

Short-Term Assessment of Reliability: 2022 Quarter 4

A Report by the New York Independent System Operator

January 13, 2023

Table of Contents

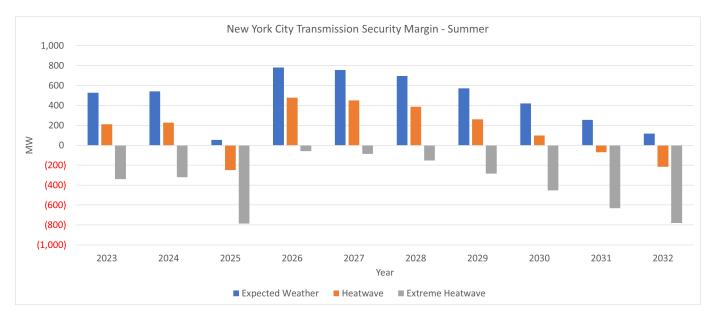
EXECUTIVE SUMMARY	4
PURPOSE	7
ASSUMPTIONS	8
Generation Assumptions	8
Generator Deactivation Notices	8
Peaker Rule: Ozone Season Oxides of Nitrogen (NOx) Emission Limits for Simple (Cycle and
Regenerative Combustion Turbines	10
Generator Return-to-Service	12
Generator Additions	12
Load Assumptions	12
Transmission Assumptions	12
Existing Transmission	
Proposed Transmission	12
FINDINGS	13
Resource Adequacy Assessments	13
Transmission Security Assessments	13
Steady State Assessment	16
Dynamics Assessment	17
Short Circuit Assessment	17
Transmission Security Margin Assessment	
Additional Transmission Owner Local Criteria Assessments (For Information Only)	21
CONCLUSIONS AND DETERMINATION	22
APPENDIX A: LIST OF SHORT-TERM RELIABILITY NEEDS	23
APPENDIX B: SHORT-TERM RELIABILITY PROCESS SOLUTION LIST	23
APPENDIX C: SUMMARY OF STUDY ASSUMPTIONS	24
Generation Assumptions	24
Load Assumptions	29
Transmission Assumptions	29
APPENDIX D: RESOURCE ADEQUACY ASSUMPTIONS	50
2022 Q4 STAR MARS Assumptions Matrix	50
Resource Adequacy Topology from the 2022 Reliability Needs Assessment	59
APPENDIX E: TRANSMISSION SECURITY MARGINS (TIPPING POINTS)	63

Introduction	63
New York Control Area (NYCA) Statewide System Margins	6/
Lower Hudson Valley (Zones G-J) Transmission Security Margins	
New York City (Zone J) Transmission Security Margins	
Long Island (Zone K) Transmission Security Margins	120
Load Shape Details for Transmission Security Margins	138

Executive Summary

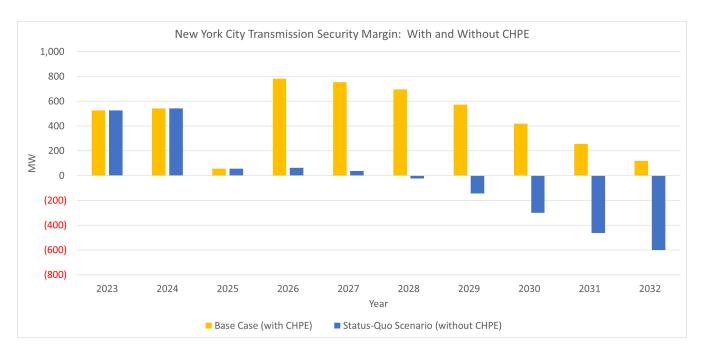
This report sets forth the 2022 Quarter 4 Short-Term Assessment of Reliability ("STAR") findings for the five-year study period of October 15, 2022, through October 15, 2027. Included in this STAR is the proposed retirement of Eastern Generation, LLC's Astoria GT 01 (Zone I, 16 MW (nameplate)) generator on May 1, 2023.

This assessment finds the planned Bulk Power Transmission Facilities ("BPTF") through the study period are within applicable reliability criteria based on expected weather and with the planned projects meeting their proposed in-service dates. The NYISO assessed the resource adequacy of the overall system. Additionally, the NYISO performed a transmission security assessment of the BPTF. No Short-Term Reliability Needs were identified for the BPTF system. No generator deactivation reliability needs were observed in the local assessments performed by Consolidated Edison Company of New York, Inc. ("Con Edison").


Central Hudson identified transmission security issues in its transmission district on its non-BPTF system. These are primarily driven by the assumed unavailability of certain generation in its district affected by the New York Department of Environmental Conservation's (DEC's) Peaker Rule. Given that those generators have not yet provided complete Generator Deactivation Notices to the NYISO, the local non-BPTF criteria violations identified by Central Hudson are being provided for information but were not assessed to identify possible Generator Deactivation Reliability Needs at this time.

For the bulk transmission security margin assessment, "tipping points" are evaluated for the statewide system margin, as well as Lower Hudson Valley, New York City, and Long Island localities. Transmission security margins included in this assessment are employed to identify plausible changes in conditions or assumptions that might adversely impact the reliability of the system. For this evaluation, a BPTF reliability need is identified when the margin is less than zero under baseline expected weather, normal transfer criteria. The transmission security margins account for expected generator availability, transmission limitations, and demand forecasts using baseline expected weather forecasts consistent with the 2022 Load & Capacity Data report ("Gold Book"). This assessment is performed using a deterministic approach and a spreadsheet-based method.

The baseline transmission security margins for the Lower Hudson Valley, New York City, and Long Island localities, as well as the statewide system margin, are observed to be sufficient for all study years. The reliability of the New York City area faces the greatest risk due to limited generation and transmission to serve forecasted demand. Under expected summer weather, the grid is sufficient throughout the five-



year STAR study horizon but has an extremely narrow transmission security margin in 2025. The narrow margin is primarily due to the planned unavailability of simple cycle combustion turbines to comply with the DEC's Peaker Rule in 2025. The summer margin improves in 2026 with the scheduled addition of the Champlain Hudson Power Express (CHPE) connection from Hydro Quebec to New York City, but gradually erodes as expected demand grows within New York City. However, potential heatwaves of various degrees pose risks throughout the next ten years, especially in 2025. In addition, while CHPE will contribute to reliability in the summer, the facility is not expected to provide any capacity in the winter.

The reliability margins within New York City may not be sufficient even for expected weather if (i) the CHPE project experiences a significant delay, (ii) forecasted demand in New York City increases by as little as 60 MW in 2025, or (iii) there are additional generator deactivations beyond what is already planned. Some generation affected by the DEC's Peaker Rule may need to remain in-service until CHPE or other permanent solutions are completed to maintain a reliable grid. Without the CHPE project in-service by 2026 and other offsetting changes or solutions, the reliability margins continue to be less than 100 MW until 2028, at which time the New York City grid as otherwise planned could not provide reliable service for the forecasted system conditions. This deficiency would grow to approximately 600 MW by 2032.

The wholesale electricity markets administered by the NYISO are an important tool to help mitigate these risks. The markets are designed, and continue to evolve and adapt, to send appropriate price signals for new market entry and retention of resources that assist in maintaining reliability. The potential risks and resource needs identified in the NYISO's analyses may be resolved by new capacity resources coming into service, construction of additional transmission facilities, and/or increased energy efficiency and integration of demand-side resources. The NYISO is tracking the progression of many projects that may contribute to grid reliability, including numerous offshore wind facilities that have not yet met the inclusion rules for reliability assessments. The NYISO will continue to monitor these resources and other developments to determine whether changing system resources and conditions could impact the reliability of the New York bulk electric grid.

As generators that are subject to the DEC's Peaker Rule submit their Generator Deactivation Notices, the NYISO and the responsible Transmission Owners will continue to evaluate in future STARs whether Generator Deactivation Reliability Needs arise from the deactivation of Initiating Generators.¹

¹ Per OATT 38.1, an "Initiating Generator" is "a Generator with a nameplate rating that exceeds 1 MW that submits a Generator Deactivation Notice for purposes of becoming Retired or entering into a Mothball Outage or that has entered into an ICAP Ineligible Forced Outage pursuant to Section 5.18.2.1 of the ISO Services Tariff, which action is being evaluated by the ISO in accordance with its Short-Term Reliability Process requirements in this Section 38 of the ISO OATT."

Purpose

In 2019, the NYISO established a quarterly Short-Term Reliability Process ("STRP") with its requirements prescribed in Attachments Y and FF of the NYISO's Open Access Transmission Tariff ("OATT"). The STRP evaluates the first five years of the planning horizon, with a focus on needs arising in the first three years of the study period. With this process in place, the biennial Reliability Planning Process focuses on identifying and resolving longer-term needs through the Reliability Needs Assessment ("RNA") and the Comprehensive Reliability Plan ("CRP").

The first step in the STRP is the Short-Term Assessment of Reliability ("STAR"). STARs are performed quarterly to proactively address reliability needs that may arise within five years ("Short-Term Reliability Needs")² due to various changes to the grid such as generator deactivations, revised transmission plans, and updated load forecasts. Transmission Owners also assess the impact of generator deactivations on their local systems. A Short-Term Reliability Need that is observed within the first three years of the study period constitutes a "Near-Term Reliability Need." Should a Near-Term Reliability Need be identified in a STAR, the NYISO solicits and selects the solution to address the need. If a need arises beyond the first three years of the study period, the NYISO may choose to address the need within the STRP or, if time permits, through the long-term Reliability Planning Process.

This STAR report sets forth the 2022 Quarter 4 findings for the study period from the STAR Start Date (October 15, 2022) through October 15, 2027. The NYISO assessed the potential reliability impacts to the Bulk Power Transmission Facilities ("BPTF") considering system changes, including the availability of resources and the status of transmission plans in accordance with the NYISO Reliability Planning Process Manual.⁴ As part of this STAR, the NYISO performed analysis in coordination with Con Edison to determine whether any observed violation or potential violation of one or more reliability criteria and applicable local criteria could be addressed by the continued availability or operation of a deactivating generator (i.e., a Generator Deactivation Reliability Need⁵). For this STAR, the deactivating generators included in this assessment are listed in Figure 1. The NYISO, along with Con Edison, timely completed this analysis within the 90-day period that commenced on October 15, 2022.

² OATT Section 38.1 contains the tariff definition of a "Short-Term Reliability Process Need."

³ OATT Section 38.1 contains the tariff definition of a "Near-Term Reliability Need." See also, OATT Section 38.3.6.

⁴ NYISO Reliability Planning Process Manual, July 11, 2022. See: https://www.nyiso.com/documents/20142/2924447/rpp_mnl.pdf

⁵ Per OATT Section 38.1, a "Generator Deactivation Reliability Need" is "a condition identified by the ISO in a STAR or a Generator Deactivation Assessment as a violation or potential violation of one or more Reliability Criteria and applicable local criteria. Violations and potential violations identified in a STAR are only Generator Deactivation Reliability Needs if the need can be resolved, in whole or in part, by the continued availability or operation of an Initiating Generator. A Generator Deactivation Reliability Need is a type of Short-Term Reliability Process Need."

Assumptions

The NYISO evaluated the study period using the most recent Reliability Planning Process base case and data available as of October 14, 2022 (i.e., the day before the October 15, 2022 Q4 STAR start date). In accordance with the base case inclusion rules, 6 generation and transmission projects are added to the base case if they have met significant milestones such that there is a reasonable expectation of timely completion of the project. A summary of key projects is provided in Appendix C. The NYISO is tracking the progression of many projects that may contribute to grid reliability, including numerous offshore wind facilities that have not yet met the inclusion rules for reliability assessments. These additional tracked projects are listed in the 2022 Gold Book and in **Appendix D** of the 2022 RNA.

This assessment used the major assumptions included in the 2022 RNA. Consistent with the obligations under its tariffs, the NYISO provided information to stakeholders on the modeling assumptions employed in this assessment. Details regarding the study assumptions were reviewed with stakeholders at the October 25, 2022, joint Electric System Planning Working Group ("ESPWG")/Transmission Planning Advisory Subcommittee ("TPAS") meeting. The meeting materials are posted on the NYISO's website.⁷

Generation Assumptions

Generator Deactivation Notices

For this STAR, the deactivating generators included in this assessment are listed in Figure 1. A list of all generator deactivations, including those evaluated in prior STARs, is provided in Appendix C. The posting of generator deactivation notices for retirement, mothball outage, or ICAP ineligible forced outage are available on the NYISO's website under the Short-Term Reliability Process.8 Additionally, the Sithe Sterling generator (Zone B, 65.3 MW (nameplate)) withdrew its retirement notice on October 17, 2022.

⁶ See NYISO Reliability Planning Process Manual Section 3.

⁷ Short-Term Assessment of Reliability: 2022 Q4 Key Study Assumptions

⁸ See https://www.nyiso.com/short-term-reliability-process then Generator Deactivation Notices/Planned Retirement Notices or Generator Deactivation Notices/IIFO Notifications

Figure 1: 2022 Quarter 4 STAR Generator Deactivations

Generating Unit	Submitting Entity	PTID	Responsible Transmission Owner	Zone	Nameplate MW	Unit Type	Date of Completed Deactivation Notice	Retire/Mothball Outage/ICAP Ineligible Forced Outage (IIFO)	Proposed Deactivation/IIFO Date
Astoria GT 01	Eastern Generation, LLC	23523	Con Edison	J	16	Combustion Turbine	10/10/2022	Retire	5/1/2023

Peaker Rule: Ozone Season Oxides of Nitrogen (NOx) Emission Limits for Simple Cycle and Regenerative Combustion Turbines

In 2019, the New York State Department of Environmental Conservation ("DEC") adopted a regulation to limit nitrogen oxides (NOx) emissions from simple-cycle combustion turbines (referred to as the "Peaker Rule").9 Combustion turbines known as "peakers" typically operate to maintain bulk power system reliability during the most stressful operating conditions, such as periods of peak electricity demand. The Peaker Rule will impact turbines located mainly in the lower Hudson Valley, New York City and Long Island. Many of these units also maintain transmission security by supplying energy within certain areas of the grid referred to as "load pockets." Load pockets represent transmission-constrained geographic areas where a portion of electrical demand can only be served by local generators due to transmission limitations that occur during certain operating conditions.

The Peaker Rule provides a phased reduction in emission limits, in 2023 and 2025, during the ozone season (May 1-September 30) and allows several options for achieving compliance with the new lower limits applicable during the ozone season. The rule required peaking unit owners to submit compliance plans to the DEC in March 2020. Compliance plans submitted to the DEC were provided to the NYISO for assessment and inclusion in the Reliability Planning Process base case. Considering all peaker unit compliance plans, approximately 1,600 MW of peaker generation capability would be unavailable during the summer by 2025 to comply with the emissions requirements. A subset of those generators would be unavailable starting in 2023. Remaining peaker units have stated either that they comply with the emission limits as currently operated, or proposed equipment upgrades to achieve the emissions limits.

A list of peaker generation removals is provided in Figure 2. Peaker generators that have already completed a Generator Deactivation Notice or entered an IIFO are indicated in the table. Additionally, the table notes the STAR study or other assessments where these generators have been evaluated once the generator completed their generator deactivation notice or entered into an IIFO.

The DEC regulations include a provision to allow an affected generator to continue to operate for up to two years, with a possible further two-year extension, after the compliance deadline if the generator is designated by the NYISO or by the local transmission owner as needed to resolve a reliability need until a permanent solution is in place.

Study assumptions for this STAR are derived from the 2022 RNA, except for the changes to generation assumptions specified below.

⁹ DE<u>C Peaker Rule</u>

Figure 2: Status Changes Due to DEC Peaker Rule

				CRIS (I	VIW) (1)	Capabilit	y (MW) (1)		STAR Evaluation
Owner/Operator	Station	Zone	Nameplate (MW)	Summer	Winter	Summer	Winter	Status Change Date (2)	or Other Assessment
National Grid	West Babylon 4	K	52.4	49.0	64.0	41.2	63.4	12/12/2020 (R)	Other (6), (7)
National Grid	Glenwood GT 01 (4)	K	16.0	14.6	19.1	13.0	15.3	2/28/2021 (R)	2020 Q3 (7)
Helix Ravenswood, LLC	Ravenswood 11	J	25.0	20.2	25.7	16.1	22.4	12/1/2021 (IIFO)	2022 Q1
Helix Ravenswood, LLC	Ravenswood 01	J	18.6	8.8	11.5	7.7	11.1	1/1/2022 (IIFO)	2022 Q1
Astoria Generating Company, L.P.	Gowanus 1-1 through 1-8	J	160.0	138.7	181.1	133.1	182.2	11/1/2022 (R)	2022 Q2
Astoria Generating Company, L.P.	Gowanus 4-1 through 4-8	J	160.0	140.1	182.9	138.8	183.4	11/1/2022 (R)	2022 Q2
Consolidated Edison Co. of NY, Inc.	Hudson Ave 3	J	16.3	16.0	20.9	12.3	15.6	11/1/2022 (R)	2022 Q2
Consolidated Edison Co. of NY, Inc.	Hudson Ave 5	J	16.3	15.1	19.7	15.3	18.6	11/1/2022 (R)	2022 Q2
Central Hudson Gas & Elec. Corp.	Coxsackie GT	G	21.6	21.6	26.0	19.2	24.0	5/1/2023	
Central Hudson Gas & Elec. Corp.	South Cairo	G	21.6	19.8	25.9	18.9	23.0	5/1/2023	
Consolidated Edison Co. of NY, Inc.	74 St. GT 1 & 2	J	37.0	39.1	49.2	39.3	45.2	5/1/2023	2022 Q2
Astoria Generating Company, L.P.	Astoria GT 01	J	16.0	15.7	20.5	13.6	19.0	5/1/2023	2022 Q4
NRG Power Marketing, LLC	Astoria GT 2-1, 2-2, 2-3, 2-4	J	186.0	165.8	204.1	141.6	183.7	5/1/2023	2022 Q2
NRG Power Marketing, LLC	Astoria GT 3-1, 3-2, 3-3, 3-4	J	186.0	170.7	210.0	140.5	182.8	5/1/2023	2022 Q2
NRG Power Marketing, LLC	Astoria GT 4-1, 4-2, 4-3, 4-4	J	186.0	167.9	206.7	138.3	180.3	5/1/2023	2022 Q2
Helix Ravenswood, LLC	Ravens wood 10	J	25.0	21.2	27.0	16.0	22.3	5/1/2023	2022 Q3
National Grid	Glenwood GT 03 (3) (4)	K	55.0	54.7	71.5	44.7	66.5	5/1/2023	
National Grid	Northport GT	К	16.0	13.8	18.0	12.0	15.7	5/1/2023	
National Grid	Port Jefferson GT 01	K	16.0	14.1	18.4	12.6	17.3	5/1/2023	
National Grid	Shoreham 1 (3) (4)	K	52.9	48.9	63.9	44.7	64.6	5/1/2023	
National Grid	Shoreham 2 (3) (4)	K	18.6	18.5	23.5	15.7	20.0	5/1/2023	
Consolidated Edison Co. of NY, Inc.	59 St. GT 1	J	17.1	15.4	20.1	13.1	18.8	5/1/2025	
NRG Power Marketing, LLC	Arthur Kill GT 1	J	20.0	16.5	21.6	12.1	15.1	5/1/2025	
Astoria Generating Company, L.P.	Gowanus 2-1 through 2-8 (5)	J	160.0	152.8	199.6	145.5	186.9	5/1/2025	
Astoria Generating Company, L.P.	Gowanus 3-1 through 3-8 (5)	J	160.0	146.8	191.7	137.4	183.5	5/1/2025	
Astoria Generating Company, L.P.	Narrows 1-1 through 2-8 (5)	J	352.0	309.1	403.6	291.5	382.0	5/1/2025	
	Prior to Sum	mer 2022	112.0	92.6	120.3	78.0	112.2		
	Prior to Sum	mer 2023	1,190.3	1,081.7	1,369.3	956.6	1,264.2		
	Prior to Sum	mer 2025	709.1	640.6	836.6	599.6	786.3		
		Total	2,011.4	1,814.9	2,326.2	1,634.2	2,162.7		

Notes

- 1. MW values are from the 2022 Load and Capacity Data Report
- 2. Dates identified by generators in their DEC Peaker Rule compliance plan submittals for transitioning the facility to Retired, Blackstart, or will be out-of-service in the summer ozone season or the date in which the generator entered (or proposed to enter) Retired (R) or Mothball Outage (MO) or the date on which the generator entered ICAP Ineligible Forced Outage (IIFO)
- $3.\ Generator\ changed\ DEC\ peaker\ rule\ compliance\ plan\ as\ compared\ to\ the\ 2020\ RNA\ and\ all\ STARs\ prior\ to\ 2021\ Q3$
- 4. Long Island Power Authority (LIPA) has submitted notifications to the DEC per part 227-3 of the peaker rule stating that these units are needed for reliability allowing these units to operate until at least May
- 1, 2025. Due to the future nature of these units being operated only as designated by the operator as an emergency operating procedure the NYISO will continue to plan for these units be unavailable starting
- 5. These units have indicated they will be out-of-service during the ozone season (May through September) in their comliance plans in response to the DEC peaker rule.
- 6. This unit was evaluated in a stand-alone generator deactivation assessment prior to the creation of the Short-Term Reliabilty Process
- 7. Unit operating as a load modifier

Generator Return-to-Service

There are no generators that have returned to service beyond those included in prior STARs. A list of generators that have returned to service included in prior STARs is provided in Appendix C.

Generator Additions

There are no generation additions beyond those included in the 2022 RNA. However, Puckett Solar (Q#0775) (Zone C, 20 MW (nameplate)) went into service in September 2022. A list of generator additions, including updates to planned commercial operation dates as included in the 2022 RNA, is provided in Appendix C.

Load Assumptions

The NYISO used the baseline load forecasts for this assessment consistent with the 2022 Gold Book with the following load projects in the NYISO interconnection queue: Q#0580 – WNY STAMP, Q#0776 – Greenidge Load, Q#0849 - Somerset Load, Q#0850 - Cayuga Load, and Q#0979 - North Country Data Center (load increase). The load assumptions used in this STAR are the same as those used for the 2022 RNA.

Transmission Assumptions

Existing Transmission

The transmission assumptions utilized in this assessment are the same as those used for the 2022 RNA. However, there is one additional transmission outage in addition to those reflected in the prior STAR. Figure 3 shows the changes in existing transmission outage assumptions compared to the prior STAR.

Figure 3: Changes to Existing Transmission Facilities Modeled Out-of-Service

				Out-of-Serv	vice Through
From	То	kV	ID	Prior STAR	Current STAR
Moses	St. Lawrence	230	L34P	N/A	09/2023

A complete list of existing transmission facilities that are modeled as out-of-service for this assessment is also provided in Appendix C.

Proposed Transmission

There are no other changes to proposed transmission assumptions beyond those included in the 2022 RNA. Details of the proposed transmission assumptions included in the RNA are provided in Appendix C.

Findings

Grid reliability is determined by assessing transmission security and resource adequacy.

Transmission security is the ability of the electric system to withstand disturbances such as electric short circuits or unanticipated loss of system elements without involuntarily disconnecting firm load. Resource adequacy is the ability of electric systems to supply the aggregate electrical demand and energy requirements of customers, taking into account scheduled and reasonably expected unscheduled outages of system elements.

Starting with the 2022 RNA and included in subsequent STARs (including this STAR), enhancements to the application of reliability rules were employed for both transmission security and resource adequacy:

- For transmission security, to represent that not all generation will be available at any given time, a derating factor is applied to thermal units. Additionally, intermittent, weather dependent generation is dispatched according to its expected availability coincident with the represented system condition. The enhancements also include the ability to identify BPTF reliability needs in instances where the transmission security margin for a constrained area of the system is less than zero MW.
- For resource adequacy, to ensure that some level of operating reserves is maintained, the Emergency Operating Procedure (EOP) step will retain 350 MW of operating reserves at the time of a load shedding event.

This assessment finds that reliability criteria would be met for the BPTF throughout the five-year study period under the assumed and forecasted base case system conditions.

Resource Adequacy Assessments

The NYISO assessed the resource adequacy of the New York Control Area ("NYCA") system, against the one-day-in-ten-years (i.e., 0.1 days per year) loss of load expectation ("LOLE") NYSRC and NPCC criterion, which measures the probability of disconnecting firm load due to resource deficiencies. This assessment finds that the planned system through the study period meets the resource adequacy criterion. Details about the resource adequacy study assumptions are provided in Appendix D.

Transmission Security Assessments

Transmission security is the ability of the power system to withstand disturbances, such as electric short circuits or unanticipated loss of system elements and continue to supply and deliver electricity. The analysis for the transmission security assessment is conducted in accordance with NERC Reliability Standards, NPCC Transmission Design Criteria, and the NYSRC Reliability Rules. Transmission security is assessed deterministically with potential disturbances being applied without concern for the likelihood of

the disturbance in the assessment. These disturbances (single-element and multiple-element contingencies) are categorized as the design criteria contingencies, which are explicitly defined in the reliability criteria. The impacts resulting from applying these design criteria contingencies are assessed to determine whether thermal loading, voltage, or stability violations will occur. In addition, the NYISO performs a short circuit analysis to determine if the system can clear faulted facilities reliably under short circuit conditions. The NYISO's "Guideline for Fault Current Assessment" 10 describes the methodology for that analysis.

Transmission security analysis includes the assessment of various combinations of credible system conditions intended to stress the system. As transmission security analysis is deterministic, these various credible combinations of system conditions are evaluated throughout the study period to identify reliability needs. Intermittent generation is represented based on expected output during the modeled system conditions.11

Transmission security margins are included in this assessment to identify plausible changes in conditions or assumptions that might adversely impact the reliability of the system. The transmission security margin is the ability to meet load plus losses and system reserve (i.e., total capacity requirement) using NYCA generation, interchange, and including temperature-based generation derates (total resources). This assessment is performed using a deterministic approach through a spreadsheet-based method. For this evaluation, a BPTF reliability need is identified when the margin is less than zero under baseline expected weather, normal transfer criteria. For the purposes of identifying reliability needs on the BPTF using transmission security margin calculations, thermal generation MW capability is considered available based on NERC five-year class averages for the relevant type of unit.¹² Derates for thermal generation are included due to the aging fleet without expected replacement, while the share of intermittent, weather dependent, generation is growing.

Figure 4 shows the NERC five-year class-average outage rate for combined cycle, gas turbine, fossil steam turbine, and jet engine generators. Figure 5 shows the impact of the thermal derates on the total resources available statewide, as well as the Lower Hudson Valley, New York City, and Long Island localities. Reductions in thermal derates over time are driven by the assumed generator deactivations in this assessment.

¹⁰Attachment I of Transmission, Expansion, and Interconnection Manual.

¹¹The RNA assumptions matrix is posted under the July 1, 2022 TPAS/ESPWG meeting materials, which is available at here, and also in Appendix D.

¹² The NERC five-year class average EFORd data is available here.

Figure 4: NERC Five-Year Class Average Outage Rate

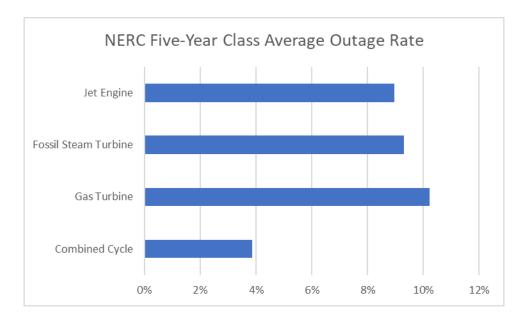
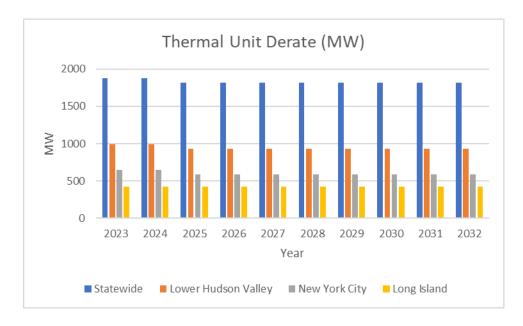



Figure 5: Thermal Unit Derate (MW) for New York

For the transmission security margin assessment, margins are evaluated for the statewide system margin, as well as Lower Hudson Valley, New York City, and Long Island localities. In this evaluation, a BPTF reliability need is identified when the margin is less than zero under baseline expected weather, normal transfer criteria conditions. Additional details regarding the impact of heatwaves, cold snaps, and other system conditions are provided in Appendix E for informational purposes.

The NYISO performed a transmission security assessment of the BPTF and identified no Short-Term Reliability Needs. This assessment finds that the planned BPTF system through the study period is within transmission security criteria. Con Edison evaluated the impact of the Astoria GT 01 generator deactivation on its non-BPTF. Con Edison did not find any non-BPTF generator deactivation reliability needs. The NYISO reviewed and verified the analyses performed by Con Edison.

Steady State Assessment

In the NYISO's evaluation of the BPTF, thermal overloads are observed on the National Grid Clay-Woodard (#17) 115 kV transmission line (specifically the Clay-Euclid segment of the line). This observation is summarized in Figure 6. This issue was first observed in the 2021 Quarter 3 STAR.¹³ At the October 1, 2021 joint ESPWG/TPAS meeting, National Grid presented an LTP update to install a 3% series reactor at the Woodard 115 kV substation on the Clay-Woodard 115 kV line.¹⁴ This series reactor is planned to be in service by December 31, 2023. As such, the observed thermal overload in summer 2023 is still observed. As discussed in the 2021 Quarter 3 STAR, National Grid will utilize an interim operating procedure to address this overload until the permanent series reactor is placed in service. After incorporating National Grid's LTP update and described interim operating procedure, the NYISO did not observe any thermal criteria violations.

Figure 6: Summary of BPTF N-1-1 Thermal Overloads

Zone	Owner	Element	Normal Rating (MVA)	Contingency Rating (MVA)	1st Contingency	2nd Contingency	2023 Summer Peak Flow (%)	Peak	2027 Summer Peak Flow (%)
С	National Grid	Clay-Woodard (Clay-Euclid) (#17) 115 kV	220	252	Elbridge 345/115 kV	Geres Lock Stuck Breaker R815	102	1	ı

A potential steady-state transmission security violation was identified for the study period under expected winter peak conditions. No other steady-state transmission security related needs were observed under other system conditions, including daytime light load conditions, which captured a high penetration of behind-the-meter solar resources

The identified transmission security issue is a low-voltage violation at the Porter 115 kV bus following various contingency combinations resulting in the loss of both Edic-to-Porter 345/115 kV transformers under expected winter peak conditions. The low-voltage violation at the Porter 115 kV bus is observed

¹³ https://www.nyiso.com/documents/20142/16004172/2021-Q3-STAR-Report-vFinal2.pdf/

¹⁴https://www.nyiso.com/documents/20142/25058472/03 National%20Grid%20NY%20Local%20Transmission%20Plan%20Update%20 10-2021.pdf/

starting in winter 2025-26 due to (i) the retirement of the two Porter 230/115 kV buses, which is planned to occur that winter with the Smart Path Connect Project (interconnection queue #Q1125), and (ii) the increasing load in Zone E observed in winter. The evaluation did not observe the low-voltage violation at the Porter 115 kV bus under summer peak load conditions because the load forecast for Zone E is higher in winter than in summer. Since the low-voltage needs observed at the Porter 115 kV bus occur due to the planned changes with the interconnection of the Smart Path Connect Project (Q#1125), this issue will be addressed through the NYISO's interconnection process.

Dynamics Assessment

No BPTF dynamic criteria violations were observed for this assessment. Additionally, no dynamic stability related non-BPTF generator deactivation reliability needs were observed for this assessment.

Short Circuit Assessment

No BPTF short-circuit criteria violations were observed in this assessment. Additionally, no shortcircuit non-BPTF generator deactivation reliability needs were observed in this assessment.

Transmission Security Margin Assessment

For the transmission security margin assessment, "tipping points" are evaluated for the statewide system margin and for the Lower Hudson Valley, New York City, and Long Island localities. In the Lower Hudson Valley and Long Island localities, the BPTF system is designed to remain reliable in the event of two non-simultaneous outages (N-1-1). In the Con Edison service territory, the 345 kV transmission system and specific portions of the 138 kV transmission system are designed to remain reliable and return to normal ratings after the occurrence of two non-simultaneous outages (N-1-1-0).

Figure 7 provides a summary of the margins under baseline expected summer weather, normal transfer criteria conditions. While the margins are sufficient statewide (as well as in all localities), the margin within New York City is very narrow in 2025 (just over 50 MW). With the planned addition of CHPE, there is an increase in the observed margin beginning summer 2026. However, the margin decreases between 2026 and 2032 due to increased load. By 2032, the margin within New York City reduces to just over 100 MW.

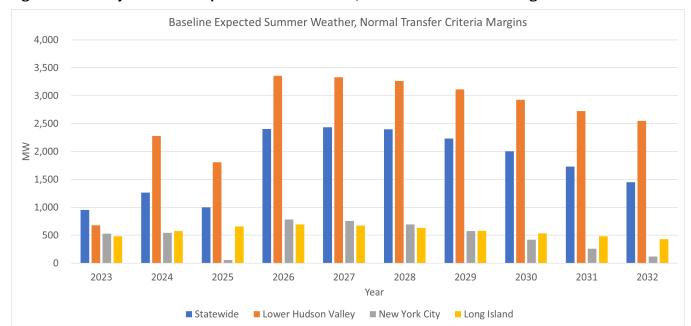
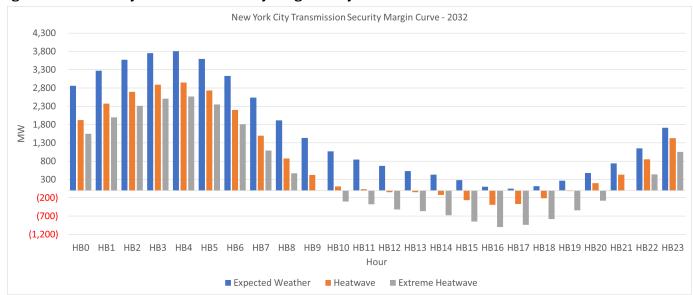


Figure 7: Summary of Baseline Expected Summer Weather, Normal Transfer Criteria Margins

Although the New York City transmission security margins are sufficient, considering the hourly margins, which are shown in Figure 8 (year 2025) and


Figure 9 (year 2032), the New York City margin is extremely narrow for several hours of the day under expected weather conditions. Under heatwaves or extreme heatwaves, the margins are deficient for nearly half of the day.

New York City Transmission Security Margin Curve - 2025 4,300 3,800 3,300 2,800 2,300 1,800 1,300 800 300 (200)(700)(1,200)HB0 HB1 HB2 HB3 HB4 HB5 HB6 HB7 HB8 HB9 HB10 HB11 HB12 HB13 HB14 HB15 HB16 HB17 HB18 HB19 HB20 HB21 HB22 HB23 Hour Expected Weather ■ Heatwave **■** Extreme Heatwave

Figure 8: New York City Transmission Security Margin Hourly Curve - 2025

The reliability margins within New York City may not be sufficient even for expected weather if (i) the CHPE project experiences a significant delay, (ii) forecasted demand in New York City increases by as little as 60 MW in 2025, or (iii) there are additional generator deactivations beyond what is already planned. Some generation affected by DEC's Peaker Rule may need to remain in service until CHPE or other permanent solutions are completed to maintain a reliable grid. As shown in Figure 10, without the CHPE project in service by 2026 and other offsetting changes or solutions, the reliability margins continue to be

less than 100 MW until 2028, at which time the New York City grid as otherwise planned could not provide reliable service for the forecasted system conditions. This deficiency would grow to approximately 600 MW by 2032.

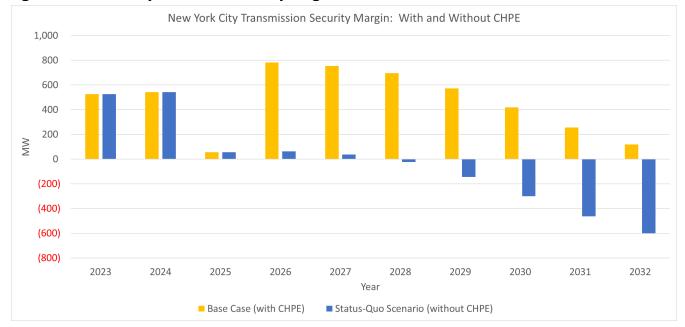


Figure 10: New York City Transmission Security Margin With and Without CHPE

Additional details regarding the margin calculations are provided in Appendix E. Appendix E also shows impact on the margin of heatwaves, cold snaps, and other system conditions for informational purposes.

Additional Transmission Owner Local Criteria Assessments (For Information Only)

As described in the following sections, Central Hudson identified transmission security issues in their service territories on their non-BPTF systems, as recorded in prior STAR reports. The local non-BPTF criteria violations identified below are not Generator Deactivation Reliability Needs and are provided for information only.15

Central Hudson Assessment

Central Hudson currently owns and operates two 25 MVA (nameplate) combustion turbines that are subject to DEC's Peaker Rule, namely the Coxsackie and South Cairo generators. Both of these generators provide local substation reserve capacity for transformer outages and post-contingency voltage support for the Westerlo transmission loop. Without these generators, there is no reserve capability for local transformer outages and the Westerlo loop is voltage constrained. These transmission security issues, first identified in the 2020 Quarter 3 STAR, arise on non-BPTF facilities beginning in 2023 and continuing through 2025. At the October 25, 2021, joint ESPWG/TPAS meeting, Central Hudson updated its LTP to address the Westerlo transmission loop voltage issue. 16 The LTP includes the installation of a STATCOM and capacitor bank and the South Cairo and Freehold substations with a planned in-service date by December 2024.

¹⁵ See OATT §§ 38.1 (definition of Generator Deactivation Reliability Need) 38.2 (scope of Short-Term Reliability Process), 38.10.1.2 (other reliability needs that arise on non-BPTFs may be reported in a STAR for informational purposes).

¹⁶ https://www.nviso.com/documents/20142/25620932/02 Central Hudson Local Transmission Plan.pdf/

Conclusions and Determination

This assessment finds the planned BPTF system through the study period meets applicable reliability criteria. This assessment does not identify any Generator Deactivation Reliability Need following the retirement of the Astoria GT 01 unit. As such, Eastern Generation, LLC has satisfied the applicable requirements under the NYISO's Short-Term Reliability Process to retire its unit on or after the date indicated in its generator deactivation notice.¹⁷

¹⁷ Eastern Generation, LLC must complete all required NYISO administrative processes and procedures prior to retirement of Astoria GT 01. See Technical Bulletin 185 Generator Deactivation Process and Technical Bulletin 250 Short-Term Reliability Process. The NYISO's determination in this Short-Term Reliability Process does not relieve Eastern Generation, LLC of any obligations it has with respect to its participation in the NYISO markets. If Eastern Generation, LLC rescinds its Generator Deactivation Notice or do not retire Astoria GT 01 within 730 days of October 15, 2022, then it will be required to submit a new Generator Deactivation Notice in order to deactivate the Generator(s) and will be required to repay study costs in accordance with Section 38.14 of the OATT.

Appendix A: List of Short-Term Reliability Needs

No short-term reliability needs are observed for this assessment.

Appendix B: Short-Term Reliability Process Solution List

The Short-Term Reliability Process solution list and the status of these solutions is posted on the NYISO website at the following location:

https://www.nyiso.com/documents/20142/19556596/SolutionStatus-03092021.pdf/

Appendix C: Summary of Study Assumptions

This assessment used the major assumptions included in the 2022 RNA. Consistent with the NYISO's obligations under its tariffs, the NYISO provided information to stakeholders on the modeling assumptions employed in this assessment. Details regarding the study assumptions were reviewed with stakeholders at the October 26, 2022, joint Electric System Planning Working Group ("ESPWG")/Transmission Planning Advisory Subcommittee ("TPAS") meeting. The meeting materials are posted on the NYISO's website. 18 The figures below summarize the changes to generation, load, and transmission.

Generation Assumptions

Figure 11: Completed Generator Deactivations

Owner/ Operator	Plant Name	Zone	Nameplate	CRIS	(MW)	Capabil	ity (MW)	Status	Depativation Data (2)	CTAB Evolution (2)
Owner/ Operator	Plant Name	Zone	(MW)	Summer	Winter	Summer	Winter	Status	Deactivation Date (2)	STAR Evaluation (3)
International Paper Company	Ticonderoga (1)	F	9.0	7.6	7.5	9.5	9.8	I	5/1/2017	-
	Ravenswood 2-4	J	42.9	39.8	50.6	30.7	41.6	- 1	4/1/2018	-
Helix Ravenswood, LLC	Ravenswood 3-1	J	42.9	40.5	51.5	31.9	40.8	I	4/1/2018	-
Helix Raveriswood, LLC	Ravenswood 3-2	J	42.9	38.1	48.5	29.4	40.3	- 1	4/1/2018	-
	Ravenswood 3-4	J	42.9	35.8	45.5	31.2	40.8	I	4/1/2018	-
Exelon Generation Company LLC	Monroe Livingston	В	2.4	2.4	2.4	2.4	2.4	R	9/1/2019	-
Innovative Energy Systems, Inc.	Steuben County LF	С	3.2	3.2	3.2	3.2	3.2	R	9/1/2019	-
Consolidated Edison Co. of NY, Inc	Hudson Ave 4	J	16.3	13.9	18.2	14.0	16.3	R	9/10/2019	-
New York State Elec. & Gas Corp.	Auburn - State St	С	7.4	5.8	6.2	4.1	7.3	R	10/1/2019	-
Somerset Operating Company, LLC	Somerset	A	655.1	686.5	686.5	676.4	684.4	R	3/12/2020	-
Entergy Nuclear Power Marketing, LLC	Indian Point 2	Н	1,299.0	1,026.5	1,026.5	1,011.5	1,029.4	R	4/30/2020	-
Cayuga Operating Company, LLC	Cayuga 1	С	155.3	154.1	154.1	151.0	152.0	R	6/4/2020	-
Albany Energy, LLC	Albany LFGE	F	5.6	4.5	4.5	5.6	5.6	I	7/1/2020	2020 Q3
Entergy Nuclear Power Marketing, LLC	Indian Point 3	Н	1,012.0	1,040.4	1,040.4	1,036.3	1,038.3	R	4/30/2021	-
Helix Ravenswood, LLC	Ravenswood GT 11	J	25.0	20.2	25.7	16.1	22.4	I	12/1/2021	2022 Q1
Helix Ravenswood, LLC	Ravenswood GT 1	J	18.6	8.8	11.5	7.7	11.1	1	1/1/2022	2022 Q1
Exelon Generation Company LLC	Madison County LF	E	1.6	1.6	1.6	1.6	1.6	1	4/1/2022	2022 Q2
Nassau Energy, LLC	Trigen CC	K	55.0	51.6	60.1	38.5	51.0	R	7/15/2022	2022 Q2
Consolidated Edison Co. of NY, Inc.	Hudson Ave 3	J	16.3	16.0	20.9	12.3	15.6	R	11/1/2022	2022 Q2
Consolidated Edison Co. of NY, Inc.	Hudson Ave 5	J	16.3	15.1	19.7	15.3	18.6	R	11/1/2022	2022 Q2
Astoria Generating Company, L.P.	Gowanus 1-1 through 1-8	J	160	138.7	181.1	133.1	182.2	R	11/1/2022	2022 Q2
Astoria Generating Company, L.P.	Gowanus 4-1 through 4-8	J	160	140.1	182.9	138.8	183.4	R	11/1/2022	2022 Q2
		Total	3.789.7	3.491.2	3.649.1	3.400.6	3.598.1			

Notes

(1) Part of SCR program

(2) This table only includes units that have entered into IIFO or have completed the generator deactivation process.

^{(3) &}quot;-" denotes that the generator deactivation was assessed prior to the creation of the short-term reliability process

¹⁸ Short-Term Assessment of Reliability: 2022 Q3 Key Study Assumptions

Figure 12: Proposed Generator Deactivations

Owner/ Operator	Plant Name (1)	Zone	Nameplate	CRIS	CRIS (MW)		Capability (MW)		Deactivation date (2)	STAR Evaluation	
Owner/ Operator	Flant Name (1)	Zone	(MW)	Summer	Winter	Summer	Winter	Status	Deactivation date (2)	STAR EVALUATION	
Consolidated Edison Co. of NY, Inc.	74 St. GT 1 & 2	J	37	39.1	49.2	39.3	45.2	R	5/1/2023	2022 Q2	
NRG Power Marketing, LLC	Astoria GT 2-1, 2-2, 2-3, 2-4	J	186	165.8	204.1	141.6	183.7	R	5/1/2023	2022 Q2	
NRG Power Marketing, LLC	Astoria GT 3-1, 3-2, 3-3, 3-4	J	186	170.7	210.0	140.5	182.8	R	5/1/2023	2022 Q2	
NRG Power Marketing, LLC	Astoria GT 4-1, 4-2, 4-3, 4-4	J	186	167.9	206.7	138.3	180.3	R	5/1/2023	2022 Q2	
Helix Ravenswood, LLC	Ravenswood 10	J	25	21.2	27.0	16.0	22.3	R	5/1/2023	2022 Q3	
Eastern Generation, LLC	Astoria GT 01	J	16	15.7	20.5	13.6	19.0	R	5/1/2023	2022 Q4	
		Total	636	580.4	717.5	489.3	633.3				

⁽¹⁾ This table includes units that have proposed to Retire or enter Mothball Outage and have a completed generator deactivation notice but have yet to complete the generator deactivation process. (2) Date in which the generator proposed Retire (R) or enter Mothball Outage (MO)

Figure 13: Generator Additions

NYISO Interconnection Queue #	Project Name/(Owner)	Zone	Point of Interconnection	Туре	COD or I/S Date	Summer Peak MW	Notes
758	Independence GS1 to GS4 {Dynegy Marketing and Trade, LLC)	С	Scriba 345 kV	Gas	I/S	9.0	3
731	Branscomb Solar (Branscomb Solar, LLC)	F	Battenkill - Eastover 115kV	S	I/S	20	1
678	Calverton Solar Energy Center (LI Solar Generation, LLC)	К	Edwards Substation 138kV	S	I/S	22.9	2
775	Puckett Solar (Puckett Solar, LLC)	С	Chenango Forks Substation 34.5kV	S	I/S	20	1
769	North County Energy Storage (New York Power Authority)	D	Willis 115kV	ES	03/2022	20	
759	KCE NY6	Α	Gardenville - Bethlehem Steel Wind 115kV	ES	04/2022	20	1
768	Janis Solar (Janis Solar LLC)	С	Willet 34.5kV	S	04/2022	20	1
670	Skyline Solar (SunEast Skyline Solar LLC)	Е	Campus Rd - Clinton 46kV	S	04/2022	20	1
682	Grissom Solar (Grissom Solar, LLC)	F	Ephratah - Florida 115kV	S	06/2022	20	1
748	Regan Solar (Regan Solar, LLC)	F	Market Hill - Johnstown 69kV	S	06/2022	20	1
807	Hilltop Solar (SunEast Hilltop Solar LLC)	F	Eastover - Schaghticoke 115kV	S	07/2022	20	
734	Ticonderoga Solar (ELP Ticonderoga Solar LLC)	F	ELP Ticonderoga Solar LLC	S	08/2022	20	1
422	Eight Point Wind Enery Center (NextEra Energy Resources, LLC)	С	Bennett 115kV	w	09/2022	101.8	2
735	ELP Stillwater Solar (ELP Stillwater Solar LLC)	F	Luther Forest - Mohican 115kV	S	09/2022	20	
666	Martin Solar (Martin Solar LLC)	А	Arcade - Five Mile 115kV	S	10/2022	20	1
667	Bakerstand Solar (Bakerstand Solar LLC)	А	Machias - Maplehurst 34.5kV	S	10/2022	20	1
531	Number 3 Wind Energy (Invenergy Wind Development LLC)	Е	Taylorville - Boonville 115kV		10/2022	103.9	2
579	Bluestone Wind (Bluestone Wind, LLC)	Е	Afton - Stilesville 115kV		10/2022	111.8	2
565	Tayandenega Solar (Tayandenega Solar, LLC)	F	St. Johnsville - Inghams 115kV	S	10/2022	20	1
505	Ball Hill Wind (Ball Hill Wind Energy, LLC)	А	Dunkirk - Gardenville 230kV	w	11/2022	100.0	2

NYISO Interconnection Queue #	Project Name/(Owner)	Zone	Point of Interconnection	Туре	COD or I/S Date	Summer Peak MW	Notes
721	Excelsior Energy Center (Excelsior Energy Center, LLC)	В	N. Rochester - Niagara 345 kV	S	11/2022	280.0	2
618	High River Solar (High River Energy Center, LLC)	F	Inghams - Rotterdam 115kV	S	11/2022	90.0	2
619	East Point Solar (East Point Energy Center, LLC)	F	Cobleskill - Marshville 69kV	S	11/2022	50.0	2
564	Rock District Solar (Rock District Solar, LLC)	F	Sharon - Cobleskill 69kV	S	12/2022	20	1
570	Albany County 1 (Hecate Energy Albany 1 LLC)	F	Long Lane - Lafarge 115kV	S	12/2022	20	1
598	Albany County 2 (Hecate Energy Albany 2 LLC)	F	Long Lane - Lafarge 115kV	S	12/2022	20	1
638	Pattersonville (Pattersonville Solar Facility, LLC)	F	Rotterdam - Meco 115kV	S	12/2022	20	1
730	Darby Solar (Darby Solar, LLC)	F	Mohican - Schaghticoke 115kV	S	12/2022	20	1
572	Greene County 1 (Hecate Energy Greene 1 LLC)	G	Coxsackie - North Catskill 69kV		01/2023	20	1
573	Greene County 2 (Hecate Energy Greene 2 LLC)	G	Coxsackie Substation 13.8kV	S	03/2023	10	1
592	Niagara Solar (Duke Energy Renewables Solar, LLC)	В	Bennington 34.5kV Substation	S	05/2023	20	
584	Dog Corners Solar (SED NY Holdings LLC)	С	Aurora Substation 34.5kV	S	05/2023	20	1
590	Scipio Solar (Duke Energy Renewables Solar, LLC)	С	Scipio 34.5kV Substation	S	05/2023	18	
545	Sky High Solar (Sky High Solar, LLC)	С	Tilden -Tully Center 115kV	S	06/2023	20	1
586	Watkins Road Solar (SED NY Holdings LLC)	E	Watkins Rd - Ilion 115kV	S	06/2023	20	1
581	Hills Solar (SunEast Hills Solar LLC)	E	Fairfield - Inghams 115kV	S	08/2023	20	
612	South Fork Wind Farm (South Fork Wind, LLC)	К	East Hampton 69kV		08/2023	96.0	2
695	South Fork Wind Farm II (South Fork Wind, LLC)	К	East Hampton 69kV		08/2023	40.0	2
637	Flint Mine Solar (Flint Mine Solar LLC)	G	LaFarge - Pleasant Valley 115kV, Feura Bush - North Catskill 115kV	S	09/2023	100.0	2

NYISO Interconnection Queue #	Project Name/(Owner)	Zone	Zone Point of Interconnection 1		COD or I/S Date	Summer Peak MW	Notes
848	Fairway Solar (SunEast Fairway Solar LLC.)	E	McIntyre - Colton 115kV	S	10/2023	20	
617	Watkins Glen Solar Watkins Glen Energy Center, LLC	С	Bath - Montour Falls 115kV	S	11/2023	50.0	2
720	Trelina Solar Energy Center (Trelina Solar Energy Center, LLC)	С	Border City - Station 168 115 KV	S	11/2023	80.0	2
855	NY13 Solar (Bald Mountain Solar LLC)	F	Mohican - Schaghticoke 115kV	S	11/2023	20	
396	Baron Winds (Baron Winds, LLC)	С	Hillside - Meyer 230kV	W	12/2023	238.4	2
495	Mohawk Solar (Mohawk Solar LLC)	F	St. Johnsville - Marshville 115kV	W	11/2024	90.5	2

Notes

- (1) Only these proposed small generators obtained Capacity Resource Interconnection Service (CRIS) and, therefore, are molded for the resource adequacy Base Cases.
- (2) All proposed large generators obtained or are assumed to obtain both Energy Resource Interconnection Service (ERIS) and CRIS and are molded both in transmission security and resource adequacy Base Cases, unless otherwise noted as "ERIS only." Large generator that are ERIS only are modeled only for the transmission security assessments.
- (3) Large generator, ERIS only

Load Assumptions

The 2022 Quarter 4 STAR uses the base load forecasts for the study years consistent with the 2022 Gold Book with the following load projects in the NYISO interconnection queue: Q0580 - WNY STAMP, Q0776 - Greenidge Load, Q0849 - Somerset Load, Q0850 - Cayuga Load, and Q0979 - North Country Data Center (load increase).

Transmission Assumptions

The study assumptions for existing transmission facilities that are modeled as out-of-service are listed in Figure 14. Figure 15 shows the Con Edison series reactor status utilized in the 2022 RNA as well as for this STAR. There are no changes to the Con Edison series reactor assumptions in this STAR compared to the 2022 RNA. Figure 16 provides a summary of the Transmission Interconnection Procedures (TIP) projects and the Transmission Owner Local Transmission Plans (LTPs) as listed in the 2022 Load and Capacity Data Report that are included in the 2022 RNA, as well as this STAR. Figure 17 provides additional updates to National Grid's LTP that were not included in the 2022 Load and Capacity Data report. These LTP projects were presented to stakeholders at the March 24, 2022 joint ESPWG/TPAS meeting.¹⁹ Figure 18 lists additional non-LTP projects that were not included in the 2022 Load and Capacity Data report but were included in the 2022 RNA.

Figure 14: Existing Transmission Facilities Modeled Out-of-Service

				Out-of-Service Through		
From	То	kV	ID	Prior STAR	Current STAR	
Marion	Farragut	345	B3402	Long-Term		
Marion	Farragut	345	C3403	Long-Term		
Plattsburg (1)	Plattsburg	230/115	AT1	12/	2022	
Moses	Moses	230/115	AT2	12/2022	3/2023	
Moses	St. Lawrence	230	L34P	N/A	09/2023	
Sprain Brook	East Garden City	345	Y49	10/1/2022 thr	ough 5/31/2023	

Notes

(1) A spare transformer is placed in-service during the outage

¹⁹ https://www.nyiso.com/documents/20142/29418084/03%202022%20Q1STAR%20LTP%20Update%20Nat%20Grid.pdf/

Figure 15: Con Edison Proposed Series Reactor Status

Те	rminals	ID	kV	Prior to Summer 2023	Starting Summer 2023
Dunwoodie	Mott Haven	71	345	By-Passed	In-Service
Dunwoodie	Mott Haven	72	345	By-Passed	In-Service
Sprainbrook	W. 49th Street	M51	345	By-Passed	In-Service
Sprainbrook	W. 49th Street	M52	345	By-Passed	In-Service
Farragut	Gowanus	41	345	In-Service	By-Passed
Farragut	Gowanus	42	345	In-Service	By-Passed
Sprainbrook	East Garden City	Y49	345	In-Service	By-Passed

Figure 16: Firm Transmission Plans (from the 2022 Load and Capacity Data Report Section VII)

[Project Queue Position]/ Project Notes	Transmission Owner	Term	ninals	Line Length in Miles (1)	Expe In-Se Date Prio	rvice e/Yr		l Voltage kV Design	# of ckt s	Thermal Summer	Ratings Winter	Project Description / Conductor Size	Class Year / Type of Constructio n
TIP Projects (19) (included in FERC 715 Base Case)													
[430]	National Grid	Dennison	Alcoa	3	In service	2021	115	115	1	1513	1851	954 ACSR. Alcoa- Dennison Line #12.	ОН
545A	NextEra Energy Transmission NY	Dysinger (New Station)	East Stolle (New Station)	20	S	2022	345	345	1	1356 MVA	1612 MVA	Western NY - Empire State Line Project	ОН
545A	NextEra Energy Transmission NY	Dysinger (Ne w Station)	Dysinger (Ne w Station)	PAR	S	2022	345	345	1	700 MVA	700 MVA	Western NY - Empire State Line Project	
556	LSP/NGRID	Porter	Rotterdam	-71.8	S	2022	230	230	1	1066	1284	AC Transmission Project Segment A/1-795 ACSR/1-1431 ACSR/2- 954 ACSS	
556	LSP/NGRID	Porter	Rotterdam	-72.1	S	2022	230	230	1	1066	1284	AC Transmission Project Segment A/1-795 ACSR/1-1431 ACSR/2- 954 ACSS	
556	LSP/NGRID	Edic	New Scotland	-83.5	S	2022	345	345	1	2190	2718	AC Transmission Project Segment A/2-795 ACSR	
556	NGRID	Rotterdam	New Scotland	-18.1	S	2022	115	230	1	1212	1284	AC Transmission Project Segment A/1-1033.5 ACSR/1-1192.5 ACSR	
556	LSP/NGRID	Edic	Gordon Rd (New Station)	68.7	S	2022	345	345	1	3410	3709	AC Transmission Project Segment A/2-795 ACSR/2-954 ACSS	
556	LSP/NGRID	Gordon Rd (New Station)	New Scotland	24.9	S	2022	345	345	1	2190	2718	AC Transmission Project Segment A/2-795 ACSR/2-954 ACSS	
556	LSP	Gordon Rd (New Station)	Rotterdam	transformer	S	2022	345/230	345/230	2	478 MVA	478 MVA	AC Transmission Project Segment A	
556	LSP/NGRID	Gordon Rd (New Station)	New Scotland	-24.9	S	2023	345	345	1	2190	2718	AC Transmission Project Segment A/2-795 ACSR/2-954 ACSS	
556	LSP	Gordon Rd (New Station)	Princetown (New Station)	5.3	S	2023	345	345	1	3410	3709	AC Transmission Project Segment A/2-954 ACSS	
556	LSP	Princetown (New Station)	New Scotland	20.1	S	2023	345	345	2	3410	3709	AC Transmission Project Segment A/2-954 ACSS	
556	LSP/NGRID	Princetown (New Station)	New Scotland	19.8	S	2023	345	345	1	2190	2718	AC Transmission Project Segment A/2-795 ACSR	

Project Outside Transmission T														
Solid	Queue Position]/ Project		Terminals		Length	In-Service Date/Yr		in	kV	ckt				Type of Constructio
Solid				T			1							
Segment A, Terminal Equipment Ugardes to existing line	556		Edic		67.0	W	2023	345	345	2	3410	3709		
Solid Rotterdam Rotterdam Rotterdam remove substation S 2029 230 230 NA N/A N/A Substation Retirement Rotterdam 20NV	556	NYPA	Edic	Marcy	1.4	W	2023	345	345	1	3150	3750	Segment A; Terminal Equipment Upgrades to	
S56	556	NGRID	Rotterdam	Rotterdam	remove substation	S	2029	230	230	N/A	N/A	N/A		
Solution Noticerdam Solution Noticerdam Solution Solut	556	NGRID	Rotterdam	Eastover Rd	-23.8	S	2029	230	230	1	1114	1284	Substation Retirement,	
S56	556	LSP		Rotterdam		S	2029	345/230	345/230	2	478 MVA	478 MVA		
Segment B Segm	556	NGRID		Eastover Rd	23.8	S	2029	230	230	1	1114	1284	Substation Retirement;	
Solution	556	LSP			transformer	S	2029	345/230	345/230	1	478 MVA	478 MVA	Substation Retirement, reconnect transformer	
Segment B Schodack Churchtown Valley Valley	556	LSP		Rotterdam	transformer	S	2029	345/115	345/115	2	650 MVA	650 MVA	Rotterdam 230kV	
Segment B Segm	543	NGRID	Greenbush	Hudson	-26.4	W	2023	115	115	1	648	800	•	
School	543	NGRID	Hudson		-39.2	W	2023	115	115	1	648	800		
S43 NGRID Churchtown Valley -32.2 W 2023 115 115 1 806 978 Segment B	543	NGRID	Schodack	Churchtown	-26.7	W	2023	115	115	1	937	1141		
S43 NGRID Willah Valley Segment B W 2023 115 115 1 806 978 Segment B	543	NGRID	Churchtown		-32.2	W	2023	115	115	1	806	978		
543 NGRID Lafarge Valley -60.4 W 2023 115 115 1 584 708 Segment B 543 NGRID North Catskill Milan -23.9 W 2023 115 115 1 937 1141 AC Transmission Project Segment B 543 O&R Shoemaker, Middle Sugarloaf, Chester -12.0 W 2023 138 1 1098 1312 AC Transmission Project Segment B 543 NGRID New Scotland Alps -30.6 W 2023 345 765 1 2015 2140 AC Transmission Project Segment B 543 New York Hudson Churchtown 7.4 W 2023 115 115 1 648 798 AC Transmission Project	543	NGRID	Milan		-16.8	W	2023	115	115	1	806	978		
Segment B Segment B Shoemaker, Sugarloaf, Chester -12.0 W 2023 138 138 1 1098 1312 AC Transmission Project Segment B Segment	543	NGRID	Lafarge		-60.4	W	2023	115	115	1	584	708		
543 O&R Middle Chester -12.0 W 2023 138 1 1098 1312 Segment B 543 NGRID New Scotland Alps -30.6 W 2023 345 765 1 2015 2140 AC Transmission Project Segment B 543 New York Hudson Churchtown 7.4 W 2023 115 115 1 648 798 AC Transmission Project	543	NGRID	North Catskill	Milan	-23.9	W	2023	115	115	1	937	1141		
543 NGKID New Scotland Alps -30.6 W 2023 345 765 1 2015 2140 Segment B 543 New York Hudson Churchtown 7.4 W 2023 115 115 1 648 798 AC Transmission Project	543	O&R	•	_	-12.0	W	2023	138	138	1	1098	1312	-	
1 543 1 Hudson Churchtown 74 W 2023 115 115 1 648 798 " 1	543	NGRID	New Scotland	Alps	-30.6	W	2023	345	765	1	2015	2140	-	
Short Torm Assessment of Believillets 2022 Quester 4 1 2	543	New York Transco	Hudson	Churchtown	7.4	W	2023	115	115	1			Segment B	

[Project Queue Position]/ Project Notes	Transmission Owner	Tern	ninals	Line Length in Miles (1)	Expe In-Se Date Prio	rvice e/Yr		Nominal Voltage in kV Operating Design		Thermal Summer	Ratings Winter	Project Description / Conductor Size	Class Year / Type of Constructio n
543	New York Transco	Churchtown	Pleasant Valley	32.2	W	2023	115	115	1	623	733	AC Transmission Project Segment B	
543	NGRID	Lafarge	Churchtown	28.2	w	2023	115	115	1	582	708	AC Transmission Project Segment B	
543	NGRID	North Catskill	Churchtown	8.4	w	2023	115	115	1	648	848	AC Transmission Project Segment B	
543	New York Transco	Knickerbocker (New Station)	Pleasant Valley	55.1	w	2023	345	345	1	3836	4097	AC Transmission Project Segment B	
543	New York Transco	Knickerbocker (New Station)	Knickerbocker (New Station)	series capacitor	w	2023	345	345	1	3836	4097	AC Transmission Project Segment B	
543	NGRID	Knickerbocker (New Station)	New Scotland	12.4	W	2023	345	345	1	2381	3099	AC Transmission Project Segment B	
543	NGRID	Knickerbocker (New Station)	Alps	18.1	W	2023	345	345	1	2552	3134	AC Transmission Project Segment B	
543	New York Transco	Rock Tavern	Sugarloaf	12.0	w	2023	115	115	1	1647	2018	AC Transmission Project Segment B; 1-1590 ACSR	ОН
543	New York Transco	Sugarloaf	Sugarloaf	Transformer	w	2023	138/115	138/115		1652	1652	AC Transmission Project Segment B	
543	New York Transco	Van Wagner (New Station)		Cap Bank	w	2023	345	345		N/A	N/A	AC Transmission Project Segment B	
543	NGRID	Athens	Pleasant Valley	-39.39	w	2023	345	345	1	2228	2718	Loop Line into new Van Wagner Substation/2- 795 ACSR	ОН
543	NGRID	Leeds	Pleasant Valley	-39.34	w	2023	345	345	1	2228	2718	Loop Line into new Van Wagner Substation/2- 795 ACSR	ОН
543	NGRID	Athens	Van Wagner (New Station)	38.65	w	2023	345	345	1	2228	2718	Loop Line into new Van Wagner Substation/2- 795 ACSR	ОН
543	NGRID	Leeds	Van Wagner (New Station)	38.63	w	2023	345	345	1	2228	2718	Loop Line into new Van Wagner Substation/2- 795 ACSR	ОН
543	New York Transco	Van Wagner (New Station)	Pleasant Valley	0.71	W	2023	345	345	1	3861	4087	Loop Line into new Van Wagner Substation/Reconducto r w/2-795 ACSS	ОН
543	New York Transco	Van Wagner (New Station)	Pleasant Valley	0.71	W	2023	345	345	1	3861	4087	Loop Line into new Van Wagner Substation/Reconducto r w/2-795 ACSS	ОН

[Project Queue Position]/	Transmission			Line Length	Expected In-Service Date/Yr			Nominal Voltage in kV		of Thermal Ratings		Project Description / Conductor Size	Class Year / Type of Constructio
Project Notes	Owner	Term	inals	in Miles (1)	Prio	r to	Operating	Design	ckt s	Summer	Winter		n
543	New York Transco	Dover (New Station)	Dover (New Station)	Phase Shifter	w	2023	345	345		2510	2510	Loop Line 398 into new substation and install 2 x 750 MVAr PARs	
543	ConEd	Cricket Valley	CT State Line	-3.46	W	2023	345	345	1	2220	2700	Loop Line into new Dover Substation/2-795 ACSS	ОН
543	ConEd	Cricket Valley	Dover (New Station)	0.30	W	2023	345	345	1	2220	2700	Loop Line into new Dover Substation/2-795 ACSS	ОН
543	ConEd	Dover (New Station)	CT State Line	3.13	w	2023	345	345	1	2220	2700	Loop Line into new Dover Substation/2-795 ACSS	ОН
1125	NYPA	Edic	Marcy	1.4	W	2025	345	345	1	4030	4880	SPCP Terminal Equipment Upgrades to existing line	
1125	NYPA	Moses	Haverstock	2	w	2025	230	230	3	1089	1330	SPCP: Existing Moses - Adirondack (MA1), Moses - Adirondack (MA2), and Moses - Willis (MW2) 230 kV Lines to Haverstock Substation. 1 – 795 kcmil ACSR 26/7 "Drake"	
1125	NYPA	Moses	Moses	SUB	w	2025	230	230	N/A	N/A	N/A	SPCP: Terminal Upgrades at Moses 230 kV Substation and Transformer T3 and MW-2 breaker positions interchanged	
1125	NYPA	Haverstock 230 kV	Haverstock 345 kV	xfmr	w	2025	230/345	230/345	3	753	753	SPCP: Haverstock 230/345 kV xfmr-1, xfmr-2 and xfmr-3. Given Amp Ratings are for High Voltage side of xfmr.	
1125	NYPA	Haverstock	Haverstock	SUB	W	2025	345	345	N/A	N/A	N/A	SPCP: Haverstock 345 kV Substation. New Shunt Capacitor Banks.	

[Project Queue Position]/ Project Notes	Transmission Owner	Tern	ninals	Line Length in Miles (1)	Expe In-Se Date Prio	rvice e/Yr		Il Voltage kV Design	# of ckt s	Thermal Ratings Summer Winter		Project Description / Conductor Size	Class Year / Type of Constructio n
1125	NYPA	Haverstock	Adirondack	83.7	w	2025	345	345	2	2177	2663	SPCP: Existing Moses - Adirondack (MA1), Moses - Adirondack (MA2) 230kV lines to Haverstock Substation. Creating new Haverstock to Adirondack (HA1) and Haverstock to Adirondack (HA2) 345kV lines. 2 – 795 kcmil ACSR 26/7 "Drake"	
1125	NYPA	Adirondack 115 kV	Adirondack 345 kV	xfmr	w	2025	115/345	115/345	1	192	221	SPCP: Adirondack 115/345 kV xfmr. Given Amp Ratings are for High Voltage side of xfmr.	
1125	NYPA	Adirondack	Adirondack	SUB	W	2025	345	345	N/A	N/A	N/A	SPCP: Adirondack 345 kV Substation. New Shunt Capacitor Banks. New Shunt Reactor Banks.	
1125	NYPA	Haverstock	Willis	34.99	W	2025	345	345	2	3119	3660	SPCP: Existing Moses - Willis (MW1) and Moses - Willis (MW2) 230 kV Lines diverted to to Haverstock Substation. Creating Haverstock - Willis (HW1) and Haverstock - Willis (HW1) 345 kV Lines. 2 – 795 kcmil ACSS 26/7 "Drake"	
1125	NYPA	Willis 345 kV	Willis 230 kV	xfmr	W	2025	345/230	345/230	2	2259	2259	SPCP: Willis 345/230 kV xfmr-1 and xfmr-2. Given Amp Ratings are for High Voltage side.	
1125	NYPA	Willis	Willis	SUB	W	2025	230	230	N/A	N/A	N/A	SPCP: New Willis 345 kV Substation. New Shunt Capacitor Bank.	

												•			
[Project Queue Position] / Project Notes	Transmission Owner	Tern	ninals	Line Length in Miles (1)	Expe In-Se Date Prio	rvice e/Yr		ll Voltage kV Design	# of ckt s	ckt Summer		Thermal Ratings Summer Winter		Project Description / Conductor Size	Class Year / Type of Constructio n
1125	NYPA	Willis	Patnode	8.65	w	2025	230	230	2	2078	2440	SPCP: Two Willis - Patnode 230 kV Lines. 1 – 1272 kcmil ACSS 45/7 "Bittern"			
1125	NYPA	Willis	Ryan	6.59	w	2025	230	230	2	2078	2440	SPCP: Two Willis - Ryan 230 kV Lines. 1 – 1272 kcmil ACSS 45/7 "Bittern"			
1125	NYPA	Ryan	Ryan	SUB	W	2025	230	230	N/A	N/A	N/A	SPCP: Terminal Upgrades at Ryan 230 kV Substation.			
1125	NYPA	Patnode	Patnode	SUB	W	2025	230	230	N/A	N/A	N/A	SPCP: Terminal Upgrades at Patnode 230 kV Substation.			
1125	NYPA	Willis (Existing)	Willis (New)	0.4	w	2025	230	230	2	2078	2440	SPCP: Two Willis (existing) - Willis (New) 230 kV Lines. 1 – 1272 kcmil ACSS 45/7 "Bittern"			
1125	NYPA/NGRID	Adirondack	Austin Road	11.6	w	2025	345	345	1	3119	3660	SPCP: Adirondack - Austin Road Circuit-1 345 kV Line. 2 – 795 kcmil ACSS 26/7 "Drake"			
1125	NYPA/NGRID	Adirondack	Marcy	52.6	W	2025	345	345	1	3119	3660	SPCP: Adirondack - Marcy Circuit-1 345 kV Line. 2 – 795 kcmil ACSS 26/7 "Drake"			
1125	NGRID	Austin Road	Edic	42.5	w	2025	345	345	1	3119	3660	SPCP: Austin Road -Edic Circuit-1 345 kV Line. 2 – 795 kcmil ACSS 26/7 "Drake"			
1125	NGRID	Rector Road	Austin Road	1	W	2025	230	230	1	1089	1330	SPCP: Rector Road - Austin Road Circuit-1 230 kV Line. 1 – 795 kcmil ACSR 26/7 "Drake"			
1125	NGRID	Austin Road 230 kV	Austin Road 345 kV	Transformer	W	2025	230/345	230/345	1	753	753	SPCP: Austin Road 230/345 kV xfmr. Given Amp Ratings are for			

[Project Queue Position]/ Project Notes	Transmission Owner	Tern	ninals	Line Length in Miles (1)	Expe In-Se Date Prio	rvice e/Yr		ıl Voltage kV Design	# of ckt s	Thermal Summer	l Ratings Winter	Project Description / Conductor Size	Class Year / Type of Constructio n
												High Voltage side of xfmr.	
1125	NGRID	Austin Road	Austin Road	Substation	w	2025	345	345	N/A	N/A	N/A	SPCP: Austin Road 345 kV Substation.	
1125	NGRID	Edic	Edic	Substation	W	2025	345	345	N/A	N/A	N/A	SPCP: Terminal Upgrades at Edic 345 kV Substation. New Shunt Capacitor Bank.	
1125	NGRID	Edic 345kV	Edic 230kV	Transformer	w	2025	345/230	345/230	1	N/A	N/A	SCSP: Remove Existing Transformer #2 345/230kV	
1125	NYPA	Marcy	Marcy	SUB	w	2025	345	345	N/A	N/A	N/A	SPCP: Terminal Upgrades at Marcy 345 kV Substation.	
1125	NGRID	Chases Lake	Chases Lake	Substation	W	2025	230	230	N/A	N/A	N/A	SPCP: Retire 230kV Substation.	
1125	NYPA	Moses	Massena	Series Reactor	w	2025	230	230	2	3840	4560	SPCP: Install Series Reactors on Moses - Massena 230 kV Lines	
1125	NYPA	Moses	Adirondack	-85.7	W	2025	230	230	2	N/A	N/A	SPCP: Retire Existing Moses - Adirondack MA1 and MA2 230 kV Lines	
1125	NYPA	Moses	Willis	-36.99	w	2025	230	230	2	N/A	N/A	SPCP: Retire Existing Moses - Willis MW1 and MW2 230 kV Line	
1125	NGRID	Adirondack	Porter	-54.41	w	2025	230	230	1	N/A	N/A	SPCP: Retire Existing Adirondack - Porter 230 kV Line	
1125	NGRID	Adirondack	Chases Lake	-11.05	w	2025	230	230	1	N/A	N/A	SPCP: Retire Existing Adirondack - Chases Lake 230 kV Line	
1125	NGRID	Chases Lake	Porter	-43.46	w	2025	230	230	1	N/A	N/A	SPCP: Retire Existing Chases Lake - Porter 230 kV Line	
1125	NYPA	Willis	Patnode	-8.65	w	2025	230	230	1	N/A	N/A	SPCP: Retire Existing Willis - Patnode WPN1 230 kV Line.	
1125	NYPA	Willis	Ryan	-6.59	w	2025	230	230	1	N/A	N/A	SPCP: Retire Existing Willis - Ryan WRY2 230 kV Line.	

[Project Queue Position]/ Project Notes	Transmission Owner	Terminals Edic Porter	Line Length in Miles (1)	Expe In-Se Date Prio	rvice /Yr		Il Voltage kV Design	# of	Therma	l Ratings Winter	Project Description / Conductor Size	Class Year / Type of Constructio n	
		Term	IIIIdis				ороланив	200.8	S				
1125	NGRID	Edic	Porter	-0.39	W	2025	230	230	1	N/A	N/A	SPCP: Retire Existing Edic-Porter #17 230kV Line	
1125	NGRID	Porter	Porter	Transformers	W	2025	230/115	230/115	2	N/A	N/A	SCSP: Remove Existing Transformers #1&2 230kV/115kV	
1125	NGRID	Porter	Porter	Substation	W	2025	230	230	N/A	N/A	N/A	SPCP: Retire Porter 230kV substation	
				<u>Firm P</u>	lans (5) (in	cluded in	FERC 715 Base	Case)					
3	CHGE	North Catskill	North Catskill	xfmr	In- Service	2021	115/69	115/69	1	560	726	Replace Transformer 5	-
14	CHGE	Hurley Avenue	Leeds	Static synchronous series compensator	W	2022	345	345	1	2336	2866	21% Compensation	-
	CHGE	Rock Tavern	Sugarloaf	12.10	W	2023	115	115	1	N/A	N/A	Retire SL Line	ОН
	CHGE	Kerhonkson	Kerhonkson	xfmr	W	2023	115/69	115/69	1	564	728	Add Transformer 3	-
	CHGE	Kerhonkson	Kerhonkson	xfmr	W	2023	115/69	115/69	1	564	728	Add Transformer 4	-
	CHGE	Sugarloaf	NY/NJ State Line	10.30	W	2024	115	115	2	N/A	N/A	Retire SD/SJ Lines	ОН
11	CHGE	St. Pool	High Falls	5.69	W	2024	115	115	1	1010	1245	1-795 ACSR	ОН
11	CHGE	High Falls	Kerhonkson	10.03	W	2024	115	115	1	1010	1245	1-795 ACSR	ОН
11	CHGE	Modena	Galeville	4.62	W	2024	115	115	1	1010	1245	1-795 ACSR	ОН
11	CHGE	Galeville	Kerhonkson	8.96	W	2024	115	115	1	1010	1245	1-795 ACSR	ОН
11	CHGE	Hurley Ave	Saugerties	11.50	W	2025	69	115	1	1114	1359	1-795 ACSR	ОН
11	CHGE	Saugerties	North Catskill	12.46	W	2024	69	115	1	1114	1359	1-795 ACSR	ОН
6	CHGE	Knapps Corners	Spackenkill	2.36	W	2024	115	115	1	1280	1563	1-1033 ACSR	ОН
	ConEd	Hudson Ave East	New Vinegar Hill Distribution	xfmrs/PARs/Feeder s	S	2022	138/27	138/27		N/A	N/A	New Vinegar Hill Distribution Switching Station	UG

												-	
[Project Queue Position]/ Project Notes	Transmission Owner	Term	ninals	Line Length in Miles (1)	Expe In-Se Date Prio	rvice e/Yr		al Voltage kV Design	# of ckt s	Thermal Summer	Ratings Winter	Project Description / Conductor Size	Class Year / Type of Constructio n
			Switching Station										
	ConEd	Rainey	Rainey	xfmr	S	2023	345	345		N/A	N/A	Replacing xfmr 3W	-
	ConEd	Rainey	Corona	xfmr/PAR/Feeder	S	2023	345/138	345/138		N/A	N/A	New second PAR regulated feeder	UG
	ConEd	Gowanus	Greenwood	xfmr/PAR/Feeder	S	2025	345/138	345/138		N/A	N/A	New PAR regulated feeder	UG
	ConEd	Goethals	Fox Hills	xfmr/PAR/Feeder	S	2025	345/138	345/138		N/A	N/A	New PAR regulated feeder	UG
	ConEd	Buchanan North	Buchanan North	Reconfiguration	S	2025	345	345		N/A	N/A	Reconfiguration (bus work related to decommissioning of Indian Point 2)	-
	ConEd	Mott Haven	Parkview	-	S	2026	345/138/1 3	345/138/13		N/A	N/A	Spare 345/138 kV xfmr at Mott Haven and a spare 138/13.8 kV xfmr at Parkview	UG
6/7/3	LIPA	Amagansett	Montauk	-13.00	In- Service	2021	23	23	1	577	657	750 kcmil CU	UG
6/7/3	LIPA	Amagansett	Navy Road	12.74	In- Service	2021	23	23	1	577	657	750 kcmil CU	UG
6/7/3	LIPA	Navy Road	Montauk	0.26	In- Service	2021	23	23	1	577	657	750 kcmil CU	UG
9/3	LIPA	Riverhead	Wildwood	10.63	In- Service	2021	138	138	1	1355	1436	1192ACSR	
13/3	LIPA	Riverhead	Canal	15.89	In- Service	2021	138	138	1	945	945	2368 KCMIL (1200 mm²) Copper XLPE	
3	LIPA	Barrett	Barrett	-	In- Service	2021	34.5	34.5	1	N/A	N/A	Barrett 34.5kV Bus Tie Reconfiguration	-
	LIPA	Round Swamp	Round Swamp	-	S	2022	69	69		N/A	N/A	New Round Swamp Road substation	
	LIPA	Round Swamp	Plainview	1.93	S	2022	69	69	1	1217	1217	2500kcmil XLPE	UG
	LIPA	Round Swamp	Ruland Rd	3.81	S	2022	69	69	1	1217	1217	2500kcmil XLPE	UG
3	NGRID	Oswego	Oswego	-	In- Service	2020	115	115		N/A	N/A	Rebuild of Oswego 115kV Station	
6/3	NGRID	Clay	Dewitt	10.24	In- Service	2021	115	115	1	220MVA	268MVA	Reconductor 4/0 CU to 795ACSR	ОН


[Project Queue Position] / Project Notes	Transmission Owner	Term	ninals	Line Length in Miles (1)	Expe In-Se Date Prio	rvice e/Yr		l Voltage kV Design	# of ckt s	Thermal Summer	Ratings Winter	Project Description / Conductor Size	Class Year / Type of Constructio n
6/3	NGRID	Clay	Teall	12.75	In- Service	2021	115	115	1	220 MVA	268MVA	Reconductor 4/0 CU to 795ACSR	ОН
3	NGRID	Gardenville 230kV	Gardenville 115kV	xfmr	In- Service	2021	230/115	230/115	-	347 MVA	422 MVA	Replacement of 230/115kV TB#3 stepdown with larger unit	
3	NGRID	Huntley 115kV	Huntley 115kV	-	In- Service	2021	115	115	-	N/A	N/A	Rebuild of Huntley 115kV Station	
3	NGRID	Mortimer	Mortimer	xfmr	In- Service	2021	115	115		50MVA	50MVA	Replace Mortimer 115/69kV Transformer	
3	NGRID	Royal Ave	Royal Ave	-	In- Service	2021	115/13.2	115/13.2	-	-	-	Install new 115-13.2 kV distribution substation in Niagara Falls (Royal Ave)	-
3	NGRID	Niagara	Packard	3.4	In- Service	2021	115	115	1	344MVA	449MVA	Replace 3.4 miles of 192 line	ОН
	NGRID	Volney	Clay	-	S	2022	115	115	1	1200 MVA	1474 MVA	Replace Terminal Equipment Line #6	ОН
	NGRID	Mountain	Lockport	0.08	S	2022	115	115	2	174MVA	199MVA	Mountain-Lockport 103/104 Bypass	ОН
	NGRID	South Oswego	Indeck (#6)	-	S	2022	115	115	1	-	-	Install High Speed Clearing on Line #6	
	NGRID	Porter	Porter	-	S	2022	230	230		N/A	N/A	Porter 230kV upgrades	
	NGRID	Watertown	Watertown		S	2022	115	115		N/A	N/A	New Distribution Station at Watertown	
	NGRID	Golah	Golah	xfmr	S	2022	69	69		50MVA	50MVA	Replace Golah 69/34.5kV Transformer	
	NGRID	Niagara	Packard	3.7	S	2022	115	115	1	344MVA	449MVA	Replace 3.7 miles of 191 line	ОН
	NGRID	Wolf Rd	Menands	1.34	S	2022	115	115	1	182 MVA	222 MVA	Reconductor 1.34 miles betw Wolf Rd- Everett tap (per EHI)	ОН
	NGRID	Volney	Clay	-	S	2022	115	115	1	1200 MVA	1474 MVA	Replace Terminal Equipment Line #6	ОН
	NGRID	Dunkirk	Dunkirk	-	S	2022	115	115	-	-	-	Rebuild Dunkirk Station/ Asset Separation.	
	NGRID	Lockport	Mortimer	56.5	W	2022	115	115	3	-	-	Replace Cables Lockport-Mortimer #111, 113, 114	

												-	
[Project Queue Position]/ Project Notes	Transmission Owner	Tern	ninals	Line Length in Miles (1)	Expe In-Se Date Prio	rvice e/Yr		ıl Voltage kV Design	# of ckt s	Thermal Summer	Ratings Winter	Project Description / Conductor Size	Class Year / Type of Constructio n
6	NGRID	Niagara	Packard	3.7	W	2022	115	115	2	344MVA	449MVA	Replace 3.7 miles of 193 and 194 lines	ОН
	NGRID	Gardenville	Big Tree	6.3	w	2022	115	115	1	221MVA	221MVA	Gardenville-Arcade #151 Loop-in-and-out of NYSEG Big Tree	ОН
	NGRID	Big Tree	Arcade	28.6	w	2022	115	115	1	129MVA	156MVA	Gardenville-Arcade #151 Loop-in-and-out of NYSEG Big Tree	ОН
	NGRID	Seneca	Seneca	xfmr	w	2022	115/22	115/22		40MVA	40MVA	Seneca #5 xfmr asset replacement	
	NGRID	Batavia	Batavia		W	2022	115	115				Batavia replace five OCB's	
	NGRID	Kensington Terminal	Kensington Terminal	-	W	2022	115/23	115/23	-	50MVA	50MVA	Replace TR4 and TR5	
	NGRID	Taylorville	Boonville	-	W	2022	115	115	1	584	708	Replace Station connections	
	NGRID	Taylorville	Boonville	-	W	2022	115	115	1	584	708	Replace Station connections	
	NGRID	Taylorville	Browns Falls	-	W	2022	115	115	1	569	708	Replace Station connections	
	NGRID	Taylorville	Browns Falls	-	W	2022	115	115	1	584	702	Replace Station connections	
	NGRID	Batavia	Batavia		W	2022	115	115				Batavia replace five OCB's.	
	NGRID	Albany Steam	Albany Steam	-	W	2022	115	115				Replace NG's 115kV Breakers.	
	NGRID	Mountain	Lockport		S	2023	115	115	2	847	1000	Reinsulating Mountain- Lockport 103/104	
	NGRID	Maplewood	Menands	3	S	2023	115	115	1	220 MVA	239 MVA	Reconductor approx 3 miles of 115kV Maplewood – Menands #19	
	NGRID	Maplewood	Reynolds	3	S	2023	115	115	1	217 MVA	265 MVA	Reconductor approx 3 miles of 115kV Maplewood – Reynolds Road #31	
	NGRID	Elm St	Elm St	-	S	2023	230/23	230/23	-	118MVA	133MVA	Replace TR2 as failure	
	NGRID	Ridge	Ridge		S	2023				N/A	N/A	Ridge substation 34.5kV rebuild	

[Project Queue Position]/ Project Notes	Transmission Owner	Tern	ninals	Line Length in Miles (1)	Expe In-Se Date Prio	rvice e/Yr		al Voltage kV Design	# of ckt s	Therma Summer	Ratings Winter	Project Description / Conductor Size	Class Year / Type of Constructio n
	NGRID	Colton	Browns Falls	-	S	2023	115	115	1	629	764	Flat Rock station (mid- line) upgrades	
	NGRID	Mountain	Lockport		S	2023	115	115	2	847	1000	Reinsulating Mountain- Lockport 103/104.	
	NGRID	Clay	Woodard		W	2023	115	115	1			Add 10.5mH reactor on line #17.	ОН
	NGRID/NYSEG	Mortimer	Station 56		W	2023	115	115	1	649	788	Mortimer-Pannell #24 Loop in-and-out of NYSEG's Station 56	
	NGRID	Clay	Woodard		W	2023	115	115	1			Add 10.5mH reactor on line #17.	ОН
	NGRID	Cortland	Clarks Corners	0.2	S	2024	115	115	1	147MVA	170MVA	Replace 0.2 miles of 1(716) line and series equipment	ОН
	NGRID	Homer Hill	Homer Hill	-	S	2024	115	115	-	116MVA	141MVA	Homer Hill Replace five OCB	
	NGRID	Packard	Huntley	9.1	W	2024	115	115	1	262MVA	275MVA	Walck-Huntley #133, Packard-Huntley #130 Reconductor	ОН
	NGRID	Walck	Huntley	9.1	W	2024	115	115	1	262MVA	275MVA	Walck-Huntley #133, Packard-Huntley #130 Reconductor	ОН
	NGRID	Station 56	Pannell		W	2024	115	115	1	649	788	Mortimer-Pannell #24 Loop in-and-out of NYSEG's Station 56	
	NGRID	Clay	Wetzel	3.7	W	2024	115	115	1	220 MVA	220 MVA	Add a breaker at Clay and build approximately 2000 feet of 115kV to create radial line	
	NGRID	Golah	Golah		S	2025				N/A	N/A	Golah substation rebuild	
	NGRID	Malone	Malone	-	S	2025	115	115	-	753	753	Install PAR on Malone - Willis line 1-910	
	NGRID	Oswego	Oswego	-	S	2026	345	345		N/A	N/A	Rebuild of Oswego 345kV Station (asset separation).	
6	NGRID	Gardenville	Dunkirk	20.5	S	2026	115	115	2	1105	1346	Replace 20.5 miles of 141 and 142 lines	ОН
	NGRID	Niagara	Gardenville	26.3	S	2026	115	115	1	275MVA	350MVA	Packard-Erie / Niagara- Garenville Reconfiguration	ОН

[Project Queue Position]/ Project Notes	Transmission Owner	Term	ninals	Line Length in Miles (1)	Expe In-Se Date Prio	rvice e/Yr		ıl Voltage kV Design	# of ckt s	Therma Summer	l Ratings Winter	Project Description / Conductor Size	Class Year / Type of Constructio n
	NGRID	Packard	Gardenville	28.2	S	2026	115	115	2	168MVA	211 MVA	Packard-Gardenville Reactors, Packard-Erie / Niagara-Garenville Reconfiguration	ОН
	NGRID/NYSEG	Erie St	Gardenville	5.5	S	2026	115	115	1	139MVA	179MVA	Packard-Erie / Niagara- Garenville Reconfiguration, Gardenville add breakers	ОН
	NGRID	Lockport	Batavia	20	S	2026	115	115	1	646	784	Rebuild 20 miles of	
	NGRID	Packard	Packard		S	2026	115	115				Lockport-Batavia 112 Packard replace three OCB's	
	NGRID	Oswego	Oswego	-	S	2026	345	345		N/A	N/A	Rebuild of Oswego 345kV Station (asset separation).	
	NGRID	Rotterdam	Rotterdam	-	S	2026	115/69	115/69	-	67	76	Rebuild Rotterdam 69kV substation and add a 2nd 115/69kV Transformer	-
	NGRID	Rotterdam	Schoharie	0.93	S	2026	69	115	1	77	93	Rebuild 0.93mi double circuit Rotterdam- Schoharie / Schenectady International- Rotterdam	ОН
	NGRID	Schenectady International	Rotterdam	0.93	S	2026	69	115	1	69	84	Rebuild 0.93mi double circuit Rotterdam- Schoharie / Schenectady International- Rotterdam	ОН
	NGRID	Tar Hill	Tar Hill		S	2026	115	115				New station to replace Lighthouse Hill.	
	NGRID	Inghams	Inghams	-	S	2026	115	115				Rebuild Inghams station, including rebuilding the PAR	
	NGRID	Huntley	Lockport	1.2	W	2026	115	115	2	747	934	Rebuild 1.2 miles of (2) single circuit taps on Huntley-Lockport 36/37 at Ayer Rd	

[Project Queue Position] / Project Notes	Transmission Owner	Tern	ninals	Line Length in Miles (1)	Expe In-Se Date Prio	rvice e/Yr		Il Voltage kV Design	# of ckt s	Thermal Summer	Ratings Winter	Project Description / Conductor Size	Class Year / Type of Constructio n
	NGRID	Oneida	Oneida	-	W	2026	115	115				115kV Oneida Station Rebuild & add Cap bank.	
	NGRID	Brockport	Brockport	3.5	S	2027	115	115	2	648	650	Refurbish 111/113 3.5 mile single circuit taps to Brockport Station.	
	NGRID	Brockport	Brockport	3.5	S	2027	115	115	2	648	650	Refurbish 111/113 3.5 mile single circuit taps to Brockport Station.	
	NGRID	Pannell	Geneva		W	2027	115	115	2	755	940	Critical Road crossings replace on Pannell- Geneva 4/4A	
	NGRID	Mortimer	Golah	9.7	W	2027	115	115	1	657	797	Refurbish 9.7 miles Single Circuit Wood H- Frames on Mortimer- Golah 110	
	NGRID	Lockport	Lockport		W	2027				N/A	N/A	Rebuild of Lockport Substation and control house	
	NGRID	Pannell	Geneva		W	2027	115	115	2	755	940	Critical Road crossings replace on Pannell- Geneva 4/4A.	
	NGRID	Mortimer	Golah	9.7	W	2027	115	115	1	657	797	Refurbish 9.7 miles Single Circuit Wood H- Frames on Mortimer- Golah 110.	
	NGRID	Mortimer	Mortimer	-	W	2027	115	115		N/A	N/A	Second 115kV Bus Tie Breaker at Mortimer Station	
	NGRID	Mortimer	Pannell	15.7	S	2028	115	115	2	221MVA	270MVA	Reconductor existing Mortimer – Pannell 24 and 25 lines with 795 ACSR	
	NGRID	SE Batavia	Golah	27.8	W	2028	115	115	1	648	846	Refurbish 27.8 miles Single Circuit Wood H- Frames on SE Batavia- Golah 119	
	NGRID	SE Batavia	Golah	27.8	W	2028	115	115	1	648	846	Refurbish 27.8 miles Single Circuit Wood H- Frames on SE Batavia- Golah 119.	

[Project Queue Position]/ Project Notes	Transmission Owner	Terminals	Line Length in Miles (1)	Expe In-Se Date Prio	rvice :/Yr		l Voltage kV Design	# of	Therma	l Ratings Winter	Project Description / Conductor Size	Class Year / Type of Constructio n	
		Term	imais				Орегания	Design	S	Jummer	· · · · · · · · · · · · · · · · · · ·		
	NGRID	Gardenville	Homer Hill	37.5	S	2031	115	115	2	649	788	Refurbish 37.5 miles double circuit Gardenville-Homer Hill 151/152l	
	NGRID	Gardenville	Homer Hill	37.5	S	2031	115	115	2	649	788	Refurbish 37.5 miles double circuit Gardenville-Homer Hill 151/152l	
	NGRID	Huntley	Gardenville	23.4	w	2031	115	115	2	731	887	Refurbish 23.4 miles double circuit on Huntley-Gardenville 38/39.	
	NGRID	Huntley	Gardenville	23.4	w	2031	115	115	2	731	887	Refurbish 23.4 miles double circuit on Huntley-Gardenville 38/39.	
3	NYPA	East Garden City	East Garden City	Shunt Reactor	In- Service	2021	345	345	1	N/A	N/A	Swap with the spare unit	
580	NYPA/NGRID	STAMP	STAMP	Substation	w	2023	345/115	345/115		500 MVA	500 MVA	Load Interconnection.	
566/6	NYPA	Moses	Adirondack	78	S	2023	230	345	2	1088	1329	Replace 78 miles of both Moses-Adirondack 1&2	
	NYPA	Moses	Moses	Circuit Breakers Replacements	W	2025	115/230	115/230		N/A	N/A	St. Lawrence Breaker Replacement 115 and 230 kV	
3	NYSEG	Willet	Willet	xfmr	In- Service	2021	115/34.5	115/34.5	1	39 MVA	44 MVA	Transformer #2	-
	NYSEG	Big Tree Road	Big Tree Road	Rebuild	W	2022	115	115				Station Rebuild	
	NYSEG	Wood Street	Wood Street	xfmr	W	2022	345/115	345/115	1	327 MVA	378 MVA	Transformer #3	-
	NYSEG	Coddington	E. Ithaca (to Coddington)	8.07	S	2024	115	115	1	307 MVA	307 MVA	665 ACCR	ОН
	NYSEG	Fraser	Fraser	xfmr	S	2024	345/115	345/115	1	305 MVA	364 MVA	Transformer #2 and Station Reconfiguration	-
	NYSEG	Fraser 115	Fraser 115	Rebuild	S	2024	115	115		N/A	N/A	Station Rebuild to 4 bay BAAH	-
	NYSEG	Delhi	Delhi	Removal	S	2024	115	115		N/A	N/A	Remove 115 substation and terminate existing lines to Fraser 115 (short distance)	

[Project Queue Position]/ Project Notes	Transmission Owner	Tern	ninals	Line Length in Miles (1)	Expe In-Se Date Prio	rvice :/Yr		l Voltage kV Design	# of	Thermal Summer	Ratings Winter	Project Description / Conductor Size	Class Year / Type of Constructio n
	NYSEG	Erie Street Rebuild	Erie Street Rebuild	Rebuild	S	2026	115	115				Station Rebuild	
	NYSEG	Gardenville	Gardenville	xfmr	S	2026	230/115	230/115	1	316 MVA	370 MVA	NYSEG Transformer #3 and Station Reconfiguration	-
	NYSEG	Meyer	Meyer	xfmr	W	2026	115/34.5	115/34.5	2	59.2MV A	66.9MV A	Transformer #2	-
7	O & R/ConEd	Ladentown	Buchanan	-9.5	S	2023	345	345	1	3000	3211	2-2493 ACAR	
7	O & R/ConEd	Ladentown	Lovett 345 kV Station (New Station)	5.5	S	2023	345	345	1	3000	3211	2-2493 ACAR	
7	O & R/ConEd	Lovett 345 kV Station (New Station)	Buchanan	4	S	2024	345	345	1	3000	3211	2-2493 ACAR	
	O & R	Lovett 345 kV Station (New Station)	Lovett	xfmr	S	2024	345/138	345/138	1	562 MVA	562 MVA	Transformer	
3	RGE	Station 262	Station 23	1.46	In- Service	2021	115	115	1	2008	2008	Underground Cable	
3	RGE	Station 33	Station 262	2.97	In- Service	2021	115	115	1	2008	2008	Underground Cable	
3	RGE	Station 262	Station 262	xfmr	In- Service	2018	115/34.5	115/34.5	1	58.8MV A	58.8MV A	Transformer	-
7	RGE	Station 168	Mortimer (NG Trunk #2)	26.4	W	2023	115	115	1	145 MVA	176 MVA	Station 168 Reinforcement Project	ОН
7	RGE	Station 168	Elbridge (NG Trunk # 6)	45.5	W	2023	115	115	1	145 MVA	176 MVA	Station 168 Reinforcement Project	ОН
	RGE	Station 127	Station 127	xfmr	W	2024	115/34.5	115/34.5	1	75MVA	75MVA	Transformer #2	-
	RGE	Station 418	Station 48	7.6	S	2026	115	115	1	175 MVA	225 MVA	New 115kV Line	ОН
	RGE	Station 33	Station 251 (Upgrade Line #942)		S	2026	115	115	1	400MVA	400MVA	Line Upgrade	
	RGE	Station 33	Station 251 (Upgrade Line #943)		S	2026	115	115	1	400MVA	400MVA	Line Upgrade	
	RGE	Station 82	Station 251 (Upgrade Line #902)		S	2028	115	115	1	400MVA	400MVA	Line Upgrade	

[Project Queue Position]/	Transmission			Line Length	Expe In-Sei Date	rvice		ıl Voltage ı kV	# of	Therma	l Ratings	Project Description / Conductor Size	Class Year / Type of Constructio
Project Notes	Owner	Term	inals	in Miles (1)	in Miles (1) Prior to		Operating	Design	ckt s	Summer	Winter		n
	RGE	Mortimer	Station 251 (Upgrade Line #901)	1.00	S	2028	115	115	1	400MVA	400MVA	Line Upgrade	

Notes

Number	Note
1	Line Length Miles: Negative values indicate removal of Existing Circuit being tapped
2	S = Summer Peak Period W = Winter Peak Period
3	Equipment (Transformers & Capacitor Banks) is retained on this list for one year after it goes in In-Service, and then it is deleted. A Transmission Line is reflected in Table VI, when it goes In-Service
4	Thermal Ratings in Amperes, except where labeled otherwise
5	Firm projects are those which have been reported by TOs as being sufficiently firm, and either (i) have an Operating Committee approved System Impact Study (if applicable) and, for projects subject to Article VII, have a determination from New York Public Service Commission that the Article VII application is in compliance with Public Service Law § 122, or (ii) is under construction and is scheduled to be in-service prior to June 1 of the current year.
6	Reconductoring of Existing Line
7	Segmentation of Existing Circuit
8	Deleted
9	Upgrade of existing 69 kV to 138 kV operation
10	Deleted
11	Upgrade of existing 69 kV to 115 kV operation
12	Deleted
13	Contingent on future generation resources
14	This transmission upgrade was identified as a System Deliverability Upgrade (SDU) in the Class Year 2011 Study process required to make certain interconnection projects fully deliverable in the Rest of State Capacity Region. Upon the completion of Class Year 2011, the security posted for the SDU constituted greater than 60% of the total estimated costs for the SDUs and thereby "triggered" the SDU for construction.
15	The Class Year Transmission Project, Q#631, includes an elective System Upgrade Facility, an Astoria-Rainey 345kV cable. The Class Year Transmission Project, Q#887, is a 250 MW uprate of Q#631 project.
16	Deleted
17	Deleted
18	This project has a System Reliability Impact Study that has been approved by the NYISO Operating Committee, and therefore is a potential candidate to enter the next Open Class Year study
19	These transmission projects are included in the FERC 715 Report models. Please see FERC 715 report for an explanation of the inclusion criteria.
20	Deleted

Figure 17: Updates to Local Transmission Plans Not Included in 2022 Load and Capacity Data Report

From Bus	To Bus	ID	Voltage (kV)	Project Description	Planned In-Service Date
Lockport	Mortimer	103/104	Reconductor/Reconfigure 4 spa Lockport/Mortimer 103/104		8/2022
Lockport	Lockport	R264	115	Install R264 at Lockport for Line 108 and operate as alternate breaker for Line 108 at Lockport	1/2023

Figure 18: Additional Non-LTP Transmission Projects Included in RNA Base Case Not Listed in 2022 Load and Capacity Data Report

NYISO Interconnection Queue #	Project Name/(Owner)	Zone	Point of Interconnection	Туре	COD or I/S Date	Summer Peak MW
631	NS Power Express		Hertel 735 kV (Quebec) - Astoria	HVDC	12/2025	1,000
887	CH Uprate		Annex 345 kV (NYC)	Transmission	12/2025	250

Appendix D: Resource Adequacy Assumptions

2022 Q4 STAR MARS Assumptions Matrix

#	Parameter	2022 RNA	2022 Q3 and Q4 STAR
		(2022 Gold Book)	(2022 Gold Book, 2022 RNA Base Cases + updates)
		Study Period: y4 (2026)-y10 (2032)	Study Period: y1 (2023)-y5 (2027)
Key Assu	mptions and Reports		
1	Links to Key Assumptions Presentations and Final Reports	Nov 15, 2022: NYISO Board approval and final 2022 RNA posting	July 26, 2022 ESPWG: Q3 STAR Key Assumptions October 25, 2022 ESPWG: Q4 STAR Key Assumptions STAR Reports, Notices: https://www.nyiso.com/short-term-reliability-
			process
Load Par	ameters		
1	Peak Load Forecast	Adjusted 2022 Gold Book NYCA baseline peak load forecast. It includes five large loads from the NYISO interconnection queue, with forecasted impacts. The GB 2022 baseline peak load forecast includes the impact (reduction) of behind-the-meter (BtM) solar at the time of NYCA peak. For the BtM Solar adjustment, gross load forecasts that include the impact of the BtM generation will be used for the 2022 RNA, as provided by the Demand Forecasting Team which then allows for a discrete modeling of the BtM solar resources using 5 years of inverter data.	Same
2	Load Shapes (Multiple Load Shapes)	New Load Shapes (see March 24 LFTF/ESPWG): Used Multiple Load Shape MARS Feature	Same
		8,760-hour historical gross load shapes were used as base shapes for LFU bins:	
		Load Bins 1 and 2: 2013	

#	Parameter	2022 RNA	2022 Q3 and Q4 STAR
		(2022 Gold Book)	(2022 Gold Book, 2022 RNA Base Cases + updates)
		Study Period: y4 (2026)-y10 (2032)	Study Period: y1 (2023)-y5 (2027)
		Load Bins 3 and 4: 2018 Load Bins 5 to 7: 2017	
		Peak adjustments on a seasonal basis to meet peak forecasts, while maintaining the energy target.	
		For the BtM Solar adjustment, gross load forecasts that include the impact of the BtM generation will be used for the 2022 RNA, as provided by the Demand Forecasting Team	
3	Load Forecast Uncertainty (LFU)	2020 LFU Updated via Load Forecast Task Force (LFTF) process.	Same
	The LFU model captures the impacts of weather conditions on future loads.	Updated LFU values, (as presented at the April 21, 2022 LFTF [link])	
Generation	on Parameters		
1	Existing Generating Unit Capacities (e.g., thermal units, large hydro)	2022 Gold Book values. Summer is min of (DMNC, CRIS). Winter is min of (DMNC, CRIS). Adjusted for RNA inclusion rules.	Same
2	Proposed New Units Inclusion Determination	2022 Gold Book with Inclusion Rules applied See April 26, 2022 TPAS/ESPWG	Same method, see applicable STAR Key Assumptions presentation
3	Retirement, Mothballed Units, IIFO	2022 Gold Book with Inclusion Rules applied See April 26, 2022 TPAS/ESPWG	Same method, see applicable STAR Key Assumptions presentation
4	Forced and Partial Outage Rates (e.g., thermal units, large hydro)	Five-year (2017-2021) GADS data for each unit represented. Those units with less than five years – use representative data.	Same
	,	Transition Rates representing the Equivalent Forced Outage Rates (EFORd) during demand periods over the most recent five-year period.	
		For new units or units that are in service for less than three years, NERC 5-year class average EFORd data are used.	

#	Parameter	2022 RNA	2022 Q3 and Q4 STAR
		(2022 Gold Book)	(2022 Gold Book, 2022 RNA Base Cases + updates)
		Study Period: y4 (2026)-y10 (2032)	Study Period: y1 (2023)-y5 (2027)
5	Planned Outages	Based on schedules received by the NYISO and adjusted for history	Same
6	Fixed and Unplanned Maintenance	Scheduled maintenance from Operations. Unplanned maintenance based on GADS data average maintenance	Same
		time – average time in weeks is modeled.	
7	Summer Maintenance	None	Same
8	Combustion Turbine Derates	Derate based on temperature correction curves Thermal derates are based on a ratio of peak load before LFU is applied and LFU applied load. For new units: used data for a unit of same type in same zone, or	Same
		neighboring zone data.	
8	Existing Landfill Gas (LFG) Plants	Actual hourly plant output over the last 5 years. Program randomly selects an LFG shape of hourly production over the last 5 years for each model replication. Probabilistic model is incorporated based on five years of input shapes, with one shape per replication randomly selected in the Monte Carlo process.	Same
9	Existing Wind Units (>5 years of data)	Actual hourly plant output over the last 5 years (2017-2021). Probabilistic model is incorporated based on five years of input shapes with one shape per replication being randomly selected in Monte Carlo process.	Same
10	Existing Wind Units (<5 years of data)	For existing data, the available actual hourly plant output is used. For missing data, the nameplate normalized average of units in the same load zone is scaled by the unit's nameplate rating.	Same
11a	Proposed Land based Wind Units	Inclusion Rules Applied to determine the generator status. The nameplate normalized average of units in the same load zone is scaled by the unit's nameplate rating.	Same

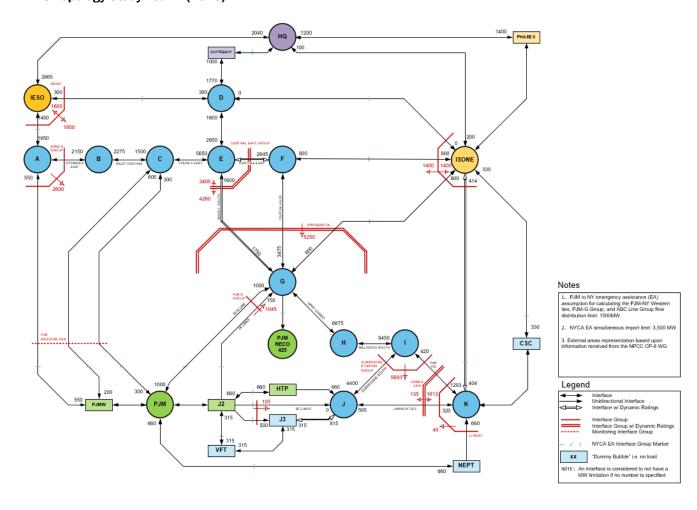
#	Parameter	2022 RNA	2022 Q3 and Q4 STAR
		(2022 Gold Book)	(2022 Gold Book, 2022 RNA Base Cases + updates)
		Study Period: y4 (2026)-y10 (2032)	Study Period: y1 (2023)-y5 (2027)
11b	Proposed Offshore Wind Units	Inclusion Rules Applied to determine the generator status. Power curves based on 2008-2012 NREL from 3 different sites: NY Harbor, LI Shore, LI East, and GE updates of the NREL curves reflecting derates.	Same
12a	Existing Utility-scale Solar Resources	Inclusion Rules Applied to determine the generator status. Probabilistic model chooses from the production data output shapes covering the last 5 years. One shape per replication is randomly selected in Monte Carlo process.	Same
12b	Proposed Utility-scale Solar Resources	Inclusion Rules Applied to determine the generator status. The nameplate normalized average of units in the same load zone is scaled by the unit's nameplate rating.	Same
13	Projected BtM Solar Resources	Supply side: Five years of 8,760 hourly MW profiles based on sampled inverter data The MARS random shape mechanism is used: one 8,760 hourly shape (of five) is randomly picked for each replication year. Similar with the past planning modeling and aligns with the method used for wind, utility solar, landfill gas, and run-of-river facilities. Load side: Gross load forecasts will be used for the 2022 RNA, as provided by the forecasting group.	Same
14	Existing BTM-NG Program	These are former load modifiers to sell capacity into the ICAP market. Modeled as cogen type 1 (or type 2 as applicable) unit in MARS. Unit capacity set to CRIS value, load modeled with weekly pattern that can change monthly.	Same

#	Parameter	2022 RNA	2022 Q3 and Q4 STAR
		(2022 Gold Book)	(2022 Gold Book, 2022 RNA Base Cases + updates)
		Study Period: y4 (2026)-y10 (2032)	Study Period: y1 (2023)-y5 (2027)
15	Existing Small Hydro Resources (e.g., run-of-river)	Actual hourly plant output over the past 5 years period. Program randomly selects a hydro shape of hourly production over the 5-year window for each model replication. The randomly selected shape is multiplied by their current nameplate rating.	Same
16	Existing Large Hydro	Probabilistic Model based on 5 years of GADS data.	Same
		Transition Rates representing the Equivalent Forced Outage Rates (EFORd) during demand periods over the most recent five-year period. Methodology consistent with thermal unit transition rates.	
17	Proposed front-of-meter Battery Storage	GE MARS ES model is used. Units are given a maximum capacity, maximum stored energy, and a dispatch window.	Same
18	Existing Energy Limited Resources (ELRs)	New method: GE developed MARS functionality to be used for ELRs. Resource output is aligned with the NYISO's peak load window when most loss-of-load events are expected to occur.	Same
Transacti	on - Imports/ Exports		
1	Capacity Purchases	Grandfathered Rights and other awarded long-term rights Modeled using MARS explicit contracts feature.	Same

#	Parameter	2022 RNA	2022 Q3 and Q4 STAR
		(2022 Gold Book)	(2022 Gold Book, 2022 RNA Base Cases + updates)
		Study Period: y4 (2026)-y10 (2032)	Study Period: y1 (2023)-y5 (2027)
2	Capacity Sales	These are long-term contracts filed with FERC. Modeled using MARS explicit contracts feature. Contracts sold from ROS (Zones: A-F). ROS ties to external pool are derated by sales MW amount	Same
3	FCM Sales	Model sales for known years Modeled using MARS explicit contracts feature. Contracts sold from ROS (Zones: A-F). ROS ties to external pool are derated by sales MW amount	Same
4	UDRs	Updated with most recent elections/awards information (VFT, HTP, Neptune, CSC) Added CHPE HTP (from Hydro Quebec into Zone J) at 1250 MW (summer) starting 2026	Same
5	External Deliverability Rights (EDRs)	Cedars Uprate 80 MW. Increased the HQ to D by 80 MW. Note: The Cedar bubble has been removed and its corresponding MW was reflected in HQ to D limit.	Same
6	Wheel-Through Contract	300 MW HQ through NYISO to ISO-NE. Modeled as firm contract. Reduced the transfer limit from HQ to NYISO by 300 MW and increased the transfer limit from NYISO to ISO-NE by 300 MW.	Same
MARS To	pology: a simplified bubble-and-pipe repr	esentation of the transmission system	
1	Interface Limits	Developed by review of previous studies and specific analysis during the RNA study process.	Same

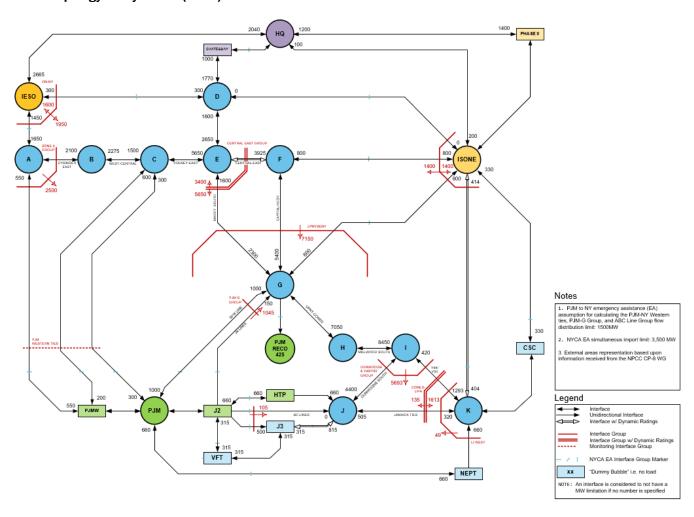
#	Parameter	2022 RNA	2022 Q3 and Q4 STAR
		(2022 Gold Book)	(2022 Gold Book, 2022 RNA Base Cases + updates)
	N. T	Study Period: y4 (2026)-y10 (2032)	Study Period: y1 (2023)-y5 (2027)
2	New Transmission	Based on TO- provided firm plans (via Gold Book 2020 process) and proposed merchant transmission; inclusion rules applied.	Same
3	AC Cable Forced Outage Rates	All existing cable transition rates updated with data received from ConEd and PSEG-LIPA to reflect most recent five-year history.	Same
4	UDR unavailability	Five-year history of forced outages	Same
5	Other	 Topology changes summary, as compared with the 2021 -2030 CRP MARS topology: Dysinger East and Group A limits decreased to reflect Large Loads in western NY (as forecasted in the 2022 Gold Book Table I-14 [link] West Central reverse emergency thermal limits increased mainly due to a rating increase on a limiting element – also as identified in the 2022 Operating Study Ontario – NY updated per input from Ontario ISO Added 1,250 MW (May through October) related with the HVDC from Quebec to New York City (Champlain Hudson project) starting 2026 Updated Long Island limits per PSEG-Long Island's input Updated UPNY-ConEd to align with around 300 MW smaller delta associated in the 2021 Operations UPNY-ConEd Voltage Study with the status of the M51, M52, 71, 72 Series Rectors (assumed in service for this RNA) 	Same
1	Special Case Resources (SCR)	SCRs sold for the program discounted to historic availability ("effective capacity"). Monthly variation based on historical experience. Summer values calculated from the latest available July registrations (July 2022 SCR enrollment) held constant for all years of study. Modeling 15 calls/year. Generation and load zonal MW are combined into one step.	Same

#	Parameter	2022 RNA	2022 Q3 and Q4 STAR
		(2022 Gold Book)	(2022 Gold Book, 2022 RNA Base Cases + updates)
		Study Period: y4 (2026)-y10 (2032)	Study Period: y1 (2023)-y5 (2027)
2	EDRP Resources	Not modeled: the values are less than 2 MW.	Same
3	Operating Reserves	655 MW 30-min reserve to zero 960 MW 10-min reserve to zero Note: the 10-min reserve modeling method is updated per NYISO's recommendation (approved at the May 4, 2022 NYSRC ICS [link]) to maintain (or no longer deplete/use) 350 MW of the 1,310 MW 10-min operating reserve at the applicable EOP step. Therefore, the 10-min operating reserve MARS EOP step will use, as needed each MARS replication: 960 MW (=1,310 MW-350 MW)	Same
4	Other EOPs e.g., manual voltage reduction, voltage curtailments, public appeals, external assistance, as listed above	Based on TO information, measured data, and NYISO forecasts. Used 2022 elections, as available	Same
External (Load and capacity fixed through the stu EOPs are not represented for the extern External Areas adjusted to be between	nal Control Area capacity models.	peak load days.
1	РЈМ	Simplified model: The 5 PJM MARS areas (bubbles) were consolidated into one starting 2020 RNA	Same
2	ISONE	Simplified model: The 8 ISO-NE MARS areas (bubbles) were consolidated into one starting 2020 RNA	Same
3	HQ	As per RNA Procedure External model (load, capacity, topology) provided by PJM/NPCC CP-8 WG. LOLE of pool adjusted to be between 0.10 and 0.15 days per year by adjusting capacity pro-rata in all areas.	

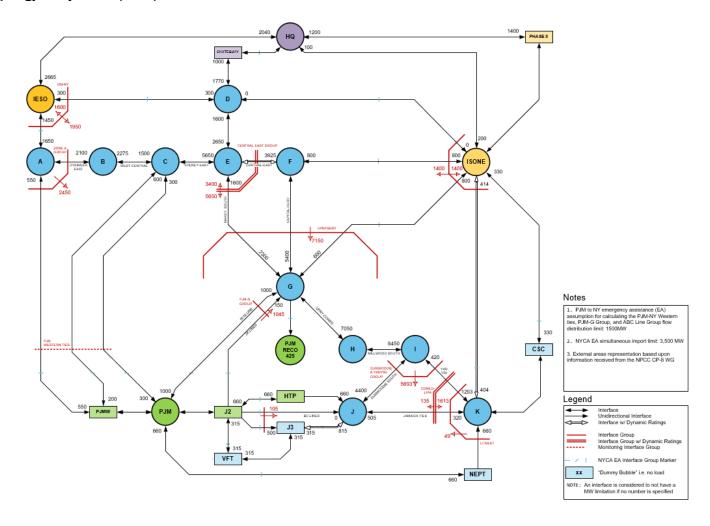


#	Parameter	2022 RNA	2022 Q3 and Q4 STAR
		(2022 Gold Book)	(2022 Gold Book, 2022 RNA Base Cases + updates)
		Study Period: y4 (2026)-y10 (2032)	Study Period: y1 (2023)-y5 (2027)
4	IESO	As per RNA procedure external model (load, capacity, topology) provided by PJM/NPCC CP-8 WG. LOLE of pool adjusted to be between 0.10 and 0.15 days per year by adjusting capacity pro-rata in all areas.	Same
5	Reserve Sharing	All NPCC Control Areas indicate that they will share reserves equally among all members before sharing with PJM.	Same
6	NYCA Emergency Assistance Limit	Implemented a statewide limit of 3,500 MW	Same
Miscellar	neous		
1	MARS Model Version	4.10.2035	Same

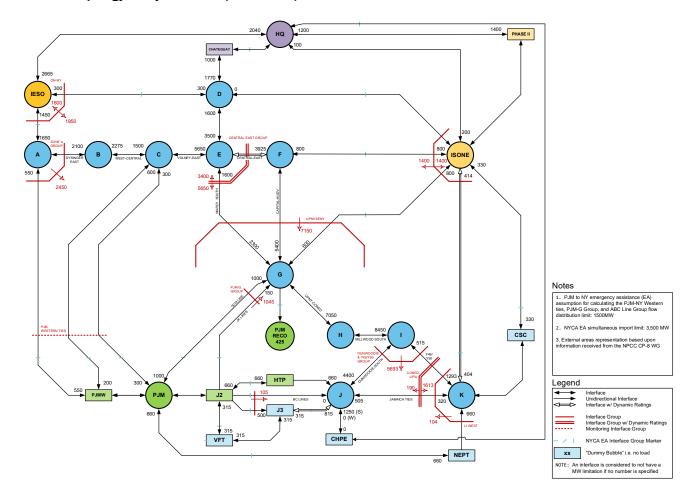
Resource Adequacy Topology from the 2022 Reliability Needs Assessment²⁰


MARS Topology Study Year 1 (2023)

²⁰ This is the MARS topology used for 2022 Reliability Needs Assessment studies and is not fully re-evaluated for each quarterly STAR.



MARS Topology Study Year 2 (2024)



MARS Topology Study Year 3 (2025)

MARS Topology Study Year 4-10 (2026-2032)

Appendix E: Transmission Security Margins (Tipping Points)

Introduction

The purpose of this assessment is to identify plausible changes in conditions or assumptions that might adversely impact the reliability of the system. This assessment is performed using a deterministic approach through a spreadsheet-based method using input from the 2022 Load and Capacity Data Report (Gold Book) and the projects that meet the 2022 RNA base case inclusion rules with consideration of updates for the quarterly Short-Term Reliability Process. At the May 5, 2022²¹ and May 23, 2022²² joint meetings of the Transmission Planning Advisory Subcommittee and the Electric System Planning Working Group (TPAS/ESPWG), the NYISO discussed with stakeholders several enhancements to the reliability planning practices. The proposed changes to reliability planning practices include: (1) modeling intermittent resources according to their expected availability coincident with the represented system condition, (2) accounting for the availability of thermal generation based on NERC class average five-year outage rate data in transmission security assessments, and (3) the ability to identify reliability needs through the spreadsheet-based method of calculating transmission security margins (a.k.a. "tipping points") within the Lower Hudson Valley (Zones G-J), New York City (Zone J), and Long Island (Zone K) localities, as well as other enhancements to reliability planning practices. At its June 23, 2022, meeting, the Operating Committee approved revisions to the Reliability Planning Process Manual that reflect these enhancements. For this assessment, the margins are evaluated statewide as well as Lower Hudson Valley, New York City, and Long Island localities.

A BPTF reliability need is identified when the transmission security margin under expected weather conditions in the Lower Hudson Valley, New York City, and Long Island localities are less than zero or when the statewide system margin is less than zero. Additional details regarding the impact of heatwave, extreme heatwave, or other scenario conditions are provided for informational purposes.

²¹https://www.nyiso.com/documents/20142/30451285/08 Reliability Practices TPAS-ESPWG 2022-05-05.pdf/

²²https://www.nyiso.com/documents/20142/30860639/04%20Response%20to%20SHQuestions%20and%20Feedback%20on%202022%2 ORNA%202022%20Quarter%202%20STAR.pdf/

New York Control Area (NYCA) Statewide System Margins

The statewide system margin for the New York is evaluated under baseline expected weather for summer and winter conditions with normal transfer criteria. Under current applicable reliability rules and procedures, a Reliability Need would be identified when the statewide margin is negative for the base case assumptions (i.e., baseline expected weather, normal transfer criteria). The statewide system margin is the ability to meet the forecasted load and largest loss-of-source contingency (i.e., total capacity requirement) against the NYCA generation (including derates) and external area interchange. The NYCA generation (from line-item A) is comprised of the existing generation plus additions of future generation resources that meet the reliability planning process base case inclusion rules, as well as the removal of deactivating generation and peaker units. Consistent with current transmission planning practices for transmission security, the NYISO assumed the following for the summer capability period: (1) land-based wind generation is assumed at a 5% of nameplate output and off-shore wind is assumed at 10% of nameplate output, (2) run-of-river hydro is reduced consistent with its average capacity factor, and (3) wholesale solar generation is dispatched based on the ratio of behind-the-meter solar generation ("BtM-PV") BtM solar nameplate capacity and BtM-PV peak reductions stated in the 2022 Gold Book. For the winter capability period: (1) land-based wind generation is assumed at 10% of nameplate output and off-shore wind is 15% of nameplate output, (2) run-of-river hydro is reduced consistent with its average capacity factor, and (3) wholesale solar generation is dispatched at 0 MW for winter peak. Derates for thermal resources based on their NERC five-year class average EFORd are also included.²³ Additionally, the NYCA generation includes the Oswego export limit with all lines in service.

Transmission security analysis represents discrete snapshots in time of various credible combinations of system conditions. When reliability needs are identified, only the magnitude of the need is identified (e.g., a thermal overload expressed in terms of percentage of the applicable rating) under the studied system conditions. Additional details are required to fully describe the nature of the need, such as evaluating the hourly load shape and its impact on the need. For example, in the 2020 Reliability Needs Assessment,²⁴ there is information detailing various contingency combinations resulting in thermal overloads within New York City (see, e.g., 2020 RNA Figure 26). To fully describe the nature of these needs, load-duration curves were developed for the transmission load areas in which needs were observed (see, e.g., 2020 RNA Figure 27).

To describe the nature of the statewide system margins under expected summer peak, heatwave, and extreme heatwave conditions more fully, load shapes are developed to reflect the expected behavior of the

²³NERC five-year class average EFORd data

²⁴2020 Reliability Needs Assessment

load over 24 hours on the summer peak day for the 10-year study horizon. Details of the load shapes are provided later in this appendix. For this assessment load shapes were not developed past 2032 and have only been developed for the summer condition.

Baseline peak forecasts and load shapes assume expected (approximately average) peak day weather. The heatwave and extreme heatwave conditions are defined by the 90th and 99th percentile summer peak forecasts documented in the Gold Book, respectively. The baseline and percentile summer peak forecasts utilize a cumulative temperature and humidity index, which reflects a weighted average of weather conditions on the peak day and the two preceding days and is based on the historical distribution of peakday weather. The peak load forecasts incorporate the projected impacts of increasing temperature trends throughout the forecast horizon. In general, a heatwave (1-in-10-year or 90/10) has a statewide average maximum temperature of 95 degrees Fahrenheit. An extreme heatwave (1-in-100-year or 99/1) has a statewide average maximum temperature of 98 degrees Fahrenheit.

As shown in **Figure 19**, under summer peak baseline expected weather load, normal transfer criteria, the statewide system margin (line-item I) ranges between 952 MW in 2023 to 1,446 MW in 2032. The annual fluctuations are driven by the decreases in NYCA generation (line-item A) and in the load forecast (line-item F). An additional sensitivity evaluation shown in **Figure 19** is the impact of maintaining the full operating reserve within the NYCA (line-item K). The statewide system margin with full operating reserve is deficient in the first few years (2023 through 2025) under summer peak conditions until the CHPE project enters service by summer 2026.25

Utilizing the load shapes for the baseline expected weather summer peak day (Figure 81), the statewide system margin for each hour utilizing normal transfer criteria is shown in Figure 20. The statewide system margin for each hour is created by using the load forecast for each hour in the margin calculation (e.g., Figure 19 line-item F) with additional adjustments in NYCA generation to account for the appropriate derate for solar generation and energy limited resources in each hour (e.g., Figure 19 line-item B). All other values in the margin calculations are held constant. A graphical representation of the hourly margin for years 2023, 2025, 2027, and 2032 is shown in Figure 21. These years are selected due to the DEC Peaker Rule impacts in 2023 and 2025 along with the year 5 representation (2027) and the last year of the RNA study period (2032). For all years in the 10-year study horizon, there are no observed deficiencies considering the statewide coincident peak day load shape.

It is possible for other combinations of events, such as a 1-in-10-year heatwave²⁶ ("heatwave") or 1-in-

²⁵ The CHPE project is currently planned to enter service in December 2025.

²⁶ The load forecast utilized for the heatwave condition is the 90th percentile (or 90/10) expected load forecast.

100-year extreme heatwave²⁷ ("extreme heatwave") to result in a deficient statewide system margin. Figure 22 shows the statewide system margin for heatwave condition under the assumption that the system is using emergency transfer criteria. Although system transmission security is not currently designed under these conditions, Figure 22 shows that insufficient margin exists for in the first few years (2023 through 2025) under summer peak conditions until the CHPE project is in-service (line-item []). In 2023, the system is deficient by 379 MW, which improves in 2024 to 52 MW. This reduction is primarily due to decreasing load forecast. In 2025, the margin decreases to 286 MW primarily due to the reduction in NYCA generation. In 2026, with CHPE in service, the margin returns positive to 1,130 MW. However, by 2032 the margin narrows to 128 MW. Additionally, Figure 22 also shows the statewide system margin with full operating reserve under heatwave conditions (line-item L). Under this sensitivity there is insufficient margin for all study years.

Utilizing the load shape for the 1-in-10-year heatwave (Figure 86), the statewide system margin for each hour utilizing emergency transfer criteria is shown in **Figure 23**. Under the 1-in-10-year heatwave conditions, the deficiency for the 1-in-10-year heatwave peak day in 2023 shown in Figure 22 at the statewide coincident peak hour is 379 MW. Figure 23 shows that the system is deficient in four hours with a total deficiency in the 24-hour period of 1,429 MWh. In 2024, the deficiency of 52 MW is only for one hour. In 2025, the deficiency lasts for three hours (604 MWh). For years 2026 through 2032 the margin curve for each hour remains sufficient. Figure 24 provides a graphical representation of the statewide system margin curve for heatwave conditions for the heatwave peak day in summers 2023, 2025, 2027, and 2032.

For the statewide system margin in a 1-in-100-year extreme heatwave, Figure 25 shows that there is insufficient statewide system margin as early as 2023 by 2,288 MW (line-item J). The margin improves in summer 2026 with CHPE in service; however, the margin remains deficient for the entire study period. In 2026 the deficiency is 735 MW. By 2032, the deficiency increases to 1,775 MW. These issues are exacerbated with consideration of full operating reserve (line-item L).

Utilizing the load shape for the 1-in-100-year extreme heatwave (**Figure 91**), the statewide system margin for each hour utilizing emergency transfer criteria is shown in **Figure 26**. Under the 1-in-100-year extreme heatwave conditions, the deficiency for the extreme heatwave day in summer 2023 shown in **Figure 25** as 2,288 MW is seen over ten hours (14,438 MWh). With the in-service status of CHPE by summer 2026, the deficiency observed for the extreme heatwave day in summer 2026 improves to three hours (1,911 MWh). By 2032, the extreme heatwave days deficiency increases to seven hours (7,510

²⁷ The load forecast utilized for the extreme heatwave condition is the 99th percentile (or 99/1) expected load forecast.

MWh). **Figure 27** provides a graphical representation of the statewide system margin curve for heatwave conditions for the peak day in years 2023, 2025, 2027, and 2032.

Figure 28 shows the statewide system margin under winter peak baseline expected weather load condition using normal transfer criteria. For winter peak, the statewide system margin ranges from 9,916 MW in winter 2023-24 to 4,219 MW in winter 2032-33 (line-item J). Under the additional sensitivity evaluation of maintaining the full operating reserve in the NYCA shown in Figure 28 all years are also shown to be sufficient.

Cold snap and extreme cold snap conditions are defined by the 90th and 99th percentile winter peak forecasts, respectively, which are documented in the 2022 Gold Book. The baseline and percentile winter peak forecasts utilize the historical distribution of winter peak day temperature. In general, a cold snap (1in-10-year or 90/10) reflects a statewide daily average temperature of 6 degrees Fahrenheit. An extreme cold snap (1-in-100-year or 99/1) reflects a statewide daily average temperature of 0 degrees Fahrenheit.

Figure 29 shows the statewide system margin in a 1-in-10-year cold snap ("cold snap") utilizing emergency transfer criteria.²⁸ Under this condition the margin is sufficient for all study years (line-item J) and ranges from 9,154 MW in winter 2023-24 to 3,165 MW in winter 2032-33. Additionally, Figure 29 shows the statewide system margin with full operating reserve, which is also sufficient for all study years.

Figure 30 shows the statewide system margin in a 1-in-100-year extreme cold snap ("extreme cold snap") utilizing emergency transfer criteria.²⁹ Under this condition the margin is sufficient for all study years (line-item J) and ranges from 7,838 MW in winter 2023-24 to 1,541 MW in winter 2032-33. Additionally, **Figure 30** shows the statewide system margin with full operating reserve which is also sufficient for all study years (line-item L).

Figure 31 provides a summary of the summer peak statewide system margins under expected weather, heatwave, and extreme heatwave conditions. Figure 32 provides a summary of the winter peak statewide system margins under expected weather, cold snap, and extreme cold snap conditions.

²⁸ The load forecast utilized for the cold snap condition is the winter 90th percentile (or 90/10) expected load forecast.

²⁹ The load forecast utilized for the extreme cold snap condition is the winter 99th percentile (or 99/1) expected load forecast.

Figure 19: Statewide System Margin (Summer Peak - Baseline Expected Weather, Normal Transfer Criteria)

			Summe	r Peak - Bas	eline Expec	ted Summe	r Weather,	Normal Trar	sfer Criteria	a (MW)	
Line	Item	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
Α	NYCA Generation (1)	38,258	38,942	38,433	38,433	38,433	38,433	38,433	38,433	38,433	38,433
В	NYCA Generation Derates (2)	(5,822)	(6,438)	(6,463)	(6,476)	(6,490)	(6,503)	(6,516)	(6,530)	(6,543)	(6,557)
С	Temperature Based Generation Derates		0	0	0	0	0	0	0	0	0
D	External Area Interchanges (3)		1,844	1,844	3,094	3,094	3,094	3,094	3,094	3,094	3,094
Е	E Total Resources (A+B+C+D)		34,348	33,814	35,051	35,038	35,024	35,011	34,997	34,984	34,970
F	Load Forecast	(32,018)	(31,778)	(31,505)	(31,339)	(31,292)	(31,317)	(31,468)	(31,684)	(31,946)	(32,214)
G	Largest Loss-of-Source Contingency	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)
Н	Total Capability Requirement (F+G)	(33,328)	(33,088)	(32,815)	(32,649)	(32,602)	(32,627)	(32,778)	(32,994)	(33,256)	(33,524)
- 1	Statewide System Margin (E+H)	952	1,260	999	2,402	2,436	2,397	2,233	2,003	1,728	1,446
J	Operating Reserve		(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)
K	Statewide System Margin with Full Operating Reserve (I+J) (4)	(358)	(50)	(311)	1,092	1,126	1,087	923	693	418	136

Notes:

- 1. Reflects the 2022 Gold Book existing summer capacity plus projected additions and deactivations.
- 2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 10% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2022 Gold Book Table I-9a) and solar PV peak reductions (2022 Gold Book Table I-9c). Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).
- 3. Interchanges are based on ERAG MMWG values.
- 4. For informational purposes.

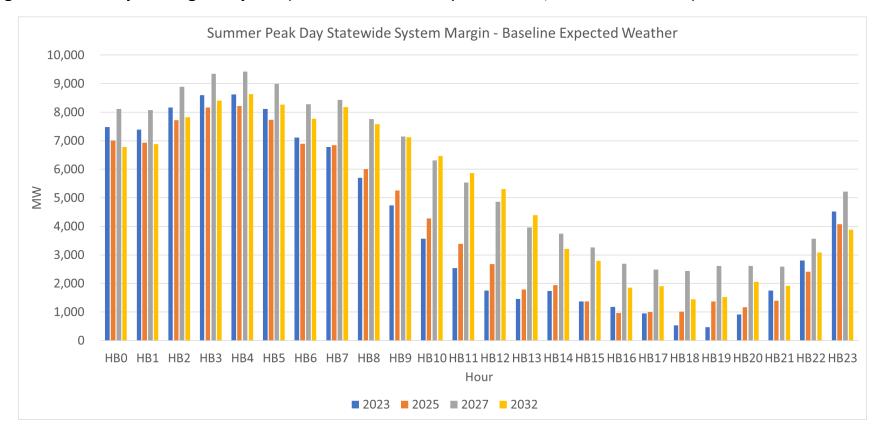


Figure 20: Statewide System Margin (Hourly) (Summer Peak - Baseline Expected Weather, Normal Transfer Criteria)

Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW)											
Statewide System Margin											
Hour	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	
HB0	7,474	7,518	7,005	8,210	8,117	7,984	7,765	7,470	7,127	6,784	
HB1	7,384	7,437	6,935	8,153	8,077	7,963	7,767	7,504	7,195	6,887	
HB2	8,162	8,219	7,722	8,949	8,885	8,785	8,610	8,372	8,095	7,819	
HB3	8,594	8,655	8,165	9,402	9,349	9,264	9,106	8,894	8,646	8,399	
HB4	8,625	8,693	8,213	9,462	9,425	9,360	9,225	9,046	8,837	8,629	
HB5	8,110	8,198	7,735	9,004	8,985	8,937	8,819	8,657	8,463	8,266	
HB6	7,107	7,281	6,894	8,235	8,280	8,293	8,227	8,105	7,943	7,765	
HB7	6,784	7,104	6,841	8,289	8,435	8,536	8,543	8,472	8,339	8,181	
HB8	5,704	6,164	6,007	7,540	7,760	7,923	7,971	7,914	7,767	7,585	
HB9	4,729	5,315	5,251	6,859	7,148	7,371	7,467	7,438	7,304	7,124	
HB10	3,562	4,260	4,282	5,960	6,315	6,595	6,739	6,742	6,626	6,457	
HB11	2,534	3,309	3,392	5,123	5,529	5,859	6,046	6,089	6,006	5,865	
HB12	1,743	2,558	2,679	4,433	4,861	5,211	5,414	5,479	5,417	5,299	
HB13	1,461	1,679	1,793	3,536	3,953	4,296	4,489	4,554	4,502	4,397	
HB14	1,742	1,884	1,936	3,384	3,742	4,031	3,372	3,398	3,322	3,203	
HB15	1,363	1,398	1,369	2,974	3,256	3,475	3,073	3,046	2,933	2,787	
HB16	1,182	1,672	967	2,492	2,693	2,837	2,255	2,173	2,021	1,845	
HB17	952	1,260	999	2,402	2,485	2,516	2,414	2,347	2,130	1,899	
HB18	535	1,342	1,008	2,347	2,436	2,397	2,233	2,003	1,728	1,446	
HB19	464	1,772	1,364	2,646	2,616	2,543	2,355	2,106	1,815	1,522	
HB20	910	1,013	1,160	2,657	2,610	2,523	2,912	2,655	2,354	2,054	
HB21	1,747	1,842	1,390	2,645	2,594	2,502	2,784	2,524	2,220	1,913	
HB22	2,807	2,882	2,405	3,639	3,567	3,453	4,044	3,759	3,423	3,086	
HB23	4,513	4,575	4,075	5,293	5,211	5,087	4,873	4,578	4,233	3,886	

Figure 21: Statewide System Margin Hourly Curve (Summer Peak - Baseline Expected Weather, Normal Transfer Criteria)



Figure 22: Statewide System Margin (1-in-10-Year Heatwave, Emergency Transfer Criteria)

		Summer Peak - 1-in-10-Year Heatwave, Emergency Transfer Criteria (MW)									
Line	ltem	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
Α	NYCA Generation (1)		38,942	38,433	38,433	38,433	38,433	38,433	38,433	38,433	38,433
В	NYCA Generation Derates (2)	(5,822)	(6,438)	(6,463)	(6,476)	(6,490)	(6,503)	(6,516)	(6,530)	(6,543)	(6,557)
С	Temperature Based Generation Derates		(193)	(184)	(184)	(184)	(184)	(184)	(184)	(184)	(184)
D	External Area Interchanges (3)		1,844	1,844	3,094	3,094	3,094	3,094	3,094	3,094	3,094
Е	SCRs (4), (5)		860	860	860	860	860	860	860	860	860
F	Total Resources (A+B+C+D+E)		35,016	34,491	35,728	35,714	35,701	35,687	35,674	35,660	35,647
G	Load Forecast	(34,016)	(33,758)	(33,467)	(33,288)	(33,238)	(33,263)	(33,422)	(33,649)	(33,926)	(34,209)
Н	Largest Loss-of-Source Contingency	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)
- 1	Total Capability Requirement (G+H)	(35,326)	(35,068)	(34,777)	(34,598)	(34,548)	(34,573)	(34,732)	(34,959)	(35,236)	(35,519)
J	Statewide System Margin (F+I)	(379)	(52)	(286)	1,130	1,166	1,128	955	715	424	128
K	Operating Reserve	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)
L	Statewide System Margin with Full Operating Reserve (J+K)		(1,362)	(1,596)	(180)	(144)	(182)	(355)	(595)	(886)	(1,182)

Notes:

- 1. Reflects the 2022 Gold Book existing summer capacity plus projected additions and deactivations.
- 2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 10% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2022 Gold Book Table I-9a) and solar PV peak reductions (2022 Gold Book Table I-9c). Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).
- 3. Interchanges are based on ERAG MMWG values.
- 4. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.
- 5. Includes a derate of 364 MW for SCRs.

Figure 23: Statewide System Margin (Hourly) (1-in-10-Year Heatwave, Emergency Transfer Criteria)

Summer Peak - Heatwave, Emergency Transfer Criteria (MW)											
Statewide System Margin											
Hour	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	
HB0	5,254	5,306	4,808	6,017	5,899	5,729	5,473	5,157	4,804	4,452	
HB1	5,287	5,347	4,859	6,081	5,980	5,828	5,595	5,309	4,991	4,674	
HB2	6,108	6,176	5,698	6,932	6,846	6,713	6,503	6,247	5,965	5,683	
HB3	6,588	6,661	6,190	7,435	7,360	7,242	7,050	6,821	6,568	6,316	
HB4	6,655	6,736	6,273	7,530	7,470	7,371	7,202	7,005	6,791	6,577	
HB5	6,105	6,211	5,772	7,055	7,019	6,944	6,797	6,623	6,431	6,234	
HB6	5,007	5,197	4,834	6,189	6,218	6,203	6,107	5,974	5,811	5,634	
HB7	4,671	4,988	4,729	6,171	6,279	6,333	6,290	6,188	6,035	5,856	
HB8	3,697	4,150	3,994	5,516	5,696	5,806	5,802	5,709	5,539	5,333	
HB9	2,821	3,399	3,335	4,931	5,179	5,349	5,392	5,326	5,167	4,963	
HB10	1,829	2,513	2,532	4,194	4,504	4,728	4,814	4,777	4,632	4,435	
HB11	1,198	1,956	2,030	3,739	4,094	4,361	4,486	4,482	4,365	4,190	
HB12	648	1,444	1,552	3,283	3,652	3,930	4,059	4,068	3,967	3,810	
HB13	567	767	873	2,595	2,950	3,214	3,328	3,335	3,244	3,101	
HB14	714	846	898	2,333	2,629	2,839	2,099	2,070	1,958	1,804	
HB15	139	174	153	1,754	1,978	2,118	1,636	1,560	1,418	1,244	
HB16	(58)	436	(257)	1,266	1,406	1,466	797	662	481	277	
HB17	(379)	(52)	(286)	1,130	1,166	1,128	955	850	619	375	
HB18	(576)	248	(61)	1,289	1,330	1,221	984	715	424	128	
HB19	(416)	905	521	1,813	1,740	1,602	1,349	1,063	757	450	
HB20	158	275	441	1,946	1,860	1,714	2,045	1,754	1,441	1,126	
HB21	1,138	1,231	783	2,029	1,929	1,771	1,987	1,683	1,353	1,020	
HB22	2,389	2,456	1,975	3,194	3,073	2,895	3,421	3,091	2,726	2,359	
HB23	4,281	4,327	3,819	5,018	4,887	4,702	4,427	4,088	3,710	3,331	

Figure 24: Statewide System Margin Hourly Curve (1-in-10-Year Heatwave, Emergency Transfer Criteria)

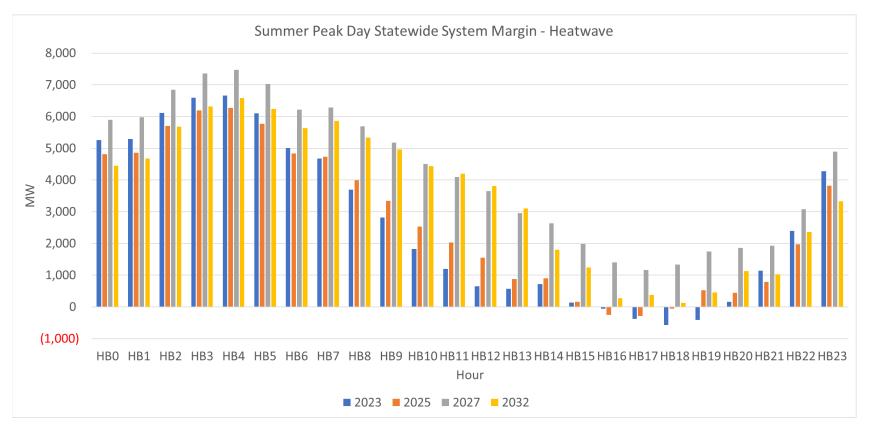


Figure 25: Statewide System Margin (1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria)

			Summe	r Peak - 1-ir	-100-Year E	xtreme Hea	twave, Eme	rgency Tran	sfer Criteria	a (MW)	
Line	Item	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
Α	NYCA Generation (1)	38,258	38,942	38,433	38,433	38,433	38,433	38,433	38,433	38,433	38,433
В	NYCA Generation Derates (2)	(5,822)	(6,438)	(6,463)	(6,476)	(6,490)	(6,503)	(6,516)	(6,530)	(6,543)	(6,557)
С	Temperature Based Generation Derates	(405)	(405)	(386)	(386)	(386)	(386)	(386)	(386)	(386)	(386)
D	External Area Interchanges (3)	1,844	1,844	1,844	3,094	3,094	3,094	3,094	3,094	3,094	3,094
Е	SCRs (4), (5)	860	860	860	860	860	860	860	860	860	860
F	Total Resources (A+B+C+D+E)	34,735	34,804	34,289	35,526	35,512	35,499	35,485	35,472	35,458	35,445
G	Load Forecast	(35,713)	(35,443)	(35,138)	(34,951)	(34,897)	(34,921)	(35,088)	(35,326)	(35,617)	(35,910)
Н	Largest Loss-of-Source Contingency	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)
1	Total Capability Requirement (G+H)	(37,023)	(36,753)	(36,448)	(36,261)	(36,207)	(36,231)	(36,398)	(36,636)	(36,927)	(37,220)
J	Statewide System Margin (F+I)	(2,288)	(1,949)	(2,159)	(735)	(695)	(732)	(913)	(1,164)	(1,469)	(1,775)
K	Operating Reserve	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)
L	Statewide System Margin with Full Operating Reserve (J+K)	(3,598)	(3,259)	(3,469)	(2,045)	(2,005)	(2,042)	(2,223)	(2,474)	(2,779)	(3,085)

- 1. Reflects the 2022 Gold Book existing summer capacity plus projected additions and deactivations.
- 2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 10% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2022 Gold Book Table I-9a) and solar PV peak reductions (2022 Gold Book Table I-9c). Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).
- 3. Interchanges are based on ERAG MMWG values.
- 4. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.
- 5. Includes a derate of 364 MW for SCRs.

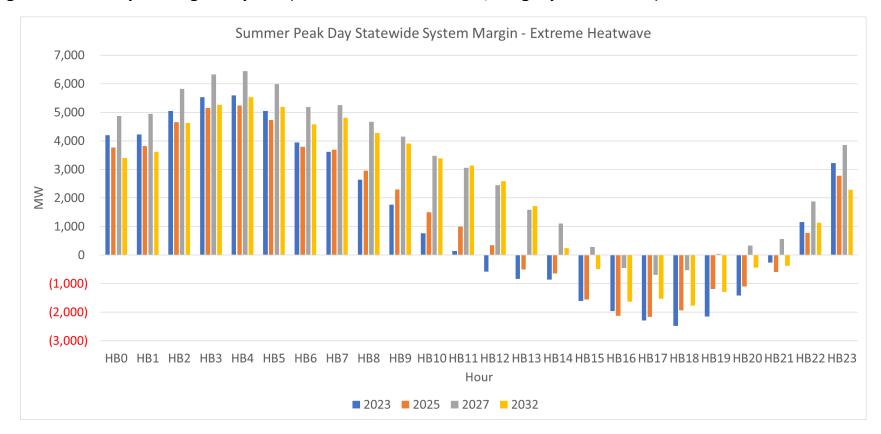


Figure 26: Statewide System Margin (Hourly) (1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria)

	Summ	er Peak - 1	-in-100-Ye	ar Extreme	Heatwave	, Emergend	y Transfer	Criteria (M	IW)	
				Statewic	le System I	Margin				
Hour	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
HB0	4,193	4,251	3,770	4,983	4,868	4,698	4,438	4,117	3,756	3,399
HB1	4,226	4,292	3,821	5,047	4,949	4,797	4,560	4,269	3,943	3,621
HB2	5,047	5,121	4,660	5,898	5,815	5,682	5,468	5,207	4,917	4,630
HB3	5,527	5,606	5,152	6,401	6,329	6,211	6,015	5,781	5,520	5,263
HB4	5,594	5,681	5,235	6,496	6,439	6,340	6,167	5,965	5,743	5,524
HB5	5,044	5,156	4,734	6,021	5,988	5,913	5,762	5,583	5,383	5,181
HB6	3,946	4,142	3,796	5,155	5,187	5,172	5,072	4,934	4,763	4,581
HB7	3,610	3,933	3,691	5,137	5,248	5,302	5,255	5,148	4,987	4,803
HB8	2,636	3,095	2,956	4,482	4,665	4,775	4,767	4,669	4,491	4,280
HB9	1,760	2,344	2,297	3,897	4,148	4,318	4,357	4,286	4,119	3,910
HB10	768	1,458	1,494	3,160	3,473	3,697	3,779	3,737	3,584	3,382
HB11	137	901	992	2,705	3,063	3,330	3,451	3,442	3,317	3,137
HB12	(582)	221	347	2,083	2,455	2,733	2,858	2,860	2,750	2,587
HB13	(833)	(625)	(499)	1,229	1,587	1,851	1,960	1,959	1,858	1,708
HB14	(855)	(714)	(640)	800	1,100	1,310	564	527	404	242
HB15	(1,600)	(1,555)	(1,553)	56	283	424	(65)	(152)	(306)	(489)
HB16	(1,967)	(1,461)	(2,130)	(599)	(455)	(394)	(1,071)	(1,217)	(1,412)	(1,626)
HB17	(2,288)	(1,949)	(2,159)	(735)	(695)	(732)	(913)	(1,029)	(1,274)	(1,528)
HB18	(2,485)	(1,649)	(1,934)	(576)	(531)	(639)	(884)	(1,164)	(1,469)	(1,775)
HB19	(2,155)	(824)	(1,185)	115	45	(92)	(352)	(649)	(967)	(1,283)
HB20	(1,411)	(1,285)	(1,097)	413	331	185	510	211	(113)	(436)
HB21	(262)	(161)	(589)	663	566	408	619	307	(33)	(373)
HB22	1,159	1,233	770	1,994	1,876	1,698	2,220	1,883	1,509	1,136
HB23	3,220	3,272	2,781	3,984	3,856	3,671	3,392	3,048	2,662	2,278

Figure 27: Statewide System Margin Hourly Curve (1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria)



Figure 28: Statewide System Margin (Winter Peak - Baseline Expected Weather, Normal Transfer Criteria)

			W	inter Peak - B	Baseline Expe	cted Winter V	Weather, Nor	mal Transfer	Criteria (MW)	
Line	ltem	2023-24	2024-25	2025-26	2026-27	2027-28	2028-29	2029-30	2030-31	2031-32	2032-33
Α	NYCA Generation (1)	41,224	41,314	41,280	41,280	41,280	41,280	41,280	41,280	41,280	41,280
В	NYCA Generation Derates (2)	(6,978)	(7,069)	(7,065)	(7,065)	(7,065)	(7,065)	(7,065)	(7,065)	(7,065)	(7,065)
С	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0	0
D	External Area Interchanges (3)	1,268	1,268	1,268	1,268	1,268	1,268	1,268	1,268	1,268	1,268
Ε	Total Resources (A+B+C+D)	35,513	35,513	35,483	35,483	35,483	35,483	35,483	35,483	35,483	35,483
F	Load Forecast	(24,287)	(24,481)	(24,735)	(25,098)	(25,575)	(26,171)	(26,884)	(27,719)	(28,756)	(29,954)
G	Largest Loss-of-Source Contingency	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)
Н	Total Capability Requirement (F+G)	(25,597)	(25,791)	(26,045)	(26,408)	(26,885)	(27,481)	(28,194)	(29,029)	(30,066)	(31,264)
1	Statewide System Margin (E+H)	9,916	9,722	9,438	9,075	8,598	8,002	7,289	6,454	5,417	4,219
J	Operating Reserve	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)
K	Statewide System Margin with Full Operating Reserve (I+J) (4)	8,606	8,412	8,128	7,765	7,288	6,692	5,979	5,144	4,107	2,909

^{1.} Reflects the 2022 Gold Book existing winter capacity plus projected additions and deactivations.

^{2.} Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2022 Gold Book Table I-9a) and solar PV peak reductions (2022 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

^{3.} Interchanges are based on ERAG MMWG values.

^{4.} For informational purposes.

Figure 29: Statewide System Margin (1-in-10-Year Cold Snap, Emergency Transfer Criteria)

				Winter Pea	ak - 1-in-10-Y	ear Cold Snap	, Emergency	Transfer Crite	ria (MW)		
Line	Item	2023-24	2024-25	2025-26	2026-27	2027-28	2028-29	2029-30	2030-31	2031-32	2032-33
Α	NYCA Generation (1)	41,224	41,314	41,280	41,280	41,280	41,280	41,280	41,280	41,280	41,280
В	NYCA Generation Derates (2)	(6,978)	(7,069)	(7,065)	(7,065)	(7,065)	(7,065)	(7,065)	(7,065)	(7,065)	(7,065)
С	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0	0
D	External Area Interchanges (3)	1,268	1,268	1,268	1,268	1,268	1,268	1,268	1,268	1,268	1,268
Е	SCRs (4), (5)	486	486	486	486	486	486	486	486	486	486
F	Total Resources (A+B+C+D+E)	35,999	35,999	35,969	35,969	35,969	35,969	35,969	35,969	35,969	35,969
G	Load Forecast	(25,535)	(25,739)	(26,007)	(26,388)	(26,891)	(27,518)	(28,266)	(29,144)	(30,237)	(31,494)
Н	Largest Loss-of-Source Contingency	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)
	Total Capability Requirement (G+H)	(26,845)	(27,049)	(27,317)	(27,698)	(28,201)	(28,828)	(29,576)	(30,454)	(31,547)	(32,804)
J	Statewide System Margin (F+I)	9,154	8,950	8,652	8,271	7,768	7,141	6,393	5,515	4,422	3,165
K	Operating Reserve	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)
L	Statewide System Margin with Full Operating Reserve (J+K)	7,844	7,640	7,342	6,961	6,458	5,831	5,083	4,205	3,112	1,855

- 1. Reflects the 2022 Gold Book existing winter capacity plus projected additions and deactivations.
- 2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2022 Gold Book Table I-9a) and solar PV peak reductions (2022 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).
- 3. Interchanges are based on ERAG MMWG values.
- 4. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.
- 5. Includes a derate of 211 MW for SCRs.

Figure 30: Statewide System Margin (1-in-100-Year Extreme Cold Snap, Emergency Transfer Criteria)

			W	inter Peak - 1	-in-100-Year I	xtreme Cold	Snap, Emerge	ency Transfer	Criteria (MW	/)	
Line	ltem	2023-24	2024-25	2025-26	2026-27	2027-28	2028-29	2029-30	2030-31	2031-32	2032-33
Α	NYCA Generation (1)	41,224	41,314	41,280	41,280	41,280	41,280	41,280	41,280	41,280	41,280
В	NYCA Generation Derates (2)	(6,978)	(7,069)	(7,065)	(7,065)	(7,065)	(7,065)	(7,065)	(7,065)	(7,065)	(7,065)
С	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0	0
D	External Area Interchanges (3)	1,268	1,268	1,268	1,268	1,268	1,268	1,268	1,268	1,268	1,268
E	SCRs (4), (5)	486	486	486	486	486	486	486	486	486	486
F	Total Resources (A+B+C+D+E)	35,999	35,999	35,969	35,969	35,969	35,969	35,969	35,969	35,969	35,969
G	Load Forecast	(26,851)	(27,069)	(27,351)	(27,750)	(28,276)	(28,936)	(29,723)	(30,647)	(31,794)	(33,118)
Н	Largest Loss-of-Source Contingency	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)
	Total Capability Requirement (G+H)	(28,161)	(28,379)	(28,661)	(29,060)	(29,586)	(30,246)	(31,033)	(31,957)	(33,104)	(34,428)
J	Statewide System Margin (F+I)	7,838	7,620	7,308	6,909	6,383	5,723	4,936	4,012	2,865	1,541
K	Operating Reserve	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)
L	Statewide System Margin with Full Operating Reserve (J+K)	6,528	6,310	5,998	5,599	5,073	4,413	3,626	2,702	1,555	231

- 1. Reflects the 2022 Gold Book existing winter capacity plus projected additions and deactivations.
- 2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2022 Gold Book Table I-9a) and solar PV peak reductions (2022 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).
- 3. Interchanges are based on ERAG MMWG values.
- 4. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.
- 5. Includes a derate of 211 MW for SCRs.

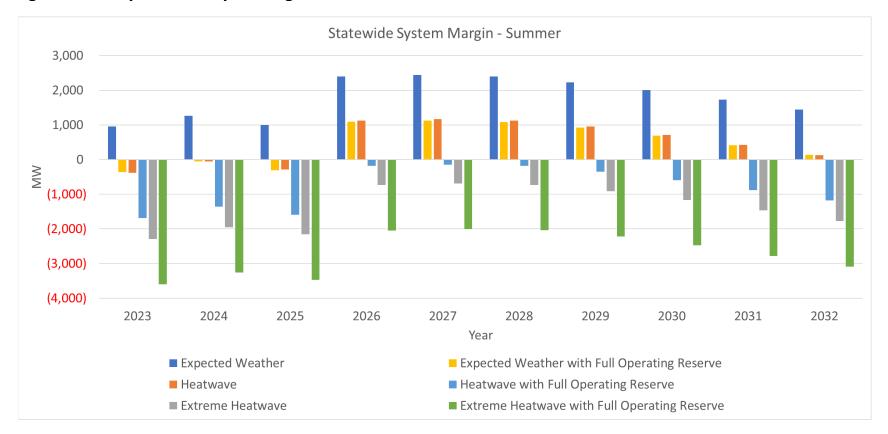



Figure 31: Summary of Statewide System Margin - Summer

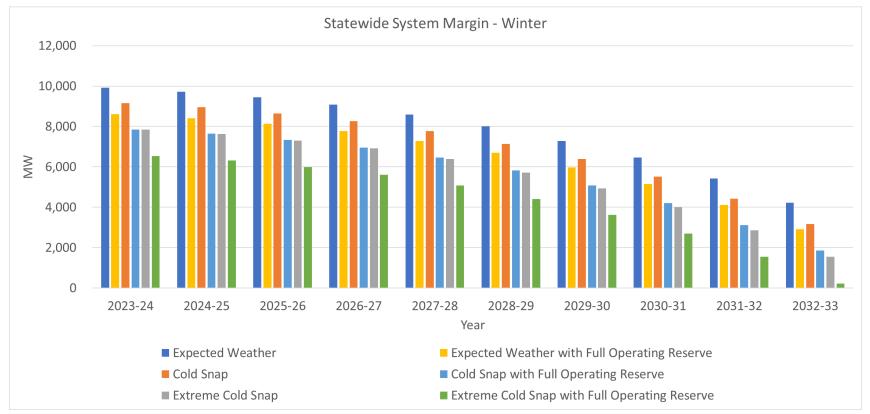



Figure 32: Summary of Statewide System Margin - Winter

Lower Hudson Valley (Zones G-J) Transmission Security Margins

The Lower Hudson Valley, or southeastern New York (SENY) region, is comprised of Zones G-J and includes the electrical connections to the RECO load in PJM. To determine the transmission security margin for this area, the most limiting combination of two non-simultaneous contingency events (N-1-1) to the transmission security margin was determined. Design criteria N-1-1 combinations include various combinations of losses of generation and transmission. As the system changes the limiting contingency combination may also change. Figure 33 shows how the summer transmission security margin changes through time in consideration of the planned transmission system changes which impact the most limiting contingency combination for the year being evaluated. In summer 2023 (prior to the completion of the Segment B public policy project) the most limiting contingency combination to the transmission security margin under peak load conditions is the loss of Leeds-Pleasant Valley (92) 345 kV followed by the loss of Dolson – Rock Tayern (DART44) 345 kV and Coopers Corners – Rock Tayern (CCRT34). In summer 2024 and 2025, the contingency combination changes to the loss of Ravenswood 3 followed by the loss of Pleasant Valley-Wood St. 345 kV (F30/F31). Starting in summer 2026 (following the inclusion of the CHPE project in winter 2025), the limiting contingency combination changes again to the loss of Knickerbocker – Pleasant Valley 345 kV followed by the loss of Athens-Van Wagner 345 kV and one of the Athens gas/steam combinations. The limiting contingency combination for winter also changes through time in consideration of the planned transmission system changes. In winter 2023-24, the limiting contingency combination is the loss of Pleasant Valley-Millwood (F31/W81) 345 kV followed by the loss of E. Fishkill-Wood St. (F38/F39) 345 kV. Starting in winter 2024-25 and for the remainder of the 10-year study horizon, the limiting contingency combination is the loss of Rayenswood 3 followed by the loss of Pleasant Valley-Wood St. 345 kV (F30/F31).

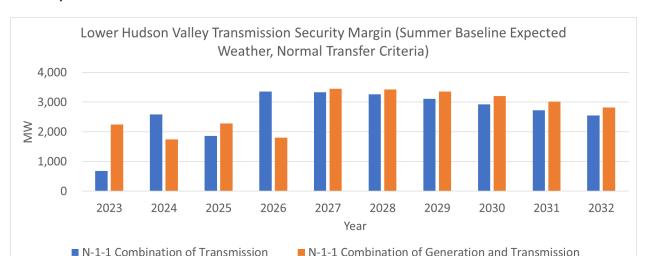


Figure 33: Lower Hudson Valley Transmission Security Margin (Summer Baseline Peak Forecast - Expected Weather)

As transmission security analysis represents discrete snapshots in time of various credible combinations of system conditions, when reliability needs are identified only the magnitude of the need can be identified under those system conditions. Additional details are required to fully describe the nature of the need such as evaluating the hourly load shape and its impact on the need. To describe the nature of the Lower Hudson Valley transmission security margin, load shapes are developed the Zone G, H, I, and I components of the statewide load shape. Details of the load shapes are provided later in this appendix. For this assessment load shapes were not developed past 2032 and limited to the summer conditions.

Figure 34 shows the calculation of the Lower Hudson Valley transmission security margin for baseline expected weather, expected load conditions for summer for the statewide coincident peak hour with normal transfer criteria. The Lower Hudson Valley transmission security margin is sufficient for the 10year horizon (line-item 0). The transmission security margin coincident with the statewide system peak ranges from 676 MW in summer 2023 to 2,546 MW in summer 2032. Considering the summer baseline peak load transmission security margin, the lower Hudson Valley would require several additional outages beyond design criteria to have a deficient transmission security margin.

The load shapes for the Lower Hudson Valley show the contributions of Zones G, H, I, (Figure 83) and J (Figure 84) towards the statewide curve (which represents the statewide coincident peak) for each hour of the day. Utilizing the load shapes for the baseline expected weather summer peak day, the Lower Hudson Valley transmission security margin for each hour utilizing normal transfer criteria is shown in Figure 35. The Lower Hudson Valley transmission security margin for each hour is created by using the

load forecast for each hour in the margin calculation (i.e., Figure 34 line-item A) with additional adjustments to account for the appropriate derate for solar generation and energy limited resources in each hour (i.e., Figure 34 line-item K). All other values in the margin calculations are held constant. A graphical representation of the hourly margin for the Lower Hudson Valley for the peak day in years 2023, 2025, 2027, and 2032 is provided in **Figure 36**. For all years in the 10-year study horizon, there are no observed deficiencies considering the load shapes under baseline expected load, normal transfer criteria for the Lower Hudson Valley.

It is possible for other combinations of events, such as a 1-in-10-year heatwave or 1-in-100-year extreme heatwave to result in a deficient transmission security margin. Figure 37 shows that the Lower Hudson Valley transmission security margin for the statewide coincident peak hour under the 1-in-10-year heatwave condition with the assumption that the system is using emergency transfer criteria. The transmission security margin under 1-in-10-year heatwave condition is sufficient for all years. The margin ranges from 864 MW in summer 2023 to 2,611 MW in summer 2032. The load shapes for the Lower Hudson Valley under heatwave conditions are shown in Figure 88 (Zones G, H, and I) and Figure 89 (Zone J). Utilizing the Lower Hudson Valley load-duration heatwave curves, the transmission security margin for each hour utilizing emergency transfer criteria is shown in **Figure 38**. For all years in the 10-year horizon, there are no observed transmission security margin deficiencies in consideration the heatwave load duration curves for the Lower Hudson Valley with emergency transfer criteria. A graphical representation of the hourly margin for the Lower Hudson Valley for the peak day in years 2023, 2025, 2027, and 2032 heatwave, emergency transfer criteria conditions is provided in **Figure 39**.

Under a 1-in-100-year extreme heatwave, which also assumes the use of emergency transfer criteria, the margin is sufficient at the statewide coincident peak hour. **Figure 40** shows that the margin is sufficient and ranges from 23 MW in summer 2023 to 1,750 MW in summer 2032. The load shapes for the Lower Hudson Valley under extreme heatwave conditions are shown in Figure 93 (Zones G, H, I, and I) and Figure 94 (Zone J). Utilizing the Lower Hudson Valley load-duration extreme heatwave curves, the transmission security margin for each hour utilizing emergency transfer criteria is shown in **Figure 41**. In summer 2023, the hourly load of the Lower Hudson Valley does not peak coincident with the statewide coincident peak. The contributions of Zones G-J towards the statewide coincident peak are the largest in hour beginning 16, while the statewide coincident peak occurs in hour beginning 17. As such, under extreme heatwave conditions, Figure 41 shows that the system would be deficient in summer 2023 by 18 MW for 1 hour during the extreme heatwave day. All other hours of the 10-year horizon for the peak day are shown to be sufficient. **Figure 42** provides a graphical representation of the hourly transmission security margin for the peak day in years 2023, 2025, 2027, and 2032.

Figure 43 shows the Lower Hudson Valley transmission security margin under winter peak baseline expected weather load conditions. For winter peak, the margin is sufficient for all years and ranges from 8,307 MW in winter 2023-24 to 4,847 MW in winter 2032-33 (line-item 0). Considering the winter baseline peak load transmission security margin, multiple outages in the lower Hudson Valley would be required to show a deficient transmission security margin.

Figure 44 shows the Lower Hudson Valley transmission security margin in a 1-in-10-year cold snap with emergency transfer criteria. Under this condition the margin is sufficient for all study years and ranges from 8,385 MW in winter 2023-24 to 5,079 MW in winter 2032-33 (line-item P). The 1-in-100-year extreme cold snap shown in Figure 45 (also assuming emergency transfer criteria) shows sufficient margin for all study years ranging from 7,813 MW in winter 2023-24 to 4,338 in winter 2032-33 (line-item P).

Figure 46 provides are summary of the summer peak Lower Hudson Valley transmission security margins under expected summer weather, heatwave, and extreme heatwave conditions. Figure 47 provides a summary of the winter peak Lower Hudson Valley transmission security margins under expected winter weather, cold snap, and extreme cold snap conditions.

Figure 34: Lower Hudson Valley Transmission Security Margin (Summer Peak - Baseline Expected Weather, Normal Transfer Criteria)

	Summer Pe	ak - Baseline	Expected W	/eather, Nor	mal Transfe	r Criteria (M	W)				
Line	Item	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
Α	G-J Load Forecast	(15,061)	(15,026)	(14,957)	(14,936)	(14,959)	(15,027)	(15,173)	(15,360)	(15,560)	(15,735)
В	RECO Load	(394)	(394)	(394)	(394)	(394)	(394)	(394)	(394)	(397)	(397)
С	Total Load (A+B)	(15,455)	(15,420)	(15,351)	(15,330)	(15,353)	(15,421)	(15,567)	(15,754)	(15,957)	(16,132)
D	UPNY-SENY Limit (3)	3,200	5,725	5,725	5,025	5,025	5,025	5,025	5,025	5,025	5,025
E	ABC PARs to J	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)
F	K - SENY	95	95	95	95	95	95	95	95	95	95
G	Total SENY AC Import (D+E+F)	3,284	5,809	5,809	5,109	5,109	5,109	5,109	5,109	5,109	5,109
Н	Loss of Source Contingency	0	(980)	(980)	0	0	0	0	0	0	0
I	Resource Need (C+G+H)	(12,171)	(10,591)	(10,522)	(10,221)	(10,244)	(10,312)	(10,458)	(10,645)	(10,848)	(11,023)
J	G-J Generation (1)	13,584	13,684	13,084	13,084	13,084	13,084	13,084	13,084	13,084	13,084
K	G-J Generation Derates (2)	(1,051)	(1,131)	(1,071)	(1,072)	(1,074)	(1,076)	(1,077)	(1,079)	(1,080)	(1,080)
L	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0	0
М	Net ICAP External Imports	315	315	315	1,565	1,565	1,565	1,565	1,565	1,565	1,565
N	Total Resources Available (J+K+L+M)	12,847	12,868	12,328	13,577	13,575	13,573	13,571	13,570	13,569	13,569
0	Transmission Security Margin (I+N)	676	2,277	1,806	3,356	3,331	3,261	3,113	2,925	2,721	2,546

- 1. Reflects the 2022 Gold Book existing summer capacity plus projected additions and deactivations.
- 2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 10% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2022 Gold Book Table I-9a) and solar PV peak reductions (2022 Gold Book Table I-9c). Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).
- 3. Limits in 2022 and 2023 are based on limits from the summer peak 2023 representations evaluated in the post-2020 RNA updates. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2032 are based on the summer peak 2032 representations evaluated in the 2022 RNA.

Figure 35: Lower Hudson Valley Transmission Security Margin (Hourly) (Summer Peak - Baseline Expected Weather, Normal Transfer Criteria)

	Summe	r Peak - Ba	seline Exp	ected Sum	mer Weat	her, Norm	al Transfer	· Criteria (N	vw)	
			G	J Transmiss	ion Securi	ty Margin				
Hour	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
HB0	5,152	6,703	6,204	7,714	7,558	7,464	7,295	7,077	6,840	6,637
HB1	5,679	7,232	6,740	8,256	8,109	8,024	7,863	7,662	7,440	7,251
HB2	6,061	7,619	7,129	8,648	8,506	8,427	8,274	8,084	7,877	7,702
HB3	6,293	7,852	7,363	8,888	8,750	8,680	8,535	8,355	8,159	7,994
HB4	6,332	7,894	7,412	8,942	8,810	8,748	8,612	8,449	8,268	8,116
HB5	6,082	7,646	7,162	8,696	8,567	8,504	8,372	8,209	8,031	7,881
HB6	5,494	7,071	6,600	8,148	8,028	7,977	7,855	7,698	7,526	7,378
HB7	4,632	6,238	5,792	7,364	7,265	7,236	7,127	6,980	6,814	6,669
HB8	3,826	5,461	5,027	6,611	6,523	6,500	6,392	6,239	6,060	5,902
HB9	3,146	4,804	4,384	5,980	5,904	5,888	5,787	5,636	5,456	5,294
HB10	2,547	4,229	3,819	5,431	5,367	5,362	5,271	5,124	4,944	4,785
HB11	2,066	3,766	3,369	4,992	4,939	4,949	4,870	4,735	4,568	4,416
HB12	1,656	3,365	2,974	4,604	4,559	4,575	4,504	4,380	4,222	4,084
HB13	1,317	3,023	2,629	4,257	4,213	4,227	4,160	4,042	3,891	3,760
HB14	1,102	2,794	2,388	4,001	3,942	3,947	3,871	3,745	3,593	3,460
HB15	895	2,563	2,137	3,732	3,657	3,645	3,553	3,417	3,257	3,116
HB16	654	2,294	1,851	3,428	3,336	3,308	3,202	3,054	2,886	2,738
HB17	676	2,277	1,806	3,356	3,233	3,179	3,047	2,874	2,684	2,517
HB18	828	2,409	1,928	3,461	3,331	3,261	3,113	2,925	2,721	2,546
HB19	1,129	2,691	2,202	3,722	3,577	3,497	3,340	3,143	2,932	2,745
HB20	1,474	3,029	2,537	4,056	3,907	3,823	3,663	3,464	3,244	3,056
HB21	1,917	3,477	2,985	4,508	4,362	4,279	4,120	3,918	3,697	3,508
HB22	2,649	4,208	3,715	5,235	5,083	4,997	4,829	4,616	4,382	4,181
HB23	3,503	5,062	4,570	6,088	5,937	5,847	5,679	5,462	5,227	5,022

Figure 36: Lower Hudson Valley Transmission Security Margin Hourly Curve (Summer Peak - Baseline Expected Weather, Normal Transfer Criteria)

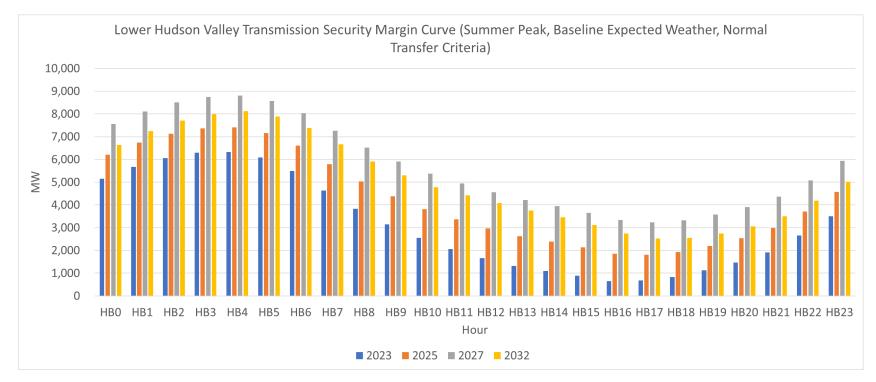


Figure 37: Lower Hudson Valley Transmission Security Margin (1-in-10-Year Heatwave, Emergency Transfer Criteria)

	Summer Pe	eak - 1-in-10-	Year Heatwa	ave, Emerge	ncy Transfer	Criteria (M\	N)				
Line	Item	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
Α	G-J Load Forecast	(15,813)	(15,776)	(15,703)	(15,681)	(15,705)	(15,776)	(15,929)	(16,125)	(16,335)	(16,518)
В	RECO Load	(424)	(424)	(424)	(424)	(424)	(424)	(424)	(424)	(427)	(427)
С	Total Load (A+B)	(16,237)	(16,200)	(16,127)	(16,105)	(16,129)	(16,200)	(16,353)	(16,549)	(16,762)	(16,945)
D	UPNY-SENY Limit (5)	3,925	5,450	5,450	5,650	5,650	5,650	5,650	5,650	5,650	5,650
Е	ABC PARs to J	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)
F	K - SENY	155	155	155	155	155	155	155	155	155	155
G	Total SENY AC Import (D+E+F)	4,069	5,594	5,594	5,794	5,794	5,794	5,794	5,794	5,794	5,794
Н	Loss of Source Contingency	0	0	0	0	0	0	0	0	0	0
1	Resource Need (C+G+H)	(12,168)	(10,606)	(10,533)	(10,311)	(10,335)	(10,406)	(10,559)	(10,755)	(10,968)	(11,151)
J	G-J Generation (1)	13,584	13,684	13,084	13,084	13,084	13,084	13,084	13,084	13,084	13,084
K	G-J Generation Derates (2)	(1,051)	(1,131)	(1,071)	(1,072)	(1,074)	(1,076)	(1,077)	(1,079)	(1,080)	(1,080)
L	Temperature Based Generation Derates	(87)	(87)	(78)	(78)	(78)	(78)	(78)	(78)	(78)	(78)
М	Net ICAP External Imports	315	315	315	1,565	1,565	1,565	1,565	1,565	1,565	1,565
N	SCRs (3), (4)	271	271	271	271	271	271	271	271	271	271
0	Total Resources Available (J+K+L+M+N)	13,031	13,052	12,521	13,769	13,768	13,766	13,764	13,763	13,762	13,762
Р	Transmission Security Margin (I+O)	864	2,446	1,988	3,459	3,434	3,360	3,206	3,008	2,794	2,611

- 1. Reflects the 2022 Gold Book existing summer capacity plus projected additions and deactivations.
- 2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 10% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2022 Gold Book Table I-9a) and solar PV peak reductions (2022 Gold Book Table I-9c). Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).
- 3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.
- 4. Includes a derate of 226 MW for SCRs.
- 5. Limits in 2022 and 2023 are based on limits from the summer peak 2023 representations evaluated in the post-2020 RNA updates. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2032 are based on the summer peak 2032 representations evaluated in the 2022 RNA.

Figure 38: Lower Hudson Valley Transmission Security Margin (Hourly) (1-in-10-Year Heatwave, Emergency Transfer Criteria)

		Summ	er Peak - H	leatwave,	Emergency	/ Transfer (Criteria (M	W)		
				Transmiss			·			
Hour	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
HB0	4,722	6,256	5,773	7,205	7,022	6,907	6,712	6,474	6,223	6,011
HB1	5,309	6,844	6,368	7,806	7,633	7,526	7,338	7,116	6,881	6,682
HB2	5,713	7,256	6,784	8,226	8,059	7,960	7,781	7,572	7,354	7,170
HB3	5,972	7,515	7,044	8,493	8,330	8,240	8,069	7,871	7,663	7,489
HB4	6,031	7,578	7,113	8,567	8,409	8,327	8,165	7,983	7,789	7,628
HB5	5,763	7,314	6,849	8,309	8,156	8,075	7,919	7,740	7,552	7,395
HB6	5,118	6,678	6,222	7,693	7,547	7,475	7,327	7,151	6,967	6,812
HB7	4,235	5,810	5,367	6,849	6,710	6,648	6,499	6,321	6,132	5,968
HB8	3,471	5,071	4,633	6,122	5,991	5,929	5,778	5,591	5,388	5,209
HB9	2,836	4,455	4,029	5,528	5,407	5,350	5,205	5,019	4,813	4,631
HB10	2,322	3,962	3,544	5,056	4,946	4,897	4,759	4,575	4,367	4,186
HB11	2,037	3,696	3,290	4,811	4,712	4,677	4,550	4,377	4,180	4,003
HB12	1,749	3,417	3,013	4,542	4,450	4,418	4,295	4,130	3,941	3,776
HB13	1,548	3,215	2,812	4,342	4,278	4,246	4,131	3,941	3,761	3,605
HB14	1,310	2,967	2,557	4,076	4,023	3,987	3,867	3,639	3,461	3,305
HB15	1,049	2,688	2,264	3,769	3,730	3,683	3,552	3,285	3,102	2,944
HB16	842	2,456	2,017	3,506	3,476	3,416	3,275	2,963	2,775	2,611
HB17	864	2,446	1,988	3,459	3,434	3,360	3,206	2,845	2,644	2,469
HB18	1,121	2,685	2,217	3,672	3,641	3,553	3,384	3,008	2,794	2,611
HB19	1,493	3,039	2,564	4,006	3,937	3,840	3,662	3,314	3,093	2,898
HB20	1,862	3,400	2,922	4,363	4,267	4,165	3,984	3,668	3,438	3,243
HB21	2,331	3,868	3,383	4,821	4,698	4,590	4,403	4,111	3,875	3,671
HB22	3,110	4,643	4,154	5,587	5,433	5,319	5,119	4,849	4,598	4,380
HB23	4,011	5,542	5,052	6,481	6,302	6,182	5,981	5,740	5,486	5,263

Figure 39: Lower Hudson Valley Transmission Security Margin Hourly Curve (1-in-10-Year Heatwave, Emergency Transfer Criteria)

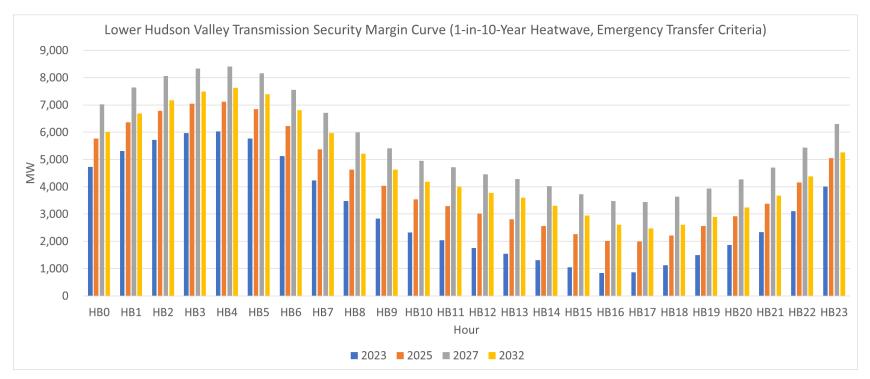


Figure 40: Lower Hudson Valley Transmission Security Margin (1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria)

A G-J Load Forecast (16,532) (16,493) (16,418) (16,395) (16,420) (16,493) (16,653) (16,857) (17,077) (17,265) (17,077) (17,265) (17,077) (17,265) (17,077) (17,265) (17,077) (17,265) (17,077) (17,265) (17,077) (17,265) (17,077) (17,265) (17,077) (17,265) (17,077) (17,265) (17,077) (17,265) (17,077) (17,265) (17,077) (17,075) (17,077) (17,265) (17,077) (17,075) (17,077) (17,075) (17,077) (17,075) (17,077) (17,075) (17,077) (17,075) (17,077) (17,075) (17,077) (17,075) (17,077) (17,075) (17,077) (17,075) (17,077) (17,075) (17,077) (17,075) (17,077) (
Line	Item	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
Α	G-J Load Forecast	(16,532)	(16,493)	(16,418)	(16,395)	(16,420)	(16,493)	(16,653)	(16,857)	(17,077)	(17,267)
В	RECO Load	(448)	(448)	(448)	(448)	(448)	(448)	(448)	(448)	(451)	(451)
С	Total Load (A+B)	(16,980)	(16,941)	(16,866)	(16,843)	(16,868)	(16,941)	(17,101)	(17,305)	(17,528)	(17,718)
D	UPNY-SENY Limit (5)	3,925	5,450	5,450	5,650	5,650	5,650	5,650	5,650	5,650	5,650
E	ABC PARs to J	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)
F	K - SENY	155	155	155	155	155	155	155	155	155	155
G	Total SENY AC Import (D+E+F)	4,069	5,594	5,594	5,794	5,794	5,794	5,794	5,794	5,794	5,794
Н	Loss of Source Contingency	0	0	0	0	0	0	0	0	0	0
I	Resource Need (C+G+H)	(12,911)	(11,347)	(11,272)	(11,049)	(11,074)	(11,147)	(11,307)	(11,511)	(11,734)	(11,924)
J	G-J Generation (1)	13,584	13,684	13,084	13,084	13,084	13,084	13,084	13,084	13,084	13,084
K	G-J Generation Derates (2)	(1,051)	(1,131)	(1,071)	(1,072)	(1,074)	(1,076)	(1,077)	(1,079)	(1,080)	(1,080)
L	Temperature Based Generation Derates	(184)	(184)	(165)	(165)	(165)	(165)	(165)	(165)	(165)	(165)
М	Net ICAP External Imports	315	315	315	1,565	1,565	1,565	1,565	1,565	1,565	1,565
N	SCRs (3), (4)	271	271	271	271	271	271	271	271	271	271
0	Total Resources Available (J+K+L+M+N)	12,934	12,955	12,434	13,682	13,681	13,679	13,677	13,676	13,675	13,675
Р	Transmission Security Margin (I+O)	23	1,608	1,162	2,634	2,607	2,532	2,370	2,165	1,940	1,750

- 1. Reflects the 2022 Gold Book existing summer capacity plus projected additions and deactivations.
- 2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 10% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2022 Gold Book Table I-9a) and solar PV peak reductions (2022 Gold Book Table I-9c). Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).
- 3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.
- 4. Includes a derate of 226 MW for SCRs.
- 5. Limits in 2022 and 2023 are based on limits from the summer peak 2023 representations evaluated in the post-2020 RNA updates. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2032 are based on the summer peak 2032 representations evaluated in the 2022 RNA.

Figure 41: Lower Hudson Valley Transmission Security Margin (Hourly) (1-in-100-Year Extreme Heatwave, **Emergency Transfer Criteria)**

	Summe	r Peak - 1-	in-100-Yea	r Extreme	Heatwave	, Emergen	y Transfer	Criteria (N	/IW)	
			G	J Transmiss	ion Securi	ty Margin				
Hour	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
HB0	4,198	5,735	5,266	6,700	6,515	6,398	6,199	5,956	5,699	5,483
HB1	4,786	6,324	5,862	7,302	7,126	7,017	6,825	6,598	6,356	6,154
HB2	5,191	6,736	6,279	7,723	7,552	7,452	7,268	7,054	6,829	6,642
HB3	5,450	6,997	6,540	7,991	7,824	7,733	7,558	7,354	7,139	6,961
HB4	5,511	7,060	6,610	8,066	7,905	7,821	7,654	7,467	7,266	7,100
HB5	5,243	6,796	6,345	7,807	7,650	7,568	7,407	7,221	7,027	6,865
HB6	4,592	6,154	5,712	7,184	7,034	6,960	6,806	6,624	6,432	6,272
HB7	3,706	5,282	4,850	6,333	6,188	6,123	5,968	5,784	5,586	5,417
HB8	2,938	4,537	4,111	5,599	5,462	5,396	5,239	5,045	4,833	4,650
HB9	2,302	3,919	3,505	5,001	4,875	4,813	4,660	4,467	4,253	4,065
HB10	1,789	3,427	3,018	4,528	4,411	4,358	4,212	4,021	3,805	3,619
HB11	1,506	3,162	2,764	4,283	4,177	4,137	4,003	3,822	3,618	3,435
HB12	1,137	2,802	2,408	3,934	3,834	3,796	3,665	3,489	3,291	3,120
HB13	873	2,537	2,145	3,670	3,600	3,561	3,437	3,235	3,043	2,881
HB14	573	2,227	1,828	3,343	3,284	3,243	3,114	2,872	2,682	2,519
HB15	250	1,888	1,473	2,977	2,932	2,880	2,740	2,457	2,266	2,099
HB16	(18)	1,597	1,168	2,657	2,624	2,560	2,410	2,082	1,883	1,709
HB17	23	1,608	1,162	2,634	2,607	2,532	2,370	1,993	1,781	1,598
HB18	281	1,849	1,396	2,851	2,821	2,732	2,556	2,165	1,940	1,750
HB19	720	2,269	1,809	3,254	3,185	3,087	2,904	2,541	2,312	2,110
HB20	1,152	2,695	2,231	3,673	3,578	3,475	3,288	2,961	2,725	2,523
HB21	1,683	3,223	2,753	4,193	4,069	3,960	3,768	3,468	3,223	3,015
HB22	2,520	4,057	3,583	5,017	4,862	4,746	4,543	4,265	4,007	3,786
HB23	3,483	5,016	4,541	5,972	5,791	5,670	5,465	5,219	4,959	4,733

Figure 42: Lower Hudson Valley Transmission Security Margin Hourly Curve (1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria)

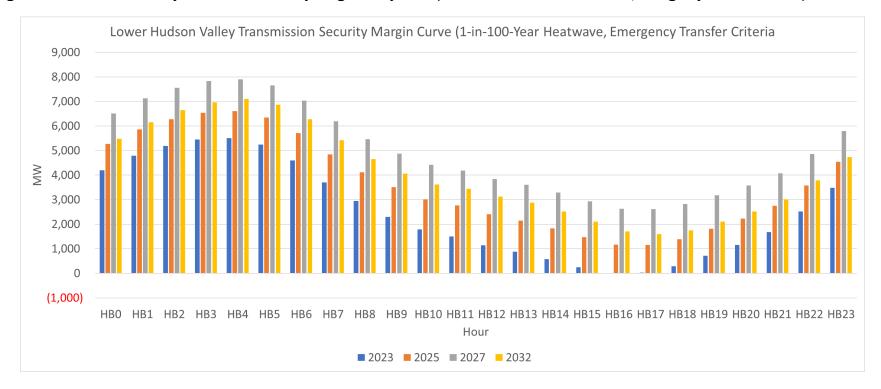


Figure 43: Lower Hudson Valley Transmission Security Margin (Winter Peak - Baseline Expected Weather, Normal Transfer Criteria)

	Winter	Peak - Baselii	ne Expected \	Weather, Nor	mal Transfer	Criteria (MW)					
Line	Item	2023-24	2024-25	2025-26	2026-27	2027-28	2028-29	2029-30	2030-31	2031-32	2032-33
Α	G-J Load Forecast	(10,333)	(10,412)	(10,527)	(10,716)	(10,979)	(11,320)	(11,726)	(12,186)	(12,764)	(13,450)
В	RECO Load	(219)	(219)	(219)	(219)	(219)	(219)	(219)	(219)	(216)	(216)
С	Total Load (A+B)	(10,552)	(10,631)	(10,746)	(10,935)	(11,198)	(11,539)	(11,945)	(12,405)	(12,980)	(13,666)
D	UPNY-SENY Limit (3), (4)	5,050	5,725	5,725	5,725	5,725	5,725	5,725	5,725	5,725	5,725
Е	ABC PARs to J	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)
F	K - SENY (4)	95	95	95	95	95	95	95	95	95	95
G	Total SENY AC Import (D+E+F)	5,134	5,809	5,809	5,809	5,809	5,809	5,809	5,809	5,809	5,809
Н	Loss of Source Contingency	0	(990)	(990)	(990)	(990)	(990)	(990)	(990)	(990)	(990)
1	Resource Need (C+G+H)	(5,418)	(5,812)	(5,927)	(6,116)	(6,379)	(6,720)	(7,126)	(7,586)	(8,161)	(8,847)
J	G-J Generation (1)	14,622	14,622	14,588	14,588	14,588	14,588	14,588	14,588	14,588	14,588
K	G-J Generation Derates (2)	(1,212)	(1,212)	(1,209)	(1,209)	(1,209)	(1,209)	(1,209)	(1,209)	(1,209)	(1,209)
L	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0	0
М	Net ICAP External Imports	315	315	315	315	315	315	315	315	315	315
N	Total Resources Available (J+K+L+M)	13,725	13,725	13,694	13,694	13,694	13,694	13,694	13,694	13,694	13,694
0	Transmission Security Margin (I+N)	8,307	7,913	7,767	7,578	7,315	6,974	6,568	6,108	5,533	4,847

- 1. Reflects the 2022 Gold Book existing winter capacity plus projected additions and deactivations.
- 2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2022 Gold Book Table I-9a) and solar PV peak reductions (2022 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).
- 3. Limits in 2022 and 2023 are based on limits from the summer peak 2023 representations evaluated in the post-2020 RNA updates. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2032 are based also based on the summer peak 2025 representations evaluated in the post-2020 RNA analysis which does not include the impact of CHPE.
- 4. As a conservative winter peak assumption these limits utilize the summer values.

Figure 44: Lower Hudson Valley Transmission Security Margin (1-in-10-Year Cold Snap, Emergency Transfer Criteria)

Winter Peak - 1-in-10-Year Cold Snap, Emergency Transfer Criteria (MW)												
Line	Item	2023-24	2024-25	2025-26	2026-27	2027-28	2028-29	2029-30	2030-31	2031-32	2032-33	
Α	G-J Load Forecast	(10,864)	(10,947)	(11,068)	(11,267)	(11,543)	(11,903)	(12,329)	(12,812)	(13,421)	(14,142)	
В	RECO Load	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(230)	(227)	(227)	
С	Total Load (A+B)	(11,094)	(11,177)	(11,298)	(11,497)	(11,773)	(12,133)	(12,559)	(13,042)	(13,648)	(14,369)	
D	UPNY-SENY Limit (5), (6)	5,450	5,450	5,450	5,450	5,450	5,450	5,450	5,450	5,450	5,450	
E	ABC PARs to J	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	
F	K - SENY (6)	155	155	155	155	155	155	155	155	155	155	
G	Total SENY AC Import (D+E+F)		5,594	5,594	5,594	5,594	5,594	5,594	5,594	5,594	5,594	
Н	Loss of Source Contingency	0	0	0	0	0	0	0	0	0	0	
1	Resource Need (C+G+H)	(5,500)	(5,583)	(5,704)	(5,903)	(6,179)	(6,539)	(6,965)	(7,448)	(8,054)	(8,775)	
J	G-J Generation (1)	14,622	14,622	14,588	14,588	14,588	14,588	14,588	14,588	14,588	14,588	
K	G-J Generation Derates (2)	(1,212)	(1,212)	(1,209)	(1,209)	(1,209)	(1,209)	(1,209)	(1,209)	(1,209)	(1,209)	
L	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0	0	
М	Net ICAP External Imports	315	315	315	315	315	315	315	315	315	315	
N	SCRs (3), (4)	160	160	160	160	160	160	160	160	160	160	
0	Total Resources Available (J+K+L+M+N)	13,885	13,885	13,854	13,854	13,854	13,854	13,854	13,854	13,854	13,854	
Р	Transmission Security Margin (I+O)	8,385	8,302	8,150	7,951	7,675	7,315	6,889	6,406	5,800	5,079	

- 1. Reflects the 2022 Gold Book existing winter capacity plus projected additions and deactivations.
- 2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2022 Gold Book Table I-9a) and solar PV peak reductions (2022 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).
- 3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.
- 4. Includes a derate of 133 MW for SCRs.
- 5. Limits in 2022 and 2023 are based on limits from the summer peak 2023 representations evaluated in the post-2020 RNA updates. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2032 are based also based on the summer peak 2025 representations evaluated in the post-2020 RNA analysis which does not include the impact of CHPE.
- 6. As a conservative winter peak assumption these limits utilize the summer values.

Figure 45: Lower Hudson Valley Transmission Security Margin (1-in-100-year Extreme Cold Snap, Emergency Transfer Criteria)

Winter Peak - 1-in-100-Year Extreme Cold Snap, Emergency Transfer Criteria (MW)													
Line	Item	2023-24	2024-25	2025-26	2026-27	2027-28	2028-29	2029-30	2030-31	2031-32	2032-33		
Α	G-J Load Forecast	(11,424)	(11,513)	(11,640)	(11,848)	(12,139)	(12,516)	(12,964)	(13,473)	(14,113)	(14,871)		
В	RECO Load	(242)	(242)	(242)	(242)	(242)	(242)	(242)	(242)	(239)	(239)		
С	Total Load (A+B)	(11,666)	(11,755)	(11,882)	(12,090)	(12,381)	(12,758)	(13,206)	(13,715)	(14,352)	(15,110)		
D	UPNY-SENY Limit (5), (6)	5,450	5,450	5,450	5,450	5,450	5,450	5,450	5,450	5,450	5,450		
E	ABC PARs to J	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)		
F	K - SENY (6)	155	155	155	155	155	155	155	155	155	155		
G	Total SENY AC Import (D+E+F)	5,594	5,594	5,594	5,594	5,594	5,594	5,594	5,594	5,594	5,594		
Н	Loss of Source Contingency	0	0	0	0	0	0	0	0	0	0		
I	Resource Need (C+G+H)	(6,072)	(6,161)	(6,288)	(6,496)	(6,787)	(7,164)	(7,612)	(8,121)	(8,758)	(9,516)		
J	G-J Generation (1)	14,622	14,622	14,588	14,588	14,588	14,588	14,588	14,588	14,588	14,588		
K	G-J Generation Derates (2)	(1,212)	(1,212)	(1,209)	(1,209)	(1,209)	(1,209)	(1,209)	(1,209)	(1,209)	(1,209)		
L	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0	0		
M	Net ICAP External Imports	315	315	315	315	315	315	315	315	315	315		
N	SCRs (3), (4)	160	160	160	160	160	160	160	160	160	160		
0	Total Resources Available (J+K+L+M+N)	13,885	13,885	13,854	13,854	13,854	13,854	13,854	13,854	13,854	13,854		
Р	Transmission Security Margin (I+O)	7,813	7,724	7,566	7,358	7,067	6,690	6,242	5,733	5,096	4,338		

- 1. Reflects the 2022 Gold Book existing winter capacity plus projected additions and deactivations.
- 2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2022 Gold Book Table I-9a) and solar PV peak reductions (2022 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).
- 3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.
- 4. Includes a derate of 133 MW for SCRs.
- 5. Limits in 2022 and 2023 are based on limits from the summer peak 2023 representations evaluated in the post-2020 RNA updates. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2032 are based also based on the summer peak 2025 representations evaluated in the post-2020 RNA analysis which does not include the impact of CHPE.
- 6. As a conservative winter peak assumption these limits utilize the summer values.

Figure 46: Summary of Lower Hudson Valley Summer Transmission Security Margin - Summer

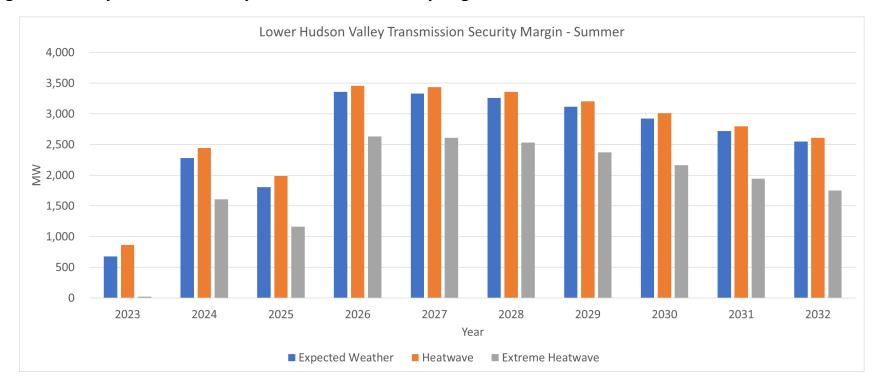
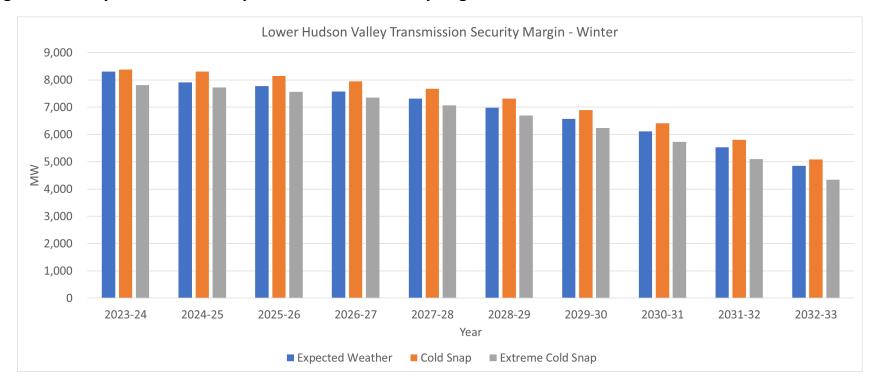



Figure 47: Summary of Lower Hudson Valley Summer Transmission Security Margin - Winter

New York City (Zone J) Transmission Security Margins

Within the Con Edison service territory, the 345 kV transmission system along with specific portions of the 138 kV transmission system are designed for the occurrence of two non-simultaneous contingencies and a return to normal (N-1-1-0).30 Design criteria N-1-1-0 combinations include various combinations of the loss of generation and transmission facilities. As the system changes, the limiting contingency combination may also change. **Figure 48** shows how the summer transmission security margin changes through time in consideration of the planned transmission system changes, which impact the most limiting contingency combination for the year being evaluated. In the summer 2023, 2024, and 2025, the most limiting N-1-1-0 contingency combination is the loss of Ravenswood 3 followed by the loss of Mott Haven – Rainey 345 kV (Q12). Starting in summer 2026, the limiting contingency combination changes to the loss of CHPE followed by the loss of Ravenswood 3. Other contingency combinations result in changing the power flowing into Zone I from other NYCA zones. For example, in considering the possible combinations of N-1-1-0 events, these can include a mix of generation and transmission, two transmission events, or two generation events. **Figure 48** shows the transmission security margin for the contingency combinations of: Ravenswood 3 and Mott Haven – Rainey (Q12) 345 kV, Ravenswood 3 and Bayonne Energy Center (for years 2023 through 2025) or CHPE and Rayenswood 3 (years 2026 through 2032), and Sprain Brook-W. 49th St. 345 kV (M51 and M52). As seen in **Figure 48**, the selecting an interface flow with the lowest value (3,191 MW for the loss of M51/M52) does not result in the smallest transmission security margin. The limiting contingency combination for all winters is the loss of Ravenswood 3 followed by the loss of Mott Haven – Rainey 345 kV (Q12). This is due to the assumption that following the in-service status of CHPE by summer 2026, its schedule is 0 MW for the winter seasons.

³⁰ Con Edison, TP-7100-18 Transmission Planning Criteria, dated August 2019.

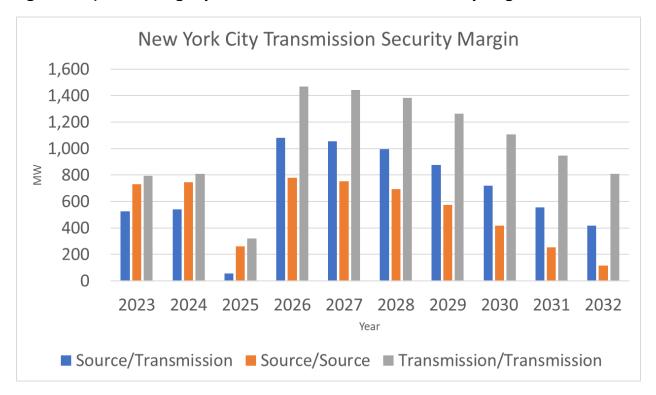


Figure 48: Impact of Contingency Combination on Zone J Transmission Security Margin

As transmission security analysis represents discrete snapshots in time of various credible combinations of system conditions, when reliability needs are identified only the magnitude of the need can be identified under those system conditions. Additional details are required to fully describe the nature of the need such as evaluating the hourly load shape and its impact on the need. To describe the nature of the New York City transmission security margin, load shapes are developed for the Zone J component of the statewide load shape. Details of the load shapes are provided later in this appendix. For this assessment, load shapes are not developed past 2032 and only developed for the summer conditions.

Figure 49 shows the calculation of the New York City transmission security margin at the statewide coincident peak hour for baseline expected weather, expected load conditions for summer with normal transfer criteria. The New York City transmission security margin coincident with the statewide system peak ranges from 526 MW in summer 2023 to 117 MW by summer 2032 (line-item L).

The narrowest margin in New York City in the 10-year horizon for the summer peak expected load, normal transfer criteria conditions is 54 MW, which is observed in summer 2025. With this narrow margin, it is feasible for a small increase in expected load forecast to cause the system to be deficient. For example, with a margin of 54 MW, a forecast change of about 0.5% in New York City would cause a

deficiency. The 2022 Quarter 2 STAR,31 which used the 2021 Gold Book forecast, showed that under baseline expected load conditions with normal transfer criteria and the unavailability of thermal generation there would be a deficiency of 190 MW in year 2025.

The load shapes for New York City show the contribution of Zone J (Figure 84) towards the statewide curve (which represents the statewide coincident peak) for each hour of the day. Utilizing the load shape for the baseline expected weather summer peak day, the New York City transmission security margin for each hour is shown in **Figure 50**. The hourly margin is created by using the load forecast for each hour in the margin calculation (i.e., Figure 49 line-item A) with additional adjustments to account for the appropriate derate for solar generation and energy limited resources in each hour (i.e., Figure 49 line-item H). All other values in the margin calculations are held constant. For all years in the 10-year study horizon, **Figure 50** shows that there are no observed deficiencies in consideration of the load shapes under baseline expected load, normal transfer criteria for New York City. However, the Zone J load during the system peak day does not necessarily peak during the same hour as the NYCA as a whole. In summer 2025, the Zone J peak hour is 16 while the statewide peak is hour 17. As such, the New York City margin for summer 2025 is 15 MW. Similarly, in 2032, the hourly margin is as narrow as 50 MW. A graphical representation of the New York City transmission security margin curve for summer peak baseline expected weather for the peak day in years 2023, 2025, 2027, and 2032 is provided **Figure 51**.

It is possible for other combinations of events, such as 1-in-10-year heatwaves and 1-in-100-year extreme heatwaves, to result in a deficient transmission security margin. Figure 52 shows the New York City transmission security margin for the statewide coincident peak hour under the 1-in-10-year heatwave condition with the assumption that the system is using emergency transfer criteria. As seen in **Figure 52**, the margin is sufficient for summer 2023 or 2024; however, the margin is deficient in summer 2025 by 249 MW (line-item M). Starting in summer 2026 with CHPE in service, the margins are sufficient through summer 2030. In summer 2031, the system is deficient by 71 MW with increased deficiency in summer 2032 to 215 MW due to the increased load. The load shapes for Zone J under a heatwave is provided in Figure 89. Utilizing the New York City load-duration heatwave curve, the transmission security margin for each hour utilizing emergency transfer criteria is shown in Figure 53. As shown in Figure 53, the deficiency in summer 2025 is observed over seven hours (988 MWh). While Figure 52 does not show the system to be deficient in year 2030, the load shape results in a two-hour deficiency (163 MWh) as seen in **Figure 53.** This is due to the Zone I load component of the statewide 1-in-10-year summer peak day having less of a contribution to the load in hour beginning 18 as compared to hours beginning 16 and 17.

³¹ The quarterly Short-Term Reliability Process (STAR) reports are available on the NYISO's website at https://www.nyiso.com/short-termreliability-process.

In 2032, the MWh deficiency is observed over 8 hours (1,483 MWh). **Figure 54** provides a graphical representation of the New York City transmission security margin curve for the 1-in-10-year heatwave for the peak day in years 2023, 2025, 2027, and 2032.

The 1-in-100-year extreme heatwave transmission security margin in **Figure 55** shows that the transmission security margin is deficient for all years in the 10-year horizon (line-item M). As shown in Figure 56, in summer 2023 the 1-in-100-year peak day is deficient over 6 hours (1,472 MWh). In 2025, the deficiency increases to 5,352 MWh over 11 hours. In 2027, the deficiency is only observed for 3 hours (377 MWh). By 2032, the deficiency increases to 12 hours (6,850 MWh). **Figure 57** provides a graphical representation of the New York City transmission security margin curve for the 1-in-100-year extreme heatwave for the peak day in years 2023, 2025, 2027, and 2032.

In addition to heatwave or extreme heatwave conditions, other changes to the transmission system may result in a deficient transmission security margin. Considering the summer baseline peak load transmission security margin, several different single generator outages, or combinations of generator outages within New York City beyond those included in the RNA Base Case assumptions could result in a deficient transmission security margin. Details of specific generator impacts on the New York City transmission security margin are shown in **Figure 58**. In summer 2023, there are eight different units (or combinations of units) listed that could result in an insufficient transmission security margin. By 2025, the amount of units (or combination of units) that can result in insufficient margin increases to 33. These values reduce to three units (or combination of units) starting in summer 2026 with the in-service status of CHPE. However, by 2032, there are 22 units that could cause the margin to be deficient.

Figure 59 shows the New York City transmission security margin under winter peak baseline expected weather load conditions with normal transfer criteria. For winter peak, the margins are sufficient for all years and range from 4,571 MW in winter 2023-24 to 2,086 in winter 2032-33 (line-item L). Considering the winter baseline peak load transmission security margin, multiple outages in New York City would be required to show a deficient transmission security margin.

Figure 60 shows the New York City transmission security margin in a 1-in-10-year cold snap with emergency transfer criteria. Under this condition the margins are sufficient for all years and ranges from 4,316 MW in winter 2023-24 to 1,705 MW in winter 2032-33. Similarly, **Figure 61** shows the New York City transmission security margins for the 1-in-100-year extreme cold snap with emergency transfer criteria. The margin under this condition is sufficient for all years and ranges from 3,913 MW in winter 2023-24 to 1,168 MW in winter 2032-33.

Figure 62 provides a summary of the summer peak New York City transmission security margins

under expected summer weather, heatwave, and extreme heatwave conditions. Figure 63 provides a summary of the winter peak New York City transmission security margins under expected winter weather, cold snap, and extreme cold snap conditions.

Figure 49: New York City Transmission Security Margin (Summer Peak - Baseline Expected Weather, Normal Transfer Criteria)

Summer Peak - Baseline Expected Weather, Normal Transfer Criteria (MW)												
Line	Item	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	
Α	Zone J Load Forecast	(10,853)	(10,837)	(10,786)	(10,778)	(10,804)	(10,864)	(10,986)	(11,140)	(11,303)	(11,441)	
В	I+K to J (3)	3,904	3,904	3,904	4,622	4,622	4,622	4,622	4,622	4,622	4,622	
С	ABC PARs to J	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	
D	Total J AC Import (B+C)	3,893	3,893	3,893	4,611	4,611	4,611	4,611	4,611	4,611	4,611	
E	Loss of Source Contingency	(980)	(980)	(980)	(2,230)	(2,230)	(2,230)	(2,230)	(2,230)	(2,230)	(2,230)	
F	Resource Need (A+D+E)		(7,924)	(7,873)	(8,397)	(8,423)	(8,483)	(8,605)	(8,759)	(8,922)	(9,060)	
G	J Generation (1)	8,796	8,796	8,197	8,197	8,197	8,197	8,197	8,197	8,197	8,197	
Н	J Generation Derates (2)	(645)	(645)	(584)	(584)	(584)	(584)	(584)	(584)	(584)	(584)	
I	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0	0	
J	Net ICAP External Imports	315	315	315	1,565	1,565	1,565	1,565	1,565	1,565	1,565	
K	Total Resources Available (H+I+J)		8,466	7,928	9,178	9,178	9,178	9,178	9,178	9,178	9,178	
L	Transmission Security Margin (F+K)	526	542	54	780	754	694	572	418	255	117	

- 1. Reflects the 2022 Gold Book existing summer capacity plus projected additions and deactivations.
- 2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 10% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2022 Gold Book Table I-9a) and solar PV peak reductions (2022 Gold Book Table I-9c). Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).
- 3. Limits in 2022 and 2023 are based on limits from the summer peak 2023 representations evaluated in the post-2020 RNA updates. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2032 are based on the summer peak 2032 representations evalauted in the 2022 RNA.

Figure 50: New York City Transmission Security Margin (Hourly) (Summer Peak - Baseline Expected Weather, **Normal Transfer Criteria)**

	Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW)											
			J.	Transmissi	on Security	y Margin						
Hour	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032		
HB0	3,485	3,491	2,993	3,703	3,561	3,490	3,357	3,188	3,010	2,860		
HB1	3,842	3,849	3,356	4,069	3,933	3,868	3,740	3,581	3,413	3,271		
HB2	4,104	4,113	3,620	4,335	4,202	4,140	4,017	3,865	3,705	3,570		
HB3	4,253	4,262	3,771	4,488	4,357	4,300	4,181	4,034	3,880	3,751		
HB4	4,264	4,275	3,787	4,507	4,379	4,326	4,211	4,073	3,926	3,805		
HB5	4,063	4,072	3,580	4,300	4,171	4,115	4,001	3,860	3,713	3,590		
HB6	3,587	3,598	3,110	3,833	3,705	3,653	3,542	3,403	3,257	3,132		
HB7	2,917	2,937	2,460	3,194	3,077	3,035	2,932	2,799	2,658	2,535		
HB8	2,299	2,324	1,849	2,587	2,472	2,432	2,328	2,193	2,043	1,912		
HB9	1,807	1,834	1,363	2,103	1,992	1,954	1,853	1,719	1,568	1,433		
HB10	1,413	1,444	976	1,723	1,616	1,582	1,486	1,353	1,202	1,069		
HB11	1,133	1,169	706	1,458	1,356	1,331	1,241	1,115	970	840		
HB12	917	955	496	1,253	1,155	1,135	1,051	931	793	672		
HB13	756	795	336	1,092	997	975	893	779	646	530		
HB14	688	724	261	1,012	911	886	800	681	547	431		
HB15	597	628	157	901	794	761	667	542	404	284		
HB16	464	491	15	752	640	600	499	368	226	102		
HB17	526	542	54	780	653	600	486	340	185	50		
HB18	646	659	168	887	754	694	572	418	255	117		
HB19	836	845	351	1,065	928	862	733	574	407	263		
HB20	1,065	1,072	576	1,291	1,152	1,084	953	791	620	474		
HB21	1,317	1,328	833	1,551	1,414	1,348	1,220	1,058	886	741		
HB22	1,752	1,763	1,270	1,985	1,846	1,779	1,646	1,480	1,302	1,152		
HB23	2,309	2,321	1,829	2,544	2,407	2,339	2,208	2,041	1,865	1,713		

Figure 51: New York City Transmission Security Margin Hourly Curve (Summer Peak - Baseline Expected Weather, Normal Transfer Criteria)

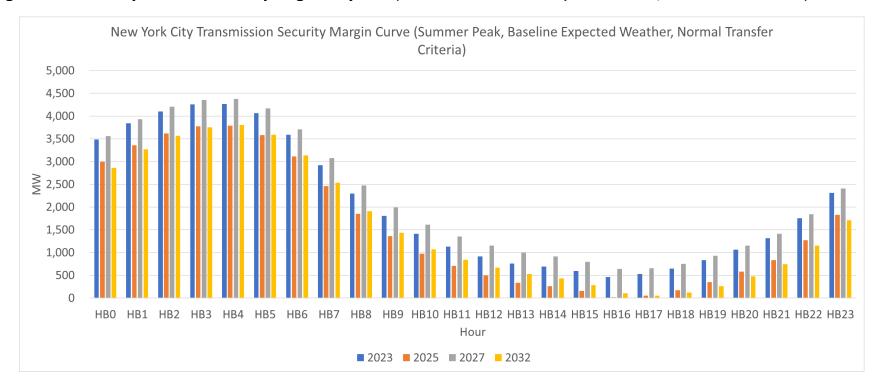


Figure 52: New York City Transmission Security Margin (1-in-10-Year Heatwave, Emergency Transfer Criteria)

Summer Peak - 1-in-10-Year Heatwave, Emergency Transfer Criteria (MW)											
Line	Item	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
Α	Zone J Load Forecast	(11,324)	(11,308)	(11,254)	(11,246)	(11,273)	(11,336)	(11,463)	(11,624)	(11,794)	(11,938)
В	I+K to J (5)	3,904	3,904	3,904	4,622	4,622	4,622	4,622	4,622	4,622	4,622
С	ABC PARs to J	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)
D	Total J Import (B+C)	3,893	3,893	3,893	4,611	4,611	4,611	4,611	4,611	4,611	4,611
Е	Loss of Source Contingency	(980)	(980)	(980)	(2,230)	(2,230)	(2,230)	(2,230)	(2,230)	(2,230)	(2,230)
F	Resource Need (A+D+E)	(8,411)	(8,395)	(8,341)	(8,865)	(8,892)	(8,955)	(9,082)	(9,243)	(9,413)	(9,557)
G	J Generation (1)	8,796	8,796	8,197	8,197	8,197	8,197	8,197	8,197	8,197	8,197
Н	J Generation Derates (2)		(645)	(584)	(584)	(584)	(584)	(584)	(584)	(584)	(584)
- 1	Temperature Based Generation Derates	(64)	(64)	(55)	(55)	(55)	(55)	(55)	(55)	(55)	(55)
J	Net ICAP External Imports	315	315	315	1,565	1,565	1,565	1,565	1,565	1,565	1,565
K	SCRs (3), (4)		219	219	219	219	219	219	219	219	219
L	Total Resources Available (G+H+I+J+K)	8,621	8,621	8,092	9,342	9,342	9,342	9,342	9,342	9,342	9,342
М	Transmission Security Margin (F+L)	210	226	(249)	477	450	387	260	99	(71)	(215)

- 1. Reflects the 2022 Gold Book existing summer capacity plus projected additions and deactivations.
- 2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 10% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2022 Gold Book Table I-9a) and solar PV peak reductions (2022 Gold Book Table I-9c). Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).
- 3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.
- 4. Includes a derate of 198 MW for SCRs.
- 5. Limits in 2022 and 2023 are based on limits from the summer peak 2023 representations evaluated in the post-2020 RNA updates. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2032 are based on the summer peak 2032 representations evalauted in the 2022 RNA.

Figure 53: New York City Transmission Security Margin (Hourly) (1-in-10-Year Heatwave, Emergency Transfer Criteria)

		Summ	er Peak - F	leatwave,	Emergency	y Transfer (Criteria (M	W)		
			J.	Transmissi	on Securit	y Margin		-		
Hour	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
HB0	2,618	2,627	2,144	2,857	2,692	2,604	2,451	2,266	2,078	1,921
HB1	3,016	3,024	2,547	3,262	3,103	3,021	2,872	2,696	2,518	2,369
HB2	3,291	3,303	2,827	3,545	3,390	3,312	3,169	3,002	2,832	2,690
HB3	3,456	3,469	2,995	3,715	3,561	3,489	3,349	3,187	3,022	2,887
HB4	3,480	3,495	3,023	3,746	3,595	3,526	3,389	3,235	3,077	2,948
HB5	3,264	3,278	2,803	3,527	3,376	3,306	3,172	3,016	2,860	2,730
HB6	2,740	2,752	2,278	3,003	2,850	2,780	2,647	2,491	2,334	2,202
HB7	2,054	2,063	1,589	2,314	2,161	2,091	1,954	1,795	1,635	1,495
HB8	1,467	1,478	1,001	1,725	1,571	1,498	1,359	1,195	1,025	877
HB9	1,012	1,022	547	1,270	1,120	1,047	909	746	574	422
HB10	689	701	227	954	806	736	601	438	264	112
HB11	563	581	111	843	701	639	510	352	185	34
HB12	443	463	(3)	735	597	538	413	260	98	(45)
HB13	402	426	(37)	702	596	538	419	241	86	(50)
HB14	336	360	(103)	634	547	493	374	162	8	(126)
HB15	224	246	(221)	514	449	391	270	23	(131)	(265)
HB16	132	153	(317)	414	369	309	184	(100)	(257)	(393)
HB17	210	226	(249)	477	450	387	260	(63)	(225)	(367)
HB18	406	420	(56)	663	632	563	430	99	(71)	(215)
HB19	632	643	164	878	821	747	606	304	130	(19)
HB20	863	872	390	1,105	1,023	944	802	529	353	200
HB21	1,117	1,126	641	1,353	1,244	1,162	1,015	771	588	433
HB22	1,568	1,576	1,089	1,798	1,663	1,575	1,420	1,203	1,013	850
HB23	2,144	2,150	1,663	2,371	2,213	2,122	1,967	1,781	1,591	1,426

Figure 54: New York City Transmission Security Margin Hourly Curve (1-in-10-Year Heatwave, Emergency Transfer Criteria)

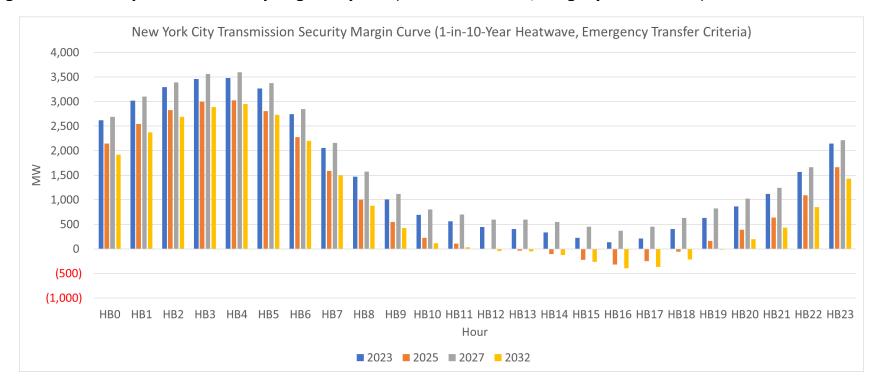


Figure 55: New York City Transmission Security Margin (1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria)

	Summer Peak - 1-in-10	0-Year Extr	eme Heatv	vave, Emei	gency Trar	sfer Criter	ia (MW)				
Line	Item	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
Α	Zone J Load Forecast	(11,802)	(11,785)	(11,729)	(11,721)	(11,749)	(11,814)	(11,947)	(12,114)	(12,292)	(12,442)
В	I+K to J (5)	3,904	3,904	3,904	4,622	4,622	4,622	4,622	4,622	4,622	4,622
С	ABC PARs to J	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)
D	Total J Import (B+C)	3,893	3,893	3,893	4,611	4,611	4,611	4,611	4,611	4,611	4,611
Е	Loss of Source Contingency	(980)	(980)	(980)	(2,230)	(2,230)	(2,230)	(2,230)	(2,230)	(2,230)	(2,230)
F	Resource Need (A+D+E)	(8,889)	(8,872)	(8,816)	(9,340)	(9,368)	(9,433)	(9,566)	(9,733)	(9,911)	(10,061)
·						·					
G	J Generation (1)	8,796	8,796	8,197	8,197	8,197	8,197	8,197	8,197	8,197	8,197
Н	J Generation Derates (2)	(645)	(645)	(584)	(584)	(584)	(584)	(584)	(584)	(584)	(584)
1	Temperature Based Generation Derates	(135)	(135)	(116)	(116)	(116)	(116)	(116)	(116)	(116)	(116)
J	Net ICAP External Imports	315	315	315	1,565	1,565	1,565	1,565	1,565	1,565	1,565
K	SCRs (3), (4)	219	219	219	219	219	219	219	219	219	219
L	Total Resources Available (G+H+I+J+K)	8,550	8,550	8,031	9,281	9,281	9,281	9,281	9,281	9,281	9,281
М	Transmission Security Margin (F+L)	(339)	(322)	(785)	(59)	(87)	(152)	(285)	(452)	(630)	(780)

- 1. Reflects the 2022 Gold Book existing summer capacity plus projected additions and deactivations.
- 2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 10% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2022 Gold Book Table I-9a) and solar PV peak reductions (2022 Gold Book Table I-9c). Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).
- 3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.
- 4. Includes a derate of 198 MW for SCRs.
- 5. Limits in 2022 and 2023 are based on limits from the summer peak 2023 representations evaluated in the post-2020 RNA updates. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2032 are based on the summer peak 2032 representations evalauted in the 2022 RNA.

Figure 56: New York City Transmission Security Margin (Hourly) (1-in-100-Year Extreme Heatwave, Emergency **Transfer Criteria**)

HB0										
	1 2023 2024 2025 2026 2027 2028 2029 2030 2031 2024 2025 2026 2027 2028 2029 2030 2031 2026 2027 2028 2029 2030 2031 2026 2027 2028 2029 2030 2031 2026 2027 2028 2029 2020 202									
Hour	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
HB0	2,247	2,257	1,788	2,503	2,335	2,246	2,090	1,901	1,708	1,548
HB1	2,643	2,654	2,190	2,907	2,745	2,662	2,509	2,329	2,146	1,994
HB2	2,918	2,932	2,470	3,190	3,031	2,952	2,805	2,633	2,458	2,314
HB3	3,083	3,097	2,637	3,359	3,202	3,128	2,985	2,817	2,648	2,508
HB4	3,107	3,124	2,665	3,390	3,235	3,165	3,024	2,865	2,701	2,569
HB5	2,890	2,905	2,444	3,169	3,015	2,942	2,804	2,643	2,481	2,348
HB6	2,362	2,375	1,913	2,638	2,481	2,409	2,270	2,109	1,945	1,809
HB7	1,672	1,681	1,218	1,942	1,784	1,710	1,569	1,404	1,236	1,093
HB8	1,083	1,092	625	1,347	1,188	1,111	966	797	620	468
HB9	628	635	170	891	734	657	513	343	164	8
HB10	307	316	(149)	576	421	346	204	34	(146)	(302)
HB11	185	200	(262)	467	318	251	115	(49)	(223)	(378)
HB12	9	25	(433)	301	155	90	(43)	(203)	(374)	(522)
HB13	(67)	(48)	(503)	233	118	55	(72)	(260)	(424)	(567)
HB14	(168)	(147)	(602)	132	38	(21)	(149)	(372)	(535)	(675)
HB15	(315)	(295)	(752)	(20)	(90)	(153)	(283)	(542)	(705)	(847)
HB16	(442)	(421)	(880)	(152)	(199)	(263)	(396)	(693)	(860)	(1,003)
HB17	(339)	(322)	(785)	(59)	(87)	(152)	(285)	(622)	(794)	(941)
HB18	(142)	(125)	(588)	132	101	32	(108)	(452)	(630)	(780)
HB19	122	136	(329)	386	330	255	109	(204)	(385)	(540)
HB20	391	402	(65)	651	569	489	341	60	(123)	(280)
HB21	678	690	217	933	822	739	588	336	147	(11)
HB22	1,161	1,170	696	1,408	1,270	1,182	1,024	801	606	440
HB23	1,771	1,779	1,305	2,016	1,855	1,763	1,605	1,415	1,221	1,053

Figure 57: New York City Transmission Security Margin Hourly Curve (1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria)

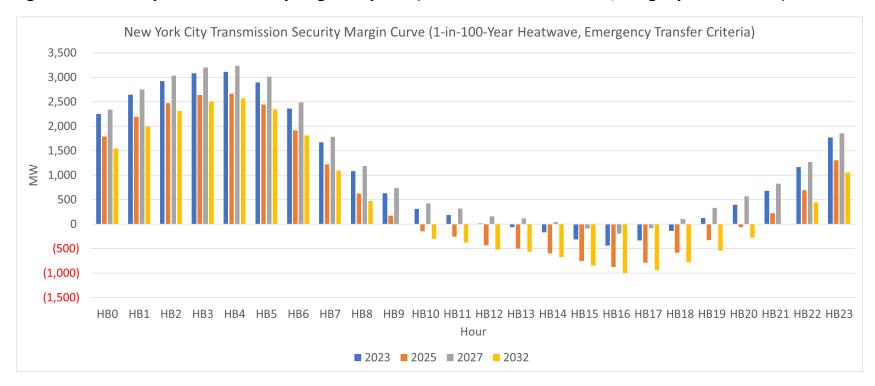


Figure 58: Impact of Generator Outages on New York City Transmission Security Margin (Summer Peak - Baseline **Expected Weather, Normal Transfer Criteria)**

	New	York City Transmissi	on Security	Margin (N	/W)						
Ve	ear	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
		2023	2024	2023	2020	2027	2020	2025	2030	2031	2032
New York City Transmission Securi	ty Margin (Summer Peak - Baseline										
Expected Weather, No	ormal Transfer Criteria)	526	542	54	780	754	694	572	418	255	117
Unit Name	Summer DMNC			Transmis	sion Secur	ity Margin	Less Sumn	ner DMNC			
Astoria 2, 3, and 5	918.8	(393)	(377)	(864)	(138)	(164)	(224)	(346)	(500)	(663)	(801)
Arthur Kill ST 2 and ST 3	860.1	(334)	(318)	(806)	(80)	(106)	(166)	(288)	(442)	(605)	(743)
Linden Cogen	790.8	(265)	(249)	(736)	(10)	(36)	(96)	(218)	(372)	(535)	(673)
Ravenswood ST 01 and ST 02	749.8	(224)	(208)	(695)	31	5	(55)	(177)	(331)	(494)	(632)
East River 1, 2, 6, and 7	638.8	(113)	(97)	(584)	142	116	56	(66)	(220)	(383)	(521)
Bayonne (all units)	607.8	(82)	(66)	(553)	173	147	87	(35)	(189)	(352)	(490)
Astoria East Energy - CC1 & CC2	584.4	(58)	(42)	(530)	196	170	110	(12)	(166)	(329)	(467)
Astoria Energy 2 - CC3 & CC4	571.2	(45)	(29)	(517)	209	183	123	1	(153)	(316)	(454)
Arthur Kill ST 3	520.1	6	22	(466)	260	234	174	52	(102)	(265)	(403)
Astoria CC 1 & 2	479.8	46	62	(425)	301	275	215	93	(61)	(224)	(362)
Ravenswood ST 02	377.5	149	165	(323)	403	377	317	195	41	(122)	(260)
Astoria 5	375.1	151	167	(321)	405	379	319	197	43	(120)	(258)
Ravenswood ST 01	372.3	154	170	(318)	408	382	322	200	46	(117)	(255)
Astoria 3	371.3	155	171	(317)	409	383	323	201	47	(116)	(254)
Arthur Kill ST 2	340.0	186	202	(286)	440	414	354	232	78	(85)	(223)
Brooklyn Navy Yard	256.9	269	285	(202)	524	498	438	316	162	(1)	(139)
Ravenswood CC 04	232.5	294	310	(178)	548	522	462	340	186	23	(115)
East River 7	184.8	341	357	(130)	596	570	510	388	234	71	(67)
Astoria 2	172.4	354	370	(118)	608	582	522	400	246	83	(55)
East River 1	155.8	370	386	(101)	625	599	539	417	263	100	(38)
East River 2	152.9	373	389	(98)	628	602	542	420	266	103	(35)
East River 6	145.3	381	397	(91)	635	609	549	427	273	110	(28)
KIAC JFK GT 1 & GT2	105.5	421	437	(51)	675	649	589	467	313	150	12
Bayonne EC CTG10	62.6	463	479	(8)	718	692	632	510	356	193	55
Bayonne EC CTG4	61.8	464	480	(7)	719	693	633	511	357	194	56
Bayonne EC CTG9	61.3	465	481	(7)	719	693	633	511	357	194	56
Bayonne EC CTG1	61.1	465	481	(7)	719	693	633	511	357	194	56
Bayonne EC CTG8	61.0	465	481	(7)	719	693	633	511	357	194	56
Bayonne EC CTG5	60.7	465	481	(6)	720	694	634	512	358	195	57
Bayonne EC CTG7	60.6	465	481	(6)	720	694	634	512	358	195	57
Bayonne EC CTG2	60.0	466	482	(6)	720	694	634	512	358	195	57
Bayonne EC CTG6	59.5	467	483	(5)	721	695	635	513	359	196	58
Bayonne EC CTG3	59.2	467	483	(5)	721	695	635	513	359	196	58
KIAC_JFK_GT1	53.4	473	489	1	727	701	641	519	365	202	64
KIAC_JFK_GT2	52.1	474	490	2	728	702	642	520	366	203	65
Kent	46.0	480	496	8	734	708	648	526	372	209	71
Pouch	45.2	481	497	9	735	709	649	527	373	210	72
Gowanus 5	40.0	486	502	14	740	714	654	532	378	215	77
Harlem River 2	40.0	486	502	14	740	714	654	532	378	215	77
Hellgate 2	40.0	486	502	14	740	714	654	532	378	215	77
Vernon Blvd 2	40.0	486	502	14	740	714	654	532	378	215	77
Gowanus 6	39.9	486	502	15	741	715	655	533	379	216	78
Harlem River 1	39.9	486	502	15	741	715	655	533	379	216	78
Hellgate 1	39.9	486	502	15	741	715	655	533	379	216	78
Vernon Blvd 3	39.9	486	502	15	741	715	655	533	379	216	78
Arthur Kill Cogen	9.0	517	533	45	771	745	685	563	409	246	108

Figure 59: New York City Transmission Security Margin (Winter Peak - Baseline Expected Weather, Normal Transfer Criteria)

	Wii	nter Peak - Bas	eline Expect	ed Weather,	Normal Trans	fer Criteria (N	/W)						
Line	ltem	2023-24	2024-25	2025-26	2026-27	2027-28	2028-29	2029-30	2030-31	2031-32	2032-33		
Α	Zone J Load Forecast	(7,442)	(7,495)	(7,578)	(7,725)	(7,934)	(8,208)	(8,532)	(8,894)	(9,350)	(9,897)		
										,			
В	I+K to J (3), (4)	3,904	3,904	3,904	3,904	3,904	3,904	3,904	3,904	3,904	3,904		
С	ABC PARs to J	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)		
D	Total J AC Import (B+C)	3,893	3,893	3,893	3,893	3,893	3,893	3,893	3,893	3,893	3,893		
Е	Loss of Source Contingency	(990)	(990)	(990)	(990)	(990)	(990)	(990)	(990)	(990)	(990)		
F	Resource Need (A+D+E)	(4,539)	(4,592)	(4,675)	(4,822)	(5,031)	(5,305)	(5,629)	(5,991)	(6,447)	(6,994)		
									·				
G	J Generation (1)	9,481	9,481	9,447	9,447	9,447	9,447	9,447	9,447	9,447	9,447		
Н	J Generation Derates (2)	(686)	(686)	(682)	(682)	(682)	(682)	(682)	(682)	(682)	(682)		
I	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0	0		
J	Net ICAP External Imports	315	315	315	315	315	315	315	315	315	315		
K	Total Resources Available (G+H+I+J)	9,110	9,110	9,080	9,080	9,080	9,080	9,080	9,080	9,080	9,080		
L	Transmission Security Margin (F+K)	4,571	4,518	4,405	4,258	4,049	3,775	3,451	3,089	2,633	2,086		

- 1. Reflects the 2022 Gold Book existing winter capacity plus projected additions and deactivations.
- 2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2022 Gold Book Table I-9a) and solar PV peak reductions (2022 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC fiveyear class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).
- 3. Limits in 2022 and 2023 are based on limits from the summer peak 2023 representations evaluated in the post-2020 RNA updates. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2032 are based also based on the summer peak 2025 representations evaluated in the post-2020 RNA analysis which does not include the impact of CHPE.
- 4. As a conservative winter peak assumption these limits utilize the summer values.

Figure 60: New York City Transmission Security Margin (1-in-10-Year Cold Snap, Emergency Transfer Criteria)

	Wi	nter Peak - 1-	in-10-Year Co	ld Snap, Eme	rgency Transf	er Criteria (M	W)				
	Item	2023-24	2024-25	2025-26	2026-27	2027-28	2028-29	2029-30	2030-31	2031-32	2032-33
Α	Zone J Load Forecast	(7,825)	(7,880)	(7,968)	(8,122)	(8,342)	(8,630)	(8,971)	(9,351)	(9,831)	(10,406)
						·					
В	I+K to J (5), (6)	3,904	3,904	3,904	3,904	3,904	3,904	3,904	3,904	3,904	3,904
С	ABC PARs to J	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)
D	Total J Import (B+C)	3,893	3,893	3,893	3,893	3,893	3,893	3,893	3,893	3,893	3,893
E	Loss of Source Contingency	(990)	(990)	(990)	(990)	(990)	(990)	(990)	(990)	(990)	(990)
F	Resource Need (A+D+E)	(4,922)	(4,977)	(5,065)	(5,219)	(5,439)	(5,727)	(6,068)	(6,448)	(6,928)	(7,503)
G	J Generation (1)	9,481	9,481	9,447	9,447	9,447	9,447	9,447	9,447	9,447	9,447
Н	J Generation Derates (2)	(686)	(686)	(682)	(682)	(682)	(682)	(682)	(682)	(682)	(682)
- 1	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0	0
J	Net ICAP External Imports	315	315	315	315	315	315	315	315	315	315
K	SCRs (3), (4)	128	128	128	128	128	128	128	128	128	128
L	Total Resources Available (G+H+I+J+K)	9,238	9,238	9,208	9,208	9,208	9,208	9,208	9,208	9,208	9,208
М	Transmission Security Margin (F+L)	4,316	4,261	4,143	3,989	3,769	3,481	3,140	2,760	2,280	1,705

- 1. Reflects the 2022 Gold Book existing winter capacity plus projected additions and deactivations.
- 2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2022 Gold Book Table I-9a) and solar PV peak reductions (2022 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC fiveyear class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).
- 3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.
- 4. Includes a derate of 116 MW for SCRs.
- 5. Limits in 2022 and 2023 are based on limits from the summer peak 2023 representations evaluated in the post-2020 RNA updates. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2032 are based also based on the summer peak 2025 representations evaluated in the post-2020 RNA analysis which does not include the impact of CHPE.
- 6. As a conservative winter peak assumption these limits utilize the summer values.



Figure 61: New York City Transmission Security Margin (1-in-100-year Extreme Cold Snap, Emergency Transfer Criteria)

	Winter	Peak - 1-in-10	0-Year Extren	ne Cold Snap,	Emergency T	ransfer Criter	ia (MW)				
	Item	2023-24	2024-25	2025-26	2026-27	2027-28	2028-29	2029-30	2030-31	2031-32	2032-33
Α	Zone J Load Forecast	(8,228)	(8,287)	(8,379)	(8,541)	(8,772)	(9,075)	(9,433)	(9,834)	(10,338)	(10,943)
						·					
В	I+K to J (5), (6)	3,904	3,904	3,904	3,904	3,904	3,904	3,904	3,904	3,904	3,904
С	ABC PARs to J	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)
D	Total J Import (B+C)	3,893	3,893	3,893	3,893	3,893	3,893	3,893	3,893	3,893	3,893
Е	Loss of Source Contingency	(990)	(990)	(990)	(990)	(990)	(990)	(990)	(990)	(990)	(990)
F	Resource Need (A+D+E)	(5,325)	(5,384)	(5,476)	(5,638)	(5,869)	(6,172)	(6,530)	(6,931)	(7,435)	(8,040)
						·				,	
G	J Generation (1)	9,481	9,481	9,447	9,447	9,447	9,447	9,447	9,447	9,447	9,447
Н	J Generation Derates (2)	(686)	(686)	(682)	(682)	(682)	(682)	(682)	(682)	(682)	(682)
1	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0	0
J	Net ICAP External Imports	315	315	315	315	315	315	315	315	315	315
K	SCRs (3), (4)	128	128	128	128	128	128	128	128	128	128
L	Total Resources Available (G+H+I+J+K)	9,238	9,238	9,208	9,208	9,208	9,208	9,208	9,208	9,208	9,208
М	Transmission Security Margin (F+L)	3,913	3,854	3,732	3,570	3,339	3,036	2,678	2,277	1,773	1,168

- 1. Reflects the 2022 Gold Book existing winter capacity plus projected additions and deactivations.
- 2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2022 Gold Book Table I-9a) and solar PV peak reductions (2022 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC fiveyear class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).
- 3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.
- 4. Includes a derate of 116 MW for SCRs.
- 5. Limits in 2022 and 2023 are based on limits from the summer peak 2023 representations evaluated in the post-2020 RNA updates. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2032 are based also based on the summer peak 2025 representations evaluated in the post-2020 RNA analysis which does not include the impact of CHPE.
- 6. As a conservative winter peak assumption these limits utilize the summer values.

Figure 62: Summary of New York City Summer Transmission Security Margin - Summer

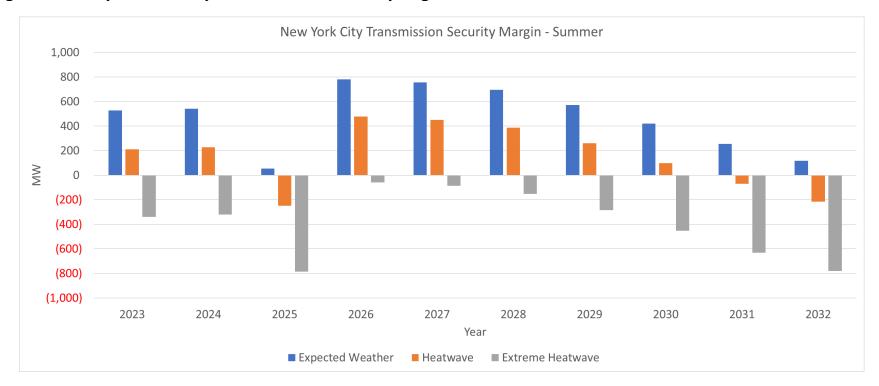
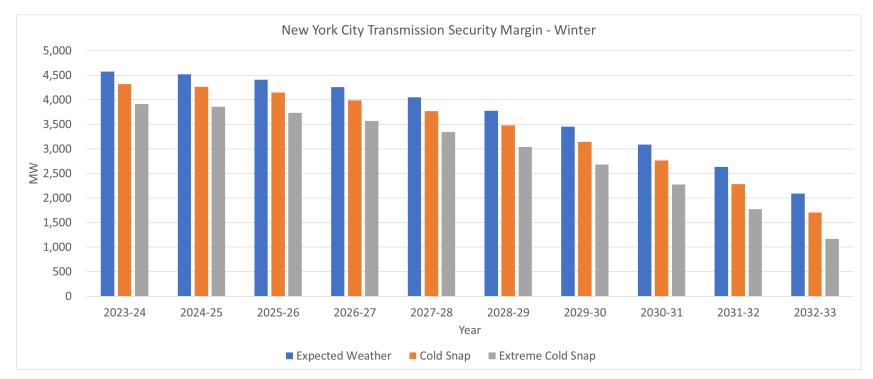



Figure 63: Summary of New York City Summer Transmission Security Margin - Winter

Long Island (Zone K) Transmission Security Margins

Within the PSEG Long Island service territory, the BPTF system (primarily comprised of 138 kV transmission) is designed for N-1-1. As shown in Figure 64, the most limiting N-1-1 combination for the transmission security margin under normal conditions is the outage of Neptune HVDC (660 MW) followed by securing for the loss of Dunwoodie – Shore Road 345 kV (Y50) for all evaluated years.

Figure 64: Impact of Contingency Combination on Zone K Transmission Security Margin

As transmission security analysis represents discrete snapshots in time of various credible combinations of system conditions, when reliability needs are identified only the magnitude of the need can be identified under those system conditions. Additional details are required to fully describe the nature of the need such as evaluating the hourly load shape and its impact on the need. To describe the nature of the Long Island transmission security margin, load shapes are developed for the Zone K component of the statewide load shape. Details of the load shapes are provided later in this appendix. For this assessment load shapes were not developed past 2032 and have only been developed for the summer conditions.

Figure 65 shows the calculation of the Long Island transmission security margin at the statewide coincident peak hour for baseline expected weather, expected load conditions for summer. The Long Island transmission security margin ranges from 478 MW in summer 2023 to 430 MW in summer 2032 (see lineitem L). The narrowest transmission security margin in the 10-year horizon is 430 MW in summer 2032. The load shapes for Long Island show the contribution of Zone K (Figure 85) towards the statewide curve (which represents the statewide coincident peak) for each hour of the day. Utilizing the load shape for the baseline expected weather summer peak day, the Long Island transmission security margin for each hour is

shown in **Figure 66**. The hourly margin is created by using the load forecast for each hour in the margin calculation (i.e., placing each hour into **Figure 65** line-item A) with additional adjustments to account for the appropriate derate for solar generation and energy limited resources in each hour (i.e., Figure 65 lineitem H). All other values in the margin calculations are held constant. For all years in the 10-year study horizon, Figure 66 shows that there are no observed deficiencies considering the load shapes under baseline expected load, normal transfer criteria for Long Island. A graphical representation of the Long Island transmission security margin cure for summer peak baseline expected weather, normal transfer criteria for the peak day in years 2023, 2025, 2027 and 2032 is shown in **Figure 67**.

It is possible for other combinations of events such as 1-in-10-year heatwaves and 1-in-100-year extreme heatwaves to have a deficient transmission security margin. Figure 68 shows the Long Island transmission security margin for the statewide coincident peak hour under the 1-in-10-year heatwave condition with the assumption that the system is using emergency transfer criteria. As seen in **Figure 68**, the system is sufficient under these conditions within the 10-year study horizon and ranges from 701 MW in summer 2023 to 649 MW in summer 2032 (see line-item M). The load shapes for Zone K under heatwave conditions is provided in **Figure 90**. Additionally, the hourly margin in **Figure 69** show that for each hour of the heatwave day the margin is sufficient. A graphical representation of the Long Island transmission security margins for the 1-in-10-year heatwave day with emergency transfer criteria for the peak day in years 2023, 2025, 2027 and 2032 is shown in **Figure 70**.

The 1-in-100-year extreme heatwave transmission security margin is shown in **Figure 71**. These margins assume that the system is using emergency transfer criteria. Under this condition, the margin is sufficient for all years in the 10-year study horizon and range from 355 MW in summer 2023 to 299 MW in summer 2032 (see line-item M). Additionally, the hourly margin in **Figure 72** show that for each hour the margin is sufficient for the extreme heatwave day. The load shapes for Zone K under an extreme heatwave is provided in **Figure 95**. A graphical representation of the Long Island transmission security margins for the 1-in-100-year extreme heatwave day with emergency transfer criteria for the peak day in years 2023, 2025, 2027, and 2032 is shown in **Figure 73**.

In addition to heatwave or extreme heatwave conditions, other changes to the transmission system may plausibly result in deficient margins. Considering the summer baseline peak load transmission security margin, limited combinations of single generator outages, or combinations of generator outages within Long Island beyond those included in the RNA Base Case assumptions could result in deficient transmission security margins. Details of specific generator impacts on the Long Island transmission security margin are shown in **Figure 74**. In summer 2023, there are two different units (or combinations

of units) listed that could result in a deficient transmission security margin. Starting in 2024, only one combination of units could result in a deficient transmission security margin.

Figure 75 shows the Long Island transmission security margin under winter peak baseline expected weather conditions. For winter peak, the margin ranges from 2,638 MW in winter 2023-24 to 1,802 MW in winter 2032-33. Considering the winter baseline peak load transmission security margin, multiple outages in Long Island would be required to have a deficient margin.

Figure 76 shows Long Island transmission security margin in a 1-in-10-year cold snap. Under this system condition the transmission security margins for all years are sufficient and range from 3,103 MW in winter 2023-24 to 2,224 MW in winter 2032-33. Similarly, **Figure 77** shows the transmission security margins for Long Island with a 1-in-100-year extreme cold snap (with emergency transfer criteria) is sufficient with the margin ranging from 2,929 MW in winter 2023-24 to 2,004 MW in winter 2032-33.

Figure 78 provides a summary of the summer peak Long Island transmission security margins under expected summer weather, heatwave, and extreme heatwave conditions. Figure 79 provides a summary of the winter peak Long Island transmission security margins under expected winter weather, cold snap, and extreme cold snap conditions.

Figure 65: Long Island Transmission Security Margin (Summer Peak - Baseline Expected Weather, Normal Transfer Criteria)

	Summer Peak - B	aseline Exp	ected Wea	ther, Norm	al Transfer	Criteria (M	W)				
Line	ltem	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
Α	Zone K Load Forecast	(4,951)	(4,870)	(4,782)	(4,746)	(4,768)	(4,806)	(4,857)	(4,907)	(4,956)	(5,007)
В	I+J to K	929	929	929	929	929	929	929	929	929	929
С	New England Import (NNC)	0	0	0	0	0	0	0	0	0	0
D	Total K AC Import (B+C)	929	929	929	929	929	929	929	929	929	929
E	Loss of Source Contingency	(660)	(660)	(660)	(660)	(660)	(660)	(660)	(660)	(660)	(660)
F	Resource Need (A+D+E)	(4,682)	(4,601)	(4,513)	(4,477)	(4,499)	(4,537)	(4,588)	(4,638)	(4,687)	(4,738)
G	K Generation (1)	4,970	5,106	5,106	5,106	5,106	5,106	5,106	5,106	5,106	5,106
Н	K Generation Derates (2)	(470)	(593)	(594)	(594)	(595)	(596)	(597)	(597)	(598)	(598)
- 1	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0	0
J	Net ICAP External Imports	660	660	660	660	660	660	660	660	660	660
K	Total Resources Available (H+I+J)	5,160	5,172	5,172	5,171	5,171	5,170	5,169	5,169	5,168	5,168
L	Transmission Security Margin (F+K)	478	571	659	694	672	633	581	531	481	430

^{1.} Reflects the 2022 Gold Book existing summer capacity plus projected additions and deactivations.

^{2.} Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 10% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2022 Gold Book Table I-9a) and solar PV peak reductions (2022 Gold Book Table I-9c). Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC fiveyear class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

Figure 66: Long Island Transmission Security Margin (Hourly) (Summer Peak - Baseline Expected Weather, **Normal Transfer Criteria)**

	Summe	r Peak - Ba	seline Exp	ected Sum	mer Weat	her, Norm	al Transfer	· Criteria (N	/IW)	
			K	Transmissi	on Securit	y Margin			•	
Hour	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
HB0	2,536	2,619	2,692	2,711	2,638	2,590	2,529	2,467	2,405	2,337
HB1	2,747	2,830	2,905	2,924	2,855	2,810	2,751	2,693	2,637	2,574
HB2	2,898	2,981	3,057	3,079	3,010	2,967	2,911	2,856	2,804	2,747
HB3	2,989	3,073	3,150	3,173	3,105	3,064	3,011	2,959	2,910	2,859
HB4	3,010	3,097	3,174	3,198	3,132	3,095	3,043	2,996	2,953	2,911
HB5	2,965	3,052	3,131	3,157	3,094	3,057	3,008	2,963	2,922	2,879
HB6	2,862	2,953	3,040	3,074	3,017	2,988	2,944	2,904	2,868	2,830
HB7	2,605	2,705	2,802	2,849	2,804	2,786	2,752	2,719	2,687	2,652
HB8	2,299	2,406	2,510	2,568	2,532	2,520	2,492	2,461	2,428	2,389
HB9	1,991	2,104	2,217	2,282	2,254	2,249	2,228	2,201	2,170	2,132
HB10	1,665	1,782	1,902	1,976	1,956	1,959	1,943	1,921	1,893	1,858
HB11	1,357	1,478	1,605	1,684	1,671	1,681	1,671	1,653	1,632	1,600
HB12	1,099	1,221	1,349	1,432	1,420	1,432	1,425	1,411	1,393	1,367
HB13	903	1,025	1,151	1,230	1,219	1,228	1,221	1,207	1,190	1,167
HB14	752	870	988	1,059	1,039	1,041	1,027	1,010	989	963
HB15	613	725	834	894	864	856	835	809	783	754
HB16	489	593	693	744	702	686	655	623	590	556
HB17	478	571	659	694	639	610	567	523	481	436
HB18	536	624	706	733	672	633	581	531	481	430
HB19	707	793	868	891	822	778	722	667	614	557
HB20	903	987	1,062	1,084	1,014	970	911	855	801	741
HB21	1,163	1,249	1,325	1,348	1,279	1,235	1,178	1,121	1,065	1,004
HB22	1,547	1,632	1,707	1,729	1,657	1,610	1,552	1,491	1,431	1,364
HB23	1,940	2,025	2,101	2,122	2,050	2,004	1,944	1,883	1,821	1,751

Figure 67: Long Island Transmission Security Margin Hourly Curve (Summer Peak - Baseline Expected Weather, Normal Transfer Criteria)

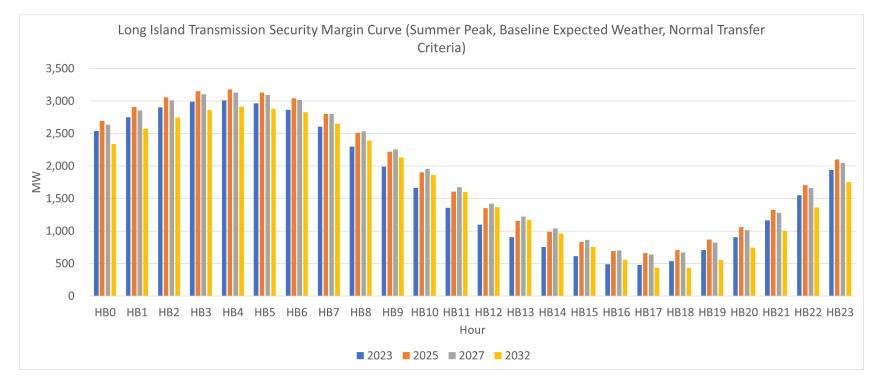


Figure 68: Long Island Transmission Security Margin (1-in-10-Year Heatwave, Emergency Transfer Criteria)

	Summer Peak - 1	-in-10-Year	Heatwave	, Emergenc	y Transfer (Criteria (M	N)				
Line	Item	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
Α	Zone K Load Forecast	(5,331)	(5,243)	(5,149)	(5,110)	(5,134)	(5,174)	(5,229)	(5,283)	(5,336)	(5,391)
				·	·	·					
В	I+J to K	887	887	887	887	887	887	887	887	887	887
С	New England Import (NNC)	0	0	0	0	0	0	0	0	0	0
D	Total K AC Import (B+C)	887	887	887	887	887	887	887	887	887	887
Е	Loss of Source Contingency	0	0	0	0	0	0	0	0	0	0
F	Resource Need (A+D+E)	(4,444)	(4,356)	(4,262)	(4,223)	(4,247)	(4,287)	(4,342)	(4,396)	(4,449)	(4,504)
G	K Generation (1)	4,970	5,106	5,106	5,106	5,106	5,106	5,106	5,106	5,106	5,106
Н	K Generation Derates (2)	(470)	(593)	(594)	(594)	(595)	(596)	(597)	(597)	(598)	(598)
- 1	Temperature Based Generation Derates	(33)	(33)	(33)	(33)	(33)	(33)	(33)	(33)	(33)	(33)
J	Net ICAP External Imports	660	660	660	660	660	660	660	660	660	660
K	SCRs (3), (4)	18	18	18	18	18	18	18	18	18	18
L	Total Resources Available (G+H+I+J+K)	5,145	5,157	5,157	5,156	5,156	5,155	5,154	5,153	5,153	5,153
М	Transmission Security Margin (F+L)	701	801	895	933	909	868	812	757	704	649

- 1. Reflects the 2022 Gold Book existing summer capacity plus projected additions and deactivations.
- 2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 10% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2022 Gold Book Table I-9a) and solar PV peak reductions (2022 Gold Book Table I-9c). Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC fiveyear class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).
- 3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.
- 4. Includes a derate of 16 MW for SCRs.

Figure 69: Long Island Transmission Security Margin (Hourly) (1-in-10-Year Heatwave, Emergency Transfer Criteria)

		Summ	er Peak - H	leatwave,	Emergency	/ Transfer	Criteria (M	W)		
				Transmissi						
Hour	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
HB0	2,766	2,859	2,942	2,964	2,880	2,824	2,754	2,686	2,620	2,548
HB1	3,002	3,095	3,180	3,202	3,122	3,069	3,000	2,936	2,877	2,810
HB2	3,166	3,259	3,346	3,372	3,292	3,241	3,176	3,115	3,060	3,000
HB3	3,268	3,362	3,450	3,477	3,398	3,349	3,287	3,230	3,178	3,123
HB4	3,296	3,393	3,480	3,508	3,432	3,387	3,326	3,273	3,227	3,182
HB5	3,249	3,346	3,436	3,467	3,394	3,350	3,293	3,243	3,200	3,154
HB6	3,136	3,236	3,334	3,373	3,306	3,270	3,217	3,173	3,134	3,094
HB7	2,869	2,975	3,080	3,129	3,072	3,044	3,000	2,960	2,923	2,883
HB8	2,562	2,673	2,783	2,842	2,794	2,771	2,733	2,694	2,656	2,612
HB9	2,251	2,368	2,486	2,551	2,511	2,495	2,463	2,428	2,393	2,350
HB10	1,934	2,053	2,176	2,249	2,216	2,208	2,180	2,150	2,117	2,077
HB11	1,671	1,791	1,919	1,996	1,970	1,967	1,945	1,918	1,891	1,853
HB12	1,439	1,561	1,688	1,768	1,742	1,741	1,720	1,695	1,671	1,638
HB13	1,256	1,377	1,502	1,579	1,563	1,557	1,536	1,502	1,478	1,448
HB14	1,068	1,186	1,305	1,374	1,358	1,345	1,316	1,270	1,243	1,210
HB15	881	996	1,108	1,168	1,149	1,127	1,091	1,028	996	962
HB16	739	847	951	1,002	980	950	903	823	785	745
HB17	701	801	895	933	909	868	813	714	669	620
HB18	794	889	977	1,006	977	927	862	757	704	649
HB19	1,019	1,111	1,192	1,217	1,173	1,118	1,051	951	896	835
HB20	1,253	1,342	1,423	1,447	1,393	1,340	1,271	1,181	1,124	1,061
HB21	1,553	1,642	1,720	1,742	1,682	1,627	1,559	1,476	1,415	1,349
HB22	1,983	2,070	2,146	2,167	2,094	2,037	1,969	1,892	1,826	1,754
HB23	2,420	2,506	2,582	2,601	2,521	2,465	2,396	2,328	2,261	2,185

Figure 70: Long Island Transmission Security Margin Hourly Curve (1-in-10-Year Heatwave, Emergency Transfer Criteria)



Figure 71: Long Island Transmission Security Margin (1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria)

	Summer Peak - 1-in-1	00-Year Ext	reme Heat	wave, Emer	gency Tran	sfer Criteri	a (MW)				
Line	Item	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
Α	Zone K Load Forecast	(5,640)	(5,548)	(5,448)	(5,407)	(5,432)	(5,475)	(5,533)	(5,590)	(5,646)	(5,704)
В	I+J to K	887	887	887	887	887	887	887	887	887	887
С	New England Import (NNC)	0	0	0	0	0	0	0	0	0	0
D	Total K AC Import (B+C)	887	887	887	887	887	887	887	887	887	887
Е	Loss of Source Contingency	0	0	0	0	0	0	0	0	0	0
F	Resource Need (A+D+E)	(4,753)	(4,661)	(4,561)	(4,520)	(4,545)	(4,588)	(4,646)	(4,703)	(4,759)	(4,817)
G	K Generation (1)	4,970	5,106	5,106	5,106	5,106	5,106	5,106	5,106	5,106	5,106
Н	K Generation Derates (2)	(470)	(593)	(594)	(594)	(595)	(596)	(597)	(597)	(598)	(598)
I	Temperature Based Generation Derates	(70)	(70)	(70)	(70)	(70)	(70)	(70)	(70)	(70)	(70)
J	Net ICAP External Imports	660	660	660	660	660	660	660	660	660	660
K	SCRs (3), (4)	18	18	18	18	18	18	18	18	18	18
L	Total Resources Available (G+H+I+J+K)	5,108	5,120	5,120	5,119	5,119	5,118	5,117	5,116	5,116	5,116
_											
М	Transmission Security Margin (F+L)	355	459	559	599	574	530	471	413	357	299

- 1. Reflects the 2022 Gold Book existing summer capacity plus projected additions and deactivations.
- 2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 10% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2022 Gold Book Table I-9a) and solar PV peak reductions (2022 Gold Book Table I-9c). Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC fiveyear class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).
- 3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.
- 4. Includes a derate of 16 MW for SCRs.

Figure 72: Long Island Transmission Security Margin (Hourly) (1-in-100-Year Extreme Heatwave, **Emergency Transfer Criteria)**

Summer Peak - 1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria (MW)														
	K Transmission Security Margin													
Hour	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032				
HB0	2,620	2,715	2,802	2,826	2,740	2,682	2,610	2,541	2,474	2,400				
HB1	2,859	2,954	3,043	3,067	2,985	2,930	2,860	2,794	2,733	2,664				
HB2	3,024	3,121	3,211	3,239	3,157	3,105	3,038	2,975	2,919	2,856				
HB3	3,128	3,226	3,317	3,346	3,265	3,214	3,151	3,092	3,038	2,982				
HB4	3,156	3,257	3,348	3,378	3,299	3,253	3,190	3,136	3,088	3,042				
HB5	3,110	3,211	3,305	3,337	3,262	3,216	3,157	3,106	3,061	3,014				
HB6	2,999	3,102	3,203	3,243	3,174	3,136	3,082	3,036	2,996	2,955				
HB7	2,728	2,837	2,945	2,996	2,937	2,908	2,862	2,820	2,782	2,741				
HB8	2,417	2,530	2,643	2,704	2,654	2,630	2,589	2,549	2,510	2,465				
HB9	2,101	2,220	2,341	2,407	2,365	2,348	2,315	2,279	2,241	2,197				
HB10	1,779	1,900	2,025	2,099	2,065	2,055	2,026	1,994	1,960	1,918				
HB11	1,511	1,633	1,763	1,841	1,813	1,810	1,786	1,757	1,729	1,690				
HB12	1,251	1,374	1,504	1,585	1,557	1,554	1,531	1,505	1,478	1,445				
HB13	1,029	1,154	1,282	1,360	1,342	1,334	1,310	1,273	1,248	1,216				
HB14	805	926	1,048	1,119	1,100	1,085	1,053	1,004	975	940				
HB15	580	698	814	876	856	831	793	725	690	653				
HB16	402	514	622	676	652	618	570	485	443	401				
HB17	355	459	559	599	574	530	472	368	320	267				
HB18	449	549	642	675	644	590	524	413	357	299				
HB19	714	810	896	924	878	821	753	649	590	526				
HB20	987	1,080	1,165	1,192	1,137	1,081	1,011	917	858	791				
HB21	1,325	1,418	1,500	1,525	1,462	1,406	1,336	1,250	1,188	1,119				
HB22	1,793	1,884	1,963	1,986	1,912	1,854	1,784	1,704	1,637	1,562				
HB23	2,268	2,356	2,436	2,456	2,374	2,318	2,247	2,177	2,109	2,032				

Figure 73: Long Island Transmission Security Margin Hourly Curve (1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria)

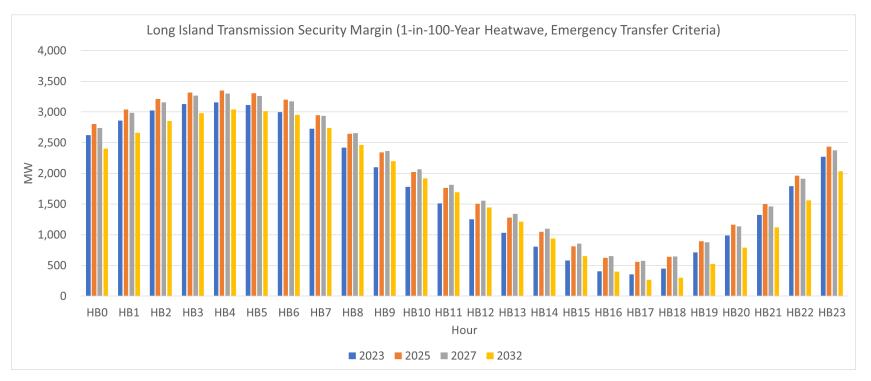


Figure 74: Impact of Generator Outages on Long Island Transmission Security Margin (Summer Peak -**Baseline Expected Weather, Normal Transfer Criteria)**

	Lon	g Island Transmission	Security N	/largin (MV	V)						
Ye		2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
Summer Peak - Baseline Expected	· ·										
Transmission Security Margin with G	• •										
0	,	478	571	659	694	672	633	581	531	481	430
Unit Name	Summer DMNC		•						generator		
Northport 1, 2, 3, and 4	1,567.9	(1,090)	(997)	(909)	(874)	(896)	(935)	(987)	(1,037)	(1,087)	(1,138)
Holtsville (all units)	529.9	(52)	41	129	164	142	103	51	1	(49)	(100)
Northport 2	398.2	80	173	261	296	273	234	183	132	83	32
Northport 3	397.0	81	174	262	297	275	236	184	134	84	33
Northport 1	394.7	83	177	264	300	277	238	186	136	86	35
Barrett ST 01 and ST 02	383.0	95	188	276	311	289	250	198	148	98	47
Northport 4	378.0	100	193	281	316	294	255	203	153	103	52
Port Jefferson 3 and 4	377.2	101	194	282	317	294	255	204	153	104	53
Caithness_CC_1	310.1	168	261	349	384	362	323	271	220	171	120
Barrett 03 through 12	231.6	246	340	427	463	440	401	349	299	249	198
Wading River 1, 2, and 3	224.5	253	347	434	470	447	408	357	306	256	205
Barrett ST 02	193.0	285	378	466	501	479	440	388	338	288	237
Barrett ST 01	190.0	288	381	469	504	482	443	391	341	291	240
Port Jefferson 4	188.7	289	383	470	506	483	444	392	342	292	241
Port Jefferson 3	188.5	289	383	470	506	483	444	393	342	292	241
Flynn	141.5	336	430	517	553	530	491	440	389	339	288
Glenwood GT 02, 04, and 05	126.3	352	445	532	568	545	506	455	404	355	304
Far Rockaway GT1 and GT 2	109.7	368	462	549	585	562	523	471	421	371	320
Freeport CT 1 and CT 2	85.2	393	486	574	609	586	547	496	445	396	345
Shoreham GT3 and GT 4	84.9	393	486	574	609	587	548	496	446	396	345
Pilgrim GT 1 and GT 2	84.5	393	487	574	610	587	548	497	446	396	345
Port Jefferson GT 02 and GT 03	80.7	397	491	578	614	591	552	500	450	400	349
Wading River 1	75.6	402	496	583	619	596	557	505	455	405	354
Wading River 3	74.9	403	496	584	619	597	558	506	456	406	355
Bethpage 3	74.8	403	497	584	619	597	558	506	456	406	355
Hempstead (RR)	74.2	404	497	585	620	597	558	507	456	407	356
Wading River 2	74.0	404	497	585	620	598	559	507	457	407	356
Pinelawn Power 1	72.2	406	499	587	622	599	560	509	458	409	358

Figure 75: Long Island Transmission Security Margin (Winter Peak - Baseline Expected Weather, Normal Transfer Criteria)

	Winter Peak - Baseline Expected Weather, Normal Transfer Criteria (MW)												
Line	Item	2023-24	2024-25	2025-26	2026-27	2027-28	2028-29	2029-30	2030-31	2031-32	2032-33		
Α	Zone K Load Forecast	(3,213)	(3,229)	(3,262)	(3,319)	(3,396)	(3,491)	(3,604)	(3,737)	(3,891)	(4,049)		
В	I+J to K (3), (4)	929	929	929	929	929	929	929	929	929	929		
С	New England Import (NNC)	0	0	0	0	0	0	0	0	0	0		
D	Total K AC Import (B+C)	929	929	929	929	929	929	929	929	929	929		
Е	Loss of Source Contingency	(660)	(660)	(660)	(660)	(660)	(660)	(660)	(660)	(660)	(660)		
F	Resource Need (A+D+E)	(2,944)	(2,960)	(2,993)	(3,050)	(3,127)	(3,222)	(3,335)	(3,468)	(3,622)	(3,780)		
G	K Generation (1)	5,559	5,559	5,559	5,559	5,559	5,559	5,559	5,559	5,559	5,559		
Н	K Generation Derates (2)	(637)	(637)	(637)	(637)	(637)	(637)	(637)	(637)	(637)	(637)		
1	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0	0		
J	Net ICAP External Imports	660	660	660	660	660	660	660	660	660	660		
K	Total Resources Available (G+H+I+J)	5,582	5,582	5,582	5,582	5,582	5,582	5,582	5,582	5,582	5,582		
L	Transmission Security Margin (F+K)	2,638	2,622	2,589	2,532	2,455	2,360	2,247	2,114	1,960	1,802		

^{1.} Reflects the 2022 Gold Book existing winter capacity plus projected additions and deactivations.

^{2.} Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2022 Gold Book Table I-9a) and solar PV peak reductions (2022 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

^{3.} Limits in 2022 and 2023 are based on limits from the summer peak 2023 representations evaluated in the post-2020 RNA updates. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2032 are based also based on the summer peak 2025 representations evaluated in the post-2020 RNA analysis which does not include the impact of CHPE.

^{4.} As a conservative winter peak assumption these limits utilize the summer values.

Figure 76: Long Island Transmission Security Margin (1-in-10-Year Cold Snap, Emergency Transfer Criteria)

Winter Peak - 1-in-10-Year Cold Snap, Emergency Transfer Criteria (MW)												
1	Item	2023-24	2024-25	2025-26	2026-27	2027-28	2028-29	2029-30	2030-31	2031-32	2032-33	
Α	Zone K Load Forecast	(3,378)	(3,395)	(3,430)	(3,490)	(3,571)	(3,671)	(3,789)	(3,929)	(4,091)	(4,257)	
В	I+J to K (5), (6)	887	887	887	887	887	887	887	887	887	887	
С	New England Import (NNC)	0	0	0	0	0	0	0	0	0	0	
D	Total K AC Import (B+C)	887	887	887	887	887	887	887	887	887	887	
Е	Loss of Source Contingency	0	0	0	0	0	0	0	0	0	0	
F	Resource Need (A+D+E)	(2,491)	(2,508)	(2,543)	(2,603)	(2,684)	(2,784)	(2,902)	(3,042)	(3,204)	(3,370)	
G	K Generation (1)	5,559	5,559	5,559	5,559	5,559	5,559	5,559	5,559	5,559	5,559	
Н	K Generation Derates (2)	(637)	(637)	(637)	(637)	(637)	(637)	(637)	(637)	(637)	(637)	
1	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0	0	
J	Net ICAP External Imports	660	660	660	660	660	660	660	660	660	660	
K	SCRs (3), (4)	12	12	12	12	12	12	12	12	12	12	
L	Total Resources Available (G+H+I+J+K)	5,594	5,594	5,594	5,594	5,594	5,594	5,594	5,594	5,594	5,594	
М	Transmission Security Margin (F+L)	3,103	3,086	3,051	2,991	2,910	2,810	2,692	2,552	2,390	2,224	

- 1. Reflects the 2022 Gold Book existing winter capacity plus projected additions and deactivations.
- 2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2022 Gold Book Table I-9a) and solar PV peak reductions (2022 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).
- 3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.
- 4. Includes a derate of 10 MW for SCRs.
- 5. Limits in 2022 and 2023 are based on limits from the summer peak 2023 representations evaluated in the post-2020 RNA updates. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2032 are based also based on the summer peak 2025 representations evaluated in the post-2020 RNA analysis which does not include the impact of CHPE.
- 6. As a conservative winter peak assumption these limits utilize the summer values.

Figure 77: Long Island Transmission Security Margin (1-in-100-year Extreme Cold Snap, Emergency Transfer Criteria)

Winter Peak - 1-in-100-Year Extreme Cold Snap, Emergency Transfer Criteria (MW)												
!	Item	2023-24	2024-25	2025-26	2026-27	2027-28	2028-29	2029-30	2030-31	2031-32	2032-33	
Α	Zone K Load Forecast	(3,552)	(3,570)	(3,607)	(3,670)	(3,755)	(3,860)	(3,985)	(4,132)	(4,302)	(4,477)	
В	I+J to K (5), (6)	887	887	887	887	887	887	887	887	887	887	
С	New England Import (NNC)	0	0	0	0	0	0	0	0	0	0	
D	Total K AC Import (B+C)	887	887	887	887	887	887	887	887	887	887	
Е	Loss of Source Contingency	0	0	0	0	0	0	0	0	0	0	
F	Resource Need (A+D+E)	(2,665)	(2,683)	(2,720)	(2,783)	(2,868)	(2,973)	(3,098)	(3,245)	(3,415)	(3,590)	
G	K Generation (1)	5,559	5,559	5,559	5,559	5,559	5,559	5,559	5,559	5,559	5,559	
Н	K Generation Derates (2)	(637)	(637)	(637)	(637)	(637)	(637)	(637)	(637)	(637)	(637)	
1	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0	0	
J	Net ICAP External Imports	660	660	660	660	660	660	660	660	660	660	
K	SCRs (3), (4)	12	12	12	12	12	12	12	12	12	12	
L	Total Resources Available (G+H+I+J+K)	5,594	5,594	5,594	5,594	5,594	5,594	5,594	5,594	5,594	5,594	
М	Transmission Security Margin (F+L)	2,929	2,911	2,874	2,811	2,726	2,621	2,496	2,349	2,179	2,004	

- 1. Reflects the 2022 Gold Book existing winter capacity plus projected additions and deactivations.
- 2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2022 Gold Book Table I-9a) and solar PV peak reductions (2022 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).
- 3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.
- 4. Includes a derate of 10 MW for SCRs.
- 5. Limits in 2022 and 2023 are based on limits from the summer peak 2023 representations evaluated in the post-2020 RNA updates. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2032 are based also based on the summer peak 2025 representations evaluated in the post-2020 RNA analysis which does not include the impact of CHPE.
- 6. As a conservative winter peak assumption these limits utilize the summer values.

Figure 78: Summary of Long Island Summer Transmission Security Margin - Summer

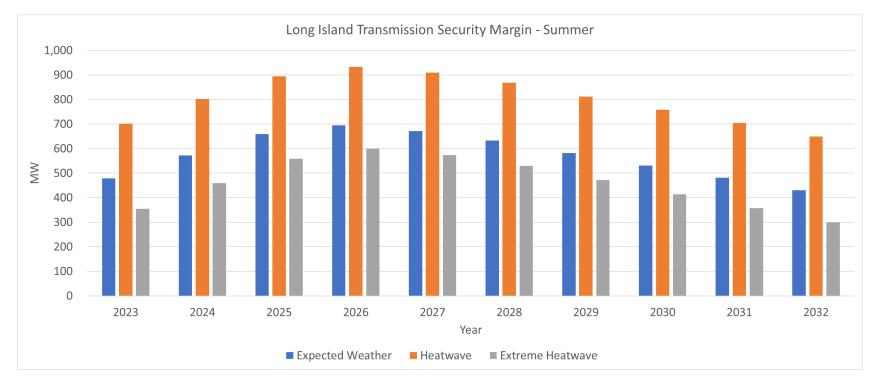


Figure 79: Summary of Long Island Summer Transmission Security Margin - Winter

Load Shape Details for Transmission Security Margins

As part of the 2022 Gold Book, representative load shapes for the NYCA summer high load day were produced.³² For the transmission security margin analysis, the shapes are adjusted to match the Gold Book coincident peak forecasts. These shapes reflect the current observed base load shape, using the average load shape of high load days from recent summers. The shapes also incorporate the evolving and increasing impacts of BtM-PV, electric vehicle charging, and building electrification on summer hourly loads. For the statewide coincident summer peak, the peak during the 5 pm hour for summers 2023 through 2026. However, due to the impacts of increasing BtM-PV and increased electric vehicle charging in the late afternoon and evening hours, the peak is expected to shift to the 6 pm hour from 2027 through 2032.

The contribution of the hourly shapes from Zones A-F, GHI, J, and K as a fraction of the overall NYCA shape are calculated from the same sample of historical summer high load days used to calculate the NYCA shape. For the localities, the BtM-PV, electric vehicle, and electrification shape impacts for each locality are based on their share of the expected penetration for each technology. Similar processes were utilized to create the 1-in-10-year heatwave and 1-in-100-year extreme heatwave shapes.

As seen in **Figure 80**, the load shapes show a changing peak hour in Zones A-F, GHI, J, and K from 2023 through the 10-year horizon in 2032. For instance, the peak hour in A-F changes from HB17 in 2023 which is the same as the 2023 NYCA peak hour to HB19 in 2032 which is one hour after the NYCA peaks. In reality, zones will often peak on different hour during the same high summer load day, not fully coincident with the NYCA peak hour itself.

³²The 2022 Long-Term Forecast Load Shape Projections are available <u>here</u>.

Figure 80: NYCA Baseline Expected Weather Summer Peak Load shape

	A-F		G	HI				(NYCA		
	2023	2032	2023	2032	2023	2032	2023	2032	2023	2032	
HB0	8,846	9,012	2,685	2,928	7,894	8,699	2,880	3,093	22,305	23,732	
HB1	8,505	8,591	2,515	2,725	7,537	8,288	2,669	2,856	21,226	22,460	
HB2	8,260	8,283	2,395	2,573	7,275	7,989	2,518	2,683	20,448	21,528	
HB3	8,151	8,107	2,312	2,462	7,126	7,808	2,427	2,571	20,016	20,948	
HB4	8,180	8,051	2,284	2,394	7,115	7,754	2,406	2,519	19,985	20,718	
HB5	8,400	8,147	2,333	2,414	7,316	7,969	2,451	2,551	20,500	21,081	
HB6	8,738	8,130	2,445	2,463	7,792	8,427	2,556	2,602	21,531	21,622	
HB7	9,188	8,100	2,640	2,587	8,462	9,024	2,818	2,785	23,108	22,496	
HB8	9,567	8,115	2,832	2,749	9,080	9,647	3,131	3,055	24,610	23,566	
HB9	9,905	8,102	3,024	2,895	9,572	10,126	3,447	3,319	25,948	24,442	
HB10	10,240	8,114	3,233	3,054	9,966	10,490	3,779	3,599	27,218	25,257	
HB11	10,549	8,172	3,436	3,205	10,246	10,718	4,091	3,861	28,322	25,956	
HB12	10,860	8,375	3,631	3,376	10,462	10,886	4,352	4,097	29,305	26,734	
HB13	11,191	8,753	3,809	3,558	10,623	11,028	4,548	4,297	30,171	27,636	
HB14	11,401	9,251	3,955	3,754	10,691	11,127	4,696	4,499	30,743	28,631	
HB15	11,604	9,822	4,069	3,940	10,782	11,274	4,831	4,704	31,286	29,740	
HB16	11,885	10,501	4,173	4,118	10,915	11,456	4,947	4,894	31,920	30,969	
HB17	12,006	11,129	4,208	4,256	10,853	11,508	4,951	5,003	32,018	31,896	
HB18	11,963	11,472	4,173	4,294	10,733	11,441	4,887	5,007	31,756	32,214	
HB19	11,853	11,632	4,060	4,229	10,543	11,295	4,711	4,875	31,167	32,031	
HB20	11,679	11,548	3,943	4,124	10,314	11,084	4,513	4,689	30,449	31,445	
HB21	11,305	11,236	3,752	3,939	10,062	10,817	4,253	4,426	29,372	30,418	
HB22	10,561	10,621	3,455	3,676	9,627	10,407	3,869	4,066	27,512	28,770	
HB23	9,802	9,949	3,158	3,396	9,070	9,846	3,476	3,679	25,506	26,870	

Figure 81 shows the load shapes for the baseline expected weather summer peak conditions.

The statewide behavior can be broken down further into groups of zones. Figure 82 shows the Zones A-F component of the NYCA baseline expected weather forecast for the summer peak day. As seen in Figure 82, over each year with increased penetrations of BtM-PV, the load continues to flatten in the zones in the early morning hours and shifts the peak to later in the day.³³ **Figure 83** shows the Zones G-I component of the NYCA baseline expected weather forecast for the summer peak day. As seen in **Figure 83**, the increased BtM-PV results a slight flattening of the load and shifting of the peak hour is still observed.³⁴ Figure 84 shows the Zone J component of the NYCA baseline expected weather forecast for the summer peak day. As seen in Figure 84, the BtM-PV

³³From Table I-9a in the 2022 Load and Capacity Data report, in 2023 Zones A-F has 3,068 MW (nameplate) of the 5,152 MW of BtM-PV (nameplate) statewide (approximately 60% of the statewide BtM-PV). In 2032, the forecast for BtM-PV in Zones A-F more than doubles to 6,768 MW (nameplate) of the 10,484 MW (nameplate) of the BtM-PV statewide (approximately 65% of the statewide BtM-PV).

³⁴In 2023, Zones G-I has 762 MW (nameplate) of the 5,152 MW (nameplate) of BtM-PV statewide (approximately 15% of the statewide BtM-PV). In 2032, the forecast for BtM-PV in Zones G-I increases by about 80% to 1,366 MW (nameplate) (approximately 13% of the statewide BtM-PV).

primarily reduces the load from year to year but has negligible impact on the shifting of the peak hour.³⁵ Figure 85 shows the Zone K component of the NYCA baseline expected weather forecast for the summer peak day. As seen in Figure 85, BtM-PV does have some impact on the Zone K shape over time. 36 Similar curves were developed for the heatwave (Figure 86 through Figure 90) and extreme heatwave conditions (Figure 91 through Figure 95).

35In 2023, Zone J has 401 MW (nameplate) of the 5,152 MW of BtM-PV (nameplate) statewide (approximately 8% of the statewide BtM-PV). In 2032, the forecast for BtM-PV in Zone J nearly doubles to 793 MW (nameplate) (approximately 8% of the statewide BtM-PV in Zone J).

³⁶In 2023, Zone K has 921 MW (nameplate) of the 5,152 MW of BtM-PV (nameplate) statewide (approximately 18% of the statewide BtM-PV). In 2032, the forecast for BtM-PV in Zone K increases by approximately 70% to 1,557 MW (nameplate) (approximately 15% of the statewide BtM-PV in Zone K).

Figure 81: NYCA Baseline Expected Weather Summer Peak Load shape

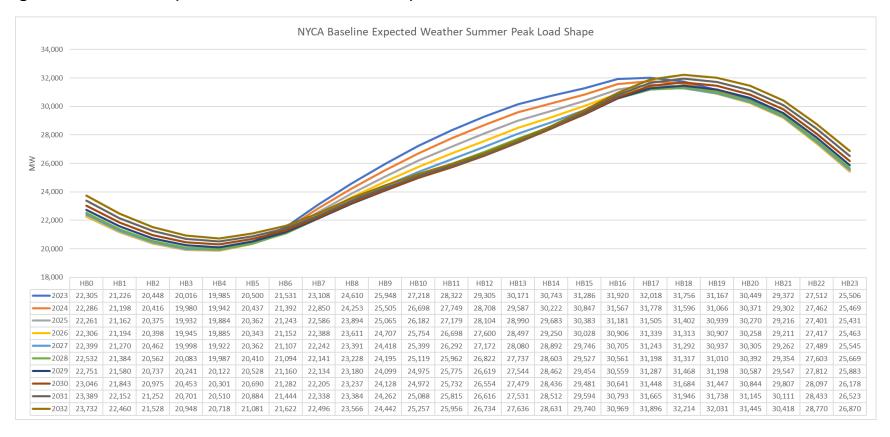


Figure 82: Zones A-F Component of NYCA Baseline Expected Weather Summer Peak Load shape

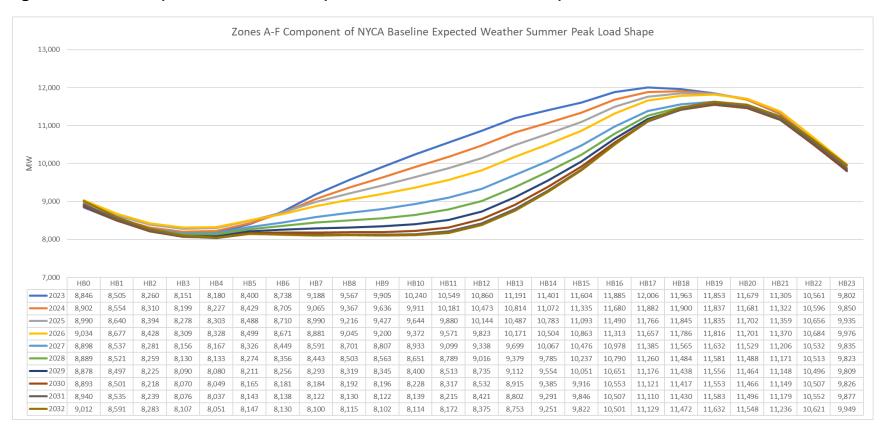


Figure 83: Zones GHI Component of NYCA Baseline Expected Weather Summer Peak Load shape

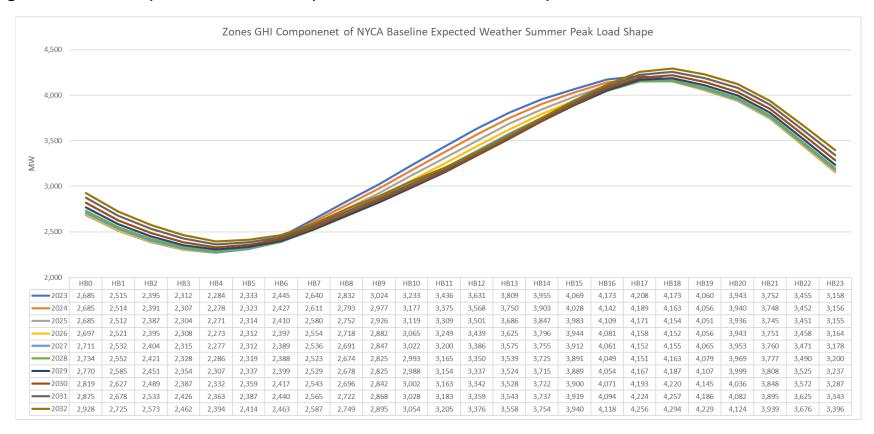
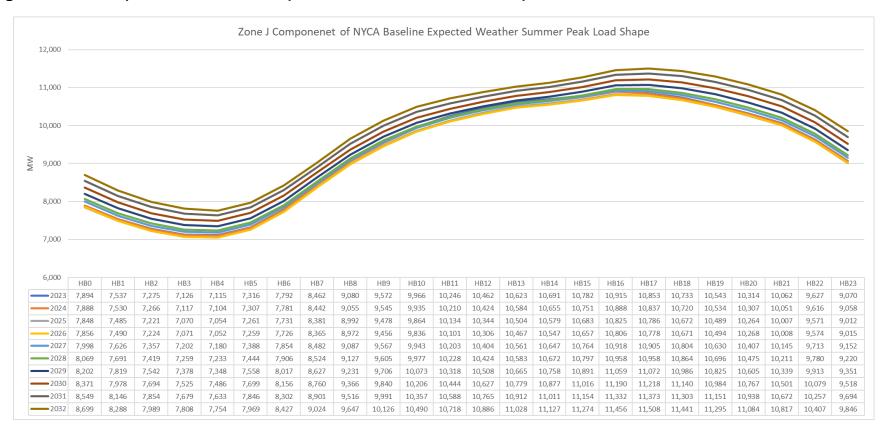



Figure 84: Zone J Component of NYCA Baseline Expected Weather Summer Peak Load shape



Figure 85: Zone K Component of NYCA Baseline Expected Weather Summer Peak Load shape

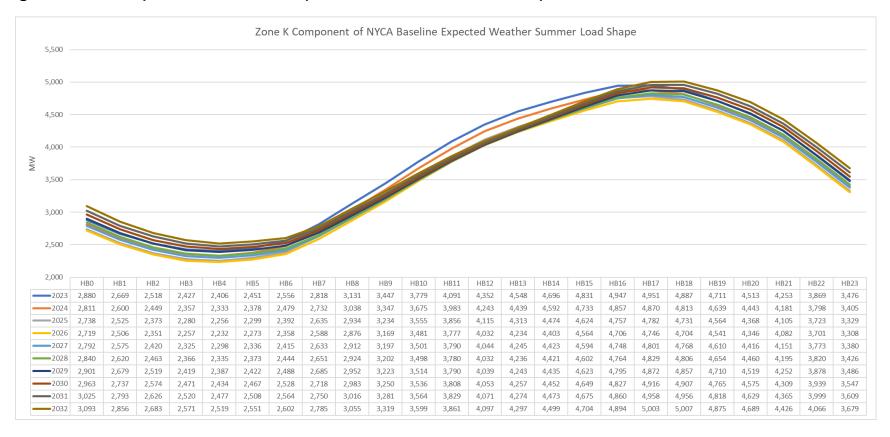


Figure 86: NYCA Heatwave Load shape

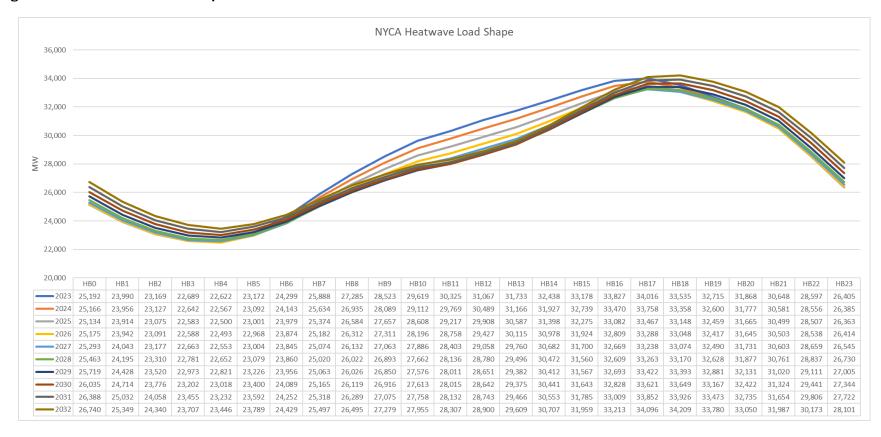


Figure 87: Zones A-F Component of NYCA Heatwave Load shape

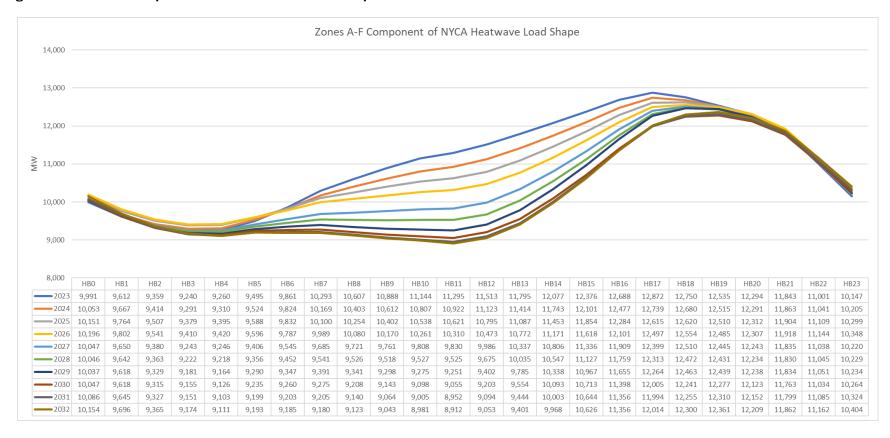
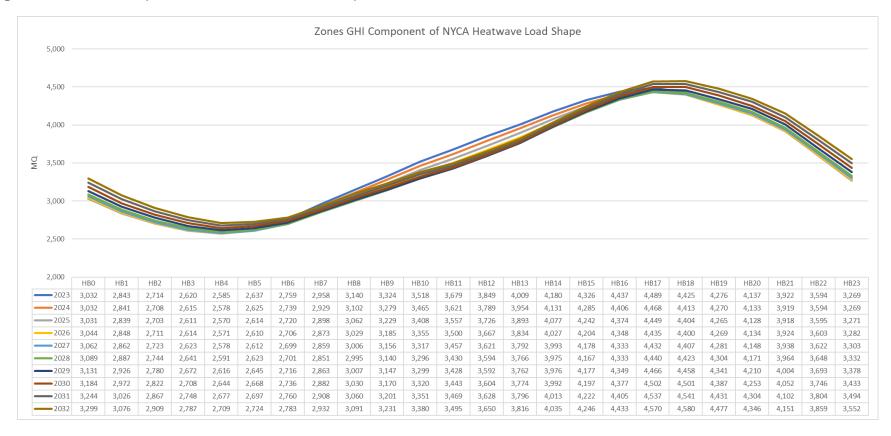



Figure 88: Zones GHI Component of NYCA Heatwave Load shape



Figure 89: Zone J Component of NYCA Heatwave Load shape

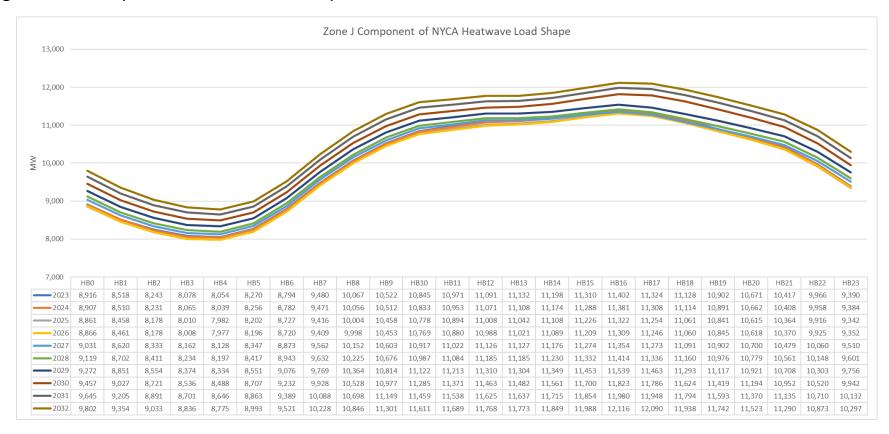


Figure 90: Zone K Component of NYCA Heatwave Load shape

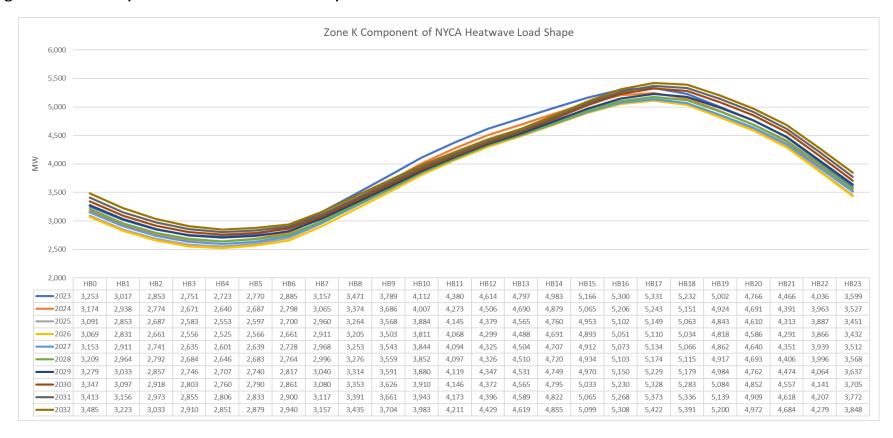


Figure 91: NYCA Extreme Heatwave Load shape

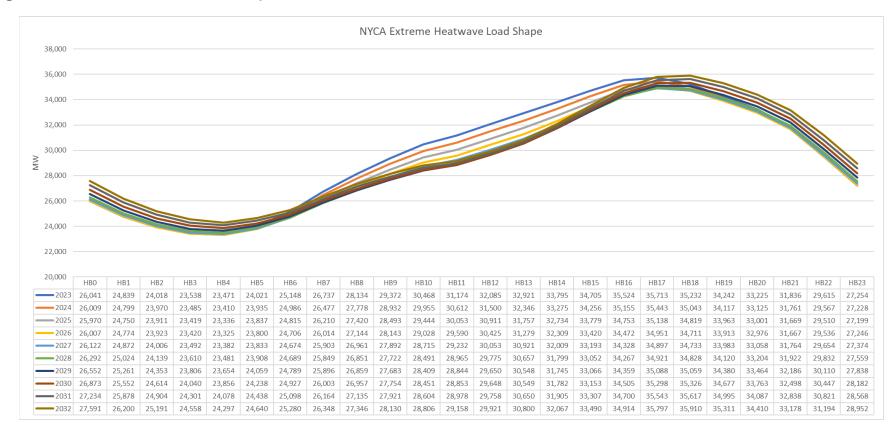


Figure 92: Zones A-F Component of NYCA Extreme Heatwave Load shape

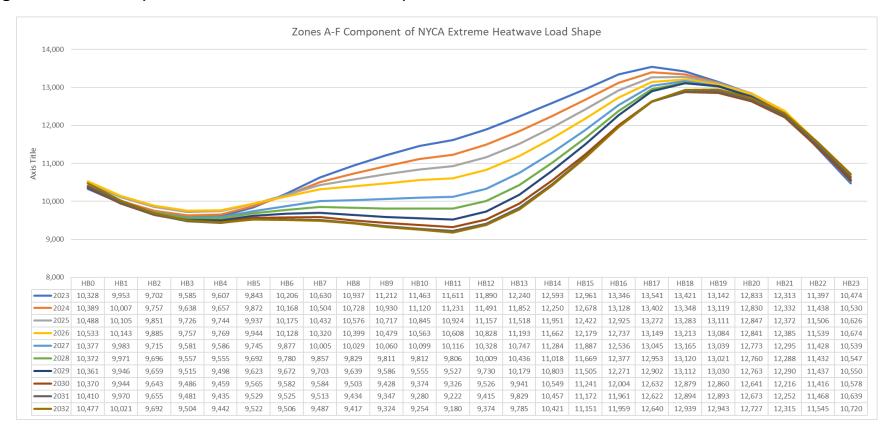


Figure 93: Zones GHI Component of NYCA Extreme Heatwave Load shape

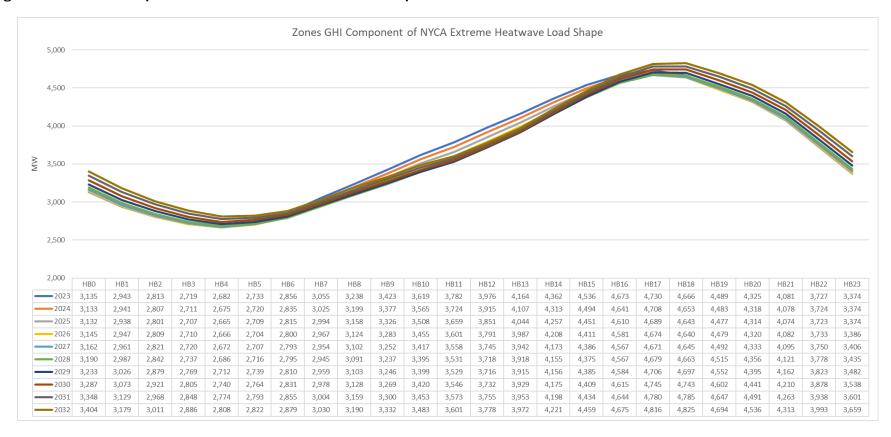


Figure 94: Zone J Component of NYCA Extreme Heatwave Load shape

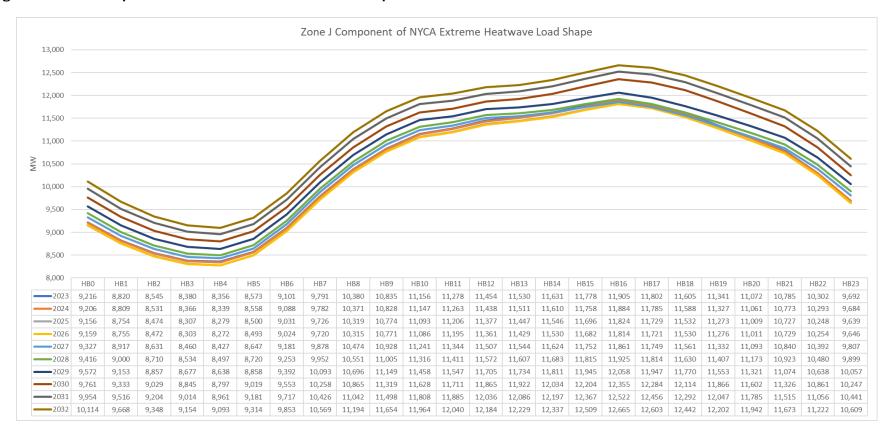


Figure 95: Zone K Component of NYCA Extreme Heatwave Load shape

