

Economic Planning Process 2023-2042 System & Resource Outlook

Jason Frasier Manager, Economic Planning

Electric System Planning Working Group (ESPWG)

Friday June 16th, 2023

Agenda

- System & Resource Planning Overview
- Economic Planning Process Review
- 2023-2042 System & Resource Outlook
- Preliminary Schedule
- Next Steps
- Questions, Comments, & Feedback

System & Resource Planning Overview

The Roles of the NYISO

» Reliable Operations

Maintaining bulk power system reliability is the cornerstone of the NYISO's mission and focus, shaping how we operate, design markets, and conduct system planning.

Efficient Markets

» Competitive wholesale electric markets provide reliable power at the lowest possible cost to meet consumer needs. We conduct and monitor competitive auctions of wholesale electricity including needed ancillary services every five minutes, every day of the year.

» Comprehensive Planning

An important step in supporting New York's ambitious clean energy goals is to study the future grid to promote a better understanding of what will be needed, including emerging technologies, to meet reliability.

» Authoritative Source

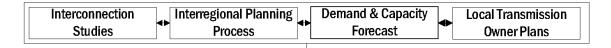
A pillar of our focus is to serve as an independent source of factbased information on the evolving electric system.

Comprehensively Plan

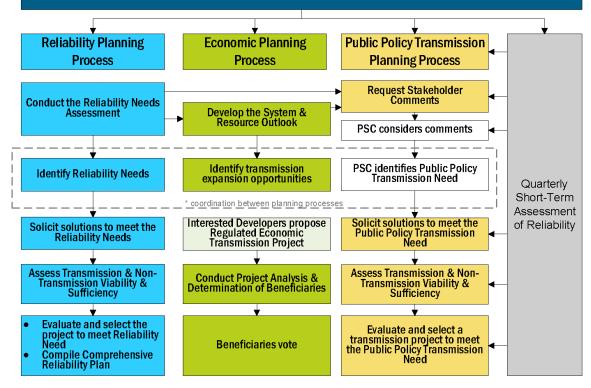
system & resources to elicit marketbased and regulated infrastructure investments to maintain system reliability, improve market efficiency, and fulfill public policy needs

Reliably Interconnect

competitive generation, load and transmission projects to the New York grid


NYISO System & Resource Planning

Accurately Forecast


short-term and long-term electricity demand for grid & market operations, system planning, and NYISO budgeting

Independently Provide authoritative information to promote economic and environmental improvements in balance with reliability requirements

low York ISO

NYISO Comprehensive System Planning Process

Economic Planning Process Review

Economic Planning Origins

- In 2007, the Federal Energy Regulatory Commission (FERC) issued <u>Order No. 890</u> that identified nine "Transmission Planning Principles" that established the basis for transmission planning at ISO/RTOs
- The eighth principle, and part of the Final Rule, required that all transmission providers (e.g., ISOs/RTOs) complete an economic planning study that provides the opportunity to consider "whether potential upgrades or other investments could reduce congestion costs or otherwise integrate new resources on an aggregated or regional basis outside of a specific request for interconnection or transmission service."

Economic Planning Implementation

- In response to Order No. 890, the NYISO developed <u>OATT</u> <u>Attachment Y Section 31.3 & 31.5</u>, which establishes studies and analyses that FERC accepted as fulfilling Order No. 890 requirements
- The <u>Economic Planning Process Manual</u> provides additional information and details on how the NYISO performs Economic Planning studies

Economic Planning Process Studies

1. System & Resource Outlook, "The Outlook"

- 20-year study of current system & projected congestion
- Identification of challenges related to achieving New York policy objectives

2. Economic Transmission Project Evaluation (ETPE)

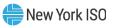
- Study of actual transmission project proposals
- Project with benefit/cost ratio eligible for vote for cost recovery


3. Requested Economic Planning Study (REPS)

- Stakeholder or other interested party requested study
- Studies performed "subject to resource limits"

Uses for System & Resource Outlook

- Identify potential challenges to meeting the New York State CLCPA targets
- Inform stakeholders and policy makers where future public policy needs may exist
- Define renewable generation pockets
- Prepare system models to perform Economic Transmission Project Evaluation and/or Requested Economic Planning Studies



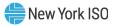
2023-2042 System & Resource Outlook

System & Resource Outlook Objectives

- 1. Create a biennial report that summarizes the current assessments, evaluations, and plans in the biennial Comprehensive System Planning Process
- 2. Produce a twenty-year projection of system conditions for demand, generation, and transmission across the New York transmission system
- **3.** Identify, rank, and group congested elements
- 4. Assess the potential benefits of addressing congestion
- 5. Develop informative scenario cases
- 6. Perform technical analyses to inform internal and external stakeholders

System & Resource Outlook Scope

Model Development		Congestion	Anal		
		Assessment	Resources to Meet Policy	Renewable Pockets &	Report, Appendix, Data
Benchmark	Assumptions	Historic & Future Transmission Congestion	Objectives	Energy Deliverability	Catalog, & Fact Sheet
Reference Cases	Sensitivities	Congestion Relief Analysis	Renewable Generation Profiles	Future Resource Attributes	


Benchmark

- Validate, test, and tune production cost model performance
- Initialize database for 2023-2042 System & Resource Outlook modeling
- Process
 - 1. Perform production cost model simulation with actual 2021 historic data as input
 - 2. Compare simulation output with actual system performance for the year 2021 to test model accuracy
 - 3. Adjust model parameters as needed to align simulated output with actual
 - 4. Iterate #1-#3

Assumptions

- All assumptions developed pursuant to Economic Planning Process tariff provisions and manual
- Many different policies, forecasts, power system configurations, market structures, and other parameters must be developed to formulate the study
- Study assumptions are presented and reviewed with stakeholders at ESPWG
- Assumptions "matrix" developed for models

Reference Cases for Consideration

Base Case

- Assumptions align closely with Reliability Planning Process
- Used for any potential Economic Transmission Project Evaluation (ETPE)

Contract Case

• Base Case + renewable projects with existing NYSERDA REC contracts

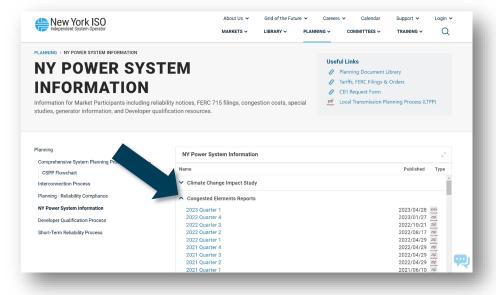
Policy Cases (2 Scenarios)

- Introduce capacity expansion modeling
- Contract Case + New York CLCPA carbon-free targets and goals
- Different scenarios reflect changes in underlying assumptions (e.g., load forecast, technology costs, etc.)

Sensitivities

 As time permits, sensitivity simulations can be performed in capacity expansion and production cost simulations

Some potential examples include:


- Flexible Load
- IRM/LCR
- Load/Solar/Wind Shape
- Sensitivities allow for determining the impact of single changes to future system buildout and operation

Congestion Assessment

Historic Congestion

- Per the tariff, the NYISO posts historic transmission congestion metrics to the public website on a quarterly basis: <u>https://www.nyiso.com/nypower-system-information-outlook/</u>
- Metrics are compiled in The Outlook and presented for easy comparison to simulated future data to identify trends



Congestion Assessment

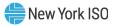
Future Congestion

- Future transmission congestion is quantified in production cost models for each of the Reference Cases
- Modeling assumptions drive presence, magnitude, and trends of transmission congestion
- Basis for defining renewable generation pockets

Congestion Assessment

Congestion Relief Analysis

- Congestion Relief Analyses are performed to examine the effects of relieving transmission line constraints on specific paths or on a system-wide level
- NYISO is considering conducting a "copper sheet" analysis, where all internal NYCA transmission constraints are relaxed, to help quantify the effects of transmission congestion on energy deliverability of renewable resources


Resources to Meet Policy Objectives

- Climate Leadership & Community Protection Act (CLCPA) will require significant resource buildout
- Estimated amount of new generation required to meet some targets is uncertain
- Capacity expansion model can help to identify potential resource buildouts to meet policy objectives
- New assumptions and study updates may lead to new findings beyond 2021-2040 System & Resource Outlook

Renewable Generation Pockets & Energy Deliverability

- Perform Renewable Generation Pocket and Energy Deliverability analyses similar to 2021-2040 System & Resource Outlook
- Renewable Generation Pockets will be based on Contract and Policy cases
- New pockets may be identified based on renewable generation curtailments and transmission congestion grouping in the Contract and Policy cases

Renewable Generation Profiles

- DNV-GL was commissioned in 2022 to develop detailed hourly offshore wind profiles for 22 historic weather years
 - Presentation Link
 - Data Link
- DNV-GL has been commissioned for follow-up work to extend detailed hourly profile development to land-based wind and solar profiles
- New renewable generation profiles will be used in The Outlook

Future Resource Attributes

- Existing thermal generation and future Dispatchable Emissions Free Resource (DEFR) are evaluated as system evolves to meet CLCPA targets
- Performance characteristics are analyzed to help determine potential future system needs of dispatchable generation resources



Report

Report & Supplemental Documents

- NYISO Planning will continue its effort to make reports more accessible by using an expanded appendix to house the dense technical assumptions and analyses on individual topics supporting the report
- Anticipated 2023-2042 System & Resource Outlook publications:
 - Report
 - Appendices
 - Data Catalog
 - Fact Sheet

Draft documents will be reviewed at stakeholder meetings

Preliminary Schedule

Preliminary Targeted Study Schedule

Month		2023		2024					
Month	Q2	Q3	Q4	Q1	Q2	Q3			
Benchmarking Assumptions Development									
CapEx Modelling Production Cost Modelling									
Analyses Report									

Next Steps

2023 Q2 Targeted Schedule

	Month			April			Мау			June				
	Week	1	2	3	4	5	1	2	3	4	1	2	3	4
2023 Q2	Benchmarking						Х	Х	Х	Х	X	Х	Х	Х
	Assumptions Development								Х	Х	X	Х	Х	x
	CapEx Modelling										X	Х	Х	x
	Production Cost Modelling													
	Analyses													
	Report													

Next Steps

Upcoming ESPWG Meetings

- Process improvements review
- Production cost model benchmark results
- Assumptions review & discussion

Questions, Comments, & Feedback?

Email additional feedback to: JFrasier@nyiso.com

© COPYRIGHT NYISO 2023. ALL RIGHTS RESERVED.

DRAFT – FOR DISCUSSION PURPOSES ONLY

2023-2042 System & Resource Outlook Data Catalog

Our Mission & Vision

 \checkmark

Mission

Ensure power system reliability and competitive markets for New York in a clean energy future

Vision

Working together with stakeholders to build the cleanest, most reliable electric system in the nation

