

Appendix D

2021-2040 System & Resource Outlook (The Outlook)

A Report from the New York Independent System Operator

September 22, 2022

Appendix D: Policy Case Capacity Expansion Assumptions Matrix

	Scenario #1 (S1)	Scenario #2 (S2)				
Scenario Description	S1 utilizes industry data and NYISO load forecasts, representing a future with high demand (57,144 MW winter peak and 208,679 GWh energy demand in 2040) and assumes less restrictions in renewable generation buildout options.	S2 utilizes various assumptions more closely aligned with the Climate Action Council Integration Analysis and represents a future with a moderate peak but a higher overall energy demand (42,301 MW winter peak and 235,731 GWh energy demand in 2040).				
Existing Generation	Consistent with Policy Case production cost simulation database, noting that the model simulates optimal retirement decisions which may differ from production cost database.	Consistent with Policy Case production cost simulation database, noting that the model simulates optimal retirement decisions which may differ from production cost database.				
Existing Generation FOM Costs	Fixed O&M costs for existing generators assumed per 2018 documentation for <u>EPA Platform. Chapter 4: Generating</u> <u>Resources</u> .	Fixed O&M costs for existing generators assumed per 2018 documentation for <u>EPA Platform. Chapter 4: Generating</u> <u>Resources</u> .				
Existing Generation Properties	Firm capacity (<i>i.e.</i> , UCAP) values based on 2016-2020 historic values, as used in <u>2020 RNA</u> base case.	Firm capacity (<i>i.e.</i> , UCAP) values based on 2016-2020 historic values, as used in <u>2020 RNA</u> base case.				
Chronological Representation	Each year is represented by 17 load blocks. For each year, 16 of the load blocks are represented by slicing hours of the year by season (Spring, Summer, Fall, Winter) and time of day (overnight, morning, afternoon, evening) and one load block per year represents a period of peak load hours. The seasonal/time of day blocks are based on <u>2018 NREL ReEDS</u> documentation and the peak load hours are based on the input hourly load data.	Each year is represented by 17 load blocks. For each year, 16 of the load blocks are represented by slicing hours of the year by season (Spring, Summer, Fall, Winter) and time of day (overnight, morning, afternoon, evening) and one load block per year represents a period of peak load hours. The seasonal/time of day blocks are based on 2018 NREL REEDS documentation and the peak load hours are based on the input hourly load data.				

Energy Demand & Profile	E <u>nerg</u> Repoi Energ	y Forecast t ("Gold Bc y, with moo 10 GW	based on 20 ok") <u>CLCPA</u> difications to BTM-PV by	021 Load Case Fo account 1 2030 CL0	& Cap <u>recast</u> for the CPA ta	Energy Forecast based on <u>Appendix G: Annex 2: Key</u> <u>Drivers and Outputs</u> of the Climate Action Council draft scoping plan Strategic Use of Low Carbon Fuels Scenario ("Scenario 2"), with modifications to account for the following:						
	•	Remova and Smooth 2040, m	al of impact f ed annual e naintaining th	from energ lectrificatione original	gy stoi on fore I foreca	 Removal of impact from electrolysis loads (<i>i.e.</i>, Hydrogen), and Adoption of "No End Use Flexibility" sensitivity. 						
	Annua	Energy in	the following	g table rep al Energy Fore	oresen	Annual Energy in the following table represents gross load.						
					(,	Outlook Scenario 52: Annual Energy Forecast (Gwn)					
	Year Base Shape BTM PV EV Electrification Annual Energy 2025 139,863 -7,483 1,922 10,402 144,704 2030 133,856 -11,068 5,488 22,633 150,909 2035 130,775 -11,983 10,322 43,452 172,566 2040 129,178 -12,454 16,361 75,594 208,679					Annual Energy 144,704 150,909 172,566 208,679	YearBTM PVAnnual Energy2025-7,631150,0472030-14,461164,2562035-17,223204,7022040-23,220235,731					
		Outloo	ok Scenario S1: Po	eak Forecasts	; (MW)		Outlook Scenario S2: Peak Forecasts (MW)					
		Year 2025 2030 2035 2040	Summer Peak 31,679 34,416 40,033 48,253	Winter 26,4 31,7 41,6 57,1 M-PV Capacity BTM PV 6,834 10,055 10,828 11,198	Peak 191 117 881 44 (MW)		Year Summer Peak Winter Peak 2025 29,612 21,758 2030 30,070 25,892 2035 34,402 35,093 2040 38,332 42,301 Outlook Scenario S2: BTM-PV Capacity (MW) Year BTM PV 2025 6,000 2030 9,523 2035 11,601 2040 15,764					

New Generation Types	Updated to include units with financial contracts, including state sponsored programs, per firm builds as noted in <u>large-scale renewable projects reported by NYSERDA</u> . Specific generation added to the <u>Contract Case</u> is assumed as firm builds in the Policy Case.	Updated to include units with financial contracts, including state sponsored programs, per firm builds as noted in <u>large-scale</u> <u>renewable projects reported by NYSERDA</u> . Specific generation added to the <u>Contract Case</u> is assumed as firm builds in the Policy Case.					
	Updated to include units to support achievement of state and federal policies, per <u>2021 EIA Energy Outlook</u> . Capacity expansion is limited to the NYCA, where each zone assumes one candidate generator per technology.	Updated to include units to support achievement of state and federal policies, per <u>2021 EIA Energy Outlook</u> . Capacity expansion is limited to the NYCA, where each zone assumes one candidate generator per technology.					
	Generation types from <u>2021 EIA Energy Outlook</u> Table 3 assumed in model:	Generation types from <u>2021 EIA Energy Outlook</u> Table 3 assumed in model:					
	land based wind	land based wind					
	offshore wind	offshore wind					
	utility PV	utility PV					
	4-hour battery storage	4-hour battery storage					
	In addition to the generator types noted above, Dispatchable Emission Free Resource (DEFR) has been added as a candidate technology type for years 2030 and beyond, with additional details below.	In addition to the generator types noted above, Dispatchable Emission Free Resource (DEFR) has been added as a candidate technology type for years 2030 and beyond, with additional details below.					

r	1												
New Generation Costs	tion Overnight (capital) costs, fixed O&M, and variable O&M costs assumed per <u>2021 EIA Energy Outlook</u> .						Overnight (capital) costs, fixed O&M, and variable O&M costs assumed per <u>2021 EIA Energy Outlook</u> .						
	Overnight costs, fixe Dispatchable Emiss represent a range of Dispatchable Emiss	Overnight costs, fixed O&M and variable O&M costs for Dispatchable Emission Free Resource (DEFR) options will represent a range of costs. Assumed costs for the Dispatchable Emission Free Resource (DEFR) options are:											
	Candidate Capacity Expansion Ca Technology	pital Cost Variable ((\$/kW) (\$/N	D&M Costs Fue IWh) (\$/n	el Cost nmBtu)	Heat Rate (mmBtu/MWh)	Candidate Capacity Expansion	Capital Co	st Variable	e O&M Costs	Fue	el Cost	Heat Rate	
	High Operating/Low Capital Medium Operating/Medium Capital Low Operating/High Capital	1,000 · · · · · · · · · · · · · · · · · ·	16 9 2	40 23 5	6.37 6.37 6.37	Medium Operating/Medium Capital	4,500	(3	9 9	(\$/m	23	6.37	
	Regional multipliers assumed for candidate generators by zone are based on the <u>2021 EIA Energy Outlook</u> and the Climate Action Council Integration Analysis Assumptions (Accessed Assumptions at <u>https://climate.ny.gov/Climate- Resources</u> December 10, 2021). Regional multipliers assumed for candidate battery storage units are based on the <u>2021 EIA Energy Outlook</u> and <u>2021-2025 Demand</u> <u>Curve Reset</u> .					Regional multipliers assumed for candidate generators by zone are based on the <u>2021 EIA Energy Outlook</u> and the Climate Action Council Integration Analysis Assumptions (Accessed Assumptions at <u>https://climate.ny.gov/Climate- Resources</u> December 10, 2021). Regional multipliers assumed for candidate battery storage units are based on the <u>2021 EIA Energy Outlook</u> and <u>2021-2025 Demand</u> <u>Curve Reset</u> . Regional multipliers for candidate Dispatchable Emission Free Resource (DEFR) units are based on regional multipliers for the combined cycle							
	Candidate Technology Base Zonal Multiplier for Capital Costs						technology option in the <u>2021 EIA Energy Outlook.</u>						
	Capital A Utility PV 1,248 1.2 Land based wind 1,846 0.5 Offshore wind 4,362 - 4-hour battery storage 1,165 1.0 LcHo DEFR 1,000 1 McMo DEFR 4,500 1 HcLo DEFR 8,000 1	A B C D 055 1.04 1.04 1.01 08 0.96 1.02 1.06 0 1.00 1.00 1.00 1 1 1 1 1 1 1 1	E F C 1.01 1.04 1.2 1.03 1.06 1.3 - - - 1.00 1.01 1.0 1 1 1 1 1 1 1 1 1	<u>5 H</u> 20 - 14 - 02 1.02 L 1 L 1 L 1	I J K - - - - - - - - - - - - - - - - - - 1.01 1.01 1.01 1.01 1.02 1.28 1.10 1	Candidate Technology Bar Capi Utility PV 1,2 Land based wind 1,8 Offshore wind 4,3 4-hour battery storage 1,1 McMo DEFR 4,5	A B 48 1.05 1.04 46 0.98 0.96 62 - - 65 1.00 1.00 00 1 1	Zor C D 1.04 1.01 1.02 1.06 - - 0 1.00 1.00 1 1 1	nal Multiplie E L 1.01 1 5 1.03 1 - 0 1.00 1 1	r for Capita F G 04 1.20 06 1.14 01 1.02 1 1.14	H 0 - 4 - 2 1.02 2 4 1.14 2	<u>I</u> <u>J</u> <u>K</u> 1.39 - 1.01 1.01 1.02 1.28 1.10 1.14 1.39 1.30	
	Technological optimism factors applied to capital costs per NREL <u>2020-ATB-data</u> .						Technological optimism factors applied to capital costs per NREL <u>2020-ATB-data</u> .						
	Candidate Technology Utility PV	Technology Op 2020 2025 1 0.81 1 0.00	timism Factors 2030 2035 0.62 0.59 0.70 0.75	by Year 2040 0.56		Candidate Techn Utility PV	ology Tech	nology Op 20 2025 . 0.81	timism Fa	actors b 2035 0.59	2040 0.56		
	Offshore wind	1 0.90	0.79 0.75	0.71		Offshore wind	1	. 0.90	0.79	0.75	0.71		
	4-hour battery storage	1 0.69	0.56 0.53	0.49		4-hour battery sto DEFR	rage 1	. 0.69	0.56	0.53 1	0.49		
										-			

New Generation Properties	Unit heat rates per <u>2021 EIA Energy Outlook</u> . The heat rates for the Dispatchable Emission Free Resource (DEFR) option are consistent with the combined cycle technology option in the <u>2021 EIA Energy Outlook</u> . The Dispatchable Emission Free Resource (DEFR) technologies are modeled as flexible resources with parameters consistent with the combined cycle technology option in the <u>2021 EIA Energy Outlook</u> .	Unit heat rates per <u>2021 EIA Energy Outlook</u> . The heat rates for the Dispatchable Emission Free Resource (DEFR) option are consistent with the combined cycle technology option in the <u>2021 EIA Energy Outlook</u> . The Dispatchable Emission Free Resource (DEFR) technologies are modeled as flexible resources with parameters consistent with the combined cycle technology option in the <u>2021 EIA Energy Outlook</u> .				
	Linear capacity expansion by technology-zone. Maximum allowable capacities are enforced for applicable generator types based on 2040 limitations, per <u>Appendix G: Annex 1:</u> <u>Inputs and Assumptions</u> of the Climate Action Council Draft Scoping Plan.	Linear capacity expansion by technology-zone. Maximum allowable capacities are enforced for applicable generator types based on 2040 limitations, per <u>Appendix G: Annex 1:</u> <u>Inputs and Assumptions</u> of the Climate Action Council Draft Scoping Plan. For land-based wind, the maximum allowable capacities enforced for model years 2021-2030 are based on 2030 limitations, per <u>Appendix G: Annex 1: Inputs and</u> <u>Assumptions</u> of the Climate Action Council Draft Scoping Plan.				
	The firm capacity (<i>i.e.</i> , UCAP) values for the Dispatchable Emission Free Resource (DEFR) option are consistent with the combined cycle technology option, based on default derating factor value from the NERC GADS <u>database</u> . Firm capacity values for Land based wind, offshore wind, utility PV, and battery storage units are modeled as having a declining capacity value as a function of that generator type's installed capacity. These values are based on the <u>New York's</u> <u>Evolution to a Zero Emission Power System "Grid in Evolution"</u> Study.	The firm capacity (<i>i.e.</i> , UCAP) values for the Dispatchable Emission Free Resource (DEFR) option are consistent with the combined cycle technology option, based on default derating factor value from the NERC GADS <u>database</u> . Firm capacity values for Land based wind, offshore wind, utility PV, and battery storage units are modeled as having a declining capacity value as a function of that generator type's installed capacity. These values are based on the <u>New York's</u> <u>Evolution to a Zero Emission Power System "Grid in Evolution"</u> Study.				
Capacity Reserve Margin	Capacity reserve margins (IRM and LCRs) for 2021-2022 Capability Year translated to UCAP equivalent for model years, per <u>NYISO ICAP to UCAP translation</u> . The minimum capacity reserve margin for the G-J Locality assumes a 10% reduction in its requirement due to future impacts from AC Transmission. The G-J and J Localities assume a 650 MW reduction in LCR requirements due to the Clean Path New York HVDC project.	Capacity reserve margins (IRM and LCRs) for 2021-2022 Capability Year translated to UCAP equivalent for model years, per <u>NYISO ICAP to UCAP translation</u> . The minimum capacity reserve margin for the G-J Locality assumes a 10% reduction in its requirement due to future impacts from AC Transmission. The G-J and J Localities assume a 650 MW reduction in LCR requirements due to the Clean Path New York HVDC project.				
	Minimum UCAP requirements by capacity zone are as follows:	 Minimum UCAP requirements by capacity zone are as follows: NYCA: 110.11% summer, 110.56% winter 				
	 Zones G-J: 84.43% summer, 83.69% winter model years 2021-2023, 74.43% summer, 73.69% winter model years 2024-2040 	 Zones G-J: 84.43% summer, 83.69% winter model years 2021-2023, 74.43% summer, 73.69% winter model years 2024-2040 				
	 Zone J: 78.14% summer, 78.31% winter 	 Zone J: 78.14% summer, 78.31% winter Zone K: 97.85% summer, 95.48% winter 				
	• Zone K: 97.85% summer, 95.48% winter					

Policy Targets and Other Model Constraints	CLCPA targets and other state policy mandates modeled include:	CLCPA targets and other state policy mandates modeled include:				
	• 6 GW BTM-PV by 2025	• 6 GW BTM-PV by 2025				
oonstraints	 70% renewable energy by 2030 	 70% renewable energy by 2030 				
	 3 GW energy storage by 2030 	 3 GW energy storage by 2030 				
	• 10 GW BTM-PV by 2030	• 10 GW BTM-PV by 2030				
	9 GW offshore wind by 2035	9 GW offshore wind by 2035				
	• 100% emission free grid by 2040	• 100% emission free grid by 2040				
	As noted above, maximum allowable capacities are enforced for applicable generator types by zone based on 2040 limitations, per <u>Appendix G: Annex 1: Inputs and Assumptions</u> of the Climate Action Council Draft Scoping Plan.	As noted above, maximum allowable capacities are enforced for applicable generator types by zone based on 2040 limitations, per <u>Appendix G: Annex 1: Inputs and Assumptions</u> of the Climate Action Council Draft Scoping Plan. For land- based wind, the maximum allowable capacities enforced for model years 2021-2030 are based on 2030 limitations, per <u>Appendix G: Annex 1: Inputs and Assumptions</u> of the Climate Action Council Draft Scoping Plan.				