
Internal Controllable Lines: Energy Market Updates

Michael Swider Senior Market Design Specialist

ICAP/MIWG July 15, 2022

Agenda

- Review of Energy Market Design for ICL
- Out-of-Market Payments
- Contingency Analysis
- Appendix: Previous Project Presentations

Review

Energy Market Design Concept presented June 7th

- Internal Controllable Lines (ICL) proposed to be optimized for Day-Ahead and real-time energy dispatch
- Today's presentation covers outstanding questions from stakeholders, including
 - Example of cost guarantees
 - Example of contingency analysis

Review, continued

- Some questions cannot be answered until the full physical and operating characteristics of ICL are known
 - The ability to perform cost-based ancillary services will be partly dependent upon the specific technologies chosen by the developer
 - "The use of several advanced functionalities must be coordinated in all timeframes, from design to real-time operations, between the parties and equipment involved."
 - For more details, see "HVDC Links in System Operations" published by the European Network of Transmission System Operators <u>www.entsoe.eu/publications/system-operations-reports</u>

Bid Production Cost Guarantees

- DAM and RT BPCG are paid to resources committed and dispatched by the NYISO that do not recover their as-bid or mitigated costs in their energy and ancillary service market revenues
- DAM BPCG based on the sum of hourly settlements in day
- To be eligible for DAM BPCG, bid mode cannot be "selfschedule" in any hour

Bid Production Cost Guarantees, cont.

- RT BPCG are paid to resources committed and dispatched by the NYISO as Out-of-Merit to ensure NYCA or local reliability
 - Resources committed Out-of-Merit for reliability are eligible for BPCG without regard to bid mode
- An ICL may also be eligible for Day-Ahead Margin Assurance Payments (DAMAP)
 - DAMAP protects a resource's Day-Ahead margin in the event it is scheduled out of economic merit order in real-time in response to a NYISO or Transmission Owner system security need

Example ICL Cost Guarantee

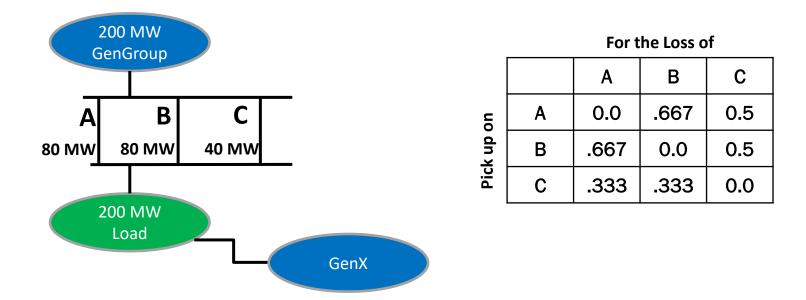
Simplified BPCG Scenario:

- An ICL bids at \$5 in the DAM and receives an energy schedule of 900 MW, and maintains that bid in the RTM
- In real-time NYISO instructs the ICL to operate at 1,000 MW via Out-of-Merit (OOM) action due to NYISO Reliability, and the LBMP spread is \$3
- In concept, and ignoring losses, the ICL would be eligible for a Real-Time BPCG payment calculated as follows:
 - Day RT BPCG Settlement (\$) = Max {Day RT Total Net Cost (\$)*, 0}
 - = (\$5/MWh \$3/MWh) * 100 MW
 - = \$200 per hour of OOM

Contingency Analysis

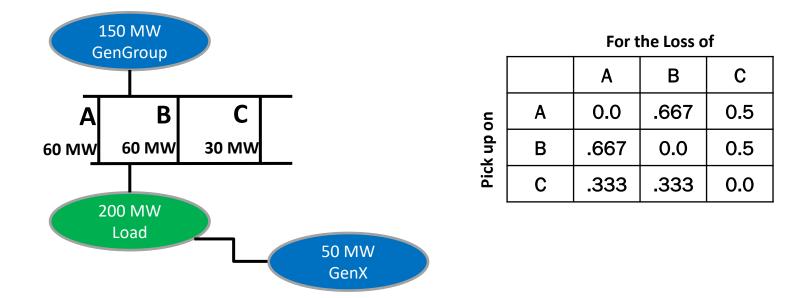
- In Security Constrained Unit Commitment and Dispatch, the system is secured against the normal NYISO contingency set so that secured facilities do not become overloaded
- Transmission violation if:
 - Pre-contingency loading exceeds Normal Rating
 - Post-contingency loading would exceed STE or LTE rating
- Sufficient system reserve capability must be available to meet load adjustments and contingencies

AC Power Distribution Case Assumptions


 Line Distribution Factors (DFAX) are used to determine the redistribution of power flows in a network when an element is taken out of service

In the examples:

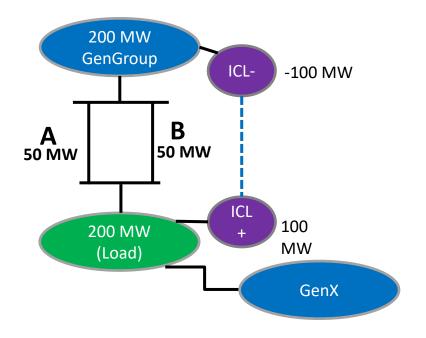
- Three parallel lines A/B/C are free flowing (AC)
- All lines are rated for 100 MW
- Lines A/B have the same impedances
- Line C has twice the impedance of Lines A/B
- All violations are in reference to pre-contingency loading
- GenX is more expensive than GenGroup


System Security (3 lines, with violation)

Contingency violation for loss of A or B. Resolve by dispatching GenX.

System Security (3 lines, secure)

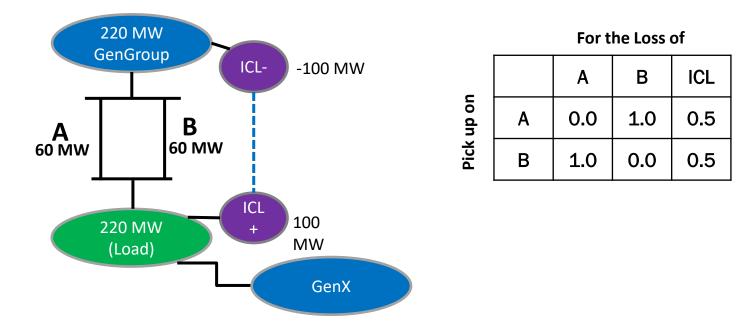
Secure for the loss of A, B or C. GenX is constrained "on" for security.



ICL Cases Assumptions

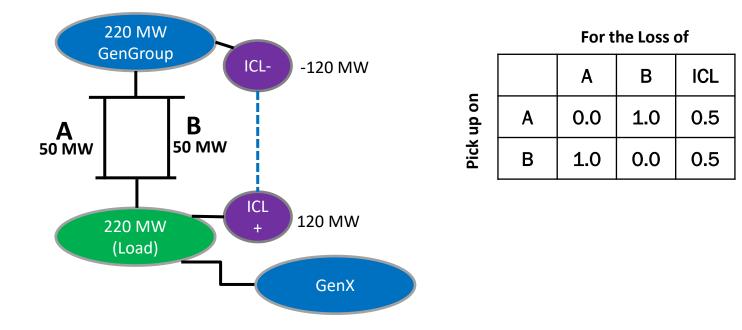
- ICL is economically committed and "on control"
- ICL maximum flow = 120MW

System Security (with ICL, secure)

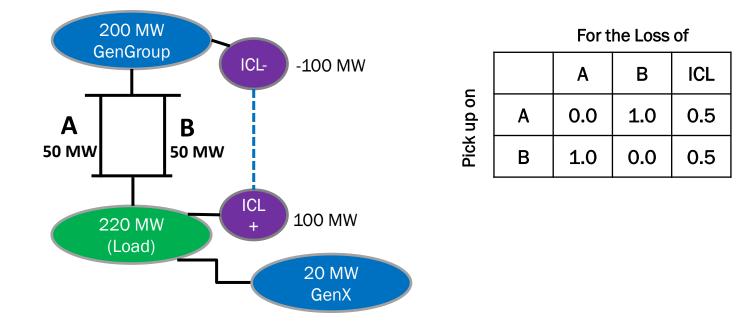


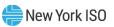
Pick up on		А	В	ICL
	А	0.0	1.0	0.5
	В	1.0	0.0	0.5

All lines secure for the loss of any single element.


System Security (Inc. load, multiple violations)

A and B cannot pick up the load securely for the loss of any single element.


System Security (ICL contingency)


ICL cannot pick up the load as A and B not secure for the loss of ICL

System Security (secure solution)

GenX needed to resolve the contingency violation. Least cost solution

Appendix

Previous Project Presentations

- 2/3/22: Kick-Off presentation discussing project scope and timeline
 - 2/3/22 MIWG Presentation
- 3/16/22: Energy Market Design Real-Time Scheduling and Settlement Examples
 - <u>3/16/22 MIWG Presentation</u>

4/19/22: Energy Market Two-Settlement Examples

- <u>4/19/22 MIWG Presentation</u>
- 6/07/22: Energy Market Design Proposal
 - 6/07/22 MIWG Presentation

Our Mission & Vision

 \checkmark

Mission

Ensure power system reliability and competitive markets for New York in a clean energy future

Vision

Working together with stakeholders to build the cleanest, most reliable electric system in the nation

