

Impact of High Behind the Meter (BTM) Solar on Load Forecast Uncertainty (LFU)

Riaz Khan

Demand Forecasting & Analysis

ESPWG/LFTF

February 23, 2023

Agenda

- Impact of Behind-the-Meter (BTM) Solar on the Peak Load Hour
- Impact of BTM Solar on Load Forecast Uncertainty (LFU)
- Questions & Discussion

Background, Motivation and Summary Results

Background & Motivation

- Load patterns are continuing to evolve across the New York Control Area (NYCA)
- Increased penetration of BTM Solar is impacting the peak load
 - Shifting the peak load towards later hours
 - Decreasing the peak MW
- Developing Load Forecast Uncertainty (LFU) involves modeling the peak
- The variation of model structure, along with changes in MW load levels may impact the LFU values
- Goal: Examine what higher levels of BTM Solar impact will have on regional peak load hour characteristics and LFU models in the future

BTM Solar Scenarios

- Analyses were performed under three BTM solar scenarios
- Under each scenario, net load was calculated by subtracting corresponding solar level at that scenario capacity from the gross load
- The scenario net loads were analyzed for peak hour and load forecast uncertainty (LFU)

BTM solar scenarios:

Scenario 1	BTM Nameplate Capacity 7,000 MW at NYCA level
	Projected to reach by early 2026 (GB 2022)
Scenario 2	BTM Nameplate Capacity 8,500 MW at NYCA level
Scenario 2	Projected to reach by the end of 2027 (GB 2022)
Cooperio 2	BTM Nameplate Capacity 10,000 MW at NYCA level
Scenario 3	Projected to reach by late 2029 (GB 2022)

Summary Results

Δ*LFU Delta*

AE						
	Scenario 1 Scenario 2 Scenario 3					
Bin 1	1.85%	1.96%	2.04%			
Bin 2	0.84%	0.88%	0.91%			
Bin 3	0.27% 0.27%		0.27%			
	-	ll .				

	•••				
	Scenario 1	Scenario 2	Scenario 3		
Bin 1	0.08%	0.45%	0.80%		
Bin 2	0.04%	0.23%	0.41%		
Bin 3	0.01%	0.07%	0.12%		

K						
	Scenario 1 Scenario 2 Scenario 3					
Bin 1	1.52%	2.44%	2.07%			
Bin 2	0.82%	1.30%	1.13%			
Bin 3	0.33%	0.51%	0.45%			

	FG					
	Scenario 1 Scenario 2 Scenario 3					
Bin 1	2.73%	2.90%	2.90%			
Bin 2	1.36%	1.43%	1.42%			
Bin 3	0.48%	0.49%	0.48%			
		_				
		J				
	Scenario 1	Scenario 2	Scenario 3			
Bin 1	0.28%	0.31%	0.43%			

0.14%

0.04%

0.20%

0.05%

0.13%

0.03%

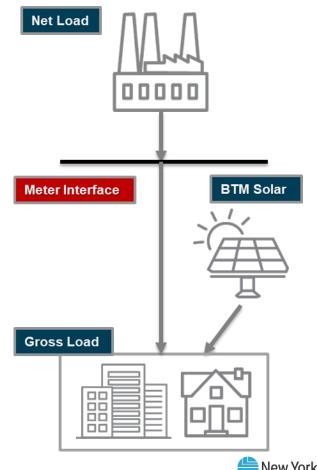
Bin 2

Bin 3

- Overall, the peak hour shifts towards later hours
- Overall, upper bins LFU values increase with the increased level of BTM solar
- In general,

$$\Delta$$
 @ Bin 1 > Δ @ Bin 2 > Δ @ Bin 3
 Δ @ Scen 3 > Δ @ Scen 2 > Δ @ Scen 3

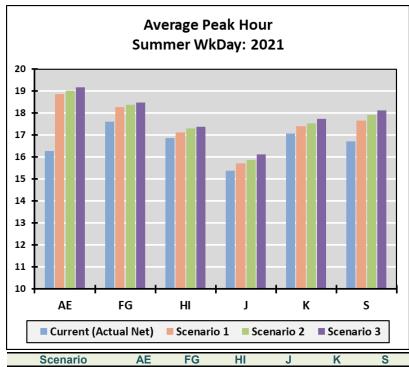
- For Bin 1, Scenario 3,
 - largest change is observed in Zones F&G (~3%)
 - ~2% change for Zones A-E and Zone K
 - small change in Zones H&I and Zone J (less than 1%)
- The upward change is primarily driven by reduced reference load
- All changes are relative to current LFU values



General Methodology

Methodology

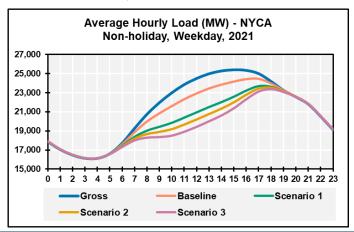
- NYISO loads in different LFU modeling areas were collected from DSS
- NYISO DSS database gives the "net" load
- A gross load was derived by adding the estimated actual BTM Solar to the net load
- Load shape and peak producing hours were analyzed using the gross and net loads, under different BTM solar scenarios
- Analysis centered on most recent LFU model years (2018, 2019 and 2021)

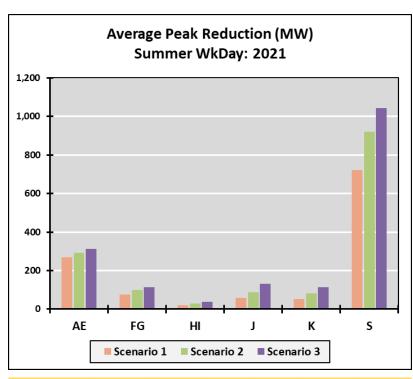


Peak Hour Shifting, Peak Reduction

Peak Hour Shifting

- Peak shifting analysis was performed by examining the average peak hour (calculated as the average of all summer weekday peak hours)
- A general trend of peak hour shifting (towards evening) was observed across all LFU areas with increased BTM solar
- The more the BTM solar, more shifting of peak




Scenario	AE	FG	HI	J	K	S
Current (Actual Net)	16.3	17.6	16.9	15.4	17.1	16.7
Scenario 1	18.9	18.3	17.1	15.7	17.4	17.7
Scenario 2	19.0	18.4	17.3	15.9	17.5	17.9
Scenario 3	19.2	18.5	17.4	16.1	17.7	18.1

Peak Reduction

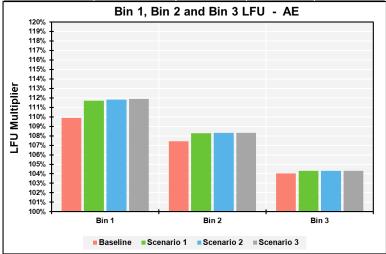
- With the increase of BTM solar, the peak reduces
- LFU area AE has the highest reduction (270~300 MW across three scenarios)
 - Higher BTM capacity, earlier baseline peak
- At the NYCA level, the estimated peak reduction is about 1,000 MW in scenario 3

MW Peak Change (relative to baseline)						
Scenario AE FG HI J K						
Scenario 1	269	75	19	58	53	720
Scenario 2	291	101	29	87	81	921
Scenario 3	312	114	38	132	114	1,043

Impact on Summer LFU values

Methodology

- LFU multipliers were calculated for each BTM scenario and current net load
- For each scenario, net load was calculated by subtracting scenario BTM solar from the gross load
- LFU models were developed for the scenario net loads
- For each LFU area, a base model structure was developed for the current summer peak loads
- The base model structure and data were kept unchanged across all scenarios for consistency
- All models were found reasonably well in terms of overall fit (R-sq)


Notes on Base Model

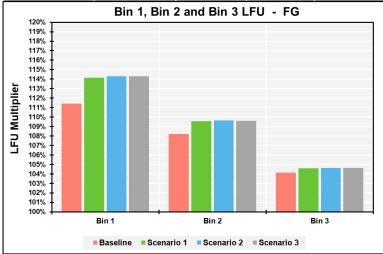
- Years: 2018, 2019, 2021
- Months: Jun Aug
- Weekends: Yes
- Outliers removed
- Stepwise regression was performed to determine the "best" model for the base case

BTM Solar Impact on LFU: Zones A-E

	Baseline	Scenario 1	Scenario 2	Scenario 3
Bin 1	113.18%	115.03%	115.14%	115.22%
Bin 2	109.25%	110.09%	110.13%	110.16%
Bin 3	104.80%	105.07%	105.07%	105.07%

AE	Baseline	Scenario 1	Scenario 2	Scenario 3
BTM Capacity (MW)	1,734	3,365	4,160	4,934
Reference Load (MW)	9,254	8,858	8,800	8,758
Reference Load relative to baseline (MW)		-396	-454	-495

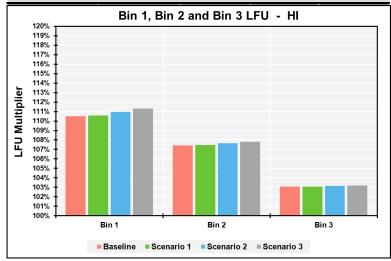
- Due to increased BTM solar, both reference load and loads at other bins decrease.
- Reduction in upper bins and reference load have opposite effects.


•
$$LFU_{bin_n} = \frac{MW_{bin_n}}{MW_{ref}}$$

- Reference load reduces more relative to upper bin load
- LFU increase for reduction in reference load overpowers LFU decrease for decrease of upper bin load
- About +1~2% of LFU change in upper two bins. Negligible change in bin 3.

BTM Solar Impact on LFU: Zones F&G

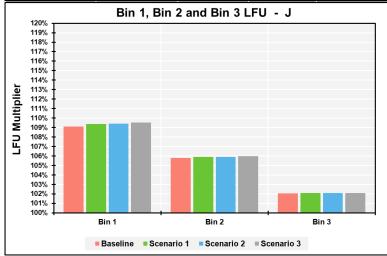
	Baseline	Scenario 1	Scenario 2	Scenario 3
Bin 1	111.42%	114.15%	114.32%	114.32%
Bin 2	108.20%	109.56%	109.63%	109.62%
Bin 3	104.14%	104.62%	104.63%	104.62%


FG	Baseline	Scenario 1	Scenario 2	Scenario 3
BTM Capacity (MW)	1,158	1,827	2,203	2,525
Reference Load (MW)	4,543	4,379	4,351	4,329
Reference Load relative to b	-164	-192	-214	

- Reference load decrease is about 2~2.5 times the load decrease in upper bins
- Higher relative decrease of reference load caused increase in LFU in the upper bins
 - 2.7~2.9% in bin 1
 - about 1.5% in bin 2
 - about 0.5% in bin 3

BTM Solar Impact on LFU: Zones H&I

	Baseline	Scenario 1	Scenario 2	Scenario 3
Bin 1	110.50%	110.58%	110.95%	111.30%
Bin 2	107.41%	107.45%	107.64%	107.82%
Bin 3	103.08%	103.09%	103.15%	103.20%

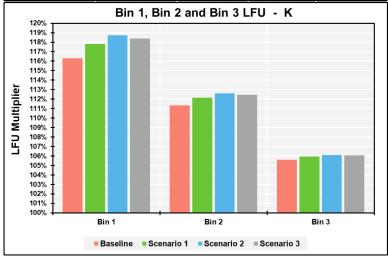

HI	Baseline	Scenario 1	Scenario 2	Scenario 3
BTM Capacity (MW)	140	210	262	314
Reference Load (MW)	1,977	1,946	1,935	1,926
Reference Load relative to b	aseline (MW)	-31	-42	-51

- Similar decrease in reference and upper bin loads
- Almost no change in upper LFUs in scenario 1
- Modest change in upper two bins
 - Maximum change 0.8% (scenario 3, bin 1)

BTM Solar Impact on LFU: Zone J

	Baseline	Scenario 1	Scenario 2	Scenario 3		
Bin 1	109.10%	109.38%	109.41%	109.53%		
Bin 2	105.78%	105.91%	105.92%	105.98%		
Bin 3	102.05%	102.08%	102.09%	102.10%		

woaest	. cnang	e in the	ELFUS
			_


- Maximum change 0.4% (scenario 3, bin 1)
- Reference load decrease is larger than upper bins load decrease (~120% to 150%)
- However, since relative changes are small (for higher
 Zone J load level), the resulting change in LFU is modest

J	Baseline	Scenario 1	Scenario 2	Scenario 3
BTM Capacity (MW)	367	499	603	758
Reference Load (MW)	10,658	10,591	10,556	10,508
Reference Load relative to b	aseline (MW)	-67	-102	-150

BTM Solar Impact on LFU: Zone K

	Baseline	Scenario 1	Scenario 2	Scenario 3
Bin 1	116.30%	117.82%	118.74%	118.37%
Bin 2	111.32%	112.14%	112.62%	112.45%
Bin 3	105.60%	105.93%	106.11%	106.05%

K	Baseline	Scenario 1	Scenario 2	Scenario 3		
BTM Capacity (MW)	870	1,099	1,272	1,469		
Reference Load (MW)	5,144	5,082	5,046	5,007		
Reference Load relative to b	aseline (MW)	-62	-98	-138		

- Relatively higher MW change of reference load with respect to upper bin loads
 - Bin 1 LFU increases by about 1.5~2.5%
 - Bin 2 LFU increases by about 0.8~1.3%
 - Bin 3 LFU increases by about 0.5%

Questions

Our Mission & Vision

Mission

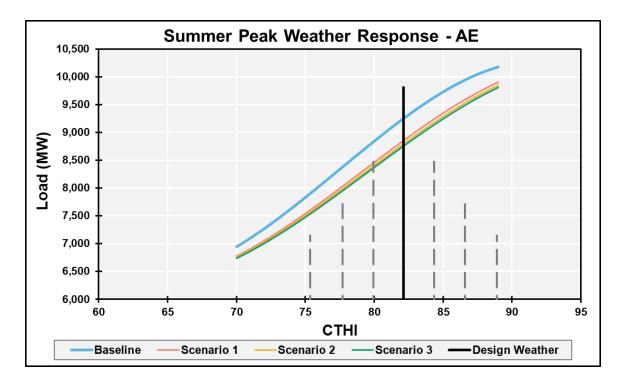
Ensure power system reliability and competitive markets for New York in a clean energy future

Q

Vision

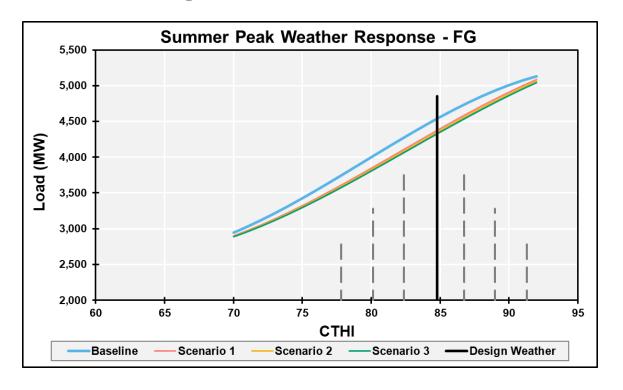
Working together with stakeholders to build the cleanest, most reliable electric system in the nation

Reference Slides

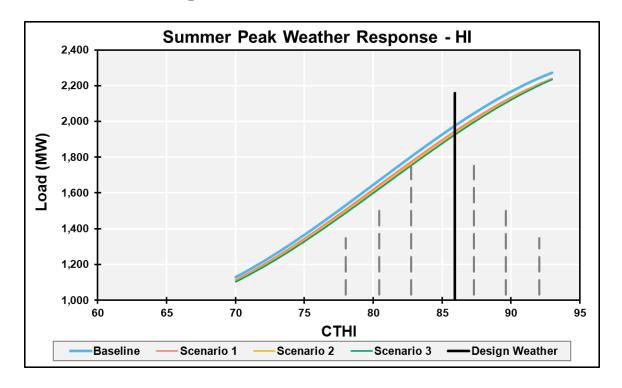


LFU at Different Scenarios

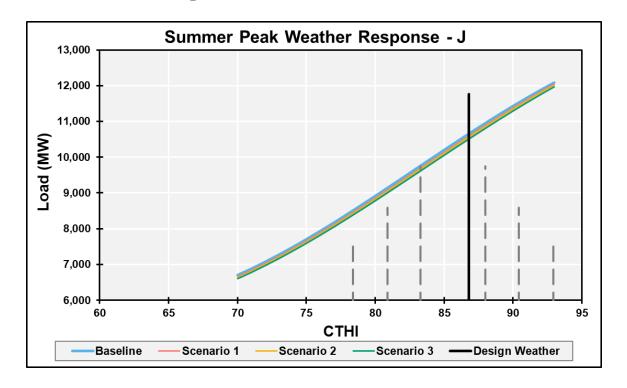
		AE									FG		
	Baseline	Scenario 1	Scenario 2	Scenario 3	}	_			Baseline		Scenario 1	Scenario) 2
Bin 1	113.18%	115.03%	115.14%	115.22%			В	in 1	111.42%)	114.15%	114.32	%
Bin 2	109.25%	110.09%	110.13%	110.16%			В	in 2	108.20%)	109.56%	109.63	%
Bin 3	104.80%	105.07%	105.07%	105.07%			В	in 3	104.14%)	104.62%	104.63	%
						Ī					_		
		HI									J		
	Baseline	Scenario 1	Scenario 2	Scenario 3	}				Baseline		Scenario 1	Scenario) 2
Bin 1	110.50%	110.58%	110.95%	111.30%			В	in 1	109.10%)	109.38%	109.41	%
Bin 2	107.41%	107.45%	107.64%	107.82%			В	in 2	105.78%	,	105.91%	105.92	%
Bin 3	103.08%	103.09%	103.15%	103.20%			В	in 3	102.05%)	102.08%	102.09	%
		K											
	Baseline	Scenario 1	Scenario 2	Scenario 3	}								
Bin 1	116.30%	117.82%	118.74%	118.37%									
Bin 2	111.32%	112.14%	112.62%	112.45%									
Bin 3	105.60%	105.93%	106.11%	106.05%									



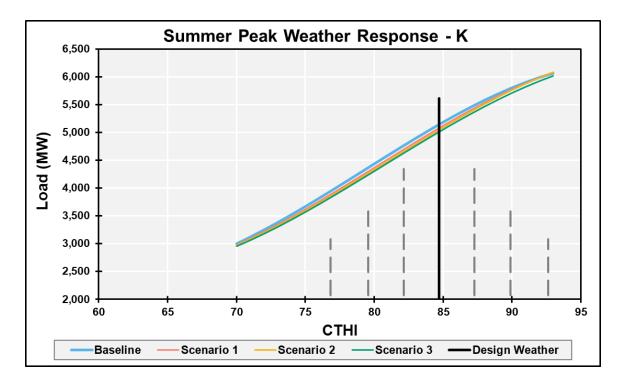
Weather Response: Zones A-E



Weather Response: Zones F&G



Weather Response: Zones H&I



Weather Response: Zone J

Weather Response: Zone K

