

NYISO Operating Study Winter 2020-21

A Report by the New York Independent System Operator

October 2020

Table of Contents

EXE	CUTIVE SUMMARY	4
INT	RODUCTION	5
PUF	RPOSE	5
SYS	TEM OPERATING LIMIT (SOL) METHODOLOGY	5
STU	JDY PARTICIPANTS	6
SYS	TEM REPRESENTATION AND BASE STUDY ASSUMPTIONS	6
	System Representation	6
	Generation Resource Changes	
	Transmission Facilities Changes	7
	System Representation	8
DIS	CUSSION	8
	Resource Assessment	8
	Load and Capacity Assessment	8
	Cross-State Interfaces	9
	Transfer Limit Analysis	9
	Athens SPS	10 <u>0</u>
	West Woodbourne Transformer	11
	ConEd – LIPA Transfer Analysis	
	Transfer Limits for Outage Conditions	
	Transient Stability and Voltage transfer Limits	12
	Thermal Transfer Capabilities with Adjacent Balancing Areas	12
	New York — New England Analysis	14
	New York - PJM Analysis	14
	Ontario – New York Analysis	17
	TransÉnergie–New York Interface	1 <u>8</u>
SUN	MMARY OF RESULTS – THERMAL TRANSFER LIMIT ANALYSIS	<u>19</u>
	TABLE 1.a - NYISO CROSS-STATE INTERFACE THERMAL TRANSFER LIMITS - WINTER 2020)-21
ALL	LINES I/S	20 <u>0</u>
	TABLE 1.b - NYISO CROSS-STATE INTERFACE THERMAL TRANSFER LIMITS - WINTER 2020)-21
ALL	LINES I/S	21 <u>1</u>
	TABLE 2.a - NYISO to ISO-NE INTERFACE THERMAL TRANSFER LIMITS - WINTER 2020-21	LINES
1/		222

T	ABLE 2.b - ISO-NE to NYISO INTERFACE THERMAL LIMITS - WINTER 2020-21 ALL LINES I/S23 <u>3</u>
T	ABLE 3.a - NYISO to PJM INTERFACE THERMAL TRANSFER LIMITS - WINTER 2020-21 ALL
LINES	I/S
T	ABLE 3.b - PJM to NYISO INTERFACE THERMAL TRANSFER LIMITS - WINTER 2020-21 ALL
LINES	I/S
T	ABLE 4 - IESO to NYISO INTERFACE THERMAL TRANSFER LIMITS - WINTER 2020-21 ALL LINES
I/S	2 <u>6</u>
T	ABLE 5 - NYISO to IESO INTERFACE THERMAL TRANSFER LIMITS - WINTER 2020-21 ALL
LINES	I/S2 <u>7</u>
	DIX A – SCHEDULE OF SIGNIFICANT INTERCHANES ASSUMED FOR TRANSFER LIMITS STUDIES ERROR! MARK NOT DEFINED.
APPEN	DIX B – WINTER 2020-21 BASE CASE CONDITIONS ERROR! BOOKMARK NOT DEFINED.
APPEN	DIX C – POWER FLOW TRANSCRIPTION DIAGRAM ERROR! BOOKMARK NOT DEFINED.
APPEN	DIX D - RATINGS OF MAJOR TRANSMISSION FACILITIES IN NEW YORK ERROR! BOOKMARK NOT DEFINED.
APPEN	DIX E – INTERFACE DEFINITIONS66
APPEN	DIX F – ANNOTATED TARA OUTPUT72
APPEN	DIX G – COMPARSION OF TRANSFER LIMITS WINTER 2020-21 VS. 2019-2073
ADDEN	DIV L. DISTRIBUTION EACTORS 77

Executive Summary

This study is conducted as a seasonal review of the projected thermal transfer capability for the winter 2020-21 capability period. The study evaluates the projected internal and external thermal transfer capabilities for the forecasted load and dispatch conditions studied. The evaluated limits are shown in Tables 1 through 5. Differences in the evaluated internal interface limits from winter 2020-21 to winter 2019-20 are shown on page 10. Internal interfaces have changed due to network alterations in the New York Control Area (NYCA) and modeling assumptions. The Total-East limit decreased by 975 MW, mainly due to modeling of Ladentown - Buchanan South (Y88) 345 kV line out-of-service. The Central East limit decreased by 75 MW, mainly due to redistribution of flows caused by the retirement of Somerset and Cayuga units. The UPNY-ConEd limit increased by 275 MW, mainly due to redistribution of flows caused by retirement of Indian Point unit#2, commissioning of Cricket Valley Energy Center and modeling of Ladentown – Buchanan South (Y88) 345 kV line out-of-service. Differences in the evaluated external interface limits from winter 2020-21 to winter 2019-20 are shown on page 13. External interfaces have changed due to network alterations in the New York Control Area (NYCA) and modeling assumptions. The New York to PJM transfer limit increased by 275 MW due to redistribution of flows within NYCA because of changes in generation due to retirements. IESO to New York transfer limit increased by 150 MW, mainly due to securing the limiting 115 kV circuit.

INTRODUCTION

The following report, prepared by the Operating Studies Task Force (OSTF) at the direction and guidance of the System Operations Advisory Subcommittee (SOAS), highlights the thermal analysis evaluation for the winter 2020-21 capability period. This analysis indicates that, for the winter 2020-21 capability period, the New York interconnected bulk power system can be operated reliably in accordance with the New York State Reliability Council (NYSRC) Reliability Rules for Planning and Operating the New York State Power System and the NYISO System Operating Procedures.

Transfer limits cited in this report are based on forecasted load and dispatch assumptions and are intended as a guide to system operation. Changes in generation dispatch or load patterns that significantly change pre-contingency line loadings may change limiting contingencies or limiting facilities, resulting in higher or lower interface transfer capabilities.

System Operators should monitor the critical facilities noted in the included tables along with other limiting conditions while maintaining bulk power system transfers within secure operating limits.

PURPOSE

The purpose of the study is to determine:

- The total transfer capabilities (TTC) between NYISO and adjacent areas including IESO, PIM and ISO-NE for normal conditions in the summer/winter periods. The TTC is calculated based on NERC TPL-001-4 Category P1 and P2 contingencies and a set of selected Category P4, P5 and P7 contingencies.
- The TTC between NYISO and adjacent areas including IESO, PJM and ISO-NE for emergency conditions in the summer/winter periods. The TTC is calculated based on NERC TPL-001-4 Category P1 and P2 contingencies.

System Operating Limit (SOL) Methodology

The NYSRC Reliability Rules provide the documented methodology for use in developing System Operating Limits (SOLs) within the NYISO Reliability Coordinator Area. NYSRC Reliability Rules require compliance with all North American Electric Reliability Corporation (NERC) Standards and Northeast Power Coordinating Council (NPCC) Standards and Criteria. NYSRC Rule C.1, Tables C-1 and C-2 addresses the contingencies to be evaluated and the performance

requirements to be applied. Rule C.1 also incorporates by reference Attachment H, NYISO Transmission Planning Guideline #3-1, "Guideline for Stability Analysis and Determination of Stability-Based Transfer Limits" of the NYISO's Transmission Expansion and Interconnection Manual.

STUDY PARTICIPANTS

First	Last	Company	First	Last	Company
Hoa	Fu	PSEG Long Island*	Robert	Golen	NYISO
Anie	Philip	PSEG Long Island*	De Dinh	Tran	NYISO
Nicholas	Culpeper	PSEG Long Island*	Raj	Dontireddy	NYISO
Robert	Eisenhuth	PSEG Long Island*	Roleto	Mangonon	O&R
Umair	Hanif	PSEG Long Island*	Ruby	Chan	Central Hudson
John	Hastings	National Grid	Richard	Wright	Central Hudson
Jeffery	Maher	National Grid	Leen	Almadani	Central Hudson
Richard	Wilbur	National Grid	Jack	DiOdoardo	Central Hudson
Mohammed	Hossain	NYPA	Robert	Dropkin	PJM
Abhilash	Gari	NYPA	Todd	Bickel	PJM
Brian	Gordon	NYSEG	Tracy	Garner	IESO
Robert	King	NYSEG	Christopher	Reali	IESO
Dean	LaForest	ISO-NE	Isen	Widjaja	IESO
Joseph	Koltz	ISO-NE	Daniel	Head	ConEd
Chris	Aquino	ISO-NE	Mohammed	Rahman	ConEd
*Agent for LIPA					

SYSTEM REPRESENTATION AND BASE STUDY ASSUMPTIONS

System Representation

The representation was developed from the NYISO Data Bank and assumes the forecast winter 2020-21 coincident peak load of 24,130 MW. The other NPCC Balancing Areas and adjacent Regional representations were obtained from the RFC-NPCC winter 2020-21 Reliability Assessment power flow base case and have been updated to reflect the winter 2020-21 capability period. The base case model includes:

- The NYISO Transmission Operator area
- All Transmission Operator areas contiguous with NYISO
- All system elements modeled as in service
- All generation represented

- Phase shifters in the regulating mode in accordance with the NYISO Available Transfer Capability Implementation Document (ATCID)
- The NYISO Load Forecast
- Transmission Facility additions and retirements
- Generation Facility additions and retirements
- Remedial Action Scheme (RAS) models where currently existing or projected for implementation within the studied time horizon
- Series compensation for each line at the expected operating level unless specified otherwise in the ATCID
- Facility Ratings as provided by the Transmission Owner and Generator Owner

Generation Resource Changes

The status and dispatch level of generation represented in this analysis is a reasonable expectation based on the information available at the time of the study. Those modeling assumptions incorporate known unit outage status. The inter-Area schedules represented in the study base case are summarized in Appendix A. The following table shows generation deactivations and additions since the winter 2019-20 capability period:

Deactivations	
Hudson Ave GT4	-16 MW
Lyonsdale Biomass	-21 MW
Greenidge 4 (BTM:NG)	-112.5 MW
Somerset	-655 MW
Indian Point #2	-1026 MW
Total Retirements	-1830.5 MW
Additions	
Cassadaga Wind (Name Plate)	126 MW
Cricket Valley Energy Center (Name	1177 MW
Plate)	
Total Additions	1303 MW

Transmission Facilities Changes

Significant facility changes since the winter 2019-20 capability period include:

- Modeling the Ladentown Buchanan South (Y88) 345 kV line out-of-service
- Modeling Vernon W49thSt (38M72) 138 kV line out-of-service
- Modeling Vernon 138 kV PAR out-of-service
- Modeling the Watercure 345/230 kV (2) transformer in-service

System Representation

The Siemens PTI PSS™E and PowerGem TARA software packages were used to calculate the thermal limits based on Normal and Emergency Transfer Criteria defined in the NYSRC Reliability Rules. The thermal transfer limits presented have been determined for all transmission facilities scheduled in service during the winter 2020-21 period.

The schedules used in the base case power flow for this analysis assumed a net flow of 0 MW from Public Service Electric & Gas (PSE&G) to Consolidated Edison via the PAR transformers controlling the Hudson - Farragut and Linden - Goethals interconnections, and 0 MW on the South Mahwah – Waldwick circuits from Consolidated Edison to PSE&G, controlled by the PARs at Waldwick. The Hopatcong - Ramapo 500 kV (5018) circuit is scheduled in accordance with the "TCC Market PJM -NYISO Interconnection Scheduling Protocol", February 8th, 2019. For the winter 2020-21 base case, the schedule for the tie is 202 MW from PJM to New York. The four Ontario – Michigan PARs are modeled in-service and scheduled to a 0 MW transfer. These schedules are consistent with the scenarios developed in the RFC-NPCC Inter-Regional Reliability Assessment for winter 2020-21, and the MMWG winter 2020-21 power flow base cases. The series reactors on the Sprain Brook - East Garden City (Y49) 345 kV cable, Farragut - Gowanus (41 and 42) 345 kV cables, Packard - Sawyer (77 and 78) 230 kV feeders, as well as the E. 179th St. - Hell Gate (15055) 138 kV feeder are in-service in the base case. The series reactors on the Dunwoodie - Mott Haven (71 and 72), the Sprain Brook - W. 49th St. (M51 and M52) 345 kV are by-passed. The series capacitors on the Marcy - Coopers Corners (UCC2-41) 345 kV, the Edic - Fraser (EF24-40) 345 kV and the Fraser - Coopers Corners (33) 345 kV cables are by-passed in the base case.

The NYISO Niagara generation was modeled using a 50-50 split on the 230 kV and 115 kV generators. The total output for the Niagara facility was modeled at 2,100 MW.

DISCUSSION

Resource Assessment

Load and Capacity Assessment

The forecast peak demand for the winter 2020-21 capability period is 24,130 MW¹. This forecast is approximately 7 MW (0.03%) higher than the forecast of 24,123 MW for the winter

² Forecast Coincident Peak Demand (50th percentile baseline forecast)

2019-20 capability period, and 1,608 MW (6.25%) lower than the all-time New York Control Area (NYCA) seasonal peak of 25,738 MW, which occurred on January 07, 2014.

The Installed Capacity (ICAP) requirement for the winter period is 28,691 MW based on the NYSRC 18.9% Installed Reserve Margin (IRM) requirement for the 2020 Capability Year. NYCA generation capacity for winter 2020-21 is 41,409 MW, and net external capacity purchases of 496 MW have been secured for the winter period. The combined capacity resources represent an 73.66% margin above the forecast peak demand of 24,130 MW. These values were taken from the 2020 Load & Capacity Data report produced by the NYISO, located at:

https://www.nyiso.com/documents/20142/2226333/2020-Gold-Book-Final-Public.pdf/9ff426ab-e325-28bc-97cf-106d792593a1?t=1588251915775

The equivalent forced outage rate for Winter 2020-21 period is 4.6%, and includes forced outages and de-ratings based on historical performance of all generation in the NYCA. For winter 2019-20, the equivalent forced outage rate assumed was 4.78%.

Cross-State Interfaces

Transfer Limit Analysis

This report summarizes the results of thermal transfer limit analyses performed on power system representation modeling the forecast peak load conditions for winter 2020-21. Normal and emergency thermal limits were calculated according to Normal and Emergency Transfer Criteria definitions in the "NYSRC Reliability Rules for Planning and Operating the New York State Power System". For this assessment period the most severe single generation contingency is Nine Mile Point 2 at 1,310 MW. Facility ratings applied in the analysis were from the online MW ratings in the EMS, and are detailed in Appendix D.

Figure 1 presents a comparison of the winter 2020-21 thermal transfer limits to winter 2019-20 thermal transfer limits. Changes in these limits from previous years are due to changes in the base case load flow generation and load patterns that result in different pre-contingency line loadings, changes in limiting contingencies, or changes in circuit ratings, or line status. Appendix H presents a summary comparison of Cross-State thermal transfer limits between winter 2020-21 and 2019-20, with limiting element/contingency descriptions. Significant differences in these thermal transfer limits are discussed below.

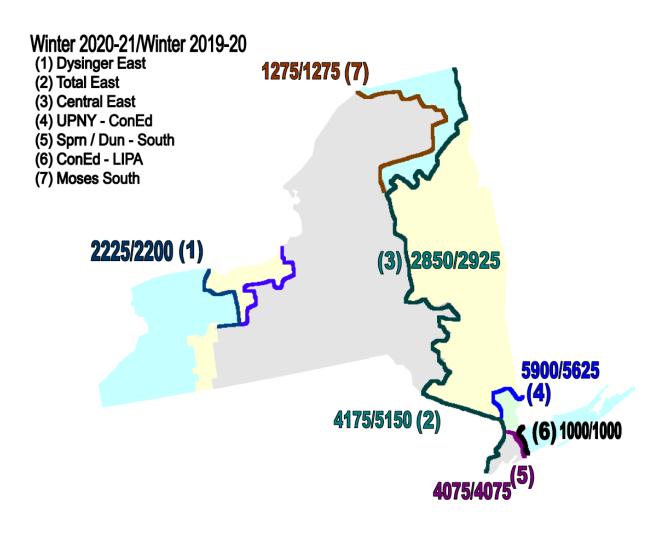


Figure 1 - Cross-State Thermal Transfer Limits

Total East interface thermal transfer limit decreased by 975 MW. This is mainly due to modeling of Ladentown - Buchanan South (Y88) 345 kV line out-of-service.

Central East interface thermal transfer limit decreased by 75 MW. This is mainly due to redistribution of flows caused by retirement of Somerset and Cayuga units.

UPNY-ConEd interface thermal transfer limit increased by 275MW. This is mainly due to redistribution of flows caused by retirement of Indian Point unit#2, commissioning of Cricket Valley Energy Center and modeling of Ladentown – Buchanan South (Y88) 345 kV line out-ofservice.

Athens SPS

In 2008, a Special Protection System (SPS) went in-service impacting the thermal constraint on

the Leeds to Pleasant Valley 345 kV transmission corridor. The SPS is designed to reject generation at the Athens combined-cycle plant if either the Leeds to Pleasant Valley 345 kV (92) circuit or the Athens to Pleasant Valley 345 kV (91) circuit are out-of-service and the flow on the remaining circuit is above the LTE rating. Generation at Athens will be tripped until the flow is below the LTE rating, the out-of-service circuit recloses, or the remaining circuit trips. This SPS is expected to be active when there is generation on-line at the Athens station, and will allow the NYCA transmission system to be secured to the STE rating of the 91 line for the loss of the 92 line, and vice-versa, for normal operating conditions. The SPS increases the normal thermal limit to match the emergency thermal limit across the UPNY-ConEd operating interface when the 91 or 92 is the limiting circuit. The Table 1 "Emergency" limit for the UPNY-ConEd interface can be interpreted as the "Normal" limit, when the Athens SPS is active.

West Woodbourne Transformer

The Total-East interface may be limited at significantly lower transfer levels for certain contingencies that result in overloading of the West Woodbourne 115/69 kV transformer. Should the West Woodbourne tie be the limiting facility, it may be removed from service to allow higher Total-East transfers. Over-current relays are installed at West Woodbourne and Honk Falls to protect for contingency overloads.

ConEd - LIPA Transfer Analysis

Normal transfer capabilities were determined using the base case generation dispatch and PAR settings as described in Appendix B. Emergency limits are dispatch dependent, and can vary based on generation and load patterns in the LIPA system.

For emergency transfer capability analysis, the PARs controlling the LIPA import were adjusted to allow for maximum transfer capability into LIPA:

ConEd - LIPA PAR Settings

	Normal	Emergency						
Jamaica – Lake Success 138 kV	-200 MW	50 MW						
Jamaica – Valley Stream 138 kV	-100 MW	210 MW						
Sprain Brook – E. Garden City 345 kV	693 MW	693 MW						
ISO-NE – LIPA PAR Settings								
Norwalk Harbor – Northport 138 kV	100 MW	286 MW						

The PAR schedules referenced above and the ConEd - LIPA transfer assessment assume the

following loss factors and oil circulation modes in determination of the facility ratings for the 345 kV cables:

- Y49 has a 70% loss factor in slow oil circulation mode.
- Y50 has a 70% loss factor in rapid circulation mode.

Emergency Transfer via the 138 kV PAR-controlled Jamaica ties between ConEdison and LIPA Con Edison and LIPA have determined possible emergency transfer levels via the Jamaica -Valley Stream (901) 138 kV and Jamaica - Lake Success (903) 138 kV PAR-controlled ties that could be used to transfer emergency power between the two entities during peak conditions. The emergency transfer levels were calculated in both directions, for system peak load conditions with all transmission lines in service and all generation available for full capacity.

ConEd to LIPA emergency assistance

Based on analysis of historical conditions performed by LIPA and Con Edison, Con Edison anticipates being able to supply a total flow up to 260 MW of emergency transfer from Con Edison to Long Island, if requested, via the ties.

LIPA to ConEd emergency assistance

LIPA anticipated being able to supply a total flow up to 505 MW of emergency transfer from Long Island to Con Edison, if requested, via the ties under ideal conditions (i.e. all lines and generation in-service, imports via Neptune, NNC and CSC).

Transfer Limits for Outage Conditions

Transfer limits for scheduled outage conditions are determined by the NYISO Scheduling and Market Operations groups. The NYISO Real-Time Dispatch system monitors the EHV transmission continuously to maintain the secure operation of the interconnected EHV system.

Transient Stability and Voltage transfer Limits

The interface transfer limits shown in Section 6 are the results of a thermal transfer limit analysis only. Transient stability and voltage interface transfer limits for all lines in-service and line outage conditions are summarized and available through the NYISO website located at:

https://www.nyiso.com/reports-information

Thermal Transfer Capabilities with Adjacent Balancing Areas

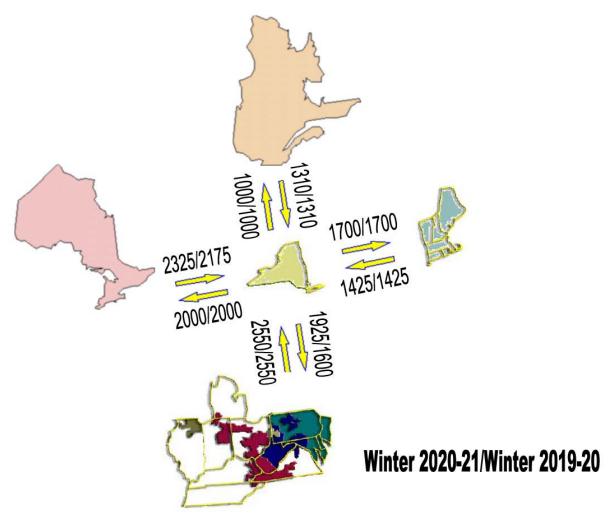


Figure 2 - Inter-Area Thermal Transfer Capabilities²

Thermal transfer limits between New York and adjacent Balancing Areas also are determined in this analysis. These transfer limits supplement, but do not change, existing internal operating limits. There may be facilities internal to each system that may reduce the transfer limits between Balancing Areas. Reductions due to these situations are considered to be the responsibility of the respective reliability authority. Some of these potential limitations are indicated in the summary tables by "[Reliability Coordinating] Facility" limits, which supplement the "Direct Tie" limits between the Balancing Areas. Transfer conditions within and between neighboring Balancing Areas can have a significant effect on inter- and intra-Area transfer limits. Coordination between

² TE-NY transfer capabilities shown in Figure 2 are not thermal transfer limits; for more information see TransÉnergie-New York Interface section

Balancing Areas is necessary to provide optimal transfer while maintaining the reliability and security of the interconnected systems.

New York - PJM interface thermal transfer limit increased by 275 MW. This is mainly due to redistribution of flows within NY because of change in generation pattern.

IESO - New York interface thermal transfer limit increased by 150 MW. This is mainly due to securing the limiting 115 kV circuit.

New York - New England Analysis

New England Transmission/Capacity Additions

Transmission

For the winter 2020-21 study period, there are no major projects coming into service that will significantly impact the New York - New England transmission capability.

Capacity

In the New England Control Area, from December 2020 through March 2021, no major generation additions are anticipated. Approximately 87 MW of solar photovoltaic alternative energy resources are anticipated to become commercial by the end of March 2021. Additional alternative energy resources include 8 MW of hydro. There are no significant generator retirements anticipated from December 2020 through March 2021.

Thermal Transfer Limit Analysis

The transfer limits between the NYISO and ISO New England for normal and emergency transfer criteria are summarized in Section 6, Table 2.

Cross-Sound Cable

The Cross-Sound Cable (CSC) is an HVDC merchant transmission facility connecting the New Haven Harbor 345 kV (United Illuminating, ISO-NE) station and Shoreham 138 kV (LIPA, NYISO) station. It has a design capacity of 330 MW. This facility is not metered as part of the NYISO – ISO-NE interface, and HVDC transfers are independent of transfers between the NYISO and ISO-NE.

Smithfield - Salisbury 69 kV

CHG&E and Eversource will normally operate the Smithfield - Salisbury 69 kV (FV/690) line closed. The maximum allowable flow on this line is 31 MVA based on limitations in the Eversource 69 kV system. When the ISO-NE to NYISO transfer is greater than approximately 400 MW, the line will be opened due to post contingency limits within the Eversource system. The FV/690 line has

directional over-current protection that will trip the FV/690 line in the event of an overload when the flow is into ISO-NE. No protection exists to trip the FV/690 line in the event of an overload when the flow is into NYISO.

Northport - Norwalk Harbor Cable Flow

Flow on the NNC Norwalk Harbor to Northport facility is controlled by a PAR transformer at Northport. As system conditions vary, the scheduled flow on the NNC may be used to optimize transfer capability between the Balancing Areas. The thermal transfer limits are presented in Table 2 for different PAR schedule assumptions on the Northport – Norwalk Harbor interconnection. Exhibits in Appendix G graphically demonstrate the optimization of transfer capability by regulating the flow on the Northport-Norwalk Harbor tie.

Whitehall - Blissville 115 kV

The PAR transformer on the K7 line at the VELCO Blissville substation will control precontingency flow between the respective stations. For the analyses, the pre-contingency schedule is 25 MW from Blissville (ISO-NE) to Whitehall (NYISO). The scheduled flow may be adjusted to protect the National Grid local 115 kV transmission south of Whitehall for 345 kV contingency events in southern Vermont pursuant to joint operating procedure developed by VELCO, National Grid. ISO-NE and NYISO.

Plattsburgh - Sand Bar 115 kV (i.e. PV20)

The PAR transformer on the PV20 line at the VELCO Sand Bar substation was modeled holding a pre-contingency flow of approximately 100 MW on the PV20 tie. This modeling assumption was premised upon common operating understandings between ISO-NE and the NYISO given local operating practice on the Moses - Willis - Plattsburgh 230 kV transmission corridor. ISO-NE's analysis examined and considered New England system limitations given this modeling assumption and did not examine generation dispatch or system performance on the New York side of the PV20 tie.

New York - PJM Analysis

Thermal Transfer Limit Analysis

The transfer limits for the New York - PJM interface are summarized in Table 3. The Hopatcong - Ramapo 500 kV (5018) circuit is scheduled in accordance with the "TCC Market PJM -NYISO Interconnection Scheduling Protocol", February 8th, 2019.

Dunkirk-South Ripley (68) 230 kV Tie

The NYISO and PJM have developed an operating document that allows operation of the Dunkirk-South Ripley line to maintain reliability in both the PJM and NYISO systems. Dunkirk-South Ripley 68 230 kV line is modeled in-service for winter 2020-21.

Opening of PJM - New York 115 kV Ties as Required

The normal criteria thermal transfer limits presented in Table 3 were determined for an all lines in-service condition. The 115 kV interconnections between First Energy East and New York (Warren - Falconer, North Waverly - East Sayre, and Laurel Lake - Westover) may be opened in accordance with NYISO and PJM Operating Procedures provided that this action does not cause an unacceptable impact on local reliability in either system. Over-current protection is installed on the Warren - Falconer and the North Waverly - East Sayre 115 kV circuits; either of these circuits would trip by relay action for an actual overload condition. There is no overload protection on the Laurel Lake - Westover circuit, but it may be opened by operator action if there is an actual or postcontingency overload condition. However, opening the Laurel Lake – Westover tie could potentially cause local thermal and pre- and post-contingency voltage violations for the 34.5 kV distribution systems within New York. Sensitivity analysis performed indicated that the thermal and voltage conditions were exacerbated for conditions that modeled high simultaneous interface flows from NY to PJM and NY to Ontario.

DC Ties

Neptune DC tie is expected to be available at full capability, 660 MW, for winter 2020-21. Neptune DC tie is a transmission facility connecting Raritan River 230 kV (First Energy East, PJM) to Duffy Avenue 345 kV (LIPA, NYISO). Back to Back AC-DC-AC Hudson Transmission Project (HTP) tie is expected to be available at full capability, 660 MW, for winter 2020-21. HTP is a transmission tie connecting Bergen 230 kV (PSEG, PJM) to the West 49th street station at (ConEd, NYISO).

Variable Frequency Transformer (VFT) Tie

The Variable Frequency Transformer Tie is a transmission facility connecting the Linden 230 kV (PSEG, PJM) to Linden 345 kV (ConEd, NYISO). For the winter 2020-21, Linden VFT will have 330 MW non-firm withdrawal rights and 300 MW firm injection rights into PJM market. Linden VFT is modeled as injecting 315 MW into NYSIO for the winter 2020-21 study.

Ontario - New York Analysis

Thermal Transfer Limit Analysis

The thermal transfer limits between the NYISO and Ontario's Independent Electricity System Operator (IESO) Balancing Areas for normal and emergency transfer criteria are presented in tables 4 and 5.

The Ontario – New York tie at St. Lawrence, L34P, is controlling to 0 MW in all four scenarios. Intertie L33P is currently not in-service. The interconnection flow limit across these ties, when both L33P and L34P are in-service, is 300 MW, as presented in Table B3 "Interconnection Flow Limits" from the document "Reliability Outlook Tables" available at:

http://www.ieso.ca/-/media/files/ieso/document-library/planning-forecasts/reliabilityoutlook/ReliabilityOutlookTables_2020Jun.xls

Transient Stability Limitations

Transient stability limits for the NYISO - IESO interconnection are reported in "NYPP-OH TRANSIENT STABILITY TESTING REPORT on DIRECT TIE TRANSFER CAPABILITY - OCTOBER 1993" available at:

https://www.nviso.com/reports-information

Ontario - Michigan PARs

All of the PARs on the four transmission lines interconnecting Ontario and Michigan are in service and regulating. For this study, the PARs were scheduled to regulate at 0 MW.

Impact of the Queenston Flow West (QFW) Interface on the New York to Ontario Transfer Limit

The QFW interface is defined as the sum of the power flows through the 230 kV circuits out of Beck. QFW is the algebraic sum of the following:

- Total generation in the Niagara zone of Ontario including the units at the Beck #1, #2 & Pump Generating Stations, Thorold and Decew Falls GS
- The total load in the zone
- The import from New York

For a given QFW limit, the import capability from New York depends on the generation dispatch and the load in the Niagara zone. The Ontario Niagara generation is set to 1425 MW. The import capability from New York can be increased by decreasing generation in the Ontario Niagara zone, increasing demand in the Ontario Niagara zone, or both.

TransÉnergie-New York Interface

Thermal transfer limits between TransÉnergie (Hydro-Quebec) and New York are not analyzed as part of this study. Respecting the NYSRC and NYISO operating reserve requirements, the maximum allowable delivery into the NYCA from TransÉnergie on the Chateauguay – Massena (7040) 765 kV tie is limited to 1310 MW. However in real-time the total flow is limited to 1800 MW; the additional flow is a "wheel-through" transaction to another Balancing Authority Area. Maximum delivery from NYCA to Quebec on the 7040 line is 1000 MW.

The Dennison Scheduled Line represents a 115 kV dual-circuit transmission line that interconnects the New York Control Area to the Hydro-Quebec Control Area at the Dennison Substation, near Massena, NY. The Line has a nominal north to south capacity of 199 MW in winter, into New York, and a nominal south to north capacity of 100 MW into Quebec.

SUMMARY OF RESULTS – THERMAL TRANSFER LIMIT ANALYSIS

Table 1 – NYISO CROSS STATE INTERFACE THERMAL LIMITS

- Table 1.a
 - a. Dysinger East
 - b. UPNY ConEd
 - c. UPNY SENY
 - d. Sprain Brook Dunwoodie So.
 - e. ConEd LIPA Transfer Capability
- Table 1.b -7040 Flow Sensitivity
 - a. Central East
 - b. Total East
 - c. Moses South

Table 2.a - NYISO to ISO-NE INTERFACE THERMAL TRANSFER LIMITS

• Northport-Norwalk Flow Sensitivity

Table 2.b - ISO-NE to NYISO INTERFACE THERMAL TRANSFER LIMITS

• Northport-Norwalk Flow Sensitivity

Table 3.a - NYISO to PJM INTERFACE THERMAL TRANSFER LIMITS

• 115 kV NY-PJM Ties I/S and O/S

Table 3.b - PIM to NYISO INTERFACE THERMAL TRANSFER LIMITS

• 115 kV NY-PJM Ties I/S and O/S

Table 4 – IESO to NYISO INTERFACE THERMAL TRANSFER LIMITS

Table 5 - NYISO to IESO INTERFACE THERMAL TRANSFER LIMITS

TABLE 1.a - NYISO CROSS-STATE INTERFACE THERMAL TRANSFER LIMITS - WINTER 2020-21 **ALL LINES I/S**

		Dysinger East	UPNY - C	onEd ₁	UPNY - SENY		Sprain Brook Dunwoodie - So.	ConEd - LIPA
NORN	MAL	2225 (1)	5900	(3)	4250 (3)		4075 (6)	1000 (8)
EMEF	RGENCY	2825 (2)	7325	(4)	5800 (5)		4250 (7)	1700 (9)
	_	LIMITING ELEME	NT	R	RATING		LIMITING C	ONTINGENCY
(1)	Niagara	– Packard (61) 230 k	άV	@STE ₄	949 MW	L/0	Niagara - Packard (62)) 230 kV
							Beck – Packard (BP76)) 230 kV
(2)	Hinman	- Lockport (100) 11	5 kV	@STE	317 MW	L/0	Robinson – Stolle Road	d (65) 230 kV
(3)		ın North – Buchanan	(95891)	@LTE	296 MW	L/0	Buchanan – East View	(W93) 345 kV
(4)	•	Corner –Middletowr 1) 345 kV	1 Тар	@STE	1793 MW	L/0	Dolson Ave – Rock Tav	ern (DART44) 345 kV
(5)	Buchana 138 kV	ın North – Buchanan	(95891)	@STE	383 MW	L/0	Buchanan – East View	(W93) 345 kV
(6)	Dunwoo	die – Mott Haven (71	l) 345 kV	@MTE ₂	1083 MW	L/0	Dunwoodie – Mott Hav	ven (72) 345 kV
(7)	Dunwoo	die – Mott Haven (71	l) 345 kV	@NORM	741 MW		Pre-Contingency Load	ing
(8)	Dunwoo	die – Shore Rd. (Y50) 345 kV	@LTE	977 MW ₃	L/0	(SB RNS2 @ Sprain Bro Sprain Brook - East Ga Sprain Brook - Acaden	arden City (Y49) 345 kV
(9)	Dunwoo	die – Shore Rd. (Y50) 345 kV	@NORM	741 MW ₃		Pre-Contingency Load	ing

Note

^{1:} See Section 5.2.B for discussion on Athens SPS

^{2:} The rating used for cable circuits during SCUC reliability analysis is the average of the LTE and STE rating (MTE Rating).

^{3:} LIPA rating for Y50 circuit is based on 70 % loss factor and rapid oil circulation.

^{4:} Dysinger East limit used the NYSRC Rules Exception No. 13 - Post Contingency Flows on Niagara Project Facilities

7040 FLOW

TABLE 1.b - NYISO CROSS-STATE INTERFACE THERMAL TRANSFER LIMITS - WINTER 2020-21 **ALL LINES I/S**

7040 FLOW

7040 FLOW

		7040 FLOW HQ->NY 600 MW			40 FLOW 0 MW	7040 FLOW NY->HQ 600 MW
CENT	TRAL EAST					
NORI	MAL	2850 (1)		2	850 (1)	2850 (1)
EMEI	RGENCY	3225 (2)		3	225 (2)	3225 (2)
TOTA	AL EAST					
NORI	MAL	4200 (3)		4	175 (3)	4175 (3)
EMEI	RGENCY	5000 (4)		5	025 (4)	5025 (4)
MOSI	ES SOUTH _{1,2}					
NORI	MAL	1750 (6)		1	275 (5)	725 (5)
EMERGENCY		2275 (8)		2325 (7)		1625 (7)
	LIMITING ELEMENT	RA	TING	LIMI		TING CONTINGENCY
(1)	New Scotland - Leeds (93) 345 kV	@LTE	1692 MW	L/0	New Scotland - I	Leeds (94) 345 kV
(2)	New Scotland - Leeds (93) 345 kV	@STE	1912 MW	L/0	New Scotland - I	Leeds (94) 345 kV
(3)	Ramapo – Buchanan	@LTE	2015 MW	L/0	Pleasant Ville – l	Dunwoodie (W90) 345 kV
	(Y94) 345 kV				Wood St - Pleas	ant Ville (Y86) 345 kV
					East Fishkill – W	ood Street (F38) 345 kV
					East Fishkill – W	ood Street (F39) 345 kV
					Wood Street - P	leasant Ville (Y87) 345 kV
					Wood Street 345	5/115 kV (1) Transformer
(4)	Coopers Corners – Middletown TA (CCRT34) 345 kV	.P @STE	1793 MW	L/0	Dolson Ave – Ro	ck Tavern (DART44) 345 kV
(5)	Moses – Adirondack (MA2) 230 kV	/ @LTE	473 MW	L/O	Moses-Massena	(MMS1) 230 kV
					Moses-Massena	(MMS2) 230 kV
(6)	Moses – Adirondack (MA2) 230 kV	ØLTE	473 MW	L/O	Chateauguay - N	⁄lassena (7040) 765 kV
					Massena – Marc	y (MSU1) 765 kV
					and TransÉnerg	ie delivery
(7)	Moses-Massena (MMS1) 230 kV	@LTE	1593 MW	L/0	Moses-Massena	(MMS2) 230 kV
(8)	Marcy 765/345 kV (AT1) Transfor	mer @STE	1756 MW	L/0	Marcy 765/345	

<u>Note</u>

^{1:} Moses South limit used the NYSRC Rules Exception No. 10 - Post Contingency Flows on Marcy AT1 Transformer

^{2:} Moses South limit used the NYSRC Rules Exception No. 12 - Post Contingency Flows on Marcy AT2 Transformer

TABLE 2.a - NYISO to ISO-NE INTERFACE THERMAL TRANSFER LIMITS - WINTER 2020-21 ALL LINES I/S

		DIRECT TIE	NYISO FACILITY)-NE ILITY	DIREC	T TIE	NYISO FACILITY	ISO-NE FACILITY	
	Cricke	et Valley Energy	Center Out of So	ervice		Cricke	t Valley E	Energy Center in S MW)	Service (1095	
			No	rthport	-Norwalk	OMW				
NOR	MAL	2500 (2)	2700 (5)	350	0 (7)	2375	5 (1)	2825 (5)	3600 (7)	
EME	RGENCY	2800 (4)	3100 (6)	370	0 (7)	2650	(4)	3250 (6)	3800 (7)	
			Nor	thport –	Norwalk 1	LOOMW				
NOR	MAL	2250 (3)	2575 (5)	352	5 (7)	2125	5 (3)	2725 (5)	3625 (7)	
EME	RGENCY	2325 (4)	3075 (6)	3725 (7)		2200	(4)	3225 (6)	3825 (7)	
				thport -	Norwalk 2	200 MW				
NOR		1825 (3)	2525 (5)		5 (7)	1700	` ,	2675 (5)	3625 (7)	
EME	RGENCY	1900 (4)	3025 (6)	372	5 (7)	1775	5 (4)	3175 (6)	3825 (7)	
		LIMITING ELEM	IENT	R.A	ATING		LIMITING CONTINGENCY			
(1)	Long Mou	ntain – Cricket Valle	ey (398) 345 kV	@LTE	1935 MW	L/0	Millstone	e G3 24.0 kV		
(2)	Long Mou	g Mountain - Cricket Valley (398) 345 kV @LTE 1935			1935 MW	L/0	Alps – Be	erkshire (393) 345 k	V	
							Berkshir	e – Northfield (312)	345 kV	
							Berkshir	e 345/115 kV Trans	former	
							Northfie	ld Generator 1&2		
(3)	Northport	- Norwalk Harbor	(NNC) 138 kV	@LTE	569 MW	L/0	Long Mo	untain – Cricket Vall	ey (398) 345 kV	
							Smith Fi	eld – Salisbury (690) 69 kV	
(4)	Northport	– Norwalk Harbor	(NNC) 138 kV	@STE	569 MW	L/0	Long Mo	untain – Cricket Vall	ey (398) 345 kV	
(5)	Wynantsk	ill – Reynolds Rd (1	4-988) 115 kV	@STE	187 MW	L/0	Alps – Be	erkshire (393) 345 k	V	
							Berkshir	e – Northfield (312)	345 kV	
							Berkshir	e 345/115 kV Trans	former	
							Northfie	ld Generator 1&2		
(6)	Wynantsk	ill – Reynolds Rd (1	4-988) 115 kV	@STE	187 MW	L/0	Alps – Be	erkshire (393) 345 k	V	
(7)	Norwalk J	unction – Archers L	ane (3403D)	@LTE	922 MW	L/0	Long Mo	untain – Frost Bridg	e (352) 345 kV	

^{1:} The Northport – Norwalk Harbor (NNC) flow is positive in the direction of transfer

^{2:} The Northport - Norwalk Harbor (NNC) line is no longer part of the New York - New England Interface Definition

TABLE 2.b - ISO-NE to NYISO INTERFACE THERMAL LIMITS - WINTER 2020-21 ALL LINES I/S

		DIRECT TIE	NYISO FACILITY	_	O-NE CILITY	DIREC	T TIE	NYISO FACILITY	ISO-NE FACILITY		
	Cricket Valley Energy Center Out of Service						Cricket Valley Energy Center in Service (1095 MW)				
	Norwalk -Northport @ 0 MW										
NO	RMAL	2350 (1)		155	50 (4)	2450	(3)		1650 (4)		
EM	ERGENCY	2350 (2)		155	50 (4)	2500	(2)		1650 (4)		
	Norwalk -Northport @ 100 MW										
NO	RMAL	1900 (1)		160	00 (4)	2025	5 (2)		1700 (4)		
EM	ERGENCY	1900 (2)		1600 (4		2075 (2)			1700 (4)		
			Norw	alk-Nort	hport @ 20	00 MW					
NO	RMAL	1425 (1)		1650 (4)		1525	5 (3)		1750 (4)		
EM	ERGENCY	1425 (2)		1650 (4)		1575	5 (2)		1750 (4)		
		LIMITING ELEM	ENT	RA	TING]	LIMITING CONT	INGENCY		
(1)	Northport - N	Norwalk Harbor (NNC	C) 138 kV	@LTE	569 MW	L/0	Long Mou	ıntain – Cricket Val	ley (398) 345 kV		
(2)	Northport – N	Norwalk Harbor (NNC	C) 138 kV	@STE	569 MW	L/0	Long Mou	ıntain – Cricket Val	ley (398) 345 kV		
(3)	Northport - N	Norwalk Harbor (NNC	C) 138 kV	@LTE	569 MW	L/0		ıntain – Cricket Val alley GT3&ST3	ley (398) 345 kV		
(4)	Norwalk June	ction – Archers Lane (3403D) 345 kV	@LTE	922 MW	L/0	Long Mou	ıntain – Frost Bridg	ge (352) 345 kV		

^{1:} The Northport – Norwalk Harbor (NNC) flow is positive in the direction of transfer

^{2:} The Northport – Norwalk Harbor (NNC) line is no longer part of the New England – New York Interface Definition

TABLE 3.a - NYISO to PJM INTERFACE THERMAL TRANSFER LIMITS - WINTER 2020-21 ALL LINES I/S

	DIRECT TIE	NYISO FACILITY	PJM FACILITY	DIRECT TIE	NYISO FACILITY	PJM FACILITY	
	F	3&C PARs In-Serv	B&C PARs Out-Of-Service				
NORMAL	1975 (1)	1950 (2)3	2375 (3)	1900 (1)	1875 (2)3	2225 (7)	
3-115-0/S	2350 (4)	1975 (2) ₃	2000 (5)	2300 (4)	1925 (2)3	1925 (5)	
EMERGENCY	1975 (1)	1975 (6)₃	2375 (3)	1900 (1)	1925 (6) ₃	2300 (3)	
3-115-0/S	2525 (8)	2000 (6)3	2000 (5)	2475 (8)	1950 (6) ₃	1925 (5)	

	LIMITING ELEMENT	RA	TING		LIMITING CONTINGENCY
(1)	East Sayre – North Waverly (956) 115	@STE	147 MW	L/O	East Towanda – Hillside (70) 230 kV
	kV				
(2)	Border City – Guardian (969) 115 kV	@STE	179 MW	L/0	Lafayette – Dewitt (22) 345 kV
					Lafayette - Clarks Corners (46) 345 kV
(3)	North Meshoppen 230/115 kV	@STE	200 MW	L/0	Canyon – East Towanda 230 kV
	Transformer				
(4)	East Towanda – Hillside (70) 230 kV	@LTE	594 MW	L/0	Mainesburg – Watercure (30) 345 kV
(5)	East Towanda – North Meshoppen 115	@STE	210 MW	L/0	Canyon – East Towanda 230 kV
	kV				
(6)	Border City – Guardian (969) 115 kV	@STE	179 MW	L/0	Lafayette – Clarks Corners (46) 345 kV
(7)	North Meshoppen 230/115 kV	@LTE	182 MW	L/0	Canyon – East Towanda 230 kV
	Transformer				North Meshoppen – Canyon 230 kV
(8)	East Towanda – Hillside (70) 230 kV	@NORM	539 MW		Pre-Contingency Loading

^{1:} Emergency Transfer Capability Limits may have required line outages as described in Section 5.3.B.

^{2:} PAR schedules have been adjusted in the direction of transfer.

^{3:} Internal Non-Secured Limit: Limit to secure internal transmission elements that are not secured with pricing in the NYISO markets (typically 115 kV)

TABLE 3.b - PJM to NYISO INTERFACE THERMAL TRANSFER LIMITS - WINTER 2020-21 ALL LINES I/S

	DIRECT TIE	NYISO FACILITY	PJM FACILITY	DIRECT TIE	NYISO FACILITY	PJM FACILITY	
	F	8&C PARs In-Serv	B&C PARs Out-Of-Service				
NORMAL	2400 (1)	2975 (2) ₃	3000 (4)	2125 (1)	2700 (2)3	2875 (4)	
3-115-0/S	2825 (3)	3275 (7) ₃	4400 (9)	2550 (3)	3000 (2) ₃	4125 (9)	
EMERGENCY	2575 (5)	3250 (6)3	3175 (10)	2300 (5)	2975 (6) ₃	2900(10)	
3-115-0/S	3000 (11)	3275 (8)3	4400 (9)	2725 (13)	3025 (8)3	4125 (9)	

	LIMITING ELEMENT	RA	TING		LIMITING CONTINGENCY
(1)	East Sayre – North Waverly (956) 115 kV	@STE	147 MW	L/0	East Towanda – Hillside (70) 230 kV
					Hillside – Watercure (69) 230 kV
					Hillside 230/115 kV Transformer
(2)	North Waverly – Lounsberry 115 kV	@STE	167 MW	L/0	Watercure – Oakdale (31) 345 kV
					Clarks Corner – Oakdale (36) 345 kV
(3)	East Towanda – Hillside (70) 230 kV	@LTE	594 MW	L/0	Watercure – Mainesburg (30) 345 kV
(4)	East Sayre – East Towanda 115 kV	@STE	263 MW	L/0	East Towanda – Hillside (70) 230 kV
					Hillside – Watercure (69) 230 kV
					Hillside 230/115 kV Transformer
(5)	East Sayre – North Waverly (956) 115 kV	@STE	147 MW	L/0	East Towanda – Hillside (70) 230 kV
(6)	North Waverly – Lounsberry 115 kV	@STE	167 MW	L/0	Watercure – Oakdale (31) 345 kV
(7)	Montor Falls - Coddington Road (982)	@STE	162 MW	L/0	Watercure – Oakdale (31) 345 kV
(7)	115kV				Oakdale 345/115 kV Transformer
(8)	Montor Falls – Coddington Road (982) 115kV	@STE	162 MW	L/0	Watercure – Oakdale (31) 345 kV
(9)	Everett Drive – Mainesburg 115 kV	@STE	313 MW	L/0	East Towanda – Hillside (70) 230 kV
(10)	East Sayre – East Towanda 115 kV	@STE	263 MW	L/0	East Towanda – Hillside (70) 230 kV
(11)	East Towanda – Hillside (70) 230 kV	@STE	670 MW	L/0	Watercure – Mainesburg (30) 345 kV

^{1:} Emergency Transfer Capability Limits may have required line outages as described in Section 5.3.B.

^{2:} PAR schedules have been adjusted in the direction of transfer.

^{3:} Internal Non-Secured Limit: Limit to secure internal transmission elements that are not secured with pricing in the NYISO markets (typically 115 kV)

TABLE 4 - IESO to NYISO INTERFACE THERMAL TRANSFER LIMITS - WINTER 2020-21 ALL LINES I/S

	DIRECT TIE	NYISO FACILITY	IESO FACILITY ₁	
NORMAL	2325 (1)	2775 (2) 2	3325 (4)	
EMERGENCY	2850 (5)	2775 (3) 2	3525 (6)	

	LIMITING ELEMENT	RAT	RATING		LIMITING CONTINGENCY
(1)	Beck - Niagara (PA27) 230 kV	@LTE	540 MW	L/0	Beck – Niagara (PA 301) 345 kV
(2)	Lockport - Hinman (100) 115kV	@STE	317 MW	L/0	Robinson Road – Stolle Road (65) 230 kV Gardenville – Stolle Road (66) 230 kV Stolle Road – High Sheldon (67) 230 kV
(3)	Lockport - Hinman (100) 115kV	@STE	317 MW	L/0	Robinson Road – Stolle Road (65) 230 kV
(4)	Allanburg – Mount Hope (Q30M) 230 kV	@LTE	449 MW	L/0	Allanburg – Beck (Q26M) 230 kV Beck#2 Unit 17
(5)	Beck - Niagara (PA27) 230 kV	@NORM	480 MW		Pre-Contingency Loading
(6)	Allanburg – Mount Hope (Q30M) 230 kV	@NORM	389 MW	L/0	Pre-Contingency Loading

<u>Note</u>

^{1:} Ontario - NYISO limit used the NYSRC Rules Exception No. 13 - Post Contingency Flows on Niagara Project Facilities 2: Internal Non-Secured Limit: Limit to secure internal transmission elements that are not secured with pricing in the NYISO markets

TABLE 5 - NYISO to IESO INTERFACE THERMAL TRANSFER LIMITS - WINTER 2020-21 ALL LINES I/S

	DIRECT TIE	NYISO FACILITY	IESO FACILITY ₁
NORMAL 2000 (1)			1475 (2)
EMERGENCY	2500 (3)		2100 (4)

-	LIMITING ELEMENT	RATING			LIMITING CONTINGENCY
(1)	Beck – Niagara (PA27) 230 kV	@LTE	540 MW	L/0	Beck – Niagara (PA 302) 345 kV Beck #2 unit 15
(2)	Beck – Hannon (Q24H) 230 kV	@LTE	553 MW	L/0	Beck – Middleport – Carluke (Q25BM) 230 kV Beck – Middleport – Beach (Q29HM) 230 kV
(3)	Beck - Niagara (PA27) 230 kV	@NORM	480 MW	L/0	Pre-Contingency Loading
(4)	Beck - Hannon (JQ29H) 230 kV	@NORM	496 MW	L/O	Pre-Contingency Loading

<u>Note</u>

^{1:} This limit can be increased by reducing generation or increasing demand in the Niagara zone of Ontario. See Section 5.3.C.d. for discussion.