	Summer (MW)	STAR Assessmen
387	Cassadaga Wind	А	In-Service	-	126.0	126.5	2020 Q3
396	Baron Winds	С	12/2023	-	300.0	238.4	2020 Q3
422	Eight Point Wind Energy Center	В	09/2022	-	101.2	101.8	2020 Q3
505	Ball Hill Wind	А	12/2022	11/2022	100.0	100.0	2020 Q3
430	Cedar Rapids Transmission Upgrade	D	10/2021	In-Service	80.0	N/A	2020 Q3
546	Roaring Brook Wind	E	In-Service	-	79.7	78.0	2020 Q3
678	Calverton Solar Energy Center	K	12/2020	6/2022	22.9	22.9	2020 Q3
758	Sithe Independence	С	In-Service	-	56.6	10.9 (2)	2020 Q4 (1)
N/A	Ontario Landfill	В	In-Service	-	3.6	3.6	2021 Q3
N/A	Fulton County Landfill	F	In-Service	-	3.2	3.2	2021 Q3
N/A	Dahowa Hydroelectric	F	In-Service	-	10.5	10.5	2021 Q3
N/A	Fenner Wind	С	06/2021	-	30.0	30.0	2021 Q3
N/A	Bowline 1	G	06/2021	-	16.3	16.3	2021 Q3
N/A	Bowline 2	G	06/2021	-	7.6	7.6	2021 Q3
0564	Rock District Solar	F	12/2022	-	20.0	20.0	2021 Q3
0768	Janis Solar	С	04/2022	-	20.0	20.0	2021 Q3
0513	Orangeville Battery	С	In-Service	-	20.0	20.0	2021 Q3
0775	Puckett Solar	E	04/2022	-	20.0	20.0	2021 Q3
0565	Tayandenega Solar	F	10/2022	-	20.0	20.0	2021 Q3
0589	North Country Solar	Е	09/2022	Not Included (3)	N/A	15.0	2021 Q3
0570	Albany County 1	F	11/2021	12/2022	20.0	20.0	2021 Q3
0598	Albany County 2	F	11/2021	12/2022	20.0	20.0	2021 Q3
0731	Branscomb Solar	F	In-Service	-	20.0	20.0	2021 Q3
0730	Darby Solar	F	11/2021	12/2022	20.0	20.0	2021 Q3
0735	ELP Stillwater Solar	F	11/2021	9/2022	20.0	20.0	2021 Q3
0638	Pattersonville	F	11/2021	12/2022	20.0	20.0	2021 Q3
0572	Greene County 1	G	11/2021	1/2023	20.0	20.0	2021 Q3
0573	Greene County 2	G	11/2021	3/2023	10.0	10.0	2021 Q3
0682	Grissom Solar	F	12/2021	6/2022	20.0	20.0	2021 Q3
0748	Regan Solar	F	12/2021	6/2022	20.0	20.0	2021 Q3
0670	Skyline Solar	E	04/2022	-	20.0	20.0	2021 Q3
0584	Dog Corners Solar	С	05/2022	-	20.0	20.0	2021 Q3
0545	Sky High Solar	С	08/2022	6/2023	20.0	20.0	2021 Q3
0531	Number 3 Wind Energy	E	10/2022	-	105.8	103.9	2021 Q3
0667	Bakerstand Solar	А	10/2022	-	20.0	20.0	2021 Q3
0666	Martin Solar	А	10/2022	-	20.0	20.0	2021 Q3
0592	Niagara Solar	В	05/2023	-	N/A	20.0	2021 Q3
0590	Scipio Solar	С	05/2023	-	N/A	18.0	2021 Q3
0586	Watkins Road Solar	E	06/2023	-	20.0	20.0	2021 03

Notes

(1) CRIS increase for this unit was included in the 2021 Q4 STAR. The Summer MW increase was included in the 2021 Q3 STAR.

(2) MW increase has an in-service date of March 2022.

(3) Project withdrew from NYISO Interconnection Queue

Load Assumptions


The 2021 Quarter 3 STAR the NYISO used the base load forecasts for the study years consistent with the 2021 Gold Book with the addition of the following load projects in the NYISO interconnection queue: Q0580 – WNY STAMP, Q0776 – Greenidge Load, Q0849 – Somerset Load, Q0850 – Cayuga Load, and Q0979 – North Country Data Center (load increase).²⁰ Figure 11 provides a summary of the load and energy forecasts for these additional loads used in this assessment as well as the forecast for these loads included in the prior STAR.

Figure 11: Load and Energy Forecast of Additional Queue Projects

	Prior STAR (As Compared to 2021 Gold Book)																
		Annual	Energy GW	/h Delta			Summer Peak MW Delta						Winter Peak MW Delta				
Year	Α	В	С	D	Total	Year	A B C D Total					Year	Α	В	С	D	Total
2022	320	0	0	0	320	2022	0	0	0	0	0	2022-23	245	0	0	0	245
2023	1,950	0	580	490	3,020	2023	245	0	110	75	430	2023-24	255	0	110	125	490
2024	2,100	0	860	1,110	4,070	2024	270	0	110	135	515	2024-25	285	0	110	145	540
2025	2,340	0	860	1,280	4,480	2025	300	0	110	155	565	2025-26	315	0	110	165	590
2026	2,580	0	860	1,440	4,880	2026	330	0	110	175	615	2026-27	345	0	110	185	640

	2022 Q2 STAR (As Compared to 2021 Gold Book)																
		Annual	Energy GW	/h Delta			Summer Peak MW Delta						Winter Peak MW Delta				
Year	A	В	С	D	Total	Year	Α	в	С	D	Total	Year	Α	В	c	D	Total
2022	120	200	0	20	340	2022	0	0	0	0	0	2022-23	95	150	0	30	275
2023	760	1,190	580	250	2,780	2023	95	150	110	30	385	2023-24	100	155	110	30	395
2024	850	1,250	860	250	3,210	2024	110	160	110	30	410	2024-25	120	165	110	30	425
2025	1,010	1,330	860	250	3,450	2025	130	170	110	30	440	2025-26	140	175	110	30	455
2026	1,170	1,410	860	250	3,690	2026	150	180	110	30	470	2026-27	160	185	110	30	485

²⁰ As an SIS had not been completed for Q0979 by the start of this STAR it was only evaluated from a resource adequacy perspective.

Transmission Assumptions

				Out-of-Ser	vice Through	
From	То	kV	ID	Prior STAR	Current STAR	
Marion	Farragut	345	B3402	Long-Term		
Marion	Farragut	345	C3403	Long-Term		
Moses	St. Lawrence	230	L33P	05/2022	07/2022	
Plattsburg (1)	Plattsburg	230/115	AT1	12/	2022	
Moses	Moses	230/115	AT2	12/	2022	
Newbridge	Newbridge	345/138	BK1	08/2022		
Sprain Brook	East Garden City	345	Y49	10/2/2022 through 5/31/202		

Figure 12: Existing Transmission Facilities Modeled Out-of-Service

Notes

(1) A spare transformer is placed in-service during the outage

Figure 13 shows the Con Edison series reactor status utilized in the 2020 RNA and STARs (2020 Quarters 3 and 4).

Figure 13: 2020	Reliability Planning	Studies Series	Reactor Status
1.9410 201 2020			nouver veneuo

Те	rminals	ID	kV	Series Reactor Status in 2020 Quarter 3 STAR
Dunwoodie	Mott Haven	71	345	Series Reactor By-Passed
Dunwoodie	Mott Haven	72	345	Series Reactor By-Passed
Sprainbrook	W. 49th Street	M51	345	Series Reactor By-Passed
Sprainbrook	W. 49th Street	M52	345	Series Reactor By-Passed
Farragut	Gowanus	41	345	Series Reactor In-Service
Farragut	Gowanus	42	345	Series Reactor In-Service
Sprainbrook	East Garden City	Y49	345	Series Reactor In-Service

On December 3, 2020, the NYISO issued a solution solicitation requesting the submission of proposed STRP Solutions to address 2023 near-term reliability needs. In consideration of all proposed solutions, the NYISO selected the Con Edison proposal regarding the status of several series reactors within their service territory. The Con Edison proposed planned series reactor status is shown in Figure 14. The planned status changes are for the summer period and would become effective starting in summer 2023.

Tei	rminals	ID	kV	Proposed Series Reactor Status
Dunwoodie	Mott Haven	71	345	Series Reactor In-Service
Dunwoodie	Mott Haven	72	345	Series Reactor In-Service
Sprainbrook	W. 49th Street	M51	345	Series Reactor In-Service
Sprainbrook	W. 49th Street	M52	345	Series Reactor In-Service
Farragut	Gowanus	41	345	Series Reactor By-Passed
Farragut	Gowanus	42	345	Series Reactor By-Passed
Sprainbrook	East Garden City	Y49	345	Series Reactor By-Passed

Figure 14: Con Edison Proposed Series Reactor Status From 2020 Q3 Needs Solicitation

At the July 23, 2021 ESPWG/TPAS Con Edison updated the operational status of the 41 and 42 series reactors as part of an LTP update to further address local reliability deficiencies. However, based on the findings from the 2021 Quarter 3 STAR, Con Edison updated its LTP at the November 19, 2021 ESPWG/TPAS which no longer includes the plan to place in-service the Gowanus-Farragut 345 kV 41 and 42 series reactors in summer 2025. Figure 15 provides a summary of the status of the Con Edision series reactors in consideration of all proposed changes.

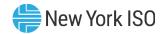
Figure 15: Con Edison Proposed Series Reactor Status

Te	erminals	ID	kV	Prior to Summer 2023	Starting Summer 2023
Dunwoodie	Mott Haven	71	345	By-Passed	In-Service
Dunwoodie	Mott Haven	72	345	By-Passed	In-Service
Sprainbrook	W. 49th Street	M51	345	By-Passed	In-Service
Sprainbrook	W. 49th Street	M52	345	By-Passed	In-Service
Farragut	Gowanus	41	345	In-Service	By-Passed
Farragut	Gowanus	42	345	In-Service	By-Passed
Sprainbrook	East Garden City	Y49	345	In-Service	By-Passed

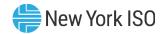
		`		· · · ·	•								
[Project Queue Position] / Project Notes	Transmission Owner	Termi	nals	Line Length in Miles (1)	Expecte Service D Prior to (2	ate/Yr	Nominal \ k\ Operatin	v -	# Of ckts		Ratings (4) r/Winter	Project Description / Conductor Size	Class Year / Type of Construction
				TIP Projects	s (19) (includ	ed in FER	C 715 Base C	ase)					
[430]	H.Q. Energy Services U.S. Inc.	Dennison	Alcoa	3	W	2020	115	115	1	1513	1851	954 ACSR	ОН
545A	NextEra Energy Transmission NY	Dysinger (New Station)	East Stolle (New Station)	20	S	2022	345	345	1	1356 MVA	1612 MVA	Western NY - Empire State Line Project	ОН
545A	NextEra Energy Transmission NY	Dysinger (New Station)	Dysinger (New Station)	PAR	S	2022	345	345	1	700 MVA	700 MVA	Western NY - Empire State Line Project	
556	NGRID	Porter	Rotterdam	-71.8	S	2022	230	230	1	1105	1284	AC Transmission Project Segment A/1-795 ACSR/1-1431 ACSR	
556	NGRID	Porter	Rotterdam	-72.0	S	2022	230	230	1	1105	1284	AC Transmission Project Segment A/1-795 ACSR/1-1431 ACSR	
556	NGRID	Edic	New Scotland	-83.5	S	2022	345	345	1	2228	2718	AC Transmission Project Segment A/2-795 ACSR	
556	NGRID	Rotterdam	New Scotland	-18.1	S	2022	115	230	1	1212	1284	AC Transmission Project Segment A/1-1033.5 ACSR/1-1192.5 ACSR	
556	LSP/NGRID	Edic	Gordon Rd (New Station)	69.0	S	2022	345	345	1	2228	2718	AC Transmission Project Segment A/2-795 ACSR/2-954 ACSS	
556	LSP/NGRID	Gordon Rd (New Station)	New Scotland	25.0	S	2022	345	345	1	2228	2718	AC Transmission Project Segment A/2-795 ACSR/2-954 ACSS	
556	LSP	Gordon Rd (New Station)	Rotterdam	transformer	S	2022	345/230	345/230	2	478 MVA	478 MVA	AC Transmission Project Segment A	
556	LSP/NGRID	Gordon Rd (New Station)	New Scotland	-25.0	S	2023	345	345	1	2228	2718	AC Transmission Project Segment A/2-795 ACSR/2-954 ACSS	
556	LSP	Gordon Rd (New Station)	Princetown (New Station)	5.2	S	2023	345	345	1	3410	3709	AC Transmission Project Segment A/2-954 ACSS	
556	LSP	Princetown (New Station)	New Scotland	20.2	S	2023	345	345	2	3410	3709	AC Transmission Project Segment A/2-954 ACSS	
556	LSP/NGRID	Princetown (New Station)	New Scotland	19.8	S	2023	345	345	1	2228	2718	AC Transmission Project Segment A/2-795 ACSR	
556	LSP/NYPA/NGRID	Edic	Princetown (New Station)	66.9	w	2023	345	345	2	3410	3709	AC Transmission Project Segment A/2-954 ACSS	
556	ΝΥΡΑ	Edic	Marcy	1.4	W	2023	345	345	1	3150	3750	AC Transmission Project Segment A; Terminal Equipment Upgrades to existing line	

Figure 16: Firm Transmission Plans (from the 2021 Load and Capacity Data Report Section VII)

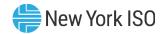
[Project Queue Position] / Project Notes	Transmission Owner	Termi	nals	Line Length in Miles (1)	Expecte Service Da Prior to (2	ate/Yr	Nominal V k\ Operating	/	# Of ckts	Thermal F Summer	• • •	Project Description / Conductor Size	Class Year / Type of Construction
556	NGRID	Rotterdam	Rotterdam	remove substation	S	2029	230	230	N/A	N/A	N/A	Rotterdam 230kV Substation Retirement	
556	NGRID	Rotterdam	Eastover Rd	-23.8	S	2029	230	230	1	1114	1284	Rotterdam 230kV Substation Retirement, reconnect existing line	
556	LSP	Gordon Rd (New Station)	Rotterdam	remove transformer	S	2029	345/230	345/230	2	478 MVA	478 MVA	Rotterdam 230kV Substation Retirement	
556	NGRID	Gordon Rd (New Station)	Eastover Rd	23.8	S	2029	230	230	1	1114	1284	Rotterdam 230kV Substation Retirement; reconnect existing line	
556	LSP	Gordon Rd (New Station)	Gordon Rd (New Station)	transformer	S	2029	345/230	345/230	1	478 MVA	478 MVA	Rotterdam 230kV Substation Retirement, reconnect transformer to existing line	
556	LSP	Gordon Rd (New Station)	Rotterdam	transformer	S	2029	345/115	345/115	2	650 MVA	650 MVA	Rotterdam 230kV Substation Retirement	
543	NGRID	Greenbush	Hudson	-26.4	W	2023	115	115	1	648	800	AC Transmission Project Segment B	
543	NGRID	Hudson	Pleasant Valley	-39.2	W	2023	115	115	1	648	800	AC Transmission Project Segment B	
543	NGRID	Schodack	Churchtown	-26.7	W	2023	115	115	1	937	1141	AC Transmission Project Segment B	
543	NGRID	Churchtown	Pleasant Valley	-32.2	W	2023	115	115	1	806	978	AC Transmission Project Segment B	
543	NGRID	Milan	Pleasant Valley	-16.8	W	2023	115	115	1	806	978	AC Transmission Project Segment B	
543	NGRID	Lafarge	Pleasant Valley	-60.4	W	2023	115	115	1	584	708	AC Transmission Project Segment B	
543	NGRID	North Catskill	Milan	-23.9	W	2023	115	115	1	937	1141	AC Transmission Project Segment B	
543	O&R	Shoemaker, Middle	Sugarloaf, Chester	-12.0	W	2023	138	138	1	1098	1312	AC Transmission Project Segment B	
543	NGRID	New Scotland	Alps	-30.6	W	2023	345	765	1	2015	2140	AC Transmission Project Segment B	
543	New York Transco	Schodack	Churchtown	26.7	W	2023	115	115	1	648	798	AC Transmission Project Segment B	
543	New York Transco	Churchtown	Pleasant Valley	32.2	W	2023	115	115	1	623	733	AC Transmission Project Segment B	
543	NGRID	Lafarge	Churchtown	28.2	W	2023	115	115	1	582	708	AC Transmission Project Segment B	
543	NGRID	North Catskill	Churchtown	8.4	W	2023	115	115	1	648	848	AC Transmission Project Segment B	
543	New York Transco	Knickerbocker (New Station)	Pleasant Valley	54.2	W	2023	345	345	1	3862	4103	AC Transmission Project Segment B	


[Project Queue Position] / Project Notes	Transmission Owner	Termi	nals	Line Length in Miles (1)	Expecte Service Da Prior to (2	ate/Yr	Nominal ۷ k۱ Operatin	V	# Of ckts	Thermal F Summer		Project Description / Conductor Size	Class Year / Type of Construction
543	New York Transco	Knickerbocker (New Station)	Knickerbocker (New Station)	series capacitor	W	2023	345	345	1	3862	4103	AC Transmission Project Segment B	
543	NGRID	Knickerbocker (New Station)	New Scotland	12.4	W	2023	345	345	1	2381	3099	AC Transmission Project Segment B	
543	NGRID	Knickerbocker (New Station)	Alps	18.1	W	2023	345	345	1	2552	3134	AC Transmission Project Segment B	
543	New York Transco	Rock Tavern	Sugarloaf	12.0	W	2023	115	115	1	328	402	AC Transmission Project Segment B; 1-1590 ACSR	ОН
543	New York Transco	Sugarloaf	Sugarloaf	Transformer	W	2023	138/115	138/115		329	329	AC Transmission Project Segment B	
543	New York Transco	Van Wagner (New Station)		Cap Bank	w	2023	345	345		N/A	N/A	AC Transmission Project Segment B	
543	NGRID	Athens	Pleasant Valley	-39.39	W	2023	345	345	1	2228	2718	Loop Line into new Van Wagner Substation/2- 795 ACSR	ОН
543	NGRID	Leeds	Pleasant Valley	-39.34	w	2023	345	345	1	2228	2718	Loop Line into new Van Wagner Substation/2- 795 ACSR	ОН
543	NGRID	Athens	Van Wagner (New Station)	38.65	w	2023	345	345	1	2228	2718	Loop Line into new Van Wagner Substation/2- 795 ACSR	ОН
543	NGRID	Leeds	Van Wagner (New Station)	38.63	w	2023	345	345	1	2228	2718	Loop Line into new Van Wagner Substation/2- 795 ACSR	ОН
543	New York Transco/Con Ed	Van Wagner (New Station)	Pleasant Valley	0.75	w	2023	345	345	1	3126	3704	Loop Line into new Van Wagner Substation/Reconductor w/2-795 ACSS	ОН
543	New York Transco/Con Ed	Van Wagner (New Station)	Pleasant Valley	0.75	w	2023	345	345	1	3126	3704	Loop Line into new Van Wagner Substation/Reconductor w/2-795 ACSS	ОН
543	New York Transco	Dover (New Station)	Dover (New Station)	Phase Shifter	w	2023	345	345		2510	2510	Loop Line 398 into new substation and install 2 x 750 MVAr PARs	
543	ConEd	Cricket Valley	CT State Line	-3.46	w	2023	345	345	1	2220	2700	Loop Line into new Dover Substation/2-795 ACSS	ОН
543	ConEd	Cricket Valley	Dover (New Station)	0.30	w	2023	345	345	1	2220	2700	Loop Line into new Dover Substation/2-795 ACSS	ОН
543	ConEd	Dover (New Station)	CT State Line	3.13	W	2023	345	345	1	2220	2700	Loop Line into new Dover Substation/2-795 ACSS	ОН

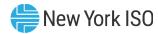
[Project Queue Position] / Project Notes	Transmission Owner	Termi	nals	Line Length in Miles (1)	Expecte Service Da Prior to (2	ate/Yr	k١	Nominal Voltage in kV # Of Operating/Design				Project Description / Conductor Size	Class Year / Type of Construction
	-												
				<u>Firm Plans</u>	5) (include	d in FER(<u>C 715 Base Ca</u>	<u>se)</u>					
3	CHGE	North Chelsea	North Chelsea	xfmr	In- Service	2020	115/69	115/69	1	564	728	Replace Transformer 1	-
3	CHGE	Fishkill Plains	East Fishkill	2.05	In- Service	2020	115	115	1	1172	1434	1-1033 ACSR	ОН
3	CHGE	North Catskill	North Catskill	xfmr	In- Service	2020	115/69	115/69	2	560	726	Replace Transformer 4	-
	CHGE	North Catskill	North Catskill	xfmr	S	2021	115/69	115/69	1	560	726	Replace Transformer 5	-
14	CHGE	Hurley Avenue	Leeds	Static synchronous series compensator	S	2022	345	345	1	2336	2866	21% Compensation	-
	CHGE	Rock Tavern	Sugarloaf	12.10	W	2022	115	115	1	N/A	N/A	Retire SL Line	ОН
	CHGE	Sugarloaf	NY/NJ State Line	10.30	W	2022	115	115	2	N/A	N/A	Retire SD/SJ Lines	ОН
11	CHGE	St. Pool	High Falls	5.61	W	2023	115	115	1	1010	1245	1-795 ACSR	ОН
11	CHGE	High Falls	Kerhonkson	10.03	W	2023	115	115	1	1010	1245	1-795 ACSR	ОН
11	CHGE	Modena	Galeville	4.62	W	2023	115	115	1	1010	1245	1-795 ACSR	ОН
11	CHGE	Galeville	Kerhonkson	8.96	W	2023	115	115	1	1010	1245	1-795 ACSR	ОН
	CHGE	Hurley Ave	Saugerties	11.40	W	2023	69	115	1	1114	1359	1-795 ACSR	ОН
	CHGE	Kerhonkson	Kerhonkson	xfmr	W	2023	115/69	115/69	1	564	728	Add Transformer 3	-
	CHGE	Kerhonkson	Kerhonkson	xfmr	W	2023	115/69	115/69	1	564	728	Add Transformer 4	-
	CHGE	Saugerties	North Catskill	12.46	W	2024	69	115	1	1114	1359	1-795 ACSR	ОН
	CHGE	Knapps Corners	Spackenkill	2.36	W	2025	115	115	1	1280	1563	1-1033 ACSR	
	ConEd	Buchanan North	Buchanan North	Reconfiguration	S	2022	345	345		N/A	N/A	Reconfiguration (bus work related to decommissioning of Indian Point 2)	-
	ConEd	Rainey	Rainey	xfmr	S	2022	345	345		N/A	N/A	Replacing xfmr 3W	-

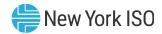

[Project Queue Position] / Project Notes	Transmission Owner	Termi	nals	Line Length in Miles (1)	Expecte Service Da Prior to (2	ate/Yr	Nominal \ k\ Operatin	v	# Of ckts	Thermal F Summer	tatings (4) /Winter	Project Description / Conductor Size	Class Year / Type of Construction
	ConEd	Hudson Ave East	New Vinegar Hill Distribution Switching Station	xfmrs/PARs/Feeders	S	2022	138/27	138/27		N/A	N/A	New Vinegar Hill Distribution Switching Station	UG
	ConEd	Rainey	Corona	xfmr/PAR/Feeder	S	2023	345/138	345/138		N/A	N/A	New second PAR regulated feeder	UG
	ConEd	Gowanus	Greenwood	xfmr/PAR/Feeder	S	2025	345/138	345/138		N/A	N/A	New PAR regulated feeder	UG
	ConEd	Goethals	Fox Hills	xfmr/PAR/Feeder	S	2025	345/138	345/138		N/A	N/A	New PAR regulated feeder	UG
3	LIPA	Deer Park	Deer Park	-	In- Service	2019	69	69	1	N/A	N/A	Install 27 MVAR Cap Bank	
3	LIPA	MacArthur	MacArthur	-	In- Service	2019	69	69	1	N/A	N/A	Install 27 MVAR Cap Bank	
6/7/3	LIPA	Meadowbrook	East Garden City	-3.11	In- Service	2020	69	69	1	458	601	4/0 CU	OH+UG
6/7/3	LIPA	East Garden City	Lindbergh	2.11	In- Service	2020	69	69	1	575	601	750 kcmil CU	OH+UG
6/7/3	LIPA	Lindbergh	Meadowbrook	2.50	In- Service	2020	69	69	1	458	601	4/0 CU	OH+UG
6/7/3	LIPA	Elmont	Floral Park	-1.59	In- Service	2020	34.5	34.5	1	644	816	477 AL	OH+UG
6/7/3	LIPA	Elmont	Belmont	1.82	In- Service	2020	34.5	34.5	1	342	457	2/0 CU	OH+UG
6/7/3	LIPA	Belmont	Floral Park	2.04	In- Service	2020	34.5	34.5	1	644	816	477 AL	OH+UG
3	LIPA	Valley Stream	East Garden City	7.36	In- Service	2020	138	138	1	1128	1195	New line / 2000 SQMM XLPE	UG
6/7	LIPA	Amagansett	Montauk	-13.00	S	2021	23	23	1	577	657	750 kcmil CU	UG
6/7	LIPA	Amagansett	Navy Road	12.74	S	2021	23	23	1	577	657	750 kcmil CU	UG
6/7	LIPA	Navy Road	Montauk	0.26	S	2021	23	23	1	577	657	750 kcmil CU	UG
9	LIPA	Riverhead	Wildwood	10.63	S	2021	138	138	1	1399	1709	1192ACSR	
13	LIPA	Riverhead	Canal	16.49	S	2021	138	138	1	1000	1110	2368 KCMIL (1200 mm ²) Copper XLPE	
	LIPA	Barrett	Barrett	-	S	2021	34.5	34.5	1	N/A	N/A	Barrett 34.5kV Bus Tie Reconfiguration	-
3	NGRID	Rosa Rd	Rosa Rd	-	In- Service	2020	115	115		N/A	N/A	Install 35.2MVAR Cap Bank at Rosa Rd	-
6/3	NGRID	Rotterdam	Curry Rd	7	In- Service	2020	115	115	1	1105	1347	Replace 7.0 miles of mainly 4/0 Cu conductor with 795kcmil ACSR 26/7	ОН

[Project Queue Position] / Project Notes	Transmission Owner	Termi	nals	Line Length in Miles (1)	Service Da	Service Date/Yr		Nominal Voltage in kV Operating/Design		Thermal F Summer	• • • •	Project Description / Conductor Size	Class Year / Type of Construction
3	NGRID	Elm St	Elm St	xfmr	In- Service	2020	230/23	230/23	1	118MVA	133MVA	Add a fourth 230/23kV transformer	
3	NGRID	West Ashville	West Ashville		In- Service	2020	115	115		N/A	N/A	New Distribution Station at West Ashville	
7/3	NGRID	Spier	Rotterdam (#2)	-32.74	In- Service	2020	115	115	1	1168	1416	New Lasher Rd Switching Station	ОН
7/3	NGRID	Spier	Lasher Rd (New Station) (#2)	21.69	In- Service	2020	115	115	1	1168	1416	New Lasher Rd Switching Station	ОН
7/3	NGRID	Lasher Rd (New Station)	Rotterdam	11.05	In- Service	2020	115	115	1	2080	2392	New Lasher Rd Switching Station	ОН
7/3	NGRID	Spier	Luther Forest (#302)	-34.21	In- Service	2020	115	115	1	916	1070	New Lasher Rd Switching Station	ОН
7/3	NGRID	Spier	Lasher Rd (New Station) (#302)	21.72	In- Service	2020	115	115	1	916	1118	New Lasher Rd Switching Station	ОН
3	NGRID	Lasher Rd (New Station)	Luther Forest	12.49	In- Service	2020	115	115	1	990	1070	New Lasher Rd Switching Station	ОН
3	NGRID	Rotterdam	Rotterdam	-	In- Service	2020	115	115	2	N/A	N/A	Install Series Reactors at Rotterdam Station on lines 17 & 19	
3	NGRID	Huntley	Lockport	6.9	In- Service	2020	115	115	2	1303	1380	Replace 6.9 miles of 36 and 37 lines	ОН
3	NGRID	Two Mile Creek	Two Mile Creek		ln- Service	2020	115	115		N/A	N/A	New Distribution Station at Two Mile Creek	
6/3	NGRID	GE	Geres Lock	7.14	In- Service	2020	115	115	1	785	955	Reconductoring 4/0CU & 336 ACSR to 477 ACCR (Line #8)	
3	NGRID	Gardenville 230kV	Gardenville 115kV	xfmr	In- Service	2020	230/115	230/115	-	347 MVA	422 MVA	Replacement of 230/115kV TB#4 stepdown with larger unit	
3	NGRID	Gardenville 115kV	Gardenville 115kV	-	In- Service	2020	-	-	-	-	-	Rebuild of Gardenville 115kV Station to full breaker and a half	
	NGRID	Oswego	Oswego	-	W	2020	115	115		N/A	N/A	Rebuild of Oswego 115kV Station	
6	NGRID	Clay	Dewitt	10.24	S	2021	115	115	1	220MVA	268MVA	Reconductor 4/0 CU to 795ACSR	ОН
6	NGRID	Clay	Teall	12.75	S	2021	115	115	1	220 MVA	268MVA	Reconductor 4/0 CU to 795ACSR	ОН
	NGRID	Gardenville 230kV	Gardenville 115kV	xfmr	S	2021	230/115	230/115	-	347 MVA	422 MVA	Replacement of 230/115kV TB#3 stepdown with larger unit	


[Project Queue Position] / Project Notes	Transmission Owner	Termi	nals	Line Length in Miles (1)	Expected Service Da Prior to (2	ate/Yr	Nominal V k\ Operating	/	# Of ckts	Thermal F Summer	• • • •	Project Description / Conductor Size	Class Year / Type of Construction
	NGRID	Huntley 115kV	Huntley 115kV	-	S	2021	115	115	-	N/A	N/A	Rebuild of Huntley 115kV Station	
	NGRID	Mortimer	Mortimer	xfmr	S	2021	115	115		50MVA	50MVA	Replace Mortimer 115/69kV Transformer	
	NGRID	Mortimer	Mortimer	-	S	2021	115	115		N/A	N/A	Second 115kV Bus Tie Breaker at Mortimer Station	
	NGRID	Royal Ave	Royal Ave	-	S	2021	115/13.2	115/13.2	-	-	-	Install new 115-13.2 kV distribution substation in Niagara Falls (Royal Ave)	-
	NGRID	Niagara	Packard	3.4	W	2021	115	115	1	344MVA	449MVA	Replace 3.4 miles of 192 line	ОН
	NGRID	Mountain	Lockport	0.08	S	2022	115	115	2	174MVA	199MVA	Mountain-Lockport 103/104 Bypass	ОН
	NGRID	South Oswego	Indeck (#6)	-	S	2022	115	115	1	-	-	Install High Speed Clearing on Line #6	
	NGRID	Porter	Porter	-	S	2022	230	230		N/A	N/A	Porter 230kV upgrades	
	NGRID	Watertown	Watertown		S	2022	115	115		N/A	N/A	New Distribution Station at Watertown	
	NGRID	Golah	Golah	xfmr	S	2022	69	69		50MVA	50MVA	Replace Golah 69/34.5kV Transformer	
	NGRID	Niagara	Packard	3.7	S	2022	115	115	1	344MVA	449MVA	Replace 3.7 miles of 191 line	ОН
	NGRID	Lockport	Mortimer	56.5	S	2022	115	115	3	-	-	Replace Cables Lockport-Mortimer #111, 113, 114	
6	NGRID	Niagara	Packard	3.7	W	2022	115	115	2	344MVA	449MVA	Replace 3.7 miles of 193 and 194 lines	ОН
	NGRID	Gardenville	Big Tree	6.3	W	2022	115	115	1	221MVA	221MVA	Gardenville-Arcade #151 Loop-in-and-out of NYSEG Big Tree	ОН
	NGRID	Big Tree	Arcade	28.6	W	2022	115	115	1	129MVA	156MVA	Gardenville-Arcade #151 Loop-in-and-out of NYSEG Big Tree	ОН
	NGRID	Seneca	Seneca	xfmr	W	2022	115/22	115/22		40MVA	40MVA	Seneca #5 xfmr asset replacement	
	NGRID	Batavia	Batavia		W	2022	115	115				Batavia replace five OCB's	
	NGRID	Cortland	Clarks Corners	0.2	S	2023	115	115	1	147MVA	170MVA	Replace 0.2 miles of 1(716) line and series equipment	ОН
	NGRID	Maplewood	Menands	3	S	2023	115	115	1	220 MVA	239 MVA	Reconductor approx. 3 miles of 115kV	

[Project Queue Position] / Project Notes	Transmission Owner	Termi	nals	Line Length in Miles (1)	Expected Service Da Prior to (2	ate/Yr	Nominal V k\ Operating	/	# Of ckts	Thermal F Summer		Project Description / Conductor Size	Class Year / Type of Construction
												Maplewood – Menands #19	
	NGRID	Maplewood	Reynolds	3	S	2023	115	115	1	217 MVA	265 MVA	Reconductor approx. 3 miles of 115kV Maplewood – Reynolds Road #31	
	NGRID	Elm St	Elm St	-	S	2023	230/23	230/23	-	118MVA	133MVA	Replace TR2 as failure	
	NGRID	Ridge	Ridge		S	2023				N/A	N/A	Ridge substation 34.5kV rebuild	
	NGRID	Wolf Rd	Menands	1.34	W	2023	115	115	1	182 MVA	222 MVA	Reconductor 1.34 miles bet. Wolf Rd- Everett tap (per EHI)	ОН
	NGRID	Packard	Huntley	9.1	W	2023	115	115	1	262MVA	275MVA	Walck-Huntley #133, Packard-Huntley #130 Reconductor	ОН
	NGRID	Walck	Huntley	9.1	W	2023	115	115	1	262MVA	275MVA	Walck-Huntley #133, Packard-Huntley #130 Reconductor	ОН
	NGRID	Kensington Terminal	Kensington Terminal	-	W	2023	115/23	115/23	-	50MVA	50MVA	Replace TR4 and TR5	
	NGRID/NYSEG	Mortimer	Station 56		W	2023	115	115	1	649	788	Mortimer-Pannell #24 Loop in-and-out of NYSEG's Station 56	
	NGRID	Station 56	Pannell		W	2023	115	115	1	649	788	Mortimer-Pannell #24 Loop in-and-out of NYSEG's Station 56	
	NGRID	Dunkirk	Laona	-	S	2024	115	115	2	N/A	N/A	Remove series reactors from New Road Switch Station and install new to Moons Switch Station	
	NGRID	Laona	Moons	-	S	2024	115	115	2	N/A	N/A	Remove series reactors from New Road Switch Station and install new to Moons Switch Station	
	NGRID	Golah	Golah	Reconfiguration	S	2024	115	115		-	-	Add a Golah 115kV bus tie breaker	
	NGRID	Dunkirk	Dunkirk	-	S	2024	115	115		N/A	N/A	Rebuild of Dunkirk 115kV Station	
6	NGRID	Gardenville	Dunkirk	20.5	S	2024	115	115	2	1105	1346	Replace 20.5 miles of 141 and 142 lines	ОН
	NGRID	Homer Hill	Homer Hill	-	S	2024	115	115	-	116MVA	141MVA	Homer Hill Replace five OCB	


[Project Queue Position] / Project Notes	Transmission Owner	Termi	nals	Line Length in Miles (1)	Expecte Service Da Prior to (2	ate/Yr	Nominal V k\ Operating	/	# Of ckts		Ratings (4) r/Winter	Project Description / Conductor Size	Class Year / Type of Construction
	NGRID	Golah	Golah		S	2024				N/A	N/A	Golah substation rebuild	
	NGRID	Pannell	Geneva		W	2024	115	115	2	755	940	Critical Road crossings replace on Pannell- Geneva 4/4A	
	NGRID	Oswego	Oswego	-	S	2025	345	345		N/A	N/A	Rebuild of Oswego 345kV Station	
	NGRID	Mortimer	Golah	9.7	S	2025	115	115	1	657	797	Refurbish 9.7 miles Single Circuit Wood H- Frames on Mortimer- Golah 110	
	NGRID	Huntley	Lockport	1.2	S	2025	115	115	2	747	934	Rebuild 1.2 miles of (2) single circuit taps on Huntley-Lockport 36/37 at Ayer Rd	
	NGRID	Niagara	Gardenville	26.3	S	2026	115	115	1	275MVA	350MVA	Packard-Erie / Niagara- Gardenville Reconfiguration	ОН
	NGRID	Packard	Gardenville	28.2	S	2026	115	115	2	168MVA	211 MVA	Packard-Gardenville Reactors, Packard-Erie / Niagara-Gardenville Reconfiguration	ОН
	NGRID/NYSEG	Erie St	Gardenville	5.5	S	2026	115	115	1	139MVA	179MVA	Packard-Erie / Niagara- Gardenville Reconfiguration, Gardenville add breakers	ОН
	NGRID	Mortimer	Pannell	15.7	S	2026	115	115	2	221MVA	270MVA	Reconductor existing Mortimer – Pannell 24 and 25 lines with 795 ACSR	
	NGRID	Lockport	Batavia	20	S	2026	115	115	1	646	784	Rebuild 20 miles of Lockport-Batavia 112	
	NGRID	Mountain	Lockport		S	2026	115	115	2	847	1000	Reinsulating Mountain- Lockport 103/104	
	NGRID	SE Batavia	Golah	27.8	S	2026	115	115	1	648	846	Refurbish 27.8 miles Single Circuit Wood H- Frames on SE Batavia- Golah 119	
	NGRID	Packard	Packard		S	2026	115	115				Packard replace three OCB's	
	NGRID	Brockport	Brockport	3.5	W	2026	115	115	2	648	650	Refurbish 111/113 3.5 mile single circuit taps to Brockport Station	
	NGRID	Gardenville	Homer Hill	37.5	S	2027	115	115	2	649	788	Refurbish 37.5 miles double circuit	

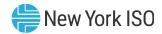

[Project Queue Position] / Project Notes	Transmission Owner	Termi	nals	Line Length in Miles (1)	Expecte Service Da Prior to (2	ate/Yr	Nominal \ k\ Operatin	V	# Of ckts	Thermal F Summer	Ratings (4) r/Winter	Project Description / Conductor Size	Class Year / Type of Construction
												Gardenville-Homer Hill 151/152	
	NGRID	Huntley	Gardenville	23.4	W	2027	115	115	2	731	887	Refurbish 23.4 miles double circuit on Huntley-Gardenville 38/39	
	NGRID	Lockport	Lockport		W	2027				N/A	N/A	Rebuild of Lockport Substation and control house	
781/3	NYPA	Fraser Annex	Fraser Annex	SSR Detection	In- Service	2020	345	345	1	1793 MVA	1793 MVA	MSSC SSR Detection Project	
3	NYPA	Niagara 230 kV	Niagara 230 kV	Breaker	In- Service	2020	230	230	1	N/A	N/A	Add a new breaker	
3	NYPA	Niagara 230 kV	Niagara 115 kV	Autotransformer	In- Service	2020	230	115	1	240 MVA	240 MVA	Replace Niagara AT #1	
3	ΝΥΡΑ	Astoria 138 kV	Astoria 13.8 kV	Astoria CC GSU Refurbishment	In- Service	2020	138	18	1	234	234	Astoria CC GSU Refurbishment	
3	NYPA	Niagara	Rochester	-70.20	In- Service	2020	345	345	1	2177	2662	2-795 ACSR	
339/7/3	NYPA	Somerset	Rochester	-44.00	In- Service	2020	345	345	1	2177	2662	2-795 ACSR	
339/7/3	NYPA	Niagara	Station 255 (New Station)	66.40	In- Service	2020	345	345	1	2177	2662	2-795 ACSR	
339/7/3	NYPA	Somerset	Station 255 (New Station)	40.20	In- Service	2020	345	345	1	2177	2662	2-795 ACSR	
339/7/3	NYPA	Station 255 (New Station)	Rochester	3.80	In- Service	2020	345	345	2	2177	2662	2-795 ACSR	
	NYPA	East Garden City	East Garden City	Shunt Reactor	S	2021	345	345	1	N/A	N/A	Swap with the spare unit	
566/6	ΝΥΡΑ	Moses	Adirondack	78	S	2023	230	345	2	1088	1329	Replace 78 miles of both Moses-Adirondack 1&2	
3	NYSEG	Watercure Road	Watercure Road	xfmr	In- Service	2020	345/230	345/230	1	426 MVA	494 MVA	Transformer #2 and Station Reconfiguration	-
	NYSEG	Willet	Willet	xfmr	S	2021	115/34.5	115/34.5	1	39 MVA	44 MVA	Transformer #2	-
	NYSEG	Big Tree Road	Big Tree Road	Rebuild	W	2022	115	115				Station Rebuild	
	NYSEG	Wood Street	Wood Street	xfmr	W	2022	345/115	345/115	1	327 MVA	378 MVA	Transformer #3	-
	NYSEG	Coddington	E. Ithaca (to Coddington)	8.07	S	2024	115	115	1	307 MVA	307 MVA	665 ACCR	ОН
	NYSEG	Fraser	Fraser	xfmr	S	2024	345/115	345/115	1	305 MVA	364 MVA	Transformer #2 and Station Reconfiguration	-

[Project Queue Position] / Project Notes	Transmission Owner	Termi	nals	Line Length in Miles (1)	Expecte Service Da Prior to (2	ate/Yr	Nominal \ k\ Operatin	v	# Of ckts	Thermal Ratings (4) Summer/Winter		Project Description / Conductor Size	Class Year / Type of Construction
	NYSEG	Fraser 115	Fraser 115	Rebuild	S	2024	115	115		N/A	N/A	Station Rebuild to 4 bay BAAH	-
	NYSEG	Delhi	Delhi	Removal	S	2024	115	115		N/A	N/A	Remove 115 substation and terminate existing lines to Fraser 115 (short distance)	
	NYSEG	Erie Street Rebuild	Erie Street Rebuild	Rebuild	S	2026	115	115				Station Rebuild	
	NYSEG	Meyer	Meyer	xfmr	W	2026	115/34.5	115/34.5	2	59.2MVA	66.9MVA	Transformer #2	-
3	O & R	West Nyack	West Nyack	Cap Bank	In- Service	2020	138	138	1	-	-	Capacitor Bank	
3	O & R	Harings Corner (RECO)	Closter (RECO)	3.20	In- Service	2020	69	69	1	1098	1312	UG Cable	
3	O & R	Ramapo	Ramapo	xfmr	In- Service	2020	345/138	345/138	1	731	731	New transformer replacement Bank 1300	
7	O & R/ConEd	Ladentown	Buchanan	-9.5	S	2023	345	345	1	3000	3211	2-2493 ACAR	
7	O & R/ConEd	Ladentown	Lovett 345 kV Station (New Station)	5.5	S	2023	345	345	1	3000	3211	2-2493 ACAR	
7	O & R/ConEd	Lovett 345 kV Station (New Station)	Buchanan	4	S	2023	345	345	1	3000	3211	2-2493 ACAR	
	O & R	Lovett 345 kV Station (New Station)	Lovett	xfmr	S	2023	345/138	345/138	1	562 MVA	562 MVA	Transformer	
3	RGE	Station 23	Station 23	xfmr	In- Service	2019	115/34.5	115/34.5	2	75 MVA	84 MVA	Transformer	-
3	RGE	Station 122- Pannell-PC1	Station 122- Pannell-PC1 and PC2		In- Service	2020	345	345	1	1314 MVA-LTE	1314 MVA-LTE	Relay Replacement	
3	RGE	Station 255 (New Station)	Rochester	3.80	In- Service	2020	345	345	1	2177	2662	2-795 ACSR	ОН
3	RGE	Station 255 (New Station)	Station 255 (New Station)	xfmr	In- Service	2020	345/115	345/115	1	400 MVA	450 MVA	Transformer	-
3	RGE	Station 255 (New Station)	Station 255 (New Station)	xfmr	In- Service	2020	345/115	345/115	2	400 MVA	450 MVA	Transformer	-
3	RGE	Station 255 (New Station)	Station 418	10.49	In- Service	2020	115	115	1	300 MVA	300 MVA	New 115kV Line	ОН
3	RGE	Station 255 (New Station)	Station 23	11.96	In- Service	2020	115	115	1	300 MVA	300 MVA	New 115kV Line	OH+UG
	RGE	Station 262	Station 23	1.46	S	2021	115	115	1	2008	2008	Underground Cable	

[Project Queue Position] / Project Notes	Transmission Owner	Termi	inals	Line Length in Miles (1)	Expecte Service Da Prior to (2	ate/Yr	Nominal \ k\ Operatin	v	# Of ckts	Thermal F Summer		Project Description / Conductor Size	Class Year / Type of Construction
	RGE	Station 33	Station 262	2.97	S	2021	115	115	1	2008	2008	Underground Cable	
	RGE	Station 262	Station 262	xfmr	S	2021	115/34.5	115/34.5	1	58.8MVA	58.8MVA	Transformer	-
7	RGE	Station 168	Mortimer (NG Trunk #2)	26.4	W	2023	115	115	1	145 MVA	176 MVA	Station 168 Reinforcement Project	ОН
7	RGE	Station 168	Elbridge (NG Trunk # 6)	45.5	W	2023	115	115	1	145 MVA	176 MVA	Station 168 Reinforcement Project	ОН
	RGE	Station 127	Station 127	xfmr	W	2024	115/34.5	115/34.5	1	75MVA	75MVA	Transformer #2	-
	RGE	Station 418	Station 48	7.6	S	2026	115	115	1	175 MVA	225 MVA	New 115kV Line	ОН
	RGE	Station 33	Station 251 (Upgrade Line #942)		S	2026	115	115	1	400MVA	400MVA	Line Upgrade	
	RGE	Station 33	Station 251 (Upgrade Line #943)		S	2026	115	115	1	400MVA	400MVA	Line Upgrade	
	RGE	Station 82	Station 251 (Upgrade Line #902)		S	2028	115	115	1	400MVA	400MVA	Line Upgrade	
	RGE	Mortimer	Station 251 (Upgrade Line #901)	1.00	S	2028	115	115	1	400MVA	400MVA	Line Upgrade	

Number	Note
1	Line Length Miles: Negative values indicate removal of Existing Circuit being tapped
2	S = Summer Peak Period W = Winter Peak Period
3	Equipment (Transformers & Capacitor Banks) is retained on this list for one year after it goes in In-Service, and then it is deleted. A Transmission Line is reflected in Table VI when it goes In-Service
4	Thermal Ratings in Amperes, except where labeled otherwise
5	Firm projects are those which have been reported by TOs as being sufficiently firm, and either (i) have an Operating Committee approved System Impact Study (if applicable) and, for projects subject to Article VII, have a determination from New York Public Service Commission that the Article VII application is in compliance with Public Service Law § 122, or (ii) is under construction and is scheduled to be inservice prior to June 1 of the current year.
6	Reconductoring of Existing Line
7	Segmentation of Existing Circuit
8	Deleted
9	Upgrade of existing 69 kV to 138 kV operation
10	Deleted
11	Upgrade of existing 69 kV to 115 kV operation
12	Deleted
13	Contingent on future generation resources
14	This transmission upgrade was identified as a System Deliverability Upgrade (SDU) in the Class Year 2011 Study process required to make certain interconnection projects fully deliverable in the Rest of State Capacity Region. Upon the completion of Class Year 2011, the security posted for the SDU constituted greater than 60% of the total estimated costs for the SDUs and thereby "triggered" the SDU for construction.
15	The Class Year Transmission Project, Queue #458 or 631 includes, as an elective System Upgrade Facility, an Astoria-Rainey 345kV cable. Modifying Q631 from a three-terminal HVdc project to a two- terminal HVdc project has determined to be non-material; however, Q458 and Q631 may not enter the same Class Year Study. Q887 CH Uprate is a 250 MW uprate of Q458 or Q631 project.
16	Deleted
17	Deleted
18	This project has a System Reliability Impact Study that has been approved by the NYISO Operating Committee, and therefore is a potential candidate to enter the next Open Class Year study
19	These transmission projects are included in the FERC 715 Report models. Please see FERC 715 report for an explanation of the inclusion criteria.
20	Deleted

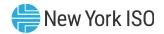
From Bus	To Bus	ID	Voltage (kV)	Project Description	Planned In-Service Date
Clay	Volney	6	345	Upgrade terminal equipment	6/2022
Clay	Woodard	17	115	3% series reactor	12/2023
Lockport	Mortimer	103/104	115	Reconductor/Reconfigure 4 spans of Lockport/Mortimer 103/104	8/2022
Lockport	Lockport	R264	115	Install R264 at Lockport for Line 108 and operate as alternate breaker for Line 108 at Lockport	1/2023


Figure 17: Updates to Local Transmission Plans Not Included in 2021 Load and Capacity Data Report

Appendix D: Resource Adequacy Assumptions

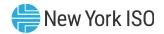
2022 Q2 STAR MARS Assumptions Matrix

#	Parameter	2020 RNA (2020 GB) Study Period: 2024 (y4) -2030 (y10)	2021-2030 CRP and 2021 Q2 STAR (2020 GB updated as applicable) Study Period: 2024-2030 and 2021(y1) -2025 (y5), respectively	2022 Q1, Q2 STAR and 2021 Q3 / Q4 STAR (2021 GB updated as applicable) Study Periods: 2022 (y1)-2026-2027 (y5)
Ke	y Assumptions and Reports			
1	Links to Key Assumptions Presentations and Final Reports	2020 RNA Report and Appendices, final as of November 2020: https://www.nyiso.com/documents/ 20142/2248793/2020-RNAReport- Nov2020.pdf	2021-2030 CRP Report, final as of December 2, 2021: https://www.nyiso.com/docu ments/20142/2248481/202 1-2030-Comprehensive- Reliability-Plan.pdf 2021-2030 CRP Appendices: https://www.nyiso.com/docu ments/20142/26735166/20 21-2030-Comprehensive- Reliability-Plan-Appendices.pdf	2022 Q2 STAR key assumptions presented at the Apr 26, 2022 ESPWG [link] [link] 2022 Q1 STAR key assumptions presented at the Jan 25, 2022 ESPWG [link] 2021 Q4 STAR key assumptions presented at the Oct 23, 2021 ESPWG [link] 2021 Q3 STAR key assumptions presented at the July 23, 2021 ESPWG [link] Final STAR Reports: https://www.nyiso.com/short-term- reliability-process


#	Parameter ad Parameters	2020 RNA (2020 GB) Study Period: 2024 (y4) -2030 (y10)	2021-2030 CRP and 2021 Q2 STAR (2020 GB updated as applicable) Study Period: 2024-2030 and 2021(y1) -2025 (y5), respectively	2022 Q1, Q2 STAR and 2021 Q3 / Q4 STAR (2021 GB updated as applicable) Study Periods: 2022 (y1)-2026-2027 (y5)
1	Peak Load Forecast	Adjusted 2020 Gold Book NYCA baseline peak load forecast. The GB 2020 baseline peak load forecast includes the impact (reduction) of behind-the-meter (BtM) solar at the time of NYCA peak. For the Resource Adequacy load model, the deducted BtM solar MW was added back to the NYCA zonal loads, which then allows for a discrete modeling of the BtM solar resources.	Adjusted NYCA baseline peak load forecast based on the <u>November 19, 2020</u> Load Forecast Update. Reference: Nov 19, 2020 ESPWG/LFTF/TPAS presentation: [link] Same method.	Adjusted 2021 Gold Book NYCA baseline peak load forecast. It includes five large loads from the queue, with forecasted impacts. Note : the large loads forecast was updated in January 2022 and captured in the 2022 Q2 STAR models. The GB 2021 baseline peak load forecast includes the impact (reduction) of behind-the-meter (BtM) solar at the time of NYCA peak. For the Resource Adequacy load model, the deducted BtM solar MW was added back to the NYCA zonal loads, which then allows for a discrete modeling of the BtM solar resources.
2	Load Shapes (Multiple Load Shapes)	Used Multiple Load Shape MARS Feature 8,760-hour historical load shapes were used as base shapes for LFU bins: Bin 1: 2006 Bin 2: 2002 Bins 3-7: 2007	Same	Same method

#	Parameter	2020 RNA (2020 GB) Study Period: 2024 (y4) -2030 (y10)	2021-2030 CRP and 2021 Q2 STAR (2020 GB updated as applicable) Study Period: 2024-2030 and 2021(y1) -2025 (y5),	2022 Q1, Q2 STAR and 2021 Q3 / Q4 STAR (2021 GB updated as applicable) Study Periods: 2022 (y1)-2026-2027 (y5)
3	Load Forecast Uncertainty (LFU) The LFU model captures the impacts of weather conditions on future loads.	Peak adjustments on a seasonal basis. For the BtM Solar adjustment, the BtM shape is added back to account for the impact of the BtM generation on both on-peak and off-peak hours. 2020 Updated via Load Forecast Task Force (LFTF) process Reference: April 13, 2020, LFTF presentation: https://www.nyiso.com/documents/ 20142/11883362/LFU_Summary.p df	Same	Updated LFU values resulted from bin structure method change in representing the load bins (<i>i.e.</i> , using 'equal area' instead of 'equal distance' for Zscore calculation) Additional details: May 24, 2021, LFTF presentation: https://www.nyiso.com/documents/201 42/21707507/04%20LFU_IRM_2022.p df
Ge	neration Parameters	I		
1	Existing Generating Unit Capacities (e.g., thermal units, large hydro)	2020 Gold Book values. Use summer min (DMNC vs. CRIS). Use winter min (DMNC vs. CRIS). Adjusted for RNA inclusion rules.	Same	2021 Gold Book values. Use summer min (DMNC vs. CRIS). Use winter min (DMNC vs. CRIS). Adjusted for RNA inclusion rules. Note: Units with CRIS rights and 0 DMNC are modeled at 0 MW

#	Parameter	2020 RNA (2020 GB) Study Period: 2024 (y4) -2030 (y10)	2021-2030 CRP and 2021 Q2 STAR (2020 GB updated as applicable)	2022 Q1, Q2 STAR and 2021 Q3 / Q4 STAR (2021 GB updated as applicable)
			Study Period: 2024-2030 and 2021(y1) -2025 (y5), respectively	Study Periods: 2022 (y1)-2026-2027 (y5)
2	Proposed New Units Inclusion Determination	GB2020 with Inclusion Rules Applied	Same	GB2021 with Inclusion Rules Applied (as described in the applicable key assumptions ESPWG presentations – links above)
3	Retirement, Mothballed Units, IIFO	GB2020 with Inclusion Rules Applied	Same	GB2021 with Inclusion Rules Applied (as described in the applicable key assumptions ESPWG presentations – links above)
4	Forced and Partial Outage Rates (e.g., thermal units, large hydro)	Five-year (2015-2019) GADS data for each unit represented. Those units with less than five years – use representative data.	Same	Five-year (2016-2020) GADS data for each unit represented. Those units with less than five years – use representative data.
		Transition Rates representing the Equivalent Forced Outage Rates (EFORd) during demand periods over the most recent five-year period		Transition Rates representing the Equivalent Forced Outage Rates (EFORd) during demand periods over the most recent five-year period
		For new units or units that are in service for less than three years, NERC 5-year class average EFORd data are used.		For new units or units that are in service for less than three years, NERC 5-year class average EFORd data are used.
5	Planned Outages	Based on schedules received by the NYISO and adjusted for history	Same	Same method with updated data
6	Fixed and Unplanned Maintenance	Scheduled maintenance from operations.	Scheduled maintenance from operations.	Scheduled maintenance from operations.
		Unplanned maintenance based on GADS data average maintenance	Unplanned maintenance based on GADS data average	


#	Parameter	2020 RNA (2020 GB)	2021-2030 CRP and 2021 Q2 STAR (2020 GB updated as	2022 Q1, Q2 STAR and 2021 Q3 / Q4 STAR (2021 GB updated as
		Study Period: 2024 (y4) -2030 (y10)	applicable) Study Period: 2024-2030 and 2021(y1) -2025 (y5), respectively	applicable) Study Periods: 2022 (y1)-2026-2027 (y5)
		time – average time in weeks is modeled	maintenance time – average time in weeks is modeled	Unplanned maintenance based on GADS data average maintenance time – average time in weeks is modeled
7	Summer Maintenance	None	Same	None
8	Combustion Turbine Derates	Derate based on temperature correction curves For new units: used data for a unit of same type in same zone, or neighboring zone data.	Same	Same method
8	Existing Landfill Gas (LFG) Plants	Actual hourly plant output over the period 2015-2019. Program randomly selects an LFG shape of hourly production over the 2015- 2019 for each model replication. Probabilistic model is incorporated based on five years of input shapes, with one shape per replication randomly selected in the Monte Carlo process.	Same	Actual hourly plant output over the period 2016-2020. Program randomly selects an LFG shape of hourly production over the 2016-2020 for each model replication. Probabilistic model is incorporated based on five years of input shapes, with one shape per replication randomly selected in the Monte Carlo process.
9	Existing Wind Units (>5 years of data)	Actual hourly plant output over the period 2015-2019. Probabilistic model is incorporated based on five years of input shapes with one shape per replication being	Same	Actual hourly plant output over the period 2016-2020. Probabilistic model is incorporated based on five years of input shapes with one shape per replication being

#	Parameter	2020 RNA (2020 GB) Study Period: 2024 (y4) -2030 (y10)	2021-2030 CRP and 2021 Q2 STAR (2020 GB updated as applicable) Study Period: 2024-2030 and 2021(y1) -2025 (y5), respectively	2022 Q1, Q2 STAR and 2021 Q3 / Q4 STAR (2021 GB updated as applicable) Study Periods: 2022 (y1)-2026-2027 (y5)
		randomly selected in Monte Carlo process		randomly selected in Monte Carlo process
1 0	Existing Wind Units (<5 years of data)	For existing data, the actual hourly plant output over the period 2016- 2020 is used. For missing data, the nameplate normalized average of units in the same load zone is scaled by the unit's nameplate rating.	Same	For existing data, the actual hourly plant output over the period 2016-2020 is used. For missing data, the nameplate normalized average of units in the same load zone is scaled by the unit's nameplate rating.
1 1 a	Proposed Land based Wind Units	Inclusion Rules Applied to determine the generator status. The nameplate normalized average of units in the same load zone is scaled by the unit's nameplate rating.	Same	Same method
1 1 b	Proposed Offshore Wind Units	None passed inclusion rules	Same	None passed inclusion rules
1 2 a	Existing Utility-scale Solar Resources	The 31.5 MW Upton metered solar capacity: probabilistic model chooses from 5 years of production data output shapes covering the period 2015-2019 (one shape per	Same	Probabilistic model chooses from 5 years of production data output shapes covering the period 2016-2020 (one shape per replication is randomly selected in Monte Carlo process.)

#	Parameter	2020 RNA (2020 GB) Study Period: 2024 (y4) -2030 (y10)	2021-2030 CRP and 2021 Q2 STAR (2020 GB updated as applicable) Study Period: 2024-2030 and 2021(y1) -2025 (y5), respectively	2022 Q1, Q2 STAR and 2021 Q3 / Q4 STAR (2021 GB updated as applicable) Study Periods: 2022 (y1)-2026-2027 (y5)
		replication is randomly selected in Monte Carlo process.)		
1 2 b	Proposed Utility-scale Solar Resources	Inclusion Rules Applied to determine the generator status. The nameplate normalized average of units in the same load zone is scaled by the unit's nameplate rating.	Same	Same method For new units in zones that do not yet have existing solar plants: model based on the BtM solar profiles from that zone
1 3	Projected BtM Solar Resources	 Will use 5-year of inverter production data and apply the Gold Book energy forecast. Probabilistic model is incorporated based on five years of input shapes with one shape per replication being randomly selected in Monte Carlo process Reference: April 6, 2020 TPAS/ESPWG meeting materials 	Same method	Same method

#	Parameter	2020 RNA (2020 GB) Study Period: 2024 (y4) -2030 (y10)	2021-2030 CRP and 2021 Q2 STAR (2020 GB updated as applicable) Study Period: 2024-2030 and 2021(y1) -2025 (y5), respectively	2022 Q1, Q2 STAR and 2021 Q3 / Q4 STAR (2021 GB updated as applicable) Study Periods: 2022 (y1)-2026-2027 (y5)
1 4	Existing BTM-NG Program	These are former load modifiers to sell capacity into the ICAP market. Modeled as cogen type 1 (or type 2 as applicable) unit in MARS. Unit capacity set to CRIS value, load modeled with weekly pattern that can change monthly.	Same	Same method
1 5	Existing Small Hydro Resources (<i>e.g.,</i> run-of-river)	Actual hourly plant output over the past 5 years period (i.e., 2015- 2019). Program randomly selects a hydro shape of hourly production over the 5-year window for each model replication. The randomly selected shape is multiplied by their current nameplate rating.	Same	Same method
1 6	Existing Large Hydro	Probabilistic Model based on 5 years of GADS data. Transition Rates representing the Equivalent Forced Outage Rates (EFORd) during demand periods over the most recent five-year period (2015-2019). Methodology consistent with thermal unit transition rates.	Same	Same method
17	Proposed front-of-meter Battery Storage	None passed inclusion rules	Same	Inclusion Rules: none

#	Parameter	2020 RNA (2020 GB) Study Period: 2024 (y4) -2030 (y10)	2021-2030 CRP and 2021 Q2 STAR (2020 GB updated as applicable) Study Period: 2024-2030 and 2021(y1) -2025 (y5), respectively	2022 Q1, Q2 STAR and 2021 Q3 / Q4 STAR (2021 GB updated as applicable) Study Periods: 2022 (y1)-2026-2027 (y5)
		Behind-the-meter impacts at peak demand are captured in the baseline load forecast.		Behind-the-meter impacts at peak demand are captured in the baseline load forecast
1 8	Existing Energy Limited Resources (ELRs)	N/A	Existing gens' elections were made by August 1 st of each year and are incorporated into the model as hourly shapes consistent with operational capabilities. Resource output is aligned with the NYISO's peak load window, when most loss-of-load events are expected to occur.	Same method
Tra	nsaction – Imports/ Exports			
1	Capacity Purchases	Grandfathered Rights and other awarded long-term rights Modeled using MARS explicit contracts feature.	Same	Same method

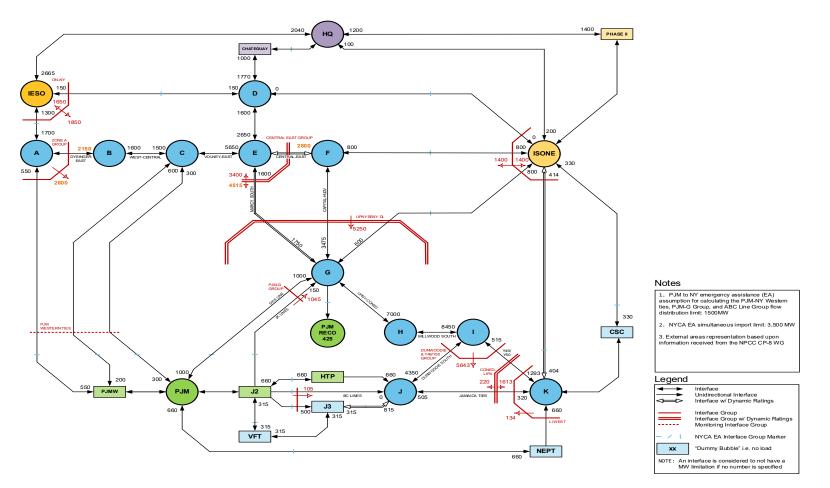
#	Parameter	2020 RNA (2020 GB) Study Period: 2024 (y4) -2030 (y10)	2021-2030 CRP and 2021 Q2 STAR (2020 GB updated as applicable) Study Period: 2024-2030 and 2021(y1) -2025 (y5), respectively	2022 Q1, Q2 STAR and 2021 Q3 / Q4 STAR (2021 GB updated as applicable) Study Periods: 2022 (y1)-2026-2027 (y5)
2	Capacity Sales	These are long-term contracts filed with FERC. Modeled using MARS explicit contracts feature. Contracts sold from ROS (Zones: A- F). ROS ties to external pool are derated by sales MW amount	Same	Same method
3	FCM Sales	Model sales for known years Modeled using MARS explicit contracts feature. Contracts sold from ROS (Zones: A- F). ROS ties to external pool are derated by sales MW amount	Same	Same method
4	UDRs	Updated with most recent elections/awards information (VFT, HTP, Neptune, CSC)	Same	Same method

#	Parameter	2020 RNA (2020 GB) Study Period: 2024 (y4) -2030 (y10)	2021-2030 CRP and 2021 Q2 STAR (2020 GB updated as applicable) Study Period: 2024-2030 and 2021(y1) -2025 (y5), respectively	2022 Q1, Q2 STAR and 2021 Q3 / Q4 STAR (2021 GB updated as applicable) Study Periods: 2022 (y1)-2026-2027 (y5)
5	External Deliverability Rights (EDRs)	Cedars Uprate 80 MW. Increased the HQ to D by 80 MW. Note: The Cedar bubble has been removed and its corresponding MW was reflected in HQ to D limit. References: 1. <u>March 16, 2020</u> ESPWG/TPAS 2. <u>April 6, 2020</u> TPAS/ESPWG	Same	Same
6	Wheel-Through Contract	300 MW HQ through NYISO to ISO- NE. Modeled as firm contract. Reduced the transfer limit from HQ to NYISO by 300 MW and increased the transfer limit from NYISO to ISO-NE by 300 MW.	Same	Same
MA	RS Topology: a simplified bubbl Interface Limits	le-and-pipe representation of the transm Developed by review of previous	nission system Same	Same method
		studies and specific analysis during the RNA study process		
2	New Transmission	Based on TO- provided firm plans (via Gold Book 2020 process) and proposed merchant transmission; inclusion rules applied	Same	Same method

#	Parameter AC Cable Forced Outage	2020 RNA (2020 GB) Study Period: 2024 (y4) -2030 (y10) All existing cable transition rates	2021-2030 CRP and 2021 Q2 STAR (2020 GB updated as applicable) Study Period: 2024-2030 and 2021(y1) -2025 (y5), respectively Same	2022 Q1, Q2 STAR and 2021 Q3 / Q4 STAR (2021 GB updated as applicable) Study Periods: 2022 (y1)-2026-2027 (y5) Same method
	Rates	updated with data received from ConEd and PSEG-LIPA to reflect most recent five-year history		
4	UDR unavailability	Five-year history of forced outages	Same	Same method
5	Other		 Topology changes implemented due to the Post- RNA (CRP) Base Case updates [link]: 1. ConEdison's LTP updates January 23, 2021 ESPWG [link] 2. Status change of seven ConEdison Series Reactors proposed as backstop solution to the 2020 Q3 STAR needs solicitation: [link] 3. 2021 Q2 STAR key assumptions: [link] 	MARS topologies below reflect updated Western NY interfaces to account for the large loads impacts; and updates on Upny-ConEd limit to align with the 2021 Operations Studies.

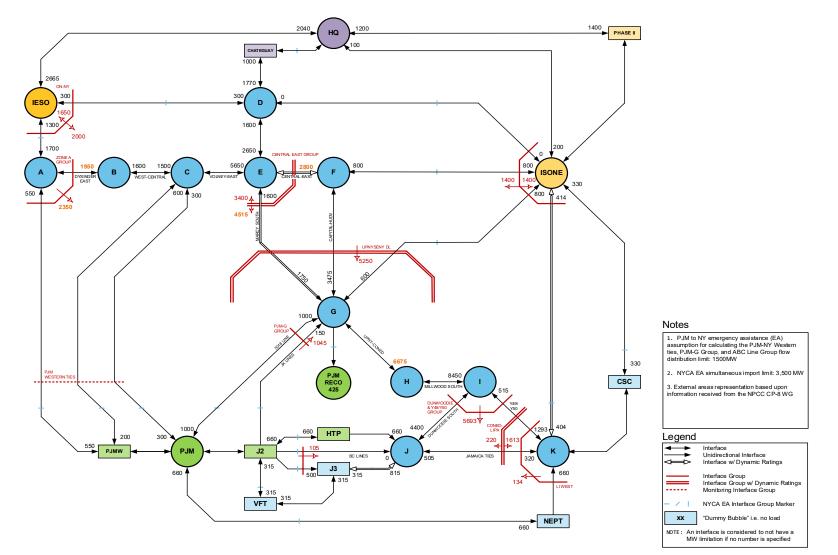
#	Parameter ergency Operating Procedures	2020 RNA (2020 GB) Study Period: 2024 (y4) -2030 (y10)	2021-2030 CRP and 2021 Q2 STAR (2020 GB updated as applicable) Study Period: 2024-2030 and 2021(y1) -2025 (y5), respectively	2022 Q1, Q2 STAR and 2021 Q3 / Q4 STAR (2021 GB updated as applicable) Study Periods: 2022 (y1)-2026-2027 (y5)
1	Special Case Resources (SCR)	SCRs sold for the program discounted to historic availability ("effective capacity"). Monthly variation based on historical experience. Summer values calculated from the latest available July registrations, held constant for all years of study. 15 calls/year Note: also, combined the two SCR steps (generation and load zonal MW)	Same method Based on the July 2020 SCR enrollment	Same method Based on the July 2021 SCR enrollment
2	EDRP Resources	Not modeled: the values are less than 2 MW.	Same	Same
3	Other EOPs e.g., Operating reserves, manual voltage reduction, voltage curtailments, public appeals, external assistance	Based on TO information, measured data, and NYISO forecasts	Same. Used 2020 updated elections, as applicable	Same method Used 2021 updated elections, as applicable

# Exte		2020 RNA (2020 GB) Study Period: 2024 (y4) -2030 (y10) of an external Control Area is modeled as coincid	2021-2030 CRP and 2021 Q2 STAR (2020 GB updated as applicable) Study Period: 2024-2030 and 2021(y1) -2025 (y5), respectively	2022 Q1, Q2 STAR and 2021 Q3 / Q4 STAR (2021 GB updated as applicable) Study Periods: 2022 (y1)-2026-2027 (y5)					
• • •	 Load and capacity fixed through the study years. The top three summer peak load days of an external Control Area is modeled as coincident with the NYCA top three peak load days. EOPs are not represented for the external Control Area capacity models. External Areas adjusted to be between 0.1 and 0.15 days/year LOLE 								
1	РЈМ	Simplified model: The 5 PJM MARS areas (bubbles) were consolidated into one	Same	Same method					
2	ISONE	Simplified model: The 8 ISO-NE MARS areas (bubbles) were consolidated into one	Same	Same method					
3	HQ	As per RNA Procedure External model (load, capacity, topology) provided by PJM/NPCC CP- 8 WG. LOLE of pool adjusted to be between 0.10 and 0.15 days per year by adjusting capacity pro-rata in all areas.	Same	Same method					

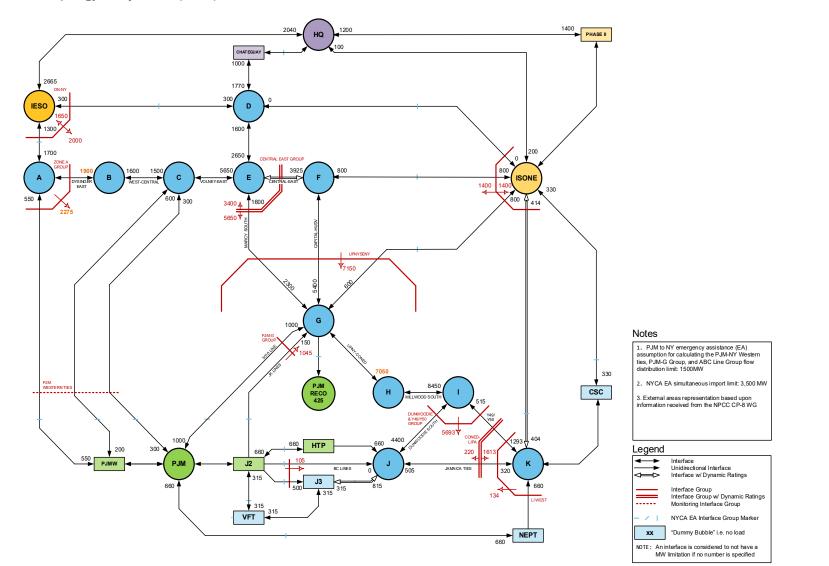


#	Parameter	2020 RNA (2020 GB)	2021-2030 CRP and 2021 Q2 STAR (2020 GB updated as applicable)	2022 Q1, Q2 STAR and 2021 Q3 / Q4 STAR (2021 GB updated as applicable)
		Study Period: 2024 (y4) -2030 (y10)	Study Period: 2024-2030 and 2021(y1) -2025 (y5), respectively	Study Periods: 2022 (y1)-2026-2027 (y5)
4	IESO	As per RNA Procedure External model (load, capacity, topology) provided by PJM/NPCC CP- 8 WG. LOLE of pool adjusted to be between 0.10 and 0.15 days per year by adjusting capacity pro-rata in all areas.	Same	Same method
5	Reserve Sharing	All NPCC Control Areas indicate that they will share reserves equally among all members before sharing with PJM.	Same	Same method
6	NYCA Emergency Assistance Limit	Implemented a statewide limit of 3,500 MW	Same	Same method
Mis	cellaneous			
1	MARS Model Version	3.29.1499	3.30.1531	4.3.1796

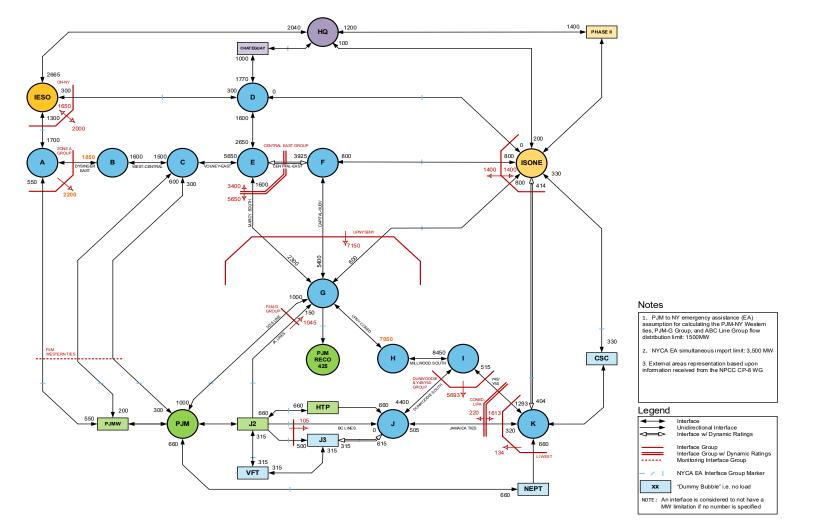
Resource Adequacy Topology from the 2021 Reliability Planning Models²¹


MARS Topology Study Year 1 (2022)

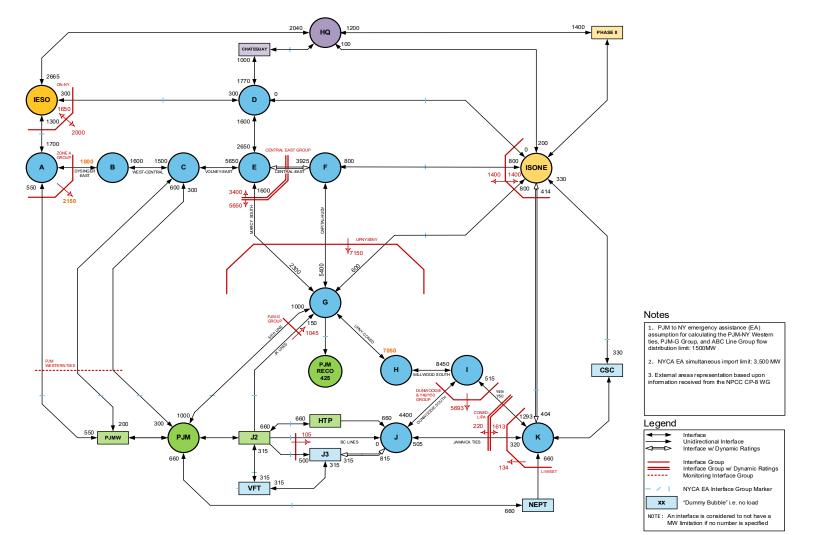
²¹ This is the MARS topology used for post 2020-2021 Reliability Planning Process studies and is not fully re-evaluated for each quarterly STAR.



MARS Topology Study Year 2 (2023)



MARS Topology Study Year 3 (2024)




MARS Topology Study Years 4 (2025)

MARS Topology Study Years 5 (2026)

Appendix E: Transmission Security Margins (Tipping Points)

The purpose of this assessment is to identify plausible changes in conditions or assumptions that might adversely impact the reliability of the Bulk Power Transmission Facilities ("BPTF") or "tip" the system into violation of a transmission security criterion. This assessment is performed using a deterministic approach through a spreadsheet-based methods based on input from the 2021 Load and Capacity Data Report (Gold Book) and 2022 Quarter 2 STAR base case updates. For this assessment, "tipping points" are evaluated for the New York Control Area as well as Lower Hudson Valley, New York City, and Long Island localities. For this evaluation the system tips when the transmission security margin is less than zero or when a condition could change that is larger than the security margin.


At the May 5, 2022²² and May 23, 2022²³ joint meetings of the Transmission Planning Advisory Subcommittee and the Electric System Planning Working Group (TPAS/ESPWG), the NYISO discussed with stakeholders several enhancements to the reliability planning practices. The proposed changes to reliability planning practices include; (1) modeling intermittent resources according to their expected availability coincident with the represented system condition, (2) accounting for the availability of thermal generation based on NERC class average five-year outage rate data in transmission security assessments, (3) the ability to identify reliability needs through the spreadsheet-based method of calculating transmission security margins (aka "tipping points") within the Lower Hudson Valley (Zones G-J), New York City (Zone J) , and Long Island (Zone K) localities, as well as other enhancements to reliability planning practices. At its June 23, 2022 meeting, the Operating Committee approved revisions to the Reliability Planning Process Manual to reflect these modeling enhancements. The reliability planning changes will be implemented in the 2022 Reliability Needs Assessment and 2022 Quarter 3 STAR.

New York Control Area (NYCA) Tipping Points

The tipping points for the NYCA are evaluated under summer peak conditions. A tipping point occurs when the transmission security margin is a negative value. The transmission security margin is the ability to meet load plus losses and system reserve (*i.e.*, total capacity requirement) against the NYCA generation, interchanges, and temperature-based generation de-rates (total resources). The NYCA generation (from line-item A) is comprised of the existing generation plus additions of future generation resources that meet

²² https://www.nyiso.com/documents/20142/30451285/08_Reliability_Practices_TPAS-ESPWG_2022-05-05.pdf/

²³https://www.nyiso.com/documents/20142/30860639/04%20Response%20to%20SHQuestions%20and%20Feedback%20on%202022%20Quarter%202%20STAR.pdf/

the reliability planning process base case inclusion rules as well as the removals of deactivating generation and peaker units. Consistent with current transmission planning practices for transmission security, (1) wind generation is assumed at a 0 MW output, (2) run-of-river hydro is reduced consistent with its average capacity factor, and (3) solar is dispatched based on the ratio of its nameplate capacity and solar PV peak reductions stated in the 2021 Gold Book. Additionally, the NYCA generation includes the Oswego export limit for all lines in-service. Figure 18 provides a summary of the NYCA transmission security margin. Under current applicable reliability rules and procedures, a violation would be identified when the transmission security margin is negative for the base case assumptions (e.g., baseline load forecast, no precontingency unscheduled forced outages, etc.)

As shown in **Figure 18**, under baseline expected weather expected load conditions the statewide system margin (line-item H) ranges between 3,116 MW in 2022 to 1,779 MW in 2031. The annual fluctuations are driven by the decreases in NYCA generation (line-item A) and in the load forecast (line-item E). An additional evaluation shown in **Figure 18** is the impact of the generation unavailability based on the NERC class-average EFORd of thermal generation on the transmission security margin (line item J). The statewide system margin with generation unavailability (line-item J) shows that there is sufficient margin for all study years, though very slim. However, there is insufficient margin as early as 2022 when considering operating reserves (line item L). It is possible for other combinations of events, such as a heatwave or a combination of reduction in total resources and load, to tip the system over its reliability margin. **Figure 19** shows the statewide system margin for heatwave²⁴ conditions under the assumption that the system is in an emergency condition. Although system transmission security is not currently designed under these conditions, **Figure 19** shows that sufficient margin exists for all study years (line item I). However, the system tips with generation unavailability as early as 2022 (line item K). These deficiencies are exacerbated with consideration of operating reserve (line item M).

Under transmission security for the 1-in-100-year extreme heatwave²⁵, **Figure 20** shows that there is insufficient statewide system margin as early as 2022 (line-item I). This deficiency is exacerbated with the inclusion of generation unavailability (line-item K). These issues are exacerbated with consideration of operating reserve (line item M).

Figure 21 provides a summary of the statewide system margins under expected weather, heatwave, and extreme heatwave conditions.

²⁴ The load forecast utilized for the heatwave condition is the 90th percentile (or 90/10) expected load forecast

²⁵ The load forecast utilized for the extreme heatwave condition is the 99th percentile (or 99/1) expected load forecast.

Figure 18: Statewide System Margin (Summer Peak - Baseline Expected Weather, Normal Transfer Criteria)

				System Pea	k - Baseline	Expected	Weather, N	ormal Trans	fer Criteria		
Line	Item	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
Α	NYCA Generation (1)	35,045	34,139	34,130	33,530	33,525	33,525	33,520	33,515	33,510	33,505
В	External Area Interchanges (2)	1,559	1,844	1,844	1,844	1,844	1,844	1,844	1,844	1,844	1,844
С	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0	0
D	Total Resources (A+B+C) (3)	36,604	35,983	35,974	35,374	35,369	35,369	35,364	35,359	35,354	35,349
E	Load Forecast	(32,178)	(32,340)	(32,156)	(32,035)	(31,941)	(31,943)	(31,979)	(32,043)	(32,148)	(32,260)
F	Largest Loss-of-Source Contingency	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)
G	Total Capability Requirement (E+F)	(33,488)	(33,650)	(33,466)	(33,345)	(33,251)	(33,253)	(33,289)	(33,353)	(33,458)	(33,570)
Н	Statewide System Margin (D+G)	3,116	2,333	2,508	2,029	2,118	2,116	2,075	2,006	1,896	1,779
1	Unavailable Generation (3)	(1,891)	(1,799)	(1,799)	(1,737)	(1,737)	(1,737)	(1,737)	(1,737)	(1,737)	(1,737)
J	Statewide System Margin with Generation Unavailability (H+I)	1,225	534	709	292	381	379	338	269	159	42
К	Operating Reserve	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)
L	Statewide System Margin with Full Operating Reserve (J+K)	(85)	(776)	(601)	(1,018)	(929)	(931)	(972)	(1,041)	(1,151)	(1,268)

Notes:

1. Reflects the 2021 Gold Book existing summer capacity plus projected additions, deactivations, and de-rates. For this evaluation wind generation is assumed to have 0 MW output, solar generation is based on the ratio of solar PV nameplate capacity (2021 Gold Book Table I-9a) and solar PV peak reductions (2021 Gold Book Table I-9c). De-rates for run-of-river hydro are included as well as the Oswego Export

2. Interchanges are based on ERAG MMWG values.

3. Includes de-rates for thermal resources based on NERC class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx)

Figure 19: Statewide System Margin (Summer Peak – Heatwave, Emergency Transfer Criteria)

				Sum	mer Peak - H	leatwave, l	Emergency ⁻	Transfer Cri	teria		
Line	Item	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
Α	NYCA Generation (1)	35,045	34,139	34,130	33,530	33,525	33,525	33,520	33,515	33,510	33,505
В	External Area Interchanges (2)	1,559	1,844	1,844	1,844	1,844	1,844	1,844	1,844	1,844	1,844
В	SCRs (4), (5)	822	822	822	822	822	822	822	822	822	822
В	Temperature Based Generation Derates	(206)	(193)	(193)	(184)	(184)	(184)	(184)	(184)	(184)	(184)
В	Total Resources (A+B+C+D)	37,220	36,612	36,602	36,012	36,007	36,007	36,002	35,997	35,992	35,987
F	Load Forecast	(34,158)	(34,301)	(34,097)	(33,964)	(33,861)	(33,856)	(33,890)	(33,957)	(34,068)	(34,185)
G	Largest Loss-of-Source Contingency	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)
н	Total Capability Requirement (F+G)	(35,468)	(35,611)	(35,407)	(35,274)	(35,171)	(35,166)	(35,200)	(35,267)	(35,378)	(35,495)
- 1	Statewide System Margin (E+H)	1,752	1,001	1,195	738	836	841	802	730	614	492
J	Unavailable Generation (3)	(1,891)	(1,799)	(1,799)	(1,737)	(1,737)	(1,737)	(1,737)	(1,737)	(1,737)	(1,737)
К	Transmission Security Margin with Generation Unavailability (I+J)	(139)	(798)	(604)	(999)	(901)	(896)	(935)	(1,007)	(1,123)	(1,245)
L	Operating Reserve	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)
М	Statewide System Margin with Full Operating Reserve (L+M)	(1,449)	(2,108)	(1,914)	(2,309)	(2,211)	(2,206)	(2,245)	(2,317)	(2,433)	(2,555)

Notes:

1. Reflects the 2021 Gold Book existing summer capacity plus projected additions, deactivations, and de-rates. For this evaluation wind generation is assumed to have 0 MW output, solar generation is based

on the ratio of solar PV nameplate capacity (2021 Gold Book Table I-9a) and solar PV peak reductions (2021 Gold Book Table I-9c). De-rates for run-of-river hydro are included as well as the Oswego Export 2. Interchanges are based on ERAG MMWG values.

3. Includes de-rates for thermal resources based on NERC class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx)

4. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.

5. Includes a de-rate of 373 MW for SCRs.

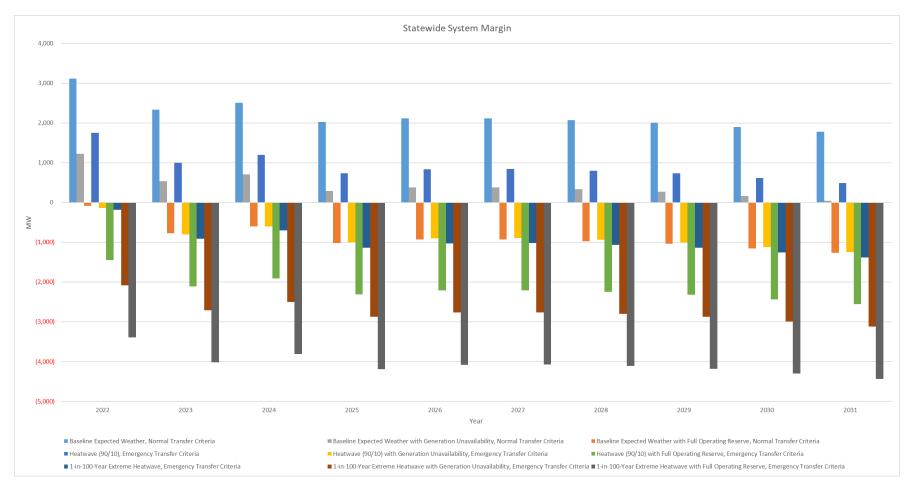
Figure 20: Statewide System Margin (Summer Peak, 1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria)

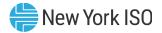
			Sumr	mer Peak - 1	L-in-100-Yea	r Extreme	Heatwave, I	Emergency	Transfer Cri	teria	
Line	Item	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
А	NYCA Generation (1)	35,045	34,139	34,130	33,530	33,525	33,525	33,520	33,515	33,510	33,505
В	External Area Interchanges (2)	1,559	1,844	1,844	1,844	1,844	1,844	1,844	1,844	1,844	1,844
С	SCRs (4), (5)	822	822	822	822	822	822	822	822	822	822
D	Temperature Based Generation Derates	(434)	(406)	(406)	(387)	(387)	(387)	(387)	(387)	(387)	(387)
E	Total Resources (A+B+C+D)	36,992	36,399	36,389	35,809	35,804	35,804	35,799	35,794	35,789	35,784
F	Load Forecast	(35,870)	(35,999)	(35,779)	(35,638)	(35,524)	(35,517)	(35,551)	(35,619)	(35,734)	(35,859)
G	Largest Loss-of-Source Contingency	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)
Н	Total Capability Requirement (F+G)	(37,180)	(37,309)	(37,089)	(36,948)	(36,834)	(36,827)	(36,861)	(36,929)	(37,044)	(37,169)
1	Statewide System Margin (E+H)	(188)	(910)	(700)	(1,139)	(1,030)	(1,023)	(1,062)	(1,135)	(1,255)	(1,385)
J	Unavailable Generation (3)	(1,891)	(1,799)	(1,799)	(1,737)	(1,737)	(1,737)	(1,737)	(1,737)	(1,737)	(1,737)
К	Transmission Security Margin with Generation Unavailability (I+J)	(2,079)	(2,709)	(2,499)	(2,876)	(2,767)	(2,760)	(2,799)	(2,872)	(2,992)	(3,122)
L	Operating Reserve	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)
М	Statewide System Margin with Full Operating Reserve (L+M)	(3,389)	(4,019)	(3,809)	(4,186)	(4,077)	(4,070)	(4,109)	(4,182)	(4,302)	(4,432)

Notes:

on the ratio of solar PV nameplate capacity (2021 Gold Book Table I-9a) and solar PV peak reductions (2021 Gold Book Table I-9c). De-rates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service.

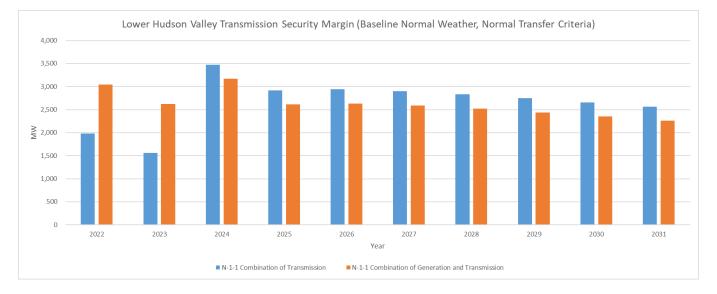
2. Interchanges are based on ERAG MMWG values.

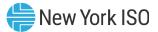

3. Includes de-rates for thermal resources based on NERC class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx)


4. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.

5. Includes a de-rate of 373 MW for SCRs.

Figure 21: Summary of Statewide System Margin




Lower Hudson Valley (Zones G-J) Tipping Points

The Lower Hudson Valley, or southeastern New York (SENY) region, is comprised of Zones G-J and includes the electrical connections to the RECO load in PJM. To determine the tipping point for this area, the most limiting combination of two non-simultaneous contingency events (N-1-1) to the transmission security margin was determined. Design criteria N-1-1 combinations include various combinations of losses of generation and transmission. As the system changes the limiting contingency combination may also change. **Figure 22** shows how the transmissions security margin changes through time in consideration of the most limiting contingency combination for the year being evaluated. In years 2022 and 2023 (prior to the completion of the Segment B public policy project) the most limiting contingency combination to the transmission security margin under peak load conditions is the loss of Leeds-Pleasant Valley (92) 345 kV followed by the loss of Dolson — Rock Tavern (DART44) 345 kV and Coopers Corners – Rock Tavern (CCRT34). For the remainder of the years the contingency combination changes to the loss of Ravenswood 3 followed by the loss of Pleasant Valley-Wood St. 345 kV (F30/F31).

Figure 22: Lower Hudson Valley Transmission Security Margin (Summer Baseline Peak Forecast – Expected Weather)

Figure 23 shows the calculation of the lower Hudson Valley transmission security margin for baseline expected weather expected load conditions. The transmission security margin ranges from 1,981 MW (2022) to 2,260 MW (2031). Considering the baseline peak load transmission security margin, multiple outages the lower Hudson Valley would be required to tip the system over its security margin.

An additional evaluation shown in **Figure 23** is the impact of generation unavailability based on the NERC class-average EFORd of NYCA thermal generation on the transmission security margin. The transmission security margin with generation unavailability (line-item R) shows that generation unavailability alone is not likely to result in "tipping" beyond transmission security limits.

Figure 24 and **Figure 25** show the transmission security margin for heatwave and 1-in-100-year extreme heatwave conditions under the assumption that the system is in an emergency condition. An additional evaluation shown in each figure is the impact of generation unavailability of thermal generation on the transmission security margin. Under heatwave conditions with generation unavailability the adjusted transmission security margin (line-item S) shows that the system would not result in "tipping" beyond transmission security limits, with a margin of 1,406 MW in 2022 growing to 1,572 MW in 2031. Under 1-in-100-year extreme heatwave conditions the historical forced outage rate does "tip" the system in 2023. However, the remaining years of the study period is sufficient primarily due to the additional transmission capability of the Segment B public policy project.

Figure 26 provides a summary of the transmission security margins under expected weather, heatwave, and extreme heatwave conditions.

Figure 23: Lower Hudson Valley Transmission Security Margin (Summer Peak – Baseline Expected Weather, Normal Transfer Criteria)

	System Peak - Baseline	Expected W	eather, Nor	mal Transfer	· Criteria						
Line	Item	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
А	G-J Load Forecast	(15,311)	(15,231)	(15,163)	(15,120)	(15,100)	(15,142)	(15,210)	(15,294)	(15,381)	(15,474)
В	RECO Load	(397)	(397)	(397)	(397)	(397)	(397)	(397)	(397)	(397)	(397)
С	Total Load (A+B)	(15,708)	(15,628)	(15,560)	(15,517)	(15,497)	(15,539)	(15,607)	(15,691)	(15,778)	(15,871)
D	UPNY-SENY Limit (3)	3,200	3,200	5,725	5,725	5,725	5,725	5,725	5,725	5,725	5,725
E	ABC PARs to J	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)
F	K - SENY	(225)	95	95	95	95	95	95	95	95	95
G	Total SENY AC Import (D+E+F)	2,964	3,284	5,809	5,809	5,809	5,809	5,809	5,809	5,809	5,809
Н	Loss of Source Contingency	0	0	(980)	(980)	(980)	(980)	(980)	(980)	(980)	(980)
I	Resource Need (C+G+H)	(12,744)	(12,344)	(10,731)	(10,688)	(10,668)	(10,710)	(10,778)	(10,862)	(10,949)	(11,042)
J	Resources needed after N-1-1 (C+G)	(12,744)	(12,344)	(9,751)	(9,708)	(9,688)	(9,730)	(9,798)	(9,882)	(9,969)	(10,062)
К	G-J Generation (1)	14,410	13,589	13,588	12,988	12,988	12,988	12,988	12,988	12,987	12,987
L	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0	0
М	Net ICAP External Imports	315	315	315	315	315	315	315	315	315	315
Ν	Total Resources Available (K+L+M)	14,725	13,904	13,903	13,303	13,303	13,303	13,303	13,303	13,302	13,302
0	Resources available after N-1-1 (H+N)	14,725	13,904	12,923	12,323	12,323	12,323	12,323	12,323	12,322	12,322
Р	Transmission Security Margin (I+N)	1,981	1,560	3,172	2,615	2,635	2,593	2,525	2,441	2,353	2,260
Q	Unavailable Generation (2)	(1,068)	(990)	(990)	(928)	(928)	(928)	(928)	(928)	(928)	(928)
R	Transmission Security Margin with Generation Unavailability (P+Q)	913	570	2,182	1,687	1,707	1,665	1,597	1,513	1,425	1,332
Notes.	• • • • • • • • • • • • • • • • • • • •										

Notes:

1. Reflects the 2021 Gold Book existing summer capacity plus projected additions, deactivations, and de-rates. For this evaluation wind generation is assumed to have 0 MW output, solar generation is based on the ratio of solar PV nameplate capacity (2021 Gold Book Table I-9a) and solar PV peak reductions (2021 Gold Book Table I-9c). De-rates for run-of-river hydro is included as well as the Oswego Export limit for all lines in-service.

2. Includes de-rates for thermal resources based on NERC class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx)

3. Limits in 2022 and 2023 are based on limits from the summer peak 2023 representations. Limits for 2024 through 2031 are based on the summer peak 2025 representations.

Figure 24: Lower Hudson Valley Transmission Security Margin (Summer Peak - Heatwave, Emergency Transfer Criteria)

Summer Peak - Heatwave, Emergency Transfer Criteria											
Line	Item	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
А	G-J Load Forecast	(16,046)	(15,961)	(15,888)	(15,843)	(15,822)	(15,865)	(15,935)	(16,023)	(16,115)	(16,212)
В	RECO Load	(397)	(397)	(397)	(397)	(397)	(397)	(397)	(397)	(397)	(397)
С	Total Load (A+B)	(16,443)	(16,358)	(16,285)	(16,240)	(16,219)	(16,262)	(16,332)	(16,420)	(16,512)	(16,609)
D	UPNY-SENY Limit (5)	3,925	3,925	5,450	5,450	5,450	5,450	5,450	5,450	5,450	5,450
E	ABC PARs to J	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)
F	K - SENY	85	155	155	155	155	155	155	155	155	155
G	Total SENY AC Import (D+E+F)	3,999	4,069	5,594	5,594	5,594	5,594	5,594	5,594	5,594	5,594
Н	Loss of Source Contingency	0	0	0	0	0	0	0	0	0	0
1	Resource Need (C+G+H)	(12,444)	(12,289)	(10,691)	(10,646)	(10,625)	(10,668)	(10,738)	(10,826)	(10,918)	(11,015)
J	Resources needed after N-1-1 (C+G)	(12,444)	(12,289)	(10,691)	(10,646)	(10,625)	(10,668)	(10,738)	(10,826)	(10,918)	(11,015)
											1
К	G-J Generation (1)	14,410	13,589	13,588	12,988	12,988	12,988	12,988	12,988	12,987	12,987
L	Temperature Based Generation Derates	(95)	(84)	(84)	(75)	(75)	(75)	(75)	(75)	(75)	(75)
М	Net ICAP External Imports	315	315	315	315	315	315	315	315	315	315
Ν	SCRs (3), (4)	288	288	288	288	288	288	288	288	288	288
0	Total Resources Available (K+L+M+N)	14,918	14,108	14,107	13,517	13,516	13,516	13,516	13,516	13,515	13,515
Р	Resources available after N-1-1 (H+O)	14,918	14,108	14,107	12,225	12,225	12,225	12,224	12,224	12,224	12,224
Q	Transmission Security Margin (I+O)	2,474	1,819	3,416	2,871	2,891	2,848	2,778	2,690	2,597	2,500
R	Unavailable Generation (2)	(1,068)	(990)	(990)	(928)	(928)	(928)	(928)	(928)	(928)	(928)
S	Transmission Security Margin with Generation Unavailability (Q+R)	1,406	829	2,426	1,943	1,963	1,920	1,850	1,762	1,669	1,572

Notes:

1. Reflects the 2021 Gold Book existing summer capacity plus projected additions, deactivations, and de-rates. For this evaluation wind generation is assumed to have 0 MW output, solar generation is based on the ratio of solar PV nameplate capacity (2021 Gold Book Table I-9a) and solar PV peak reductions (2021 Gold Book Table I-9c). De-rates for run-of-river hydro is included as well as the Oswego Export limit for all lines in-service.

2. Includes de-rates for thermal resources based on NERC class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx)

3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.

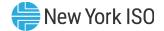
4. Includes a de-rate of 242 MW for SCRs.

5. Limits in 2022 and 2023 are based on limits from the summer peak 2023 representations. Limits for 2024 through 2031 are based on the summer peak 2025 representations.

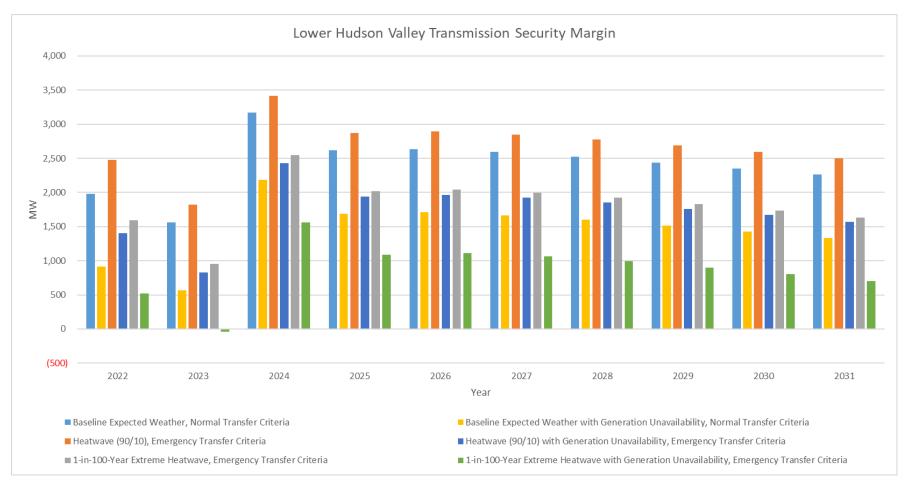
Figure 25: Lower Hudson Valley Transmission Security Margin (Summer Peak, 1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria)

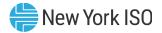
Summer Peak - 1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria											
Line	Item	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
Α	G-J Load Forecast	(16,778)	(16,690)	(16,614)	(16,568)	(16,545)	(16,590)	(16,663)	(16,754)	(16,849)	(16,951)
В	RECO Load	(443)	(443)	(443)	(443)	(443)	(443)	(443)	(443)	(443)	(443)
С	Total Load (A+B)	(17,221)	(17,133)	(17,057)	(17,011)	(16,988)	(17,033)	(17,106)	(17,197)	(17,292)	(17,394)
D	UPNY-SENY Limit (5)	3,925	3,925	5,450	5,450	5,450	5,450	5,450	5,450	5,450	5,450
E	ABC PARs to J	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)
F	K - SENY	85	155	155	155	155	155	155	155	155	155
G	Total SENY AC Import (D+E+F)	3,999	4,069	5,594	5,594	5,594	5,594	5,594	5,594	5,594	5,594
Н	Loss of Source Contingency	0	0	0	0	0	0	0	0	0	0
1	Resource Need (C+G+H)	(13,222)	(13,064)	(11,463)	(11,417)	(11,394)	(11,439)	(11,512)	(11,603)	(11,698)	(11,800)
J	Resources needed after N-1-1 (C+G)	(13,222)	(13,064)	(11,463)	(11,417)	(11,394)	(11,439)	(11,512)	(11,603)	(11,698)	(11,800)
К	G-J Generation (1)	14,410	13,589	13,588	12,988	12,988	12,988	12,988	12,988	12,987	12,987
L	Temperature Based Generation Derates	(200)	(178)	(178)	(158)	(158)	(158)	(158)	(158)	(158)	(158)
М	Net ICAP External Imports	315	315	315	315	315	315	315	315	315	315
N	SCRs (3), (4)	288	288	288	288	288	288	288	288	288	288
0	Total Resources Available (K+L+M+N)	14,813	14,014	14,014	13,433	13,433	13,433	13,433	13,432	13,432	13,432
Р	Resources available after N-1-1 (H+O)	14,813	14,014	14,014	13,433	13,433	13,433	13,433	13,432	13,432	13,432
Q	Transmission Security Margin (I+O)	1,592	951	2,551	2,016	2,039	1,994	1,921	1,830	1,734	1,632
R	Unavailable Generation (2)	(1,068)	(990)	(990)	(928)	(928)	(928)	(928)	(928)	(928)	(928)
S	Transmission Security Margin with Generation Unavailability (Q+R)	524	(39)	1,561	1,088	1,111	1,066	993	902	806	704

Notes:


1. Reflects the 2021 Gold Book existing summer capacity plus projected additions, deactivations, and de-rates. For this evaluation wind generation is assumed to have 0 MW output, solar generation is based on the ratio of solar PV nameplate capacity (2021 Gold Book Table I-9a) and solar PV peak reductions (2021 Gold Book Table I-9c). De-rates for run-of-river hydro is included as well as the Oswego Export limit for all lines in-service.

2. Includes de-rates for thermal resources based on NERC class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx)


3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.


4. Includes a de-rate of 242 MW for SCRs.

5. Limits in 2022 and 2023 are based on limits from the summer peak 2023 representations. Limits for 2024 through 2031 are based on the summer peak 2025 representations.

New York City (Zone J) Tipping Points

Within the Con Edison service territory, the 345 kV transmission system along with specific portions of the 138 kV transmission system are designed for the occurrence of two non-simultaneous contingencies and a return to normal.²⁶ The analysis for this is noted as N-1-1-0, and the CRP notes a transmission security margin of 50 MW in Zone J.²⁷ **Figure 27** provides a summary of the New York City transmission security margin.

The tipping points for Zone J are evaluated under the most limiting N-1-1-0 contingency combination to the transmission security margin, which is loss of Ravenswood 3 followed by the loss of Mott Haven -Rainey 345 kV (Q12). Figure 28 shows the transmission security margin under expected weather load conditions (line item M) with this contingency combination, which ranges from 1,690 MW in 2022 to 42 MW in 2031). The most limiting contingency combination to transmission security margin in Zone J is the loss of Ravenswood 3 and Mott Haven – Rainey (Q12) 345 kV. The power flowing into Zone J from other NYCA zones is shown in line-item B. Other contingency combinations result in changing the power flowing into Zone J from other NYCA zones. For example, in considering the possible combinations of N-1-1-0 events these can include a mix of generation and transmission, two transmission events, or two generation events. Figure 27 shows the transmission security margin for the contingency combinations of: Ravenswood 3 and Mott Haven – Rainey (Q12) 345 kV, Ravenswood 3 and Bayonne Energy Center, and Sprain Brook-W. 49th St. 345 kV (M51 and M52). For Ravenswood 3 and Bayonne Energy Center the power flowing into J from other NYCA zones is 4,717 MW. For Sprain Brook-W. 49th St. 345 kV (M51 and M52) the power flowing into J from other NYCA zones is 3,191 MW. As seen in **Figure 27**, the selecting an interface flow with the lowest value (3,191 MW for the loss of M51/M52) does not result in the smallest transmission security margin. In this specific example, all year's show the loss of M51/M52 with the largest transmission security margin.

Considering the expected weather transmission security margin for summer peak (42 MW observed in 2031), many different losses of generation or load increases will exceed the transmission security margin.

²⁶ Con Edison, <u>TP-7100-18 Transmission Planning Criteria</u>, dated August 2019.

²⁷ https://www.nyiso.com/documents/20142/19415353/07 2020-2021RPP_PostRNABaseCaseUpdates.pdf/

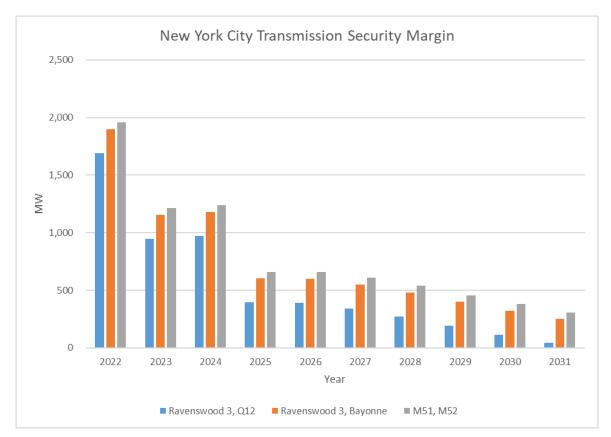


Figure 27: Impact of Contingency Combination on Zone J Transmission Security Margin

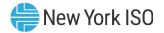
An additional evaluation shown in **Figure 28** is the impact of generation unavailability based on the NERC class-average EFORd of NYCA thermal generation on the transmission security margin. The adjusted transmission security margin (line-item 0) shows that generation unavailability consistent with the NERC class-average EFORd of thermal generation would "tip" beyond the transmission security limits in 2025 with a 190 MW deficiency which grows to a deficiency of 542 MW by 2031.

Figure 29 shows the transmission security margin for heatwave conditions under the assumption that the system is in an emergency condition. Insufficient transmission security margin is observed in 2028 (Line-item N). As shown in **Figure 29** is the impact of generation unavailability (line-item O) which shows that the system tips in 2025 (line-item P) and remains deficient through the remainder of study period.

Under transmission security for the 1-in-100-year extreme heatwave, **Figure 30** shows that there is insufficient transmission security margin (line-item N) starting in 2025. The transmission security margin with generation unavailability (line-item P) exacerbates the insufficiency of the transmission security margin and the system tips as early as 2023.

Figure 31 provides a summary of the transmission security margins under expected weather, heatwave, and extreme heatwave conditions.

Figure 28: New York City Transmission Security Margin (Summer Peak – Baseline Expected Weather, Normal Transfer Criteria)


	System Peak - Baselin	ne Expecte	d Weather,	, Normal Ti	ransfer Crit	eria					
Line	Item	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
Α	Zone J Load Forecast	(11,116)	(11,075)	(11,052)	(11,029)	(11,031)	(11,082)	(11,151)	(11,232)	(11,308)	(11,381)
В	I+K to J (3)	3,904	3,904	3,904	3,904	3,904	3,904	3,904	3,904	3,904	3,904
С	ABC PARs to J	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)
D	Total J AC Import (B+C)	3,893	3,893	3,893	3,893	3,893	3,893	3,893	3,893	3,893	3,893
E	Loss of Source Contingency	(980)	(980)	(980)	(980)	(980)	(980)	(980)	(980)	(980)	(980)
F	Resource Need (A+D+E)	(8,203)	(8,162)	(8,139)	(8,116)	(8,118)	(8,169)	(8,238)	(8,319)	(8,395)	(8,468)
G	Resources needed after N-1-1 (A+D)	(7,223)	(7,182)	(7,159)	(7,136)	(7,138)	(7,189)	(7,258)	(7,339)	(7,415)	(7,488)
Н	J Generation (1)	9,578	8,795	8,795	8,195	8,195	8,195	8,195	8,195	8,195	8,195
I	Temperature Based Generation Derates (2)	0	0	0	0	0	0	0	0	0	0
J	Net ICAP External Imports	315	315	315	315	315	315	315	315	315	315
К	Total Resources Available (H+I+J)	9,893	9,110	9,110	8,510	8,510	8,510	8,510	8,510	8,510	8,510
L	Resources available after N-1-1 (E+K)	8,913	8,130	8,130	7,530	7,530	7,530	7,530	7,530	7,530	7,530
М	Transmission Security Margin (F+K)	1,690	948	971	394	392	341	272	191	115	42
Ν	Unavailable Generation (2)	(720)	(645)	(645)	(584)	(584)	(584)	(584)	(584)	(584)	(584)
0	Transmission Security Margin with Generation Unavailability (M+N)	970	303	326	(190)	(192)	(243)	(312)	(393)	(469)	(542)

Notes:

1. Reflects the 2021 Gold Book existing summer capacity plus projected additions, deactivations, and de-rates. For this evaluation wind generation is assumed to have 0 MW output, solar generation is based on the ratio of solar PV nameplate capacity (2021 Gold Book Table I-9a) and solar PV peak reductions (2021 Gold Book Table I-9c). De-rates for run-of-river hydro is included as well as the Oswego Export limit for all lines in-service.

2. Includes de-rates for thermal resources based on NERC class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx)

3. The I+K to J flows are based on N-1-1-0 analysis in the post-RNA updates utilizing the models representing summer peak 2030.

	Summer Peak - Heatwave, Emergency Transfer Criteria													
Line	Item	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031			
А	Zone J Load Forecast	(11,577)	(11,534)	(11,510)	(11,486)	(11,488)	(11,541)	(11,613)	(11,697)	(11,777)	(11,853)			
		·												
В	I+K to J (5)	3,904	3,904	3,904	3,904	3,904	3,904	3,904	3,904	3,904	3,904			
С	ABC PARs to J	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)			
D	Total J AC Import (B+C)	3,893	3,893	3,893	3,893	3,893	3,893	3,893	3,893	3,893	3,893			
E	Loss of Source Contingency	(980)	(980)	(980)	(980)	(980)	(980)	(980)	(980)	(980)	(980)			
F	Resource Need (A+D+E)	(8,664)	(8,621)	(8,597)	(8,573)	(8,575)	(8,628)	(8,700)	(8,784)	(8,864)	(8,940)			
G	Resources needed after N-1-1 (A+D)	(7,684)	(7,641)	(7,617)	(7,593)	(7,595)	(7,648)	(7,720)	(7,804)	(7,884)	(7,960)			
Н	J Generation (1)	9,578	8,795	8,795	8,195	8,195	8,195	8,195	8,195	8,195	8,195			
I	Temperature Based Generation Derates	(71)	(61)	(61)	(51)	(51)	(51)	(51)	(51)	(51)	(51)			
J	Net ICAP External Imports	315	315	315	315	315	315	315	315	315	315			
К	SCRs (3), (4)	223	223	223	223	223	223	223	223	223	223			
L	Total Resources Available (H+I+J+K)	10,045	9,272	9,272	8,682	8,682	8,682	8,682	8,682	8,682	8,682			
М	Resources available after N-1-1 (E+L)	9,065	8,292	8,292	7,702	7,702	7,702	7,702	7,702	7,702	7,702			
Ν	Transmission Security Margin (F+L)	1,381	651	675	109	107	54	(18)	(102)	(182)	(258)			
0	Unavailable Generation (2)	(720)	(645)	(645)	(584)	(584)	(584)	(584)	(584)	(584)	(584)			
Р	Transmission Security Margin with Generation Unavailability (N+O)	661	6	30	(475)	(477)	(530)	(602)	(686)	(766)	(842)			

Figure 29: New York City Transmission Security Margin (Summer Peak – Heatwave, Emergency Transfer Criteria)

Notes:

1. Reflects the 2021 Gold Book existing summer capacity plus projected additions, deactivations, and de-rates. For this evaluation wind generation is assumed to have 0 MW output, solar generation is based on the ratio of solar PV nameplate capacity (2021 Gold Book Table I-9a) and solar PV peak reductions (2021 Gold Book Table I-9c). De-rates for run-of-river hydro is included as well as the Oswego Export limit for all lines in-service.

2. Includes de-rates for thermal resources based on NERC class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx)

3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.

4. Includes a de-rate of 205 MW for SCRs.

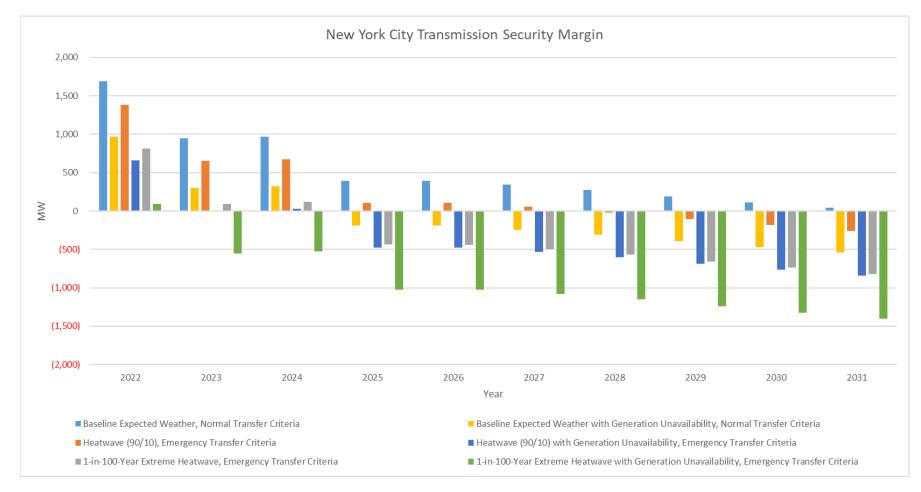
5. The I+K to J flows are based on N-1-1-0 analysis in the post-RNA updates utilizing the models representing summer peak 2030.

Figure 30: New York City Transmission Security Margin (Summer Peak, 1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria)

	Summer Peak - 1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria												
Line	Item	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031		
Α	Zone J Load Forecast	(12,068)	(12,023)	(11,998)	(11,974)	(11,976)	(12,031)	(12,106)	(12,194)	(12,276)	(12,356)		
В	I+K to J (5)	3,904	3,904	3,904	3,904	3,904	3,904	3,904	3,904	3,904	3,904		
С	ABC PARs to J	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)		
D	Total J AC Import (B+C)	3,893	3,893	3,893	3,893	3,893	3,893	3,893	3,893	3,893	3,893		
E	Loss of Source Contingency	(980)	(980)	(980)	(980)	(980)	(980)	(980)	(980)	(980)	(980)		
F	Resource Need (A+D+E)	(9,155)	(9,110)	(9,085)	(9,061)	(9,063)	(9,118)	(9,193)	(9,281)	(9,363)	(9,443)		
G	Resources needed after N-1-1 (A+D)	(8,175)	(8,130)	(8,105)	(8,081)	(8,083)	(8,138)	(8,213)	(8,301)	(8,383)	(8,463)		
Н	J Generation (1)	9,578	8,795	8,795	8,195	8,195	8,195	8,195	8,195	8,195	8,195		
I	Temperature Based Generation Derates	(150)	(129)	(129)	(110)	(110)	(110)	(110)	(110)	(110)	(110)		
J	Net ICAP External Imports	315	315	315	315	315	315	315	315	315	315		
К	SCRs (3)	223	223	223	223	223	223	223	223	223	223		
L	Total Resources Available (H+I+J+K)	9,966	9,204	9,204	8,623	8,623	8,623	8,623	8,623	8,623	8,623		
М	Resources available after N-1-1 (E+L)	8,986	8,224	8,224	7,643	7,643	7,643	7,643	7,643	7,643	7,643		
Ν	Transmission Security Margin (F+L)	811	94	119	(438)	(440)	(495)	(570)	(658)	(740)	(820)		
0	Unavailable Generation (2)	(720)	(645)	(645)	(584)	(584)	(584)	(584)	(584)	(584)	(584)		
Р	Transmission Security Margin with Generation Unavailability (N+O)	91	(551)	(526)	(1,022)	(1,024)	(1,079)	(1,154)	(1,242)	(1,324)	(1,404)		

Notes:

1. Reflects the 2021 Gold Book existing summer capacity plus projected additions, deactivations, and de-rates. For this evaluation wind generation is assumed to have 0 MW output, solar generation is based on the ratio of solar PV nameplate capacity (2021 Gold Book Table I-9a) and solar PV peak reductions (2021 Gold Book Table I-9c). De-rates for run-of-river hydro is included as well as the Oswego Export limit for all lines in-service.


2. Includes de-rates for thermal resources based on NERC class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx)

3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.

4. Includes a de-rate of 205 MW for SCRs.

5. The I+K to J flows are based on N-1-1-0 analysis in the post-RNA updates utilizing the models representing summer peak 2030.

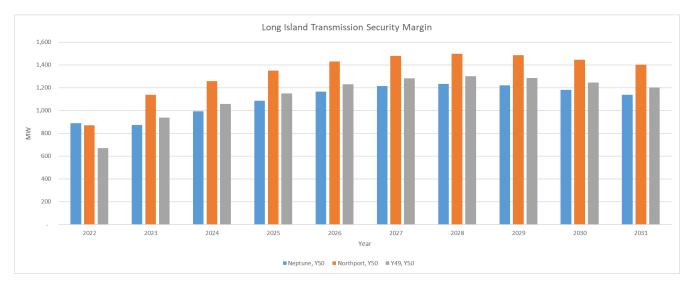


Figure 31: Summary of New York City Transmission Security Margin

Long Island (Zone K) Tipping Points

Within the PSEG Long Island service territory, the BPTF system (primarily comprised of 138 kV transmission) is designed for N-1-1. As shown in **Figure 32**, the most limiting N-1-1 combination for the transmission security margin under normal conditions is the outage of Neptune HVDC (660 MW) followed by securing for the loss of Dunwoodie — Shore Road 345 kV (Y50) for all evaluated years except for summer 2022. Due to the reduction of Neptune HVDC imports expected through August 2022, the summer 2022 transmission security margin is limited by the loss of Sprain Brook – East Garden City 345 kV (Y49) followed by the loss of Dunwoodie — Shore Road 345 kV (Y50).



Figure 32: Impact of Contingency Combination on Zone K Transmission Security Margin

As seen in **Figure 33** under expected weather, normal transfer criteria, the transmission security margin (line-item M) in Zone K ranges from 670 MW in 2022 growing to 1,137 MW in 2031 due to a forecasted decrease in peak demand through time. As such, multiple outages in Zone K would be required to tip the system over its security margin, beyond the outage of Neptune.

An additional evaluation included in **Figure 33** is the impact of generation unavailability based on the NERC class-average EFORd of NYCA thermal generation on the transmission security margin. The transmission security margin with generation unavailability (line-item O) shows that generation unavailability consistent with the NERC class-average EFORd of thermal generation would not result in "tipping" beyond transmission security limits, with a margin of 221 MW in 2022 growing to 702 MW in 2031.

Figure 34 shows the transmission security margin for heatwave conditions under the assumption that the system is in an emergency condition. (line-item N). Under emergency conditions, higher line ratings

are allowed to be utilized, fewer contingency events are secured for, and SCRs are accounted for as available resources. The limiting contingency combination under emergency conditions is the outage of Sprain Brook — East Garden City 345 kV (Y49) followed by securing for the loss of Dunwoodie — Shore Road 345 kV (Y50). An additional evaluation shown in this figure is the impact of the generation unavailability of Zone K thermal generation on the transmission security margin (line-item P). In summer 2022, under heatwave conditions with generation unavailability the system tips. Otherwise, all other study years show sufficient transmission security margin.

For the 1-in-100-year extreme heatwave shown in **Figure 35** sufficient transmission security margin is observed for all years, except from summer 2022, assuming that the system is in an emergency condition. An additional evaluation shown in this figure is the impact of the generation unavailability of Zone K thermal generation on the transmission security margin (line-item P). Except for summer 2022 there is sufficient transmission security margin. However, if a large facility such as Neptune is also lost in addition to the generator outages, there would be insufficient transmission security margin (line-item P) in years 2022 through 2025.

Figure 36 provides a summary of the transmission security margins under each expected weather, heatwave, and extreme heatwave conditions.

	System Peak - Baseline Expected Weather, Normal Transfer Criteria												
Line	Item	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031		
А	Zone K Load Forecast	(5,136)	(5,039)	(4,919)	(4,826)	(4,746)	(4,695)	(4,676)	(4,689)	(4,729)	(4,771)		
В	I+J to K	335	929	929	929	929	929	929	929	929	929		
С	New England Import (NNC)	0	0	0	0	0	0	0	0	0	0		
D	Total K AC Import (B+C)	335	929	929	929	929	929	929	929	929	929		
E	Loss of Source Contingency	0	(660)	(660)	(660)	(660)	(660)	(660)	(660)	(660)	(660)		
F	Resource Need (A+D+E)	(4,801)	(4,770)	(4,650)	(4,557)	(4,477)	(4,426)	(4,407)	(4,420)	(4,460)	(4,502)		
G	Resources needed after N-1-1 (A+D)	(4,801)	(4,110)	(3,990)	(3,897)	(3,817)	(3,766)	(3,747)	(3,760)	(3,800)	(3,842)		
Н	K Generation (1)	5,096	4,983	4,982	4,982	4,981	4,981	4,981	4,980	4,980	4,979		
I	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0	0		
J	Net ICAP External Imports	375	660	660	660	660	660	660	660	660	660		
К	Total Resources Available (H+I+J)	5,471	5,643	5,642	5,642	5,641	5,641	5,641	5,640	5,640	5,639		
L	Resources available after N-1-1 (E+K)	5,471	4,983	4,982	4,982	4,981	4,981	4,981	4,980	4,980	4,979		
М	Transmission Security Margin (F+K)	670	873	992	1,085	1,164	1,215	1,234	1,220	1,180	1,137		
N	Unavailable Generation (2)	(449)	(435)	(435)	(435)	(435)	(435)	(435)	(435)	(435)	(435)		
0	Transmission Security Margin with Generation Unavailability (M+N)	221	438	557	650	729	780	799	785	745	702		

Figure 33: Long Island Transmission Security Margin (Summer Peak – Baseline Expected Weather, Normal Transfer Criteria)

Notes:

1. Reflects the 2021 Gold Book existing summer capacity plus projected additions, deactivations, and de-rates. For this evaluation wind generation is assumed to have 0 MW output, solar generation is based on the ratio of solar PV nameplate capacity (2021 Gold Book Table I-9a) and solar PV peak reductions (2021 Gold Book Table I-9c). De-rates for run-of-river hydro is included as well as the Oswego Export limit for all lines in-service.

2. Includes de-rates for thermal resources based on NERC class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx)

Figure 34: Long Island Transmission Security Margin (Summer Peak – Heatwave, Emergency Transfer Criteria)

	Summer Peak - Heatwave, Emergency Transfer Criteria												
Line	Item	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031		
А	Zone K Load Forecast	(5,530)	(5,425)	(5,296)	(5,196)	(5,110)	(5,055)	(5,035)	(5,049)	(5,092)	(5,137)		
В	I+J to K	335	887	887	887	887	887	887	887	887	887		
С	New England Import (NNC)	0	0	0	0	0	0	0	0	0	0		
D	Total K AC Import (B+C)	335	887	887	887	887	887	887	887	887	887		
Е	Loss of Source Contingency	0	0	0	0	0	0	0	0	0	0		
F	Resource Need (A+D+E)	(5,195)	(4,538)	(4,409)	(4,309)	(4,223)	(4,168)	(4,148)	(4,162)	(4,205)	(4,250)		
G	Resources needed after N-1-1 (A+D)	(5,195)	(4,538)	(4,409)	(4,309)	(4,223)	(4,168)	(4,148)	(4,162)	(4,205)	(4,250)		
Н	K Generation (1)	5,096	4,983	4,982	4,982	4,981	4,981	4,981	4,980	4,980	4,979		
1	Temperature Based Generation Derates	(38)	(36)	(36)	(36)	(36)	(36)	(36)	(36)	(36)	(36)		
J	Net ICAP External Imports	375	660	660	660	660	660	660	660	660	660		
К	SCRs (3), (4)	25	25	25	25	25	25	25	25	25	25		
L	Total Resources Available (H+I+J+K)	5,458	5,632	5,631	5,631	5,630	5,630	5,630	5,629	5,629	5,628		
М	Resources available after N-1-1 (E+L)	5,458	5,632	5,631	5,631	5,630	5,630	5,630	5,629	5,629	5,628		
Ν	Transmission Security Margin (F+L)	263	1,094	1,222	1,322	1,407	1,462	1,482	1,467	1,424	1,378		
0	Unavailable Generation (2)	(449)	(435)	(435)	(435)	(435)	(435)	(435)	(435)	(435)	(435)		
Р	Transmission Security Margin with Generation Unavailability (N+O)	(186)	659	787	887	972	1,027	1,047	1,032	989	943		

Notes:

1. Reflects the 2021 Gold Book existing summer capacity plus projected additions, deactivations, and de-rates. For this evaluation wind generation is assumed to have 0 MW output, solar generation is based on the ratio of solar PV nameplate capacity (2021 Gold Book Table I-9a) and solar PV peak reductions (2021 Gold Book Table I-9c). De-rates for run-of-river hydro is included as well as the Oswego Export limit for all lines in-service.

2. Includes de-rates for thermal resources based on NERC class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx)

3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.

4. Includes a de-rate of 18 MW for SCRs.

Figure 35: Long Island Transmission Security Margin (Summer Peak, 1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria)

	Summer Peak - 1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria												
Line	Item	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031		
Α	Zone K Load Forecast	(5,843)	(5,733)	(5,596)	(5,490)	(5,399)	(5,341)	(5,320)	(5,334)	(5,380)	(5,428)		
В	I+J to K	335	887	887	887	887	887	887	887	887	887		
С	New England Import (NNC)	0	0	0	0	0	0	0	0	0	0		
D	Total K AC Import (B+C)	335	887	887	887	887	887	887	887	887	887		
E	Loss of Source Contingency	0	0	0	0	0	0	0	0	0	0		
F	Resource Need (A+D+E)	(5,508)	(4,846)	(4,709)	(4,603)	(4,512)	(4,454)	(4,433)	(4,447)	(4,493)	(4,541)		
G	Resources needed after N-1-1 (A+D)	(5,508)	(4,846)	(4,709)	(4,603)	(4,512)	(4,454)	(4,433)	(4,447)	(4,493)	(4,541)		
Н	K Generation (1)	5,096	4,983	4,982	4,982	4,981	4,981	4,981	4,980	4,980	4,979		
1	Temperature Based Generation Derates	(82)	(77)	(77)	(77)	(77)	(77)	(77)	(77)	(77)	(77)		
J	Net ICAP External Imports	375	660	660	660	660	660	660	660	660	660		
К	SCRs (3), (4)	25	25	25	25	25	25	25	25	25	25		
L	Total Resources Available (H+I+J+K)	5,414	5,591	5,590	5,590	5,589	5,589	5,589	5,588	5,588	5,587		
М	Resources available after N-1-1 (E+L)	5,414	5,591	5,590	5,590	5,589	5,589	5,589	5,588	5,588	5,587		
Ν	Transmission Security Margin (F+L)	(94)	745	881	987	1,077	1,135	1,156	1,141	1,095	1,046		
0	Unavailable Generation (2)	(449)	(435)	(435)	(435)	(435)	(435)	(435)	(435)	(435)	(435)		
Р	Transmission Security Margin with Generation Unavailability (N+O)	(543)	310	446	552	642	700	721	706	660	611		

Notes:

1. Reflects the 2021 Gold Book existing summer capacity plus projected additions, deactivations, and de-rates. For this evaluation wind generation is assumed to have 0 MW output, solar generation is based on the ratio of solar PV nameplate capacity (2021 Gold Book Table I-9a) and solar PV peak reductions (2021 Gold Book Table I-9c). De-rates for run-of-river hydro is included as well as the Oswego Export limit for all lines in-service.

2. Includes de-rates for thermal resources based on NERC class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx)

3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.

4. Includes a de-rate of 18 MW for SCRs.

Figure 36: Summary of Long Island Transmission Security Margin