

Loss Price Component

Gina Elizabeth Craan

Manager, Market Training, NYISO

LBMP In-Depth Course

April 09-11, 2024 Rensselaer, NY

Session Topics

- Transmission Losses
- Loss Delivery Factors
- Tariff Loss Calculation
- Application of System Losses

Session Objectives

- Upon completion of this module, trainees will be able to:
 - Explain the process for determining NYCA transmission losses
 - Define delivery factor
 - Describe the components of the tariff loss price calculation

Loss Component

LBMP = Energy + Loss - Congestion

©COPYRIGHT NYISO 2024. ALL RIGHTS RESERVED

FOR TRAINING PURPOSES ONLY

4

Transmission Losses

Transmission Losses

- Approx. 2.5% of energy is lost along the transmission system due to heat dissipation
- Amount of transmission loss is dependent on:
 - Specific Generation Source
 - Network Topology
 - Expected Power Flows
 - Expected Unscheduled Power Flows
 - Internal & External Coordinated Transmission Facility Outages

Transmission Losses

Energy Balance Relationship to Losses

- Represents required increase in Generator output at given bus to supply transmission losses at Reference Bus, appears as an increase in Load
 - With all other loads held constant

Increment of Generation = Increment of Load + Increment of Losses

Transmission Losses Visual Aid

When power is injected at a specific Generator bus there is an impact on overall system losses...

The closer the Generator is to load the more likely it is for losses to be reduced

Generator "X" ✓ Bus "x" Generator "y" Bus "v' Marcy Reference Bus System Load

Delivery Factors

- Approximate the effects of changes in generation on transmission losses
 - Indicating impact on overall system losses
- Reflect expected network topology for
 - Given time-period
 - Corresponding generation dispatch
- Are used to calculate marginal loss components of LBMPs

Resulting Impact on Overall System Losses

- Delivery factor equals amount of power that could be delivered to a Load at Reference Bus if generation at source is increased by 1 MW
- The greater the impact on system losses, the greater the impact on marginal loss price component

Delivery Factor	Impact on System Loss	Marginal Loss Price Component
>1	Decreases System Loss	Positive \$
<1	Increases System Loss	Negative \$

Delivery Factor Formula

• Accounts for incremental NYCA losses and increment of power injection at a given Generator bus

Delivery Factor _{at given gen bus} = (1 – Incremental NYCA Losses/Increment of Injection _{at given gen bus})

Delivery Factor > 1

Generator

Simple Two Line/Three Bus Diagram

14

New York ISO

Legend

©COPYRIGHT NYISO 2024. ALL RIGHTS RESERVED

Delivery Factor < 1

[©] COPYRIGHT NYISO 2024. ALL RIGHTS RESERVED.

©COPYRIGHT NYISO 2024. ALL RIGHTS RESERVED

©COPYRIGHT NYISO 2024. ALL RIGHTS RESERVED

Tariff Loss Calculation

[©] COPYRIGHT NYISO 2024. ALL RIGHTS RESERVED.

LBMP Loss: Generator Calculation

Loss Component for a Generator is calculated at the Generator bus

Gen Bus LBMP Loss Component = (Delivery Factor – 1) * Reference Bus Energy Price Component

LBMP Loss: Load Calculation

- Loss component for Load is calculated at the respective Load Zone
 - LBMP for a zone will be a Load weighted average of the Load bus LBMPs in the Load Zone, rendering one zonal LBMP for entire zone
 - Load weights which will sum to unity will be calculated from the load bus MW distribution

Zonal LBMP Loss Component = \sum of each bus (Load Bus Weighting * Marginal Load Bus Loss)

Load Calculation Summary - Example

 \frown

Calculating Zonal Loss using Load weighted Average				
	Load Weighted Value	Loss Price	Weighted Loss Price	
Load Bus 1	40/110 = 0.36	\$1.50	\$0.54	
Load Bus 2	15/110 = 0.14	\$1	\$0.14	
Load Bus 3	20/110 = 0.18	\$2.25	\$0.41	
Load Bus 4	35/110 = 0.32	\$1.75	\$0.56	
	Zone '1234' Loss Price Component		\$1.65	

Application of System Losses

[©] COPYRIGHT NYISO 2024. ALL RIGHTS RESERVED.

NYISO Monthly Report for July 2021 System Operator

Day Ahead Market

©COPYRIGHT NYISO 2024. ALL RIGHTS RESERVED

NYISO Monthly Report for July 2021 Stem Operator

Real Time Market

©COPYRIGHT NYISO 2024. ALL RIGHTS RESERVED

Summary

- Determining NYCA Transmission Losses
- Generator Delivery Factor
- Components of Tariff Loss Price Calculation
- Application of System Losses

Additional Resources

Tariffs - OATT and MST

- OATT Attachment J
- MST Attachment B
- Market Participant User's Guide 3.3.1
- Day-Ahead Scheduling Manual
- Transmission and Dispatch Manual