

Long Island Offshore Wind Export PPTN: Independent Cost Estimates, Scenario Results, Avoided Cost Methodology

Ross Altman Manager, Public Policy & Interregional Planning

Jon Sawyer Director, Grid Operations Jason Frasier Manager, Economic Planning

ESPWG/TPAS March 24, 2023

©COPYRIGHT NYISO 2023. ALL RIGHTS RESERVED

Agenda

- Metrics Overview
- Independent Capital Cost Estimates
- Barrett Valley Stream Scenario
- Avoided Cost Methodology
- Results Follow-Up
- Next Steps

©COPYRIGHT NYISO 2023. ALL RIGHTS RESERVED

Evaluation Metrics Overview

© COPYRIGHT NYISO 2023. ALL RIGHTS RESERVED.

Long Island Offshore Wind Export PPTN

PSC Order for Public Policy Transmission Need (PPTN):

- CLCPA constitutes a Public Policy Requirement driving the need for transmission to increase the export capability from Long Island to the rest of New York State to ensure full output of at least 3,000 MW of offshore wind interconnected to Long Island
- Add at least one bulk transmission intertie cable connecting between Long Island and the rest of the New York Control Area and additional transmission expansion or upgrades, as necessary

 To pass the Viability & Sufficiency Assessment, each project must provide full output of at least 3,000 MW of offshore wind connected to Long Island under line outage conditions

 Also, assuming 6,000 MW of offshore wind connected to New York City to achieve the CLCPA goal of 9,000 MW by 2035

⊖ New York ISO

Evaluation Metrics

- Transfer Analysis & Cost per MW
- Expandability Electrical & Physical
- Operability
- Production Cost
- Performance
- Capacity Benefits
- Capital Cost Estimate
- Voluntary Cost Cap
- Property Rights & Routing
- Potential Construction Delays
- Other Considerations: Metrics prescribed in PSC Order, Interconnection Studies, Consequences for Other Regions, Impact on Wholesale Electricity Markets, Integration with Local Transmission Owner Plans

*Results for metrics in red will be discussed today

©COPYRIGHT NYISO 2023. ALL RIGHTS RESERVED

Independent Capital Cost Estimates

© COPYRIGHT NYISO 2023. ALL RIGHTS RESERVED.

Independent Capital Cost

- NYISO's consultant, SECO, developed independent cost estimates for each proposed project, considering required material and labor cost by equipment, engineering and design work, permitting, site acquisition, procurement and construction work, and commissioning
- Application of a consistent estimation approach allows for an impartial comparison of the potential costs to build diverse transmission projects
- Primary cost drivers:
 - Terrestrial and submarine cable length
 - HVDC converter systems and PARs
 - Scope of the project (i.e., number/size of transmission facilities)

Independent Capital Cost Assumptions

- Independent cost estimates were applied uniformly to all projects and based:
 - proposed project design,
 - good utility practice,
 - overnight capital costs using 2022 pricing, and
 - 20% contingency on overnight capital costs.
- Accuracy range as per AACE Class 4 Estimating Practices (-15% to -30%) and (+20% to +50%)

©COPYRIGHT NYISO 2023. ALL RIGHTS RESERVED

Independent Capital Cost Assumptions

- Pricing for major equipment (*e.g.*, transformers, circuit breakers, GIS equipment, transmission cables, VSC HVDC Systems) is based on budgetary quotes from equipment suppliers
- Preliminary NUF costs may be updated as System Impact Study results become available during the evaluation
- Detailed project specific assumptions are listed in the detailed cost estimate sheets included with meeting materials

New York ISO

Independent Capital Cost Estimates

Project	Independent Estimate of Capital Costs (\$M)
T035 - LSPower	\$5,998
T036 - NextEra Core 1	\$4,367
T037 - NextEra Core 2	\$4,886
T038 - NextEra Core 3	\$5,461
T039 - NextEra Core 4	\$5,729
T040 - NextEra Core 5	\$4,695
T041 - NextEra Core 6	\$5,585
T042 - NextEra Core 7	\$14,881
T043 - NextEra Enh 1	\$10,051
T044 - NextEra Enh 2	\$17,466
T047 - Propel Base 1	\$2,558
T048 - Propel Base 2	\$2,177
T049 - Propel Base 3	\$2,937
T051 - Propel Alt 5	\$3,332
T052 - Propel Alt 6	\$4,728
T053 - Propel Alt 7	\$5,570

©COPYRIGHT NYISO 2023. ALL RIGHTS RESERVED

DRAFT - FOR DISCUSSION PURPOSES ONLY

Barrett – Valley Stream Scenario Results

© COPYRIGHT NYISO 2023. ALL RIGHTS RESERVED.

Barrett-Valley Stream Scenario

- Empire Wind II is an up to 1,350 MW NYSERDA-awarded OSW project connecting to Barrett – Valley Stream 138 kV lines
- Barrett-Valley Stream, Barrett-Freeport, and East Garden City-Valley Stream 138 kV paths were relaxed in the Baseline and Policy cases under the assumption that the OSW developers would address these constraints as part of their interconnection request
 - Empire Wind II accepted cost for local SUFs and rejected SDUs in CY21, leaving the constraints unresolved
- While proposed transmission projects were not required to address these constraints to satisfy the sufficiency criteria under the Viability and Sufficient Assessment, the NYISO noted that certain constraints could be considered in the evaluation
- A scenario case was developed based on the Policy Case that models with these constraints. The analysis focus on production cost & performance, operability, and avoided cost

©COPYRIGHT NYISO 2023. ALL RIGHTS RESERVED

Production Cost & Performance Results

🛑 New York ISO

© COPYRIGHT NYISO 2023. ALL RIGHTS RESERVED.

Production Cost Savings

			Policy Case Estimated 20-Year Results	Updated Barrett-Valley Stream Policy Case Results Estimated 20-Year Results							
Project Code	Project Developer	Project Name	Production Cost Savings (2022 \$M)	Production Cost Savings (2022 \$M)	LI OSW Curtailment Reduction (TWh)*	LI OSW Curtailment Reduction (%)	LI Net Import Change (%)	NY CO2 Reduction (mmTons)**			
T035	LS Power	Atlantic Gateway	340	906	55.4	93%	-41%	2.9			
T036	NextEra	New York Renewable Connect - Core 1	303	291	20.2	34%	-9%	-0.1			
T037	NextEra	New York Renewable Connect - Core 2	364	378	21.4	36%	-10%	-0.8			
T038	NextEra	New York Renewable Connect - Core 3	380	402	23.6	40%	-12%	-0.4			
T039	NextEra	New York Renewable Connect - Core 4	305	307	22.1	37%	-10%	-0.3			
T040	NextEra	New York Renewable Connect - Core 5	339	332	21.8	37%	-11%	0.2			
T041	NextEra	New York Renewable Connect - Core 6	291	308	23.3	39%	-13%	1.0			
T042	NextEra	New York Renewable Connect - Core 7	291	308	23.3	39%	-13%	1.0			
T043	NextEra	New York Renewable Connect - Enhanced 1	458	745	41.4	70%	-26%	0.9			
T044	NextEra	New York Renewable Connect - Enhanced 2	441	582	34.0	57%	-22%	-1.7			
T047	NYPA/NY Transco	Propel NY Energy - Base Solution 1	337	568	34.7	58%	-22%	0.6			
T048	NYPA/NY Transco	Propel NY Energy - Base Solution 2	313	513	31.3	53%	-22%	1.0			
T049	NYPA/NY Transco	Propel NY Energy - Base Solution 3	344	902	54.3	91%	-39%	2.4			
T051	NYPA/NY Transco	Propel NY Energy - Alternate Solution 5	341	609	38.4	64%	-25%	1.3			
T052	NYPA/NY Transco	Propel NY Energy - Alternate Solution 6	352	618	38.3	64%	-25%	1.1			
T053	NYPA/NY Transco	Propel NY Energy - Alternate Solution 7	360	622	37.7	63%	-26%	1.3			

*Total pre-project case has 59.5 TWh GWh of LI OSW curtailment, approximatley 3.2 TWh per year

**2022 electric sector CO2 emissions were approximatley 30 million tons per RGGI values reported to EPA

Why do Production Cost Savings increase?

- Barrett-Valley Stream 138 kV path constraint is one of the most binding constraints in New York under an OSW Policy scenario
- The increase in production cost savings in the Barrett–Valley Stream scenario cases (when compared to the scenario pre-project case) is primarily driven by increased output from OSW resources connecting to Long Island

Long Island OSW Curtailment Change

- Projects with high reduction in curtailment achieve higher production cost savings
- Larger reduction in curtailments occurs in projects that have specific upgrades to Barrett 138 kV bus

©COPYRIGHT NYISO 2023. ALL RIGHTS RESERVED

CO₂ Emissions Change

20-Year Estima	ated CO2 E	missions (I	Million Tons)		
Case	LI	NYC	NYISO	Region *	
Policy Case: Barrett - VS	24	72	179	8,072	
T035 - LS Power	(2)	(0)	(3)	(16)	
T036 - NextEra Core 1	(3)	1	0	(1)	
T037 - NextEra Core 2	(3)	1	1	(3)	ha
T038 - NextEra Core 3	(3)	1	0	(3)	ng
T039 - NextEra Core 4	(3)	1	0	(5)	e T
T040 - NextEra Core 5	(3)	1	(0)	(2)	Pon
T041 - NextEra Core 6	(3)	0	(1)	(2)	P
T042 - NextEra Core 7	(3)	0	(1)	(2)	olio
T043 - NextEra Enh 1	(2)	0	(1)	(11)	ي ج
T044 - NextEra Enh 2	(2)	1	2	(10)	Jas
T047 - Propel Base 1	(2)	1	(1)	(14)	ē (
T048 - Propel Base 2	(2)	0	(1)	(9)	B
T049 - Propel Base 3	(2)	0	(2)	(20)	
T051 - Propel Alt 5	(2)	1	(1)	(9)	ns
T052 - Propel Alt 6	(2)	1	(1)	(9)	
T053 - Propel Alt 7	(2)	0	(1)	(9)	

- In ALL project simulations regional CO2 emissions are reduced.
- The NYISO production cost database includes detailed generation and transmission models for NYISO and adjacent regions (ISO-NE, PJM, IESO, and HQ). Consistent with today's market operation, external generation can dispatch to sell energy in the NYISO market and vice versa.
- In some project simulations, NYISO thermal generation increases dispatch to offset more expensive and higher CO2 producing external generation. This can result in an increase in CO2 emissions within New York but an overall decrease regionally.

Long Island Import/Export

2040 Total Import/Export

0000	2040 Long Island Ir	nport/Export (GWh)
Case	Import	Export
Policy Case + B-VS	7,377	2,692
T035 - LS Power	7,520	5,920
T036 - NextEra Core 1	7,813	4,474
T037 - NextEra Core 2	7,763	4,484
T038 - NextEra Core 3	7,732	4,670
T039 - NextEra Core 4	7,900	4,637
T040 - NextEra Core 5	7,763	4,636
T041 - NextEra Core 6	7,702	4,713
T042 - NextEra Core 7	7,702	4,713
T043 - NextEra Enh 1	7,826	5,461
T044 - NextEra Enh 2	7,795	4,847
T047 - Propel Base 1	7,640	4,928
T048 - Propel Base 2	7,599	4,897
T049 - Propel Base 3	7,566	5,737
T051 - Propel Alt 5	7,645	5,224
T052 - Propel Alt 6	7,650	5,297
T053 - Propel Alt 7	7,572	5,296

2040 Delta Import/Export

Casa	2040 Long Island Ir	nport/Export (GWh)	
Case	Import	Export	
Policy Case + B-VS	7,377	2,692	
T035 - LS Power	143	3,229	
T036 - NextEra Core 1	436	1,782	
T037 - NextEra Core 2	385	1,792	<u>0</u>
T038 - NextEra Core 3	355	1,978	ha
T039 - NextEra Core 4	523	1,945	Jge
T040 - NextEra Core 5	385	1,944	F
T041 - NextEra Core 6	325	2,021	Ξ
T042 - NextEra Core 7	325	2,021	<u>bo</u>
T043 - NextEra Enh 1	448	2,770	2
T044 - NextEra Enh 2	417	2,155	Б Тр
T047 - Propel Base 1	262	2,236	Š
T048 - Propel Base 2	222	2,206	ିଜ
T049 - Propel Base 3	188	3,045	₹
T051 - Propel Alt 5	268	2,532	3
T052 - Propel Alt 6	272	2,605	
T053 - Propel Alt 7	195	2,604	

©COPYRIGHT NYISO 2023. ALL RIGHTS RESERVED

NYCA Import/Export by Region

2040 Total Import/Export

0	204	0 Export	Energy (GWh)	204) Import	Energy (GWh)
Case	HQ	IESO	PJM	ISONE	HQ	IESO	PJM	ISONE
Policy Case + B-VS	11	6,587	4,141	3,277	16,377	1,283	15,825	8,255
T035	11	6,675	4,418	3,829	15,946	1,222	15,634	8,032
T036	11	6,651	4,287	3,642	16,117	1,261	15,963	8,225
T037	11	6,633	4,302	3,619	16,124	1,282	15,895	8,258
T038	11	6,651	4,307	3,616	16,111	1,271	15,863	8,187
T039	11	6,646	4,356	3,676	16,114	1,299	15,770	8,018
T040	11	6,645	4,305	3,603	16,108	1,257	15,891	8,155
T041	11	6,646	4,323	3,627	16,085	1,259	15,882	8,190
T042	11	6,646	4,323	3,627	16,085	1,259	15,882	8,190
T043	11	6,670	4,416	3,849	16,021	1,257	15,594	8,122
T044	11	6,684	4,411	3,778	16,172	1,283	15,543	8,139
T047	11	6,654	4,329	3,693	16,096	1,257	15,657	8,098
T048	11	6,667	4,340	3,728	16,114	1,252	15,772	8,083
T049	11	6,661	4,392	3,826	15,991	1,247	15,512	8,005
T051	11	6,661	4,355	3,725	16,055	1,258	15,668	8,077
T052	11	6,668	4,368	3,734	16,030	1,253	15,721	8,092
T053	11	6,665	4,365	3,742	16,040	1,235	15,753	8,094

2040 Delta Import/Export

C 2222	204	0 Export	Energy (GWh)	2040 Import Energy (GWh)				
Case	HQ	IESO	PJM	ISONE	HQ	IESO	PJM	ISONE	
Policy Case + B-VS	11	6,587	4,141	3,277	16,377	1,283	15,825	8,255	
T035	0	87	278	553	(431)	(60)	(192)	(223)	
T036	0	64	146	365	(260)	(22)	138	(30)	
T037	(0)	46	161	342	(253)	(0)	70	3	0
T038	(0)	64	167	339	(267)	(11)	38	(69)	hai
T039	(0)	59	216	400	(263)	16	(55)	(237)	ы Ве
T040	0	58	164	327	(270)	(26)	66	(100)	T
T041	(0)	59	182	350	(293)	(24)	57	(65)	Ξ
T042	(0)	59	182	350	(293)	(24)	57	(65)	B
T043	0	82	275	572	(356)	(26)	(231)	(133)	3
T044	0	97	270	502	(205)	1	(282)	(116)	¥
T047	0	67	188	417	(281)	(26)	(168)	(157)	<u>ě</u>
T048	0	80	199	452	(263)	(31)	(53)	(173)	ିଜ
T049	0	73	252	550	(386)	(35)	(313)	(250)	₹
T051	0	73	214	449	(322)	(25)	(157)	(178)	2
T052	0	81	227	457	(347)	(30)	(104)	(163)	
T053	0	77	224	465	(338)	(47)	(72)	(161)	

Key Takeaway: In 2040, the proposed projects tend to increase exports and decrease imports to/from neighboring regions. For more information, 20-year total and delta results are in slide 39.

Key Findings

- Barrett-Valley Stream path will be one of the most congested paths in the system, which causes around 2.3 TWh of curtailment of the Empire II Wind project alone in the pre-project case
- Production cost savings are higher in the Barrett-Valley Stream Scenario compared to the Baseline and Policy Cases due to additional curtailment of OSW injections into Long Island near the Barrett substation
- Projects that propose transmission facilities around the Barrett 138 kV bus (T035, T043 and T049) produce the highest savings in this scenario

Operability

[©] COPYRIGHT NYISO 2023. ALL RIGHTS RESERVED.

Flexibility for Outages Methodology

• Mimics Business Management System (BMS) Dispatch in Control Center Operations

- Does not include Bid information
- Assumes identical Bids and all generators available

• Optimal Transfer Analysis for Long Island import and export capability

- Starting point of CY21 ATBA Transfer Summer Peak case
- All lines 69 kV and above in Zone K, all lines 115 kV and above in Zones F-I, and all NYISO BPTF lines are secured to Normal Ratings
- Generators are dispatch independently (not proportionally) between their PMin and PMax to facilitate transfers
- PARs and HVDC may change schedule to facilitate transfers

Maintenance Conditions Considered

- Single Outage results take one single element out of service and finds maximum transfers (N-1-1 Transfers)
- Double Outage results take two single elements out of service and finds maximum transfers (N-2-1 Transfers)

©COPYRIGHT NYISO 2023. ALL RIGHTS RESERVED

Long Island Export

	Long Islan B	id Export Li ase Result	mit (MW) s	Long Island Export Limit (MW) Barrett/Valley Stream Results			
	Single	Double		Single	Double		
Project	Outage	Outage	Derate	Outage	Outage	Derate	
T035 - LSPower	2565	1355	2195	2425	865	1560	
T036 - NextEra Core1	2440	1540	1725	2150	1230	920	
T037 - NextEra Core 2	2540	1725	1960	2365	1335	1030	
T038 - NextEra Core 3	2775	2385	1540	2760	1615	1145	
T039 - NextEra Core4	2395	1510	1875	2110	1185	925	
T040 - NextEra Core5	2425	1530	1875	2135	1215	920	
T041 - NextEra Core 6	2510	1530	2140	2505	1530	975	
T042 - NextEra Core 7	2500	1535	2125	2500	1535	965	
T043 - NextEra Enh 1	3160	2510	1795	3045	1900	1145	
T044 - NextEra Enh 2	3130	2465	1810	3095	1945	1150	
T047 - Propel Base 1	1300	625	1505	1285	615	670	
T048 - Propel Base 2	1270	510	1530	1000	285	715	
T049 - Propel Base 3	1310	660	1485	1310	635	675	
T051 - Propel Alt 5	1930	1190	1450	1915	1175	740	
T052 - Propel Alt 6	3135	2400	1460	3135	1880	1255	
T053 - Propel Alt 7	1725	905	2010	1415	520	895	

er New York ISO

©COPYRIGHT NYISO 2023. ALL RIGHTS RESERVED

Long Island Import

	Long Island Import Limit (MW) Base & Barrett/Valley Stream Results									
		Double								
Project	Single Outage	Outage	Derate							
T035 - LSPower	2740	2540	680							
T036 - NextEra Core1	3055	2400	1005							
T037 - NextEra Core 2	3035	2535	875							
T038 - NextEra Core 3	3330	3035	405							
T039 - NextEra Core4	3155	3060	355							
T040 - NextEra Core5	3105	3035	385							
T041 - NextEra Core 6	3355	3000	460							
T042 - NextEra Core 7	3350	3005	455							
T043 - NextEra Enh 1	3450	3280	475							
T044 - NextEra Enh 2	3430	3275	460							
T047 - Propel Base 1	2310	1635	1505							
T048 - Propel Base 2	2455	1660	1515							
T049 - Propel Base 3	2325	1610	1530							
T051 - Propel Alt 5	3145	2320	1155							
T052 - Propel Alt 6	3255	2815	645							
T053 - Propel Alt 7	3340	3150	275							

* Import results were not affected by the Barrett-Valley Stream constraints

©COPYRIGHT NYISO 2023. ALL RIGHTS RESERVED

Range

		Import - Export Base F	t Ranges (MW) Results	Import - Export Ranges (MW) Barrett/Valley Stream Results				
٢	Project	Single Outage	Double Outage	Single Outage	Double Outage			
	T035 - LSPower	5305	3895	5165	3405			
	T036 - NextEra Core1	5495	3940	5205	3630			
	T037 - NextEra Core 2	5575	4260	5400	3870			
	T038 - NextEra Core 3	6105	5420	6090	4650			
	T039 - NextEra Core4	5550	4570	5265	4245			
	T040 - NextEra Core5	5530	4565	5240	4250			
	T041 - NextEra Core 6	5865	4530	5860	4530			
	T042 - NextEra Core 7	5850	4540	5850	4540			
	T043 - NextEra Enh 1	6610	5790	6495	5180			
	T044 - NextEra Enh 2	6560	5740	6525	5220			
	T047 - Propel Base 1	3610	2260	3595	2250			
	T048 - Propel Base 2	3725	2170	3455	1945			
	T049 - Propel Base 3	3635	2270	3635	2245			
	T051 - Propel Alt 5	5075	3510	5060	3495			
	T052 - Propel Alt 6	6390	5215	6390	4695			
_	T053 - Propel Alt 7	5065	4055	4755	3670			

©COPYRIGHT NYISO 2023. ALL RIGHTS RESERVED

Single Outage & Double Outage Import & Export Limits w Barrett

©COPYRIGHT NYISO 2023. ALL RIGHTS RESERVED

Avoided Cost Methodology

© COPYRIGHT NYISO 2023. ALL RIGHTS RESERVED.

Avoided Cost Assessment

- The NYISO team has investigated a new assessment for the capacity benefit metric for the Long Island PPTN
- All Long Island PPTN projects greatly reduce curtailments of offshore wind energy. Additional energy released into system due to a transmission project could <u>defer</u> <u>and/or reduce</u> generation buildout elsewhere in the state that may otherwise be needed to meet energy demand and policy objectives
- The avoided cost assessment measures the reduction in capital cost to build future generation resources through 2040
- The transmission projects provide varying levels of increased offshore wind energy to the system which displaces utility-scale solar, avoiding the need to build that capacity to meet state policy targets

©COPYRIGHT NYISO 2023. ALL RIGHTS RESERVED

Applicability of Avoided Cost Assessment

 Represents the potential capital cost savings associated with either <u>avoiding</u> or <u>deferring</u> new generation projects due to a specific transmission project

$$\sum_{Year \ 1}^{Year \ 20} Capital \ Cost_{Base} - Capital \ Cost_{Project}$$

- Production cost captures **energy production** cost savings
- Capacity benefit (LOLE reliability benefit) captures potential capacity market savings due to increased transfer capability
- Avoided cost captures capacity build cost savings for generation
 - Can be interpreted as change in renewable project procurement/renewable energy contracts for NYSERDA

Economic Benefit = Production cost savings + capacity benefits due to LOLE reduction + capacity benefits due to avoided cost

©COPYRIGHT NYISO 2023. ALL RIGHTS RESERVED

Overview of Methodology

- Leverage capacity expansion model from 2021-2040 System & Resource Outlook Policy Case S2
 - Note: study horizon is 2021-2040
- Update OSW installed capacity to align with Long Island PPTN assumptions for the Policy Case
- For each case (pre-project and project):
 - Leverage production cost simulation results for the Barrett–Valley Stream Policy Case scenario to represent actual output of OSW generators
 - Model "curtailed" OSW energy as the pre-project case
 - Model "un-curtailed" OSW energy for each project case
 - Update transfer limits accordingly for each project case
 - Note: For purposes of this analysis, IRM/LCR requirements were kept consistent with those used in the 2021-2040 System & Resource Outlook. The effects of import limit changes on downstate LCR requirements are not captured in this analysis.
- Evaluation measures the change in generator build costs

©COPYRIGHT NYISO 2023. ALL RIGHTS RESERVED

What Should We Expect?

- Curtailment of OSW energy results in an increase in renewable generation capacity builds needed to meet energy demand
- Proposed solutions to the Long Island PPTN reduce curtailment of OSW energy, as shown in production cost simulations
- Additional energy released into system due to a proposed project could <u>defer</u> <u>and/or reduce</u> generation buildout elsewhere in the state that may otherwise be needed to meet energy demand and policy objectives
 - Metric represents the avoided cost of meeting CLCPA 100x40 electric sector requirements due to each proposed project

©COPYRIGHT NYISO 2023. ALL RIGHTS RESERVED

LI OSW Curtailment in Current Simulations

Values	Baseline				Policy				Policy + Barrett-Valley Stream			
	2030	2035	2040	2045	2030	2035	2040	2045	2030	2035	2040	2045
OSW Capacity (MW)	2,279	3,079	3,079	3,079	2,539	3,689	5,989	5,989	2,539	3,689	5,989	5,989
Potential Energy Production (TWh)	8.9	12.2	12.2	12.1	10.0	14.6	24.0	24.0	10.0	14.6	24.0	24.0
Curtailment (TWh)	0.0	0.5	0.3	0.1	0.2	0.5	3.1	2.5	2.4	2.4	3.8	3.3
Curtailment Rate (%)	1%	4%	3%	1%	2%	4%	13%	10%	24%	16%	16%	14%

Higher levels of OSW curtailment are driven by increasing OSW capacity levels and transmission constraints on Long Island

©COPYRIGHT NYISO 2023. ALL RIGHTS RESERVED

Example Calculation

- In study year 2040, ~3 TWh of OSW (equivalent capability to ~1,700 MW of solar or ~1,400 MW of land-based wind) is estimated to be curtailed in the pre-Project case
- After transmission project installed, assume...
 - 1,000 MW solar buildout can be avoided
 - 1,000 MW land-based wind can be deferred 5 years
- Cost calculations:
 - Avoided solar costs = 1,000 MW x \$1,076/kW = \$1,076M (NPV)
 - Deferred land-based solar costs = 1,000 MW x \$78/kW = \$78M (NPV)
 - Total = \$1.15B (NPV)

Results Follow-Up

© COPYRIGHT NYISO 2023. ALL RIGHTS RESERVED.

Baseline Case: NYCA Import/Export

Case	20-	Year Expor	t Energy (GWh)	20-Y	20-Year Import Energy (GWh)				20-Year Net-Import Energy (GWh)			
Case	HQ	IESO	PJM	ISONE	HQ	IESO	PJM	ISONE	HQ	IESO	PJM	ISONE	
Baseline Case	226	82,519	18,104	164,557	230,067	11,027	230,607	22,170	229,841	(71,492)	212,502	(142,387)	
T035	0	168	874	(5,283)	(432)	(375)	(2,496)	(8,520)	(432)	(543)	(3,370)	(3,237)	
T036	0	251	1,043	(6,105)	(600)	(388)	(2,731)	(8,650)	(600)	(639)	(3,774)	(2,545)	
T037	0	258	990	(5,823)	(691)	(426)	(2,404)	(8,604)	(691)	(685)	(3,395)	(2,781)	0
T038	(0)	170	1,094	(6,041)	(695)	(374)	(2,678)	(8,594)	(695)	(543)	(3,773)	(2,552)	har
T039	(0)	307	844	(5,238)	(653)	(419)	(1,805)	(9,930)	(653)	(726)	(2,650)	(4,691)	nge
T040	0	173	1,022	(5,865)	(603)	(360)	(2,866)	(8,548)	(603)	(533)	(3,888)	(2,684)	İn
T041	0	220	1,096	(6,086)	(606)	(384)	(2,913)	(8,556)	(606)	(604)	(4,009)	(2,471)	Ξ
T042	0	220	1,096	(6,086)	(606)	(384)	(2,913)	(8,556)	(606)	(604)	(4,009)	(2,471)	po
T043	0	88	802	(6,654)	(664)	(426)	(3,814)	(9,606)	(664)	(514)	(4,616)	(2,952)	r.
T044	0	126	873	(7,544)	(657)	(825)	(8,914)	(8,981)	(657)	(950)	(9,787)	(1,437)	Exp
T047	0	182	1,022	(5,801)	(432)	(386)	(3,300)	(8,685)	(432)	(568)	(4,322)	(2,884)	, Š
T048	0	153	992	(6,156)	(440)	(430)	(3,404)	(8,704)	(440)	(583)	(4,396)	(2,548)	: ଜ
T049	(0)	981	1,382	(7,419)	(447)	(619)	(8,053)	(8,656)	(447)	(1,600)	(9,435)	(1,237)	₹
T051	0	187	1,029	(5,854)	(439)	(465)	(3,185)	(8,694)	(439)	(653)	(4,214)	(2,840)	E
T052	0	188	1,004	(6,136)	(462)	(475)	(3,471)	(8,697)	(462)	(663)	(4,474)	(2,561)	
T053	0	233	1,004	(6,302)	(470)	(471)	(3,457)	(8,620)	(470)	(704)	(4,461)	(2,318)	

Key Takeaway: New York remains a net energy importer through the 20-year study-period and projects reduce total imported energy between 3% and 6%

Policy Case: NYCA Import/Export

Case	20-Year Export Energy (GWh)				20-Year Import Energy (GWh)				20-Year Net-Import Energy (GWh)				
	HQ	IESO	PJM	ISONE	HQ	IESO	PJM	ISONE	HQ	IESO	PJM	ISONE	
Policy Case	226	120,144	63,495	120,492	387,404	18,766	259,665	100,514	387,178	(101,378)	196,170	(19,978)	
T035	(0)	654	2,230	1,052	(3,936)	(644)	(1,016)	(6,964)	(3,936)	(1,298)	(3,246)	(8,015)	
T036	(0)	812	2,130	1,190	(4,607)	(517)	363	(7,321)	(4,607)	(1,330)	(1,767)	(8,511)	
T037	(0)	462	2,499	291	(3,888)	(457)	(4,178)	(7,228)	(3,888)	(919)	(6,677)	(7,520)	<u>0</u>
T038	(0)	581	2,480	313	(4,061)	(430)	(4,169)	(7,964)	(4,061)	(1,011)	(6,648)	(8,277)	har
T039	(0)	533	3,078	1,643	(4,004)	(455)	(5,020)	(9,792)	(4,004)	(988)	(8,098)	(11,436)	nge
T040	(0)	597	2,321	1,034	(4,445)	(509)	(2,440)	(8,160)	(4,445)	(1,106)	(4,761)	(9,193)	İn
T041	(0)	864	2,277	(498)	(4,695)	(593)	(152)	(7,411)	(4,695)	(1,457)	(2,429)	(6,913)	Ξ
T042	(0)	864	2,277	(498)	(4,695)	(593)	(152)	(7,411)	(4,695)	(1,457)	(2,429)	(6,913)	po
T043	(0)	614	3,635	1,077	(3,702)	(556)	(6,614)	(7,910)	(3,702)	(1,170)	(10,249)	(8,987)	3
T044	(0)	853	4,482	1,411	(3,061)	(406)	(9,796)	(8,500)	(3,061)	(1,259)	(14,278)	(9,910)	Exp
T047	(0)	1,002	2,370	137	(4,252)	(656)	(3,277)	(7,630)	(4,252)	(1,658)	(5,647)	(7,767)	P
T048	(0)	657	1,842	1,249	(3,500)	(499)	(1,287)	(7,582)	(3,500)	(1,156)	(3,129)	(8,832)	ି ଜ
T049	(0)	1,014	2,327	756	(4,361)	(659)	(3,144)	(7,722)	(4,361)	(1,672)	(5,472)	(8,478)	₹
T051	(0)	392	1,018	(2,304)	(3,891)	(302)	2,592	(5,124)	(3,891)	(695)	1,574	(2,820)	E
T052	(0)	772	2,254	1,104	(4,340)	(565)	(2,008)	(7,794)	(4,340)	(1,336)	(4,262)	(8,898)	
T053	(0)	749	2,295	907	(4,336)	(591)	(2,076)	(7,674)	(4,336)	(1,340)	(4,372)	(8,582)	

Key Takeaway: New York remains a net energy importer through the 20-year study-period and projects reduce total imported energy between 1% and 6%

Barrett-VS Scenario: NYCA Import/Export

Case	20-Year Export Energy (GWh)				20-Year Import Energy (GWh)				20-Year Net-Import Energy (GWh)				
	HQ	IESO	PJM	ISONE	HQ	IESO	PJM	ISONE	HQ	IESO	PJM	ISONE	
Policy Case + B-VS	226	119,872	61,465	117,646	388,171	18,906	267,788	102,041	387,945	(100,966)	206,323	(15,605)	
T035	(0)	999	4,338	3,994	(4,813)	(819)	(9,084)	(8,675)	(4,813)	(1,818)	(13,422)	(12,669)	
T036	(0)	525	1,044	538	(2,590)	(390)	980	(6,724)	(2,590)	(915)	(64)	(7,261)	
T037	(0)	142	1,399	(175)	(1,849)	(272)	(3,723)	(6,767)	(1,849)	(414)	(5,122)	(6,592)	<u>0</u>
T038	(0)	424	1,501	(420)	(2,058)	(419)	(3,318)	(7,522)	(2,058)	(843)	(4,819)	(7,102)	har
T039	(0)	553	2,072	677	(1,978)	(312)	(2,092)	(9,354)	(1,978)	(865)	(4,163)	(10,031)	nge
T040	(0)	627	1,343	(130)	(2,331)	(469)	375	(7,697)	(2,331)	(1,096)	(968)	(7,567)	
T041	(0)	696	1,534	(1,913)	(2,735)	(481)	1,825	(6,995)	(2,735)	(1,177)	291	(5,082)	Ξ
T042	(0)	696	1,534	(1,913)	(2,735)	(481)	1,825	(6,995)	(2,735)	(1,177)	291	(5,082)	po
T043	(0)	625	3,842	2,167	(3,073)	(524)	(9,922)	(8,276)	(3,073)	(1,149)	(13,764)	(10,443)	₹
T044	0	749	4,334	1,737	(1,740)	(428)	(12,303)	(9,267)	(1,740)	(1,177)	(16,636)	(11,004)	Exp
T047	(0)	819	2,325	626	(2,956)	(586)	(7,496)	(8,006)	(2,956)	(1,405)	(9,821)	(8,632)	°,
T048	(0)	849	2,291	1,788	(2,714)	(593)	(3,690)	(8,214)	(2,714)	(1,442)	(5,981)	(10,003)	ି ଜ
T049	(0)	1,132	4,100	3,382	(4,511)	(785)	(11,641)	(9,391)	(4,511)	(1,917)	(15,741)	(12,773)	₹
T051	(0)	735	2,537	1,439	(3,170)	(511)	(5,226)	(8,374)	(3,170)	(1,246)	(7,763)	(9,813)	Ξ
T052	(0)	736	2,542	1,937	(3,371)	(578)	(5,191)	(8,258)	(3,371)	(1,314)	(7,732)	(10,195)	
T053	0	913	2,697	1,592	(3,316)	(712)	(4,535)	(8,265)	(3,316)	(1,625)	(7,231)	(9,857)	

Key Takeaway: New York remains a net energy importer through the 20-year study-period and projects reduce total imported energy between 2% and 7%

Next Steps

[©] COPYRIGHT NYISO 2023. ALL RIGHTS RESERVED.

Results Review Schedule

- March 24 TPAS/ESPWG: Independent capital cost estimates, scenario results, and avoided cost methodology
- April 3 TPAS/ESPWG: Draft report review, including voluntary cost containment measures
- April 18 Board Meeting: Developer presentations to NYISO Board of Directors

©COPYRIGHT NYISO 2023. ALL RIGHTS RESERVED

Comments

 Further questions and comments regarding these results can be sent to <u>PublicPolicyPlanningMailbox@nyiso.com</u>

• Comments are requested as soon as they are available, but no later than March 31, 2023

Comments will be posted for stakeholder consideration

©COPYRIGHT NYISO 2023. ALL RIGHTS RESERVED

Questions?

[©] COPYRIGHT NYISO 2023. ALL RIGHTS RESERVED.

