

Congestion Price Component

Mathangi Srinivasan Kumar

Market Training Program Lead, Market Training, NYISO

Material Development:

Kelly Stegmann, Mathangi Srinivasan Kumar, Gina E. Craan

LBMP In-Depth Course

April 29 – May 1, 2025 Rensselaer, NY

Session Topics

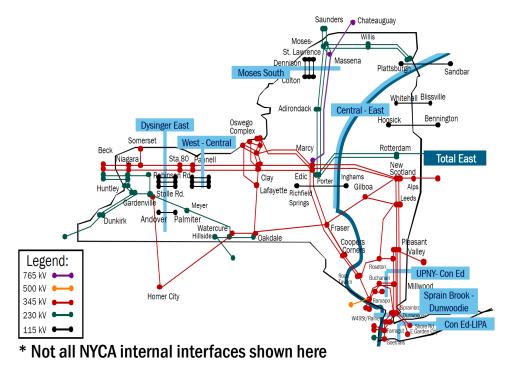
- Transfer Capability, Limitations & System Constraints
- System Constraints leading to Congestion Settlements
- Tariff Congestion Calculation
- Application of Congestion Calculation

Session Objectives

- Upon completion of this module, trainees will be able to:
 - Describe transfer limitation of power and common constraint points within the NYCA
 - Identify the three types of factors that can impact congestion price
 - State the components of the tariff congestion price calculation

LBMP Formula

LBMP = Energy + Loss - Congestion


©COPYRIGHT NYISO 2025. ALL RIGHTS RESERVED

Transfer Capability, Limitations & System Constraints

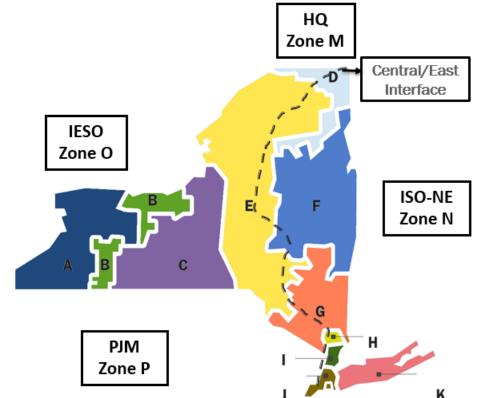
Transfer Capability

- Transmission Line
 - Conductors designed to carry energy over large distances
- Transmission Interface*
 - A defined set of transmission lines that separate Load Zones and that separate the NYCA from adjacent Control Areas
 - Multiple transmission lines make up an interface
- Transfer Capability
 - Measure of the ability of interconnected electrical systems to reliably move or transfer power from one area to another over all transmission lines

Transfer Limitations & System Constraints

- Transfer limits create constraints on the flow of energy
 - Three types of Transfer Limits
 - Lowest of the three sets Transfer Capability

Total Transfer Capability = Min(Thermal Limit, Voltage Limit, Stability Limit)


Constraint

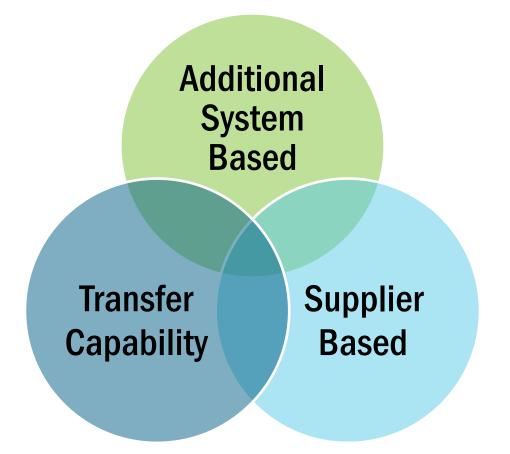
- A limitation to the system that prevents optimal transfer of energy from generation to load
- Some interfaces have more impact on the flow of energy

Common Constraint Points

- NYCA contains unique locational characteristics
 - West
 - Susceptible to unscheduled flows from neighboring systems
 - Central/East
 - Limits transfer capability
- Certain locations are considered import or export constrained due to location
 - NYC (Import Constrained Area)
 - North (Export Constrained Area)

Factors Impacting Congestion Price

[©] COPYRIGHT NYISO 2025. ALL RIGHTS RESERVED.


FOR TRAINING PURPOSES ONLY

Factors that Impact Congestion Price

- Three Categories of factors that can impact congestion price
 - Transfer Capability Factors
 - Supplier Based Factors
 - Additional System Based Factors
- Changing system conditions can alter supplier scheduling & dispatch
 - Creating/Impacting congestion within LBMPs

Transfer Capability Factors

	Description	
Thermal Limits	 (Summer/Winter MW Ratings): Normal Long Term Emergency (LTE) Short Term Emergency (STE) 	
Voltage Limits	 kV Ratings; Varies on equipment in service Pre-contingency High/Low Post-contingency High/Low 	
Stability Limits	MW Ratings; Varies on lines in-service or load on selected lines	
Phase Angle Regulators (PARs)	Controls the transfer of power over the circuits	
Transmission Outage	Planned and/or unexpected changes to the operational ability of a transmission facility; reducing power transfer capability	

Supplier Based Factors

	Description	
Generator Derates	Reduced generator output; may be scheduled or unscheduled	
Generator Outages	Generator is off-line and out of service; may be scheduled or unscheduled	
Out-of-Merit (OOM) Request	Out-of-Merit Generation, either up or down, can be requested by the NYISO and/or Transmission Owner (TO) for security of the bulk power system	
Resource Bidding	Includes three overall bid components evaluated to determine supplier schedules: Unit Offer Parameters, Incremental Energy Offer, and Unit Operating Mode	
Self-Scheduling	Part of operating mode selected by market participants seeking to operate a resource to meet an obligation outside of the wholesale markets, such as to meet a TO reliability need or running the unit to perform testing	
Supplemental Resource Evaluation (SRE) Request	Determination of the least cost selection of additional generators, which are to be committed, to meet changed or local system conditions for Dispatch Day to meet reliability requirements for the Transmission Owner's (TO's) local system or to meet load requirements of the ISO	

Additional System Based Factors

	Description	
Transaction Curtailments	Energy transactions are monitored on an on-going basis and reduced in real time to address grid security issues	
Thunderstorm Alerts (TSA)	Severe weather conditions in Zone J (NYC) causing generation to be scheduled and dispatched differently	
Reserve Shortage	Shortages for the NYCA statewide region, locational shortages within the NYCA, or inter- regional locational shortages between NYCA and neighboring Control Areas	
Operating States	The NYISO determines the state of NYS Power System by comparing system conditions against certain monitoring criteria. For instance, if a transmission facility becomes overloaded, relief measures are applied immediately to bring the loading within established ratings	

Tariff Congestion Calculation

[©] COPYRIGHT NYISO 2025. ALL RIGHTS RESERVED.

FOR TRAINING PURPOSES ONLY

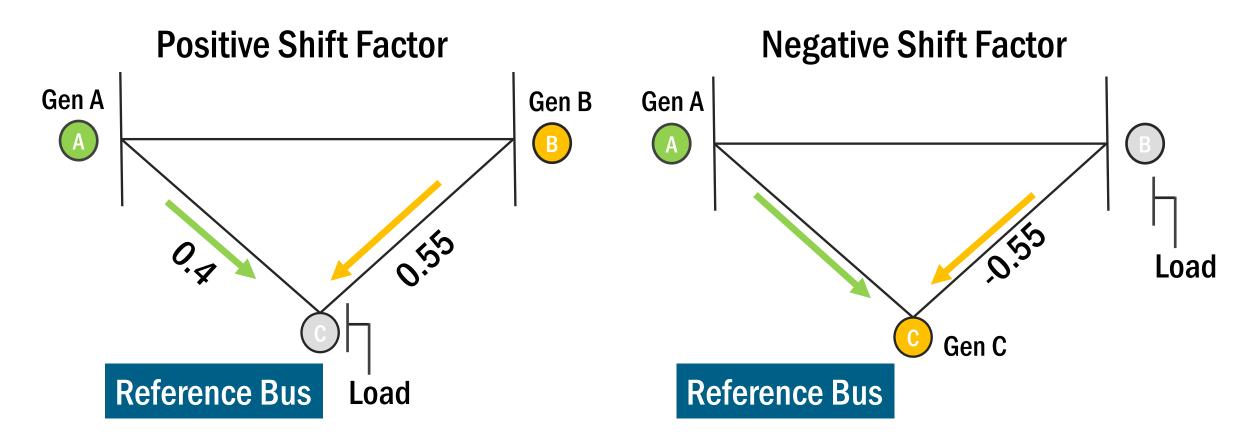
LBMP Congestion: Generator Calculation

 Congestion Component for a generator is calculated at the generator bus

Gen Bus LBMP Congestion Component =

- {Sum for set of constraints [(Generator Shift Factor on each constraint) * (Shadow Price of constraint)]}

*** Except as noted in Sections 17.1.2.2.1 and 17.1.2.3.1 of this Attachment B


LBMP Congestion: Generator Shift Factor

- Shift Factor Defined
 - A ratio, calculated by the ISO, that compares the change in power flow through a transmission facility resulting from the incremental injection and withdrawal of power on the NYS Transmission System
 - Calculated with respect to the Reference Bus (Marcy)
 - Shift Factor could be positive or negative

LBMP Congestion: Generator Shift Factor

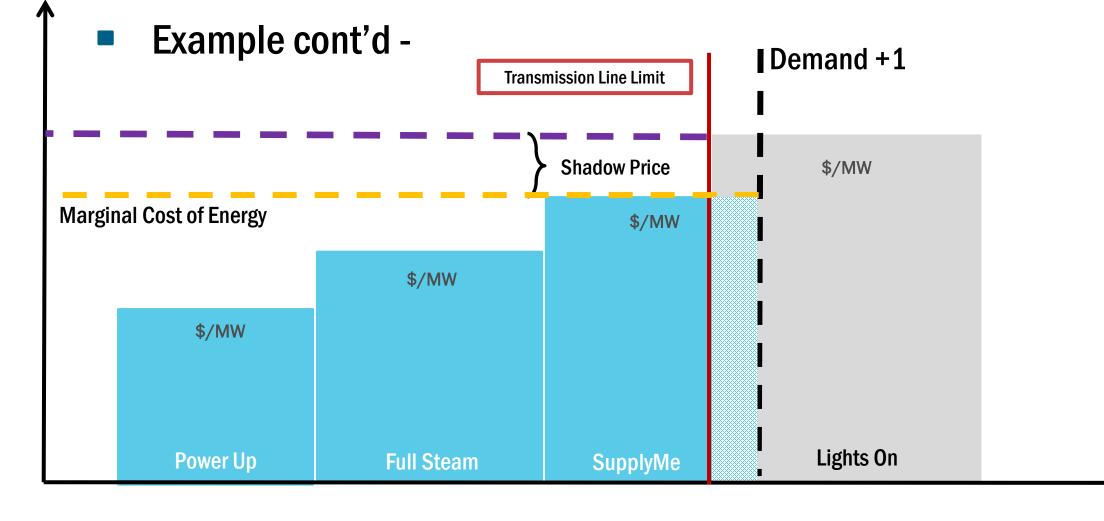
• Example -

LBMP Congestion: Generator Shift Factor cont'd

- Shift Factor Determination
 - Determined dynamically by SCUC, RTC and RTD as part of the power flow solution for each time interval
 - Factors considered:
 - Network Topology
 - Expected Power Flows
 - Expected Unscheduled Power Flows
 - Internal and Coordinated External Transmission Facility Outages

LBMP Congestion: Generator Shadow Price

- Shadow Pricing Defined
 - Value of relieving a particular constraint which is determined by the reduction in as-bid system production cost that results from:
 - An incremental relaxation of that constraint; or
 - The application of shortage pricing mechanisms, such as Transmission Constraint Pricing, when supply is unavailable to resolve the constraint
 - Expressed in \$/MWh



LBMP Congestion: Generator Shadow Price \$/MW Example -Demand +1 **Transmission Line** Limit \$/MW Marginal Cost of Energy \$/MW \$/MW \$/MW **Power Up Full Steam SupplyMe Lights On**

MW


LBMP Congestion: Generator Shadow Price

MW

Let's Review

Transfer limits across NYCA's external interfaces set the MW availability limit to schedule import or export scheduled power transactions between RTO/ISOs

Let's Review

An area with low demand, high generation, and limited Transmission capability to move the MWs out of there to other areas in the NYCA is an

Import constrained area

Export constrained area

Let's Review

The factor that is <u>not</u> considered in the calculation of generator shift factor is:

a. Network topology

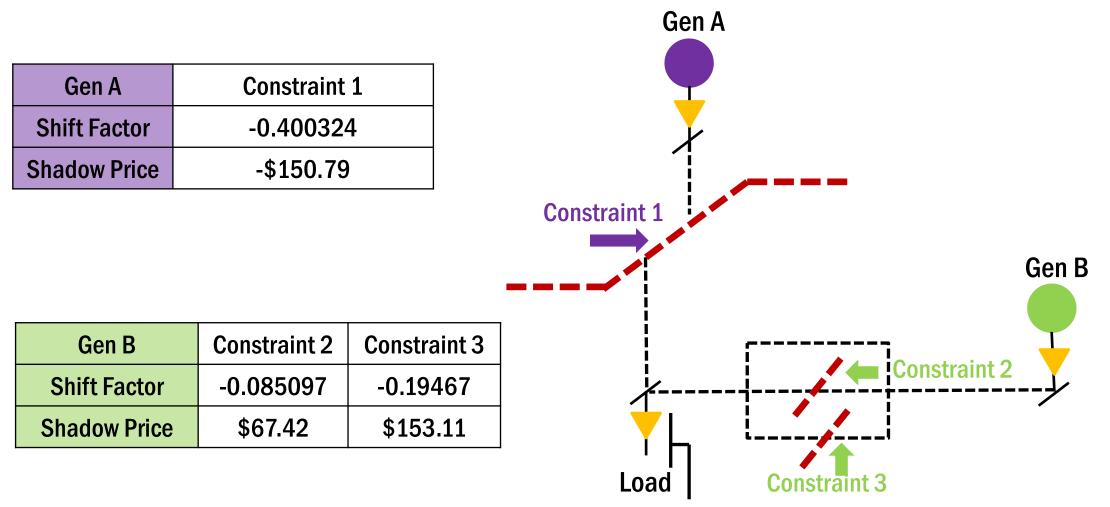
b. Expected Power Flows

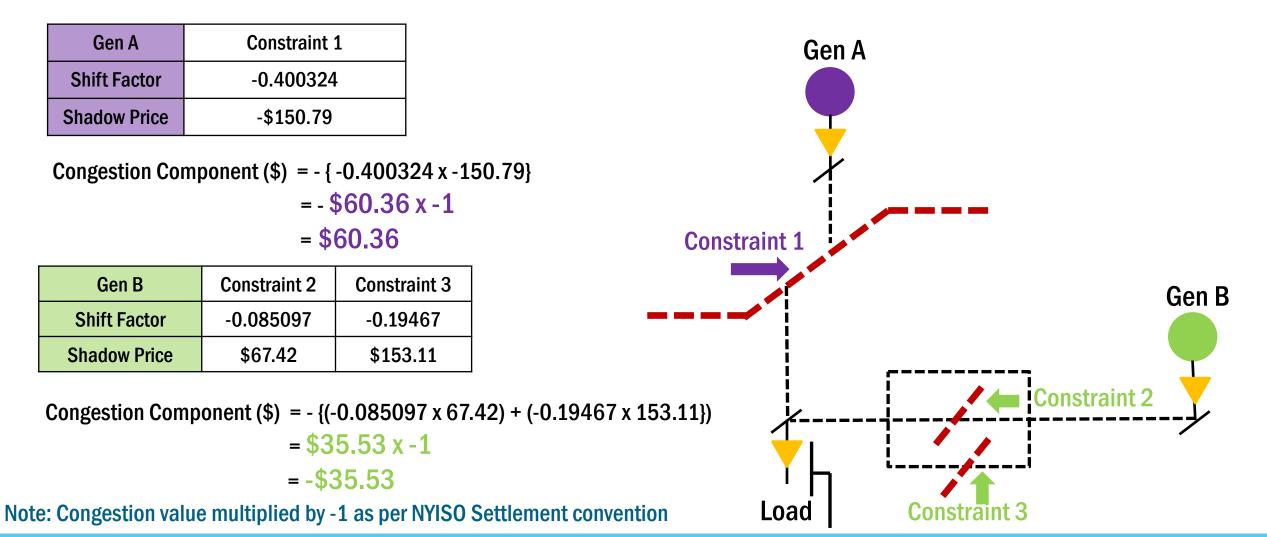
c. Expected Unscheduled Power Flows

d. Internal and Coordinated External Transmission Facility Outages

e. Scheduled Generator outages

Generator Congestion Calculation -Summary Example

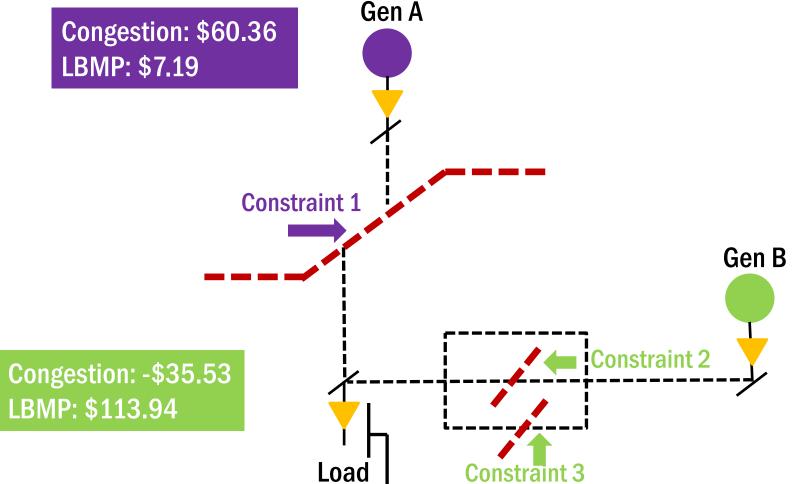

[©] COPYRIGHT NYISO 2025. ALL RIGHTS RESERVED.

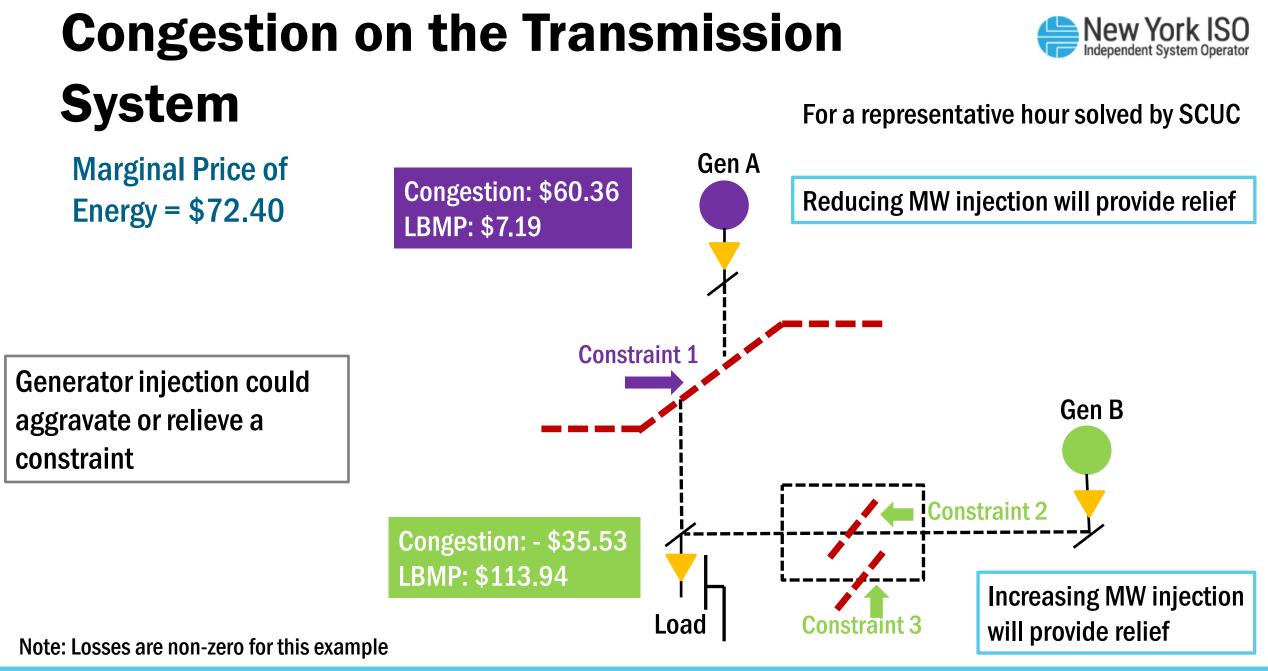

FOR TRAINING PURPOSES ONLY

Congestion on the Transmission System

For a representative hour solved by SCUC

Congestion on the Transmission System For a representative hour solved by SCUC


©COPYRIGHT NYISO 2025. ALL RIGHTS RESERVED


Congestion on the Transmission System For a representative hour solved by SCUC

Marginal Price of Energy = \$72.40

Note: Losses are non-zero for this example

Transmission Constraint Pricing

- Constraint Reliability Margin (CRM) assigned by NYISO to help manage transmission modeling uncertainty
 - Assigned to facilities and interfaces
 - Zero or non-zero value
 - Represents value below maximum physical limit on a transmission facility/ Interface that is used by SCUC, RTC and RTD as the effective limit when evaluating for economic commitment and dispatch
 - Identified facilities: Certain internal transmission facilities that accommodate power flows out of export constrained areas
- Shadow Prices are applied in instances of transmission shortages

Graduated Transmission Demand Curves, as of October 2023

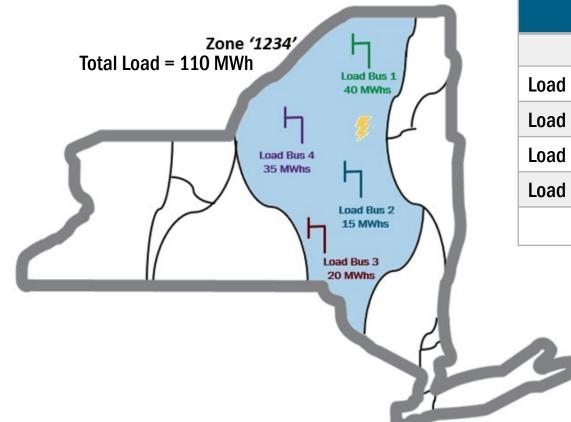
NY Region	Туре	Demand Curve (MW)	Demand Curve Price (\$/MWh)
All	Facilities/Interfaces other than Identified	1. MW value equivalent to 20% of the applicable CRM	1. \$200
	Facilities with a non- zero CRM value	2. MW value equivalent to an additional 20% of the applicable CRM	2. \$350
		3. MW value equivalent to an additional 20% of the applicable CRM	3. \$600
		4. MW value equivalent to an additional 20% of the applicable CRM	4. \$1,500
		5. MW value equivalent to the remaining 20% of the applicable CRM	5. \$2,500
		6. Any MW value greater than the applicable CRM	6. \$4,000
All	Identified Facilities	1. MW value equivalent to the applicable CRM	1. \$100
		2. Any MW value greater than the applicable CRM	2. \$250
All	Facilities/Interfaces with a zero CRM value		\$4,000

©COPYRIGHT NYISO 2025. ALL RIGHTS RESERVED

LBMP Congestion: Load Calculation

[©] COPYRIGHT NYISO 2025. ALL RIGHTS RESERVED.

FOR TRAINING PURPOSES ONLY



LBMP Congestion: Load Calculation

- Congestion Component for Load is calculated at the respective load zone
 - Congestion for a zone will be a Load weighted average of the Load buses in the Load Zone, rendering one zonal congestion for entire zone
 - Load weights which will sum to unity will be calculated from the load bus MW distribution

Zonal LBMP Congestion Component = \sum of each bus (Load Bus Weighting * Marginal Load Bus Congestion)

Load Congestion Calculation – Summary Example

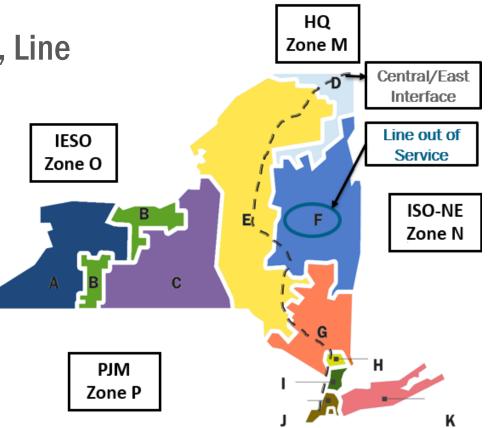
Calculating Zonal Congestion using Load Weighted Average					
	Load Weighted Value	Congestion Price	Weighted Congestion Price		
Load Bus 1	40/110 = 0.36	\$12	\$4.32		
Load Bus 2	15/110 = 0.14	\$10	\$1.40		
Load Bus 3	20/110 = 0.18	\$13	\$2.34		
Load Bus 4	35/110 = 0.32	\$15	\$4.80		
Zone '1234' Congestion Price Component			\$12.86		

New York ISO Independent System Operator

Application of Congestion Calculation

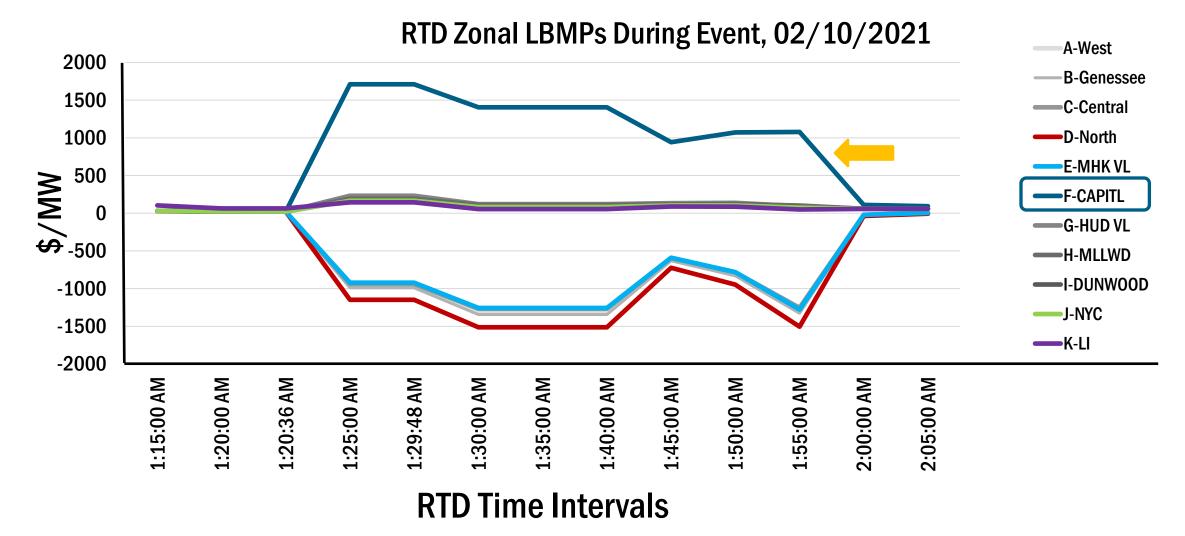
[©] COPYRIGHT NYISO 2025. ALL RIGHTS RESERVED.

FOR TRAINING PURPOSES ONLY



LBMP Congestion: Real World Example

- Interface Limit Central/East
 - Congestion Factor: Transfer Capability Limit, Line Outage
 - Scenario:


02/10/2021 RTD Interval 01:25 through 01:55: Spike in congestion started due to outage in Capital Zone

- Impacted transfer limit on Central/East interface
 - » Majority of NYCA zonal LBMPs affected
- RTD CAM re-dispatched to adjust to system limits on interface

LBMP Congestion: Real World Example cont'd

Summary of Congestion Price Component

- Transfer limitation of power
- Common constraint points within the NYCA
- Three types of factors that can impact congestion price
- The components of the tariff congestion price calculation

Additional Resources

- Tariffs OATT & MST
- Day Ahead Scheduling Manual
- Transmission and Dispatching Operations Manual
- Market Participant User's Guide
- Technical Bulletins