

Load Forecast Uncertainty Models for the 2023 IRM and 2022 RNA Studies

Riaz Khan

Demand Forecasting & Analysis

Load Forecasting Task Force Meeting

April 21, 2022, Teleconference

LFU Definition - NYSRC Policy 5-14

Section 3.5.1 NYCA Load Model: Load Forecast Uncertainty Model

The load forecast uncertainty (LFU) model captures the impacts of weather conditions on future loads. The LFU gives the MARS program information regarding seven load levels (three loads lower and three loads higher than the median peak) and their respective probabilities of occurrence. For each modeled hour, the MARS program determines the resource adequacy and calculates an average loss of load expectation for the capability year for each of the seven load levels. MARS uses this information to evaluate a probability weighted-average LOLE for each area. Recognizing the unique LFU nature of individual NYCA zones, the LFU model is subdivided into five separate areas: New York City (Zone J), Long Island (Zone K), Zones H and I, Zones F and G, and the rest of New York State (Zones A-E).

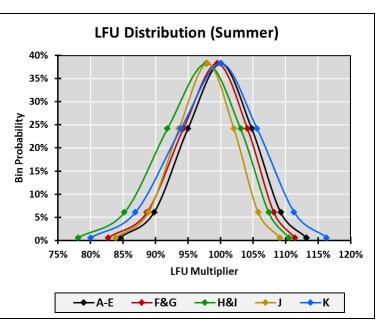
LFU Definition - NYSRC Policy 5-14 (cont'd)

Preparation of the LFU model is coordinated by the NYISO in collaboration with the TOs. The process used to develop the LFU model generally follows the procedure used to calculate the forecasted NYCA ICAP peak as described in the NYISO Load Forecasting Manual. This process follows the development of the NYCA peak, insofar as the LFU is a distribution, not a point estimate. Following acceptance from the NYISO Load Forecasting Task Force, the NYISO submits the final LFU model to be used in MARS to ICS for review and approval...

Overview

- Summary of Load Forecast Uncertainty (LFU) Results
- Summer LFU
 - Zones A-E, Zones F&G, Zones H&I, Zone J, Zone K
- Winter LFU NYCA
- Questions/Discussion

Summary of Load Forecast Uncertainty (LFU) Results



© COPYRIGHT NYISO 2022. ALL RIGHTS RESERVED.

DRAFT – FOR DISCUSSION PURPOSES ONLY

Recommended LFU

			New Recommended LFU Multipliers						
				S	Summer	•		Winter	
Bin	Bin z	Bin Probability	A-E	F&G	H&I	J	К	NYCA	
Bin 1	2.74	0.62%	113.18%	111.42%	110.50%	109.10%	116.30%	110.29%	
Bin 2	1.79	6.06%	109.25%	108.20%	107.41%	105.78%	111.32%	106.26%	
Bin 3	0.89	24.17%	104.80%	104.14%	103.08%	102.05%	105.60%	102.65%	
Bin 4	0.00	38.29%	100.00%	99.46%	97.82%	97.98%	100.00%	99.37%	
Bin 5	-0.89	24.17%	94.96%	94.28%	91.83%	93.60%	93.87%	96.32%	
Bin 6	-1.79	6.06%	89.75%	88.67%	85.21%	88.90%	86.89%	93.46%	
Bin 7	-2.74	0.62%	84.49%	82.72%	78.09%	83.89%	80.04%	90.74%	

LFU Comparison

				Existing LFU Multipliers						
				S	umme	r		Winter		
Bin	Bin z	Bin Probability	A-E							
Bin 1	2.74	0.62%	114.78%	115.85%	112.55%	109.95%	115.63%	111.01%		
Bin 2	1.79	6.06%	110.01%	110.53%	108.40%	106.49%	110.73%	106.89%		
Bin 3	0.89	24.17%	105.06%	105.01%	103.36%	102.33%	105.30%	103.25%		
Bin 4	0.00	38.29%	100.00%	99.36%	97.68%	97.67%	100.00%	100.00%		
Bin 5	-0.89	24.17%	94.88%	93.61%	91.50%	92.58%	92.96%	97.05%		
Bin 6	-1.79	6.06%	89.73%	94.34%						
Bin 7	-2.74	0.62%	84.63%	81.88%	77.98%	81.38%	76.60%	91.85%		

			Delta (Recommended - Existing)					
				S	umme	r		Winter
Bin	Bin z	Bin Probability	A-E	A-E F&G H&I J K				
Bin 1	2.74	0.62%	-1.59%	-4.42%	-2.05%	-0.85%	0.67%	-0.73%
Bin 2	1.79	6.06%	-0.77%	-2.32%	-0.99%	-0.71%	0.59%	-0.63%
Bin 3	0.89	24.17%	-0.26%	-0.86%	-0.28%	-0.29%	0.29%	-0.60%
Bin 4	0.00	38.29%	0.00%	0.10%	0.14%	0.31%	0.00%	-0.63%
Bin 5	-0.89	24.17%	0.08%	0.66%	0.33%	1.02%	0.91%	-0.72%
Bin 6	-1.79	6.06%	0.02%	0.90%	0.32%	1.78%	2.58%	-0.88%
Bin 7	-2.74	0.62%	-0.14%	0.84%	0.12%	2.51%	3.44%	-1.11%

Note: Recommended winter LFU values are calculated relative to 57th percentile-based reference load, based on aggregate TO design condition. Prior winter LFU was based on 50th percentile reference load.

©COPYRIGHT NYISO 2022. ALL RIGHTS RESERVED

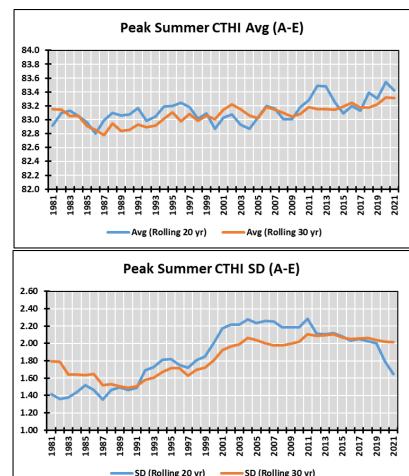
Summary of Methodology

Summer LFU Modeling

- Load-weather relationship was established through polynomial regression model.
- For each LFU area, pooled models were developed using summer (Jun-Aug) data from 2018, 2019 and 2021. A single year model with 2021 data only was also developed. Weekends and holidays were excluded, along with influential points/outliers.
- Pooled/single year model was selected based on model accuracy, statistical stability and overall response and weather sensitivity.
- Iterative process. Multiple combinations of model structure were investigated (e.g., variable weather sensitivity for different years).
- Weather uncertainty (calculated from 30 years of peak producing condition history) was applied to the established load-weather relationship.
- Demand response MWs have been added back to the load.

Key Changes in Methodology

Item	Existing LFU	New LFU	Note
Data	2018, 2019	2018, 2019, 2021	Added most recent year
Summer months	May - Sep	Jun – Aug	Temperature and load levels are relatively lower in May, September
Weekends	Modeled through fixed effect categorical variable	Excluded	Load levels are lower during weekends
Historical weather distribution	20 years	30 years	30-year window offers more stability


Peak Weather Variability

- Historical peak producing weather (average and standard deviation) is an important contributor to the final LFU value $LFU_{bin \ k} = \frac{load \ at \ (avg + z_{bin \ k} * SD)}{load \ at \ (avg + z_{design} * SD)}$
- In general, LFU values at the upper bins
 - decrease with the increase of average
 - increase with the increase of standard deviation (SD)
- Using more years of weather history offers more stable statistics and reduces year to year random fluctuation of LFU

Peak Producing CTHI Year to Year Variation

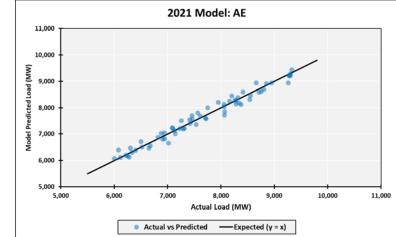
	20/20 Change (Ending in 2019 vs 2021)							
	AE FG HI J K NYCA							
Avg	0.1%	0.0%	-0.1%	0.0%	0.0%	0.1%		
Std Dev	-16.5% -10.9% -14.6% -15.5% -17.8% -18.1							

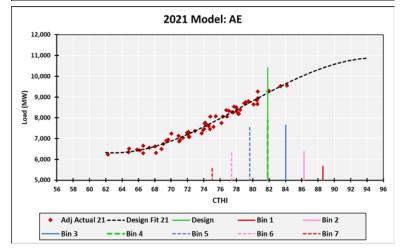
	30/30 Change (Ending in 2019 vs 2021)								
	AE FG HI J K NYCA								
Avg	0.3%	0.1%	-0.1%	-0.2%	-0.1%	0.1%			
Std Dev	-0.6% -0.9% 0.5% -2.3% -1.3% -0.5%								

Summer LFU Zones A-E

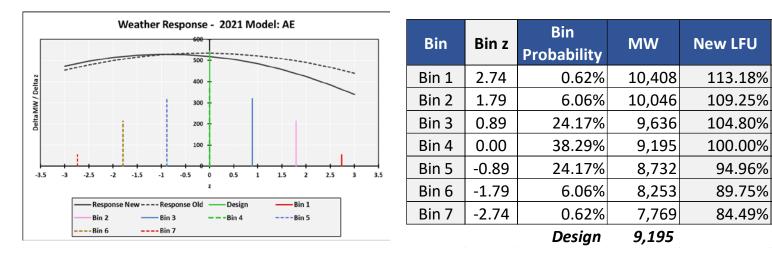
© COPYRIGHT NYISO 2022. ALL RIGHTS RESERVED.

DRAFT - FOR DISCUSSION PURPOSES ONLY


Summer LFU: Zones A-E


- NYISO developed model
 - 2021 standalone model
- Primary weather variable: CTHI⁽¹⁾

Mult. R: 98	8.6% R-	-sq: 97.2%	Adj R-sq: 97.0%		
	Coef.	Std.Err.	t - Stat	p - Value	
Intercept	127356.8	46156.9	2.76	0.77%	
СТНІ	-4936.6	1895.0	-2.61	1.16%	
CTHI_2	65.2	25.9	2.52	1.44%	
CTHI_3	-0.275	0.117	-2.34	2.24%	
Jun	-229.4	49.0	-4.68	0.00%	


(1) CTHI – Cumulative Temperature and Humidity Index

Note: Adjusted actual values in charts represent loads adjusted for binary effects

Summer LFU: Zones A-E

- Slightly suppressed base load (-0.5%)⁽¹⁾
- Stronger saturation of the regression line at extreme conditions contributed to the decrease in LFU at higher temperatures

(1) Relative to prior base load, which was calculated for prior reference year (2019)

New York ISO

Current LFU

114.78%

110.01%

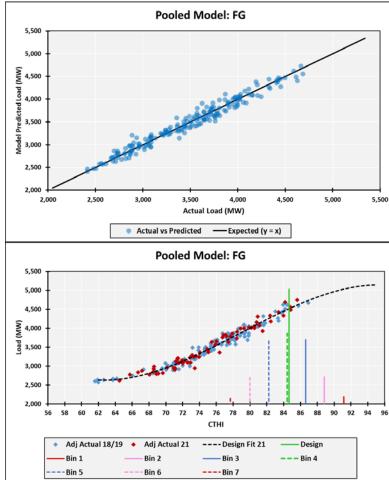
105.06%

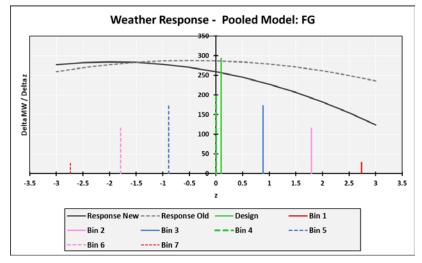
100.00%

94.88%

89.73%

84.63%


Summer LFU Zones F&G


Summer LFU: Zones F&G

- NYISO developed model
 - Pooled model (2018, 2019, 2021)
- Primary weather variable: CTHI

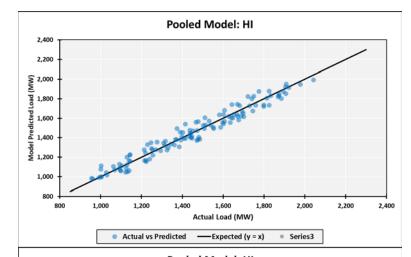
Mult. R: 98.2	% R-sq	: 96.5%	Adj R-sq: 96.4%		
	Coef.	Std.Err.	t - Stat	p - Value	
Intercept	66051.1	12340.2	5.35	0.00%	
СТНІ	-2592.8	504.1	-5.14	0.00%	
CTHI_2	34.3	6.8	5.02	0.00%	
CTHI_3	-0.145	0.031	-4.70	0.00%	
Jun	-56.6	19.4	-2.91	0.41%	
Fri	-61.2	18.4	-3.33	0.10%	
Y_2019	-99.8	16.0	-6.25	0.00%	

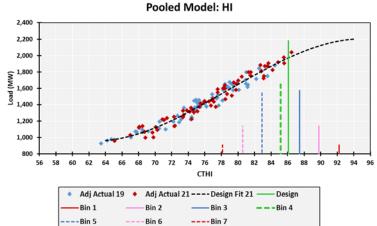
Summer LFU: Zones F&G

Bin	Bin z	Bin Probability	MW	New LFU	Current LFU
Bin 1	2.74	0.62%	5,030	111.42%	115.85%
Bin 2	1.79	6.06%	4,884	108.20%	110.53%
Bin 3	0.89	24.17%	4,701	104.14%	105.01%
Bin 4	0.00	38.29%	4,490	99.46%	99.36%
Bin 5	-0.89	24.17%	4,256	94.28%	93.61%
Bin 6	-1.79	6.06%	4,003	88.67%	87.77%
Bin 7	-2.74	0.62%	3,734	82.72%	81.88%
		Design	4,514		

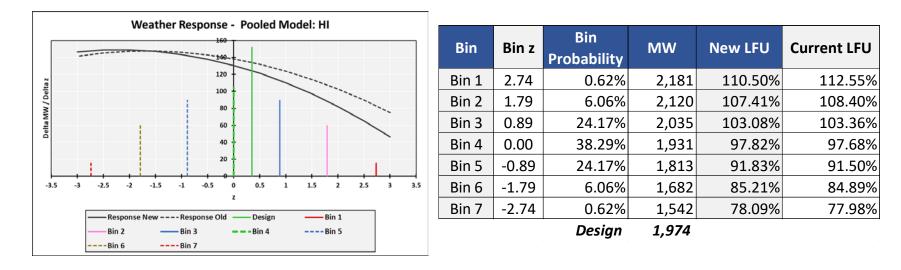
- Elevated base load (+1.6%)
- Stronger saturation of the regression line at design conditions and beyond
- The factors above contributed to lower LFU multipliers above design conditions

Summer LFU Zones H&I


© COPYRIGHT NYISO 2022. ALL RIGHTS RESERVED.


DRAFT - FOR DISCUSSION PURPOSES ONLY

Summer LFU: Zones H&I


- NYISO-Con Ed collaborative approach
 - Pooled model (2019, 2021)
- Primary weather variable: CTHI

Mult. R: 97.8	% R-sq	: 95.7%	Adj R-sq: 95.6%		
	Coef.	Std.Err.	t - Stat	p - Value	
Intercept	33371.9	11283.1	2.96	0.37%	
СТНІ	-1325.3	453.3	-2.92	0.41%	
CTHI_2	17.5	6.1	2.90	0.44%	
CTHI_3	-0.074	0.027	-2.76	0.66%	
Y_2019	25.4	10.4	2.45	1.59%	

Summer LFU: Zones H&I

- Decreased base load (-1.7%)
- Stronger saturation of the regression line at extreme conditions

Summer LFU Zone J


Summer LFU: Zone J

• NYISO-Con Ed collaborative approach

- Pooled model (2018, 2019, 2021)
- Primary weather variable: TV⁽¹⁾

Mult. R: 99.19	% R-sq	: 98.3 %	Adj R-sq: 98.2%		
	Coef.	Std.Err.	t - Stat	p - Value	
Intercept	96035.7	26619.4	3.61	0.04%	
TV	-3836.3	1077.9	-3.56	0.05%	
TV_2	52.1	14.5	3.59	0.04%	
TV_3	-0.221	0.065	-3.41	0.08%	
MTWT_2019	641.2	31.9	20.09	0.00%	
MTWT_2018	716.4	32.6	21.95	0.00%	
Fri_2019	364.0	52.1	6.99	0.00%	
Fri_2018	515.9	48.9	10.54	0.00%	

(1) TV – Temperature Variable, developed and used by Con Ed

76 78 TV

---- Design Fit 21

----- Bin 3

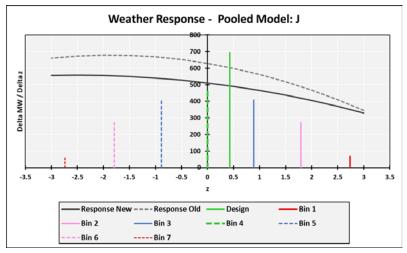
----Bin 7

Design

- - - Bin 4

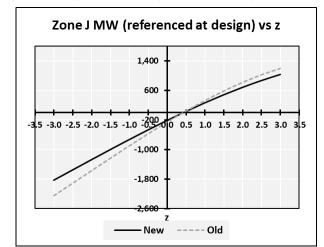
Adj Actual 18/19

Bin 1


---Bin 5

Adj Actual 21

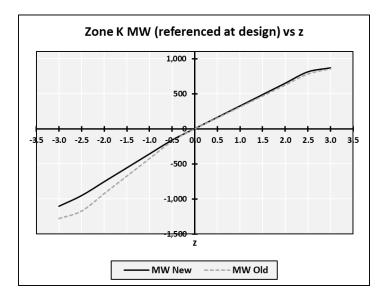
Bin 2


Bin 6

Summer LFU: Zone J

Bin	Bin z	Bin Probability	MW	New LFU	Current LFU
Bin 1	2.74	0.62%	11,417	109.10%	109.95%
Bin 2	1.79	6.06%	11,069	105.78%	106.49%
Bin 3	0.89	24.17%	10,679	102.05%	102.33%
Bin 4	0.00	38.29%	10,253	97.98%	97.67%
Bin 5	-0.89	24.17%	9,795	93.60%	92.58%
Bin 6	-1.79	6.06%	9,303	88.90%	87.13%
Bin 7	-2.74	0.62%	8,779	83.89%	81.38%
		Desian	10 464		

Design 10,464


- Decreased base load (-5.9%)
- Relatively less saturation at extreme conditions, but slower build-up near design conditions results in a lower Bin 1 multiplier (-14%)

Summer LFU Zone K

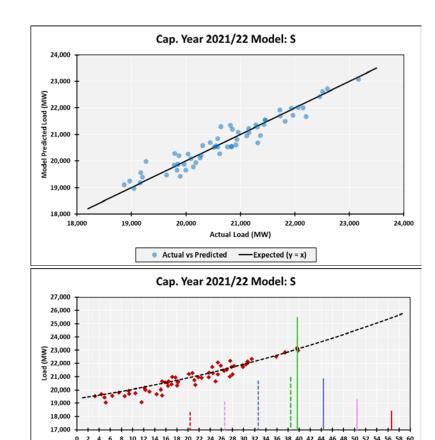

Summer LFU: Zone K

- Developed by LIPA
- Independent NYISO model had similar results

Bin	Bin z	Bin Probability	MW	New LFU	Current LFU
Bin 1	2.74	0.62%	5,975	116.30%	115.63%
Bin 2	1.79	6.06%	5,719	111.32%	110.73%
Bin 3	0.89	24.17%	5,425	105.60%	105.30%
Bin 4	0.00	38.29%	5,138	100.00%	100.00%
Bin 5	-0.89	24.17%	4,823	93.87%	92.96%
Bin 6	-1.79	6.06%	4,464	86.89%	84.32%
Bin 7	-2.74	0.62%	4,112	80.04%	76.60%
		Design	5,138		

- Decreased base load (-1.7%)
- The additional MW relative to base is very similar to current model
- The upward movement at higher temperature is driven by reduced base load

Winter LFU NYCA Model


© COPYRIGHT NYISO 2022. ALL RIGHTS RESERVED.

DRAFT - FOR DISCUSSION PURPOSES ONLY

Winter LFU: NYCA

- **Developed by NYISO**
- A single weather variable was developed using daily min temperature, max temperature and temperature at specific hour
- Used Winter 2021-22 data, excluding weekends and holidays

Mult. R: 96.2% R-sq: 92.5% Adj R-sq: 91.8%				
	Coef.	Std.Err.	t - Stat	p - Value
Intercept	19343.2	175.6	110.17	0.00%
WinterVar	62.3	14.0	4.46	0.00%
WinterVar_2	0.8	0.3	2.37	2.13%
Fri	-379.43	96.45	-3.93	0.02%
Dec	-198.4	113.0	-1.76	8.47%
Feb	-374.2	101.5	-3.69	0.05%

10 12 14 16 18 20 22 24 26 28

Adj Actual 21-22 ---- Design Fit 21-22

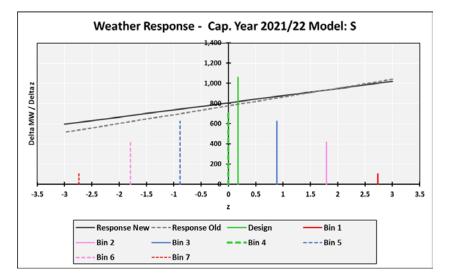
----- Bin 3

----Bin 7

Bin 2

Bin 6

Winter Weather Va


--- Bin 4

Design

Bin 1

----Bin 5

Winter LFU: NYCA

Bin	Bin z	Bin Probability	MW	New LFU	Current LFU
Bin 1	2.74	0.62%	25,458	110.29%	111.01%
Bin 2	1.79	6.06%	24,529	106.26%	106.89%
Bin 3	0.89	24.17%	23,696	102.65%	103.25%
Bin 4	0.00	38.29%	22,938	99.37%	100.00%
Bin 5	-0.89	24.17%	22,235	96.32%	97.05%
Bin 6	-1.79	6.06%	21,574	93.46%	94.34%
Bin 7	-2.74	0.62%	20,947	90.74%	91.85%
		Design	23,084		

- Base load has been calculated at 57th percentile
- Very similar weather response resulted in LFU multipliers similar to current values

Note: Recommended winter LFU values are calculated relative to 57th percentile-based reference load, based on aggregate TO design condition. Prior winter LFU was based on 50th percentile reference load.

New York ISO

Questions?

Our Mission & Vision

 \checkmark

Mission

Ensure power system reliability and competitive markets for New York in a clean energy future

Q

Vision

Working together with stakeholders to build the cleanest, most reliable electric system in the nation

Reference Slides

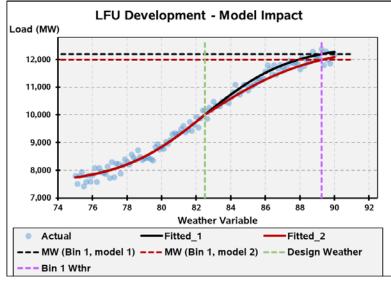
LFU Model Development

Two key steps:

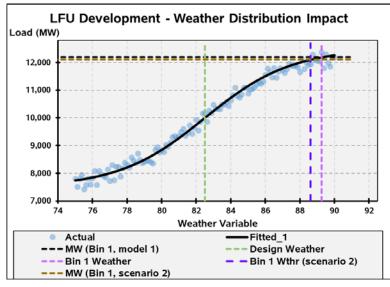
Determine Load Weather Relationship

- Identify weather variable (e.g., CTHI*) with predictive power to predict peak load
- Develop model to establish the load-weather relationship accounting for effects of calendar events (e.g., Month, Day of Week)
- From the relationship, find the predicted load at various weather values based on recent hot weather conditions

Apply Uncertainty due to Peak Producing (PP) Weather Variation


- Create design condition and bin scenarios from historical peak producing weather conditions
- Evaluate load levels at various weather conditions from the load curve developed in the previous step
- Find ratios of load levels at different weather conditions relative to the design condition and report with the associated probabilities

CTHI – Cumulative Temperature and Humidity Index



LFU Model Development - Sensitivity

Both steps are important contributors to the model results:

- Same weather distribution
- Same base load
- Updated load weather relationship

- Same load weather relationship
- Same base load
- Updated weather distribution

CTHI

Cumulative Temperature and Humidity Index (CTHI) computation:

<u>Step 1</u>: Calculate hourly *THI* as a weighted average of the dry bulb temperature (DB) and the wet bulb temperature (WB). There are 24 values per day:

For any day d,

 $(THI)_{di} = 0.6 \times (DB)_{di} + 0.4 \times (WB)_{di}$

Where i = 0, 1, 2, ..., 23 indicate the hours of a day

Step 2: Calculate the *THI_max* for a day. This is the maximum hourly THI value for that day:

 $(THI_max)_d = \max((THI)_{di})$

<u>Step 3:</u> Calculate the daily CTHI using a weighted average of three days (the day for which the CTHI is being calculated and the two preceding days):

 $(CTHI)_d = 0.7 \times (THI_max)_d + 0.2 \times (THI_max)_{d-1} + 0.1 \times (THI_max)_{d-2}$

Winter Variable

Winter Variable Computation:

Weighted average of daily minimum dry bulb temperature (DB_{min}), daily maximum dry bulb temperature (DB_{max}) and dry bulb temperature at 6 pm (DB_{6pm})

WinterVar = $55 - a \times DB_{min} + b \times DB_{max} + c \times DB_{6pm}$ where, a = 0.2, b = 0.5, c = 0.3

