

Informational LCR Results

Ryan Carlson

Senior Resource Adequacy Analyst

ICAPWG

December 17, 2020

Agenda

- Review final Net Cost of New Entry (CONE) curves for 2021 Locational Capacity Requirements (LCRs)
- Preliminary Transmission Security Limits (TSLs) for 2021
 - Using the October load forecast and Final Base Case EFORd values
- Results
- Next Steps

2021 Final Net CONE Curves

- Created as part of the Demand Curve Reset process
 - Since it is a Demand Curve Reset year, the full curve has been updated*

Associated Proxy Units:

- NYBA: 328.5 MW
- Zones G-J: 347.0 MW
- Zone J: 348.8 MW
- Zone K: 348.8 MW

*Note: MST § 5.11.4 states that NYISO shall use filed CONE values to be applicable in the first Capability Year covered by applicable periodic ICAP Demand Curve review.

2021-2022 Capability Year LCRs: Net CONE Curves						
Location	LCR (%)	Net CONE <mark>(</mark> \$/kW-yr)				
NYCA	112.9%	78.82				
	115.9%	80.45				
	118.9%	81.83				
	121.9%	83.14				
	124.9%	83.69				
G-J	84.0%	110.9				
	87.0%	113.06				
	90.0%	114.63				
	93.0%	116.07				
	96.0%	116.76				
Zone J	80.6%	156.13				
	83.6%	161.01				
	86.6%	162.99				
	89.6%	164.55				
	92.6%	165.66				
Zone K	97.4%	90.31				
	100.4%	99.78				
	103.4%	105.62				
	106.4%	108.57				
	109.4%	111.12				

2021 Preliminary TSL Values

Preliminary Base Case TSL calculations

Transmission Security Requirements	Formula	GHIJ	NYC	LI	Source	
Load Forecast (MW)	[A] = Given	15,385	11,232*	5,282*	2021 October Load Forecast	
Transmission Security Limit (MW)	[B] = Given	3,400	3,200	350	2021 TSL Report	
Minimum UCAP Needed (MW)	[C] = [A]-[B]	11,985	8,032	4,932		
UCAP Needed Percent	[D] = [C]/[A]	77.90%	71.51%	93.37%		
5 Year EFORd	[E] = Given	10.07%	9.17%	9.24%	2021 FBC EFORd	
ICAP Needed (MW)	[F] = [C]/(1-[E])	13,327	8,843.2	5,434.1		
ICAP Floor Requirement (TSLs)	[G] = [F]/[A]	86.6%	78.7%	102.9%	2021 FBC TSLs	

* This value includes the ACHL from BTM:NG in Zone J (21.3 MW) and Zone K (42.0 MW) Note: Final TSL values will be calculated when the final ICAP Load forecast is made available in December 2020

Preliminary LCR Results

Master Input File (MIF)

• Installed Reserve Margin (IRM) Final Base Case (FBC) MIF

	NYCA IRM	G-J	NYC	LI		
2021 PBC LCRs	20.1%*	88.5%	81.5%	102.7%**		
2021 FBC LCRs	20.7%*	88.7%	80.6%	102.9%**		
deltas	0.6%	0.2%	-0.9%	0.2%		

Optimized LCRs

* Determined by ICS Tan 45 Process

** The TSL Limit for Long Island was binding

Next Steps

- The NYISO will calculate Final TSL values in December using the final ICAP Load forecast
- The NYISO will calculate final LCRs in January 2021 using
 - Approved Final IRM Case
 - Final ICAP Load Forecast
 - Final TSL values
- Final LCRs will be presented to the Operating Committee for approval in January 2021

Questions?

Questions or comments can be sent to IRM@nyiso.com

Our mission, in collaboration with our stakeholders, is to serve the public interest and provide benefit to consumers by:

- Maintaining and enhancing regional reliability
- Operating open, fair and competitive wholesale electricity markets
- Planning the power system for the future
- Providing factual information to policymakers, stakeholders and investors in the power system

