

Short-Term Assessment of Reliability: 2025 Quarter 4

A Report by the
New York Independent System Operator

January 13, 2026

Table of Contents

EXECUTIVE SUMMARY	4
New York City Generator Deactivation Reliability Need	5
Long Island Generator Deactivation Reliability Needs.....	7
Reliability Assessment	9
PURPOSE.....	10
ASSUMPTIONS.....	10
Generation Assumptions	11
Generator Deactivation Notices.....	11
Peaker Rule: Ozone Season Oxides of Nitrogen (NOx) Emission Limits for Simple Cycle and Regenerative Combustion Turbines.....	12
Generator Return-to-Service	14
Generator Additions.....	14
Additional Generation Updates.....	14
Demand Assumptions	14
Transmission Assumptions.....	18
Existing Transmission	18
Proposed Transmission	18
FINDINGS.....	19
Resource Adequacy Assessments	19
Transmission Security Assessments.....	19
Steady State Assessment.....	21
Dynamics Assessment.....	22
Short Circuit Assessment	22
Transmission Security Margin Assessment.....	23
New York City Transmission Security Margin	24
Long Island Transmission Security Margin.....	30
SOLUTIONS TO PREVIOUSLY IDENTIFIED SHORT-TERM RELIABILITY NEEDS	36
LOCAL NON-BPTF RELIABILITY ASSESSMENT.....	37
National Grid Non-BPTF Generator Deactivation Assessment.....	37
CONCLUSIONS AND DETERMINATION	38
APPENDIX A: LIST OF SHORT-TERM RELIABILITY NEEDS.....	39
New York City Generator Deactivation Reliability Needs.....	39
Long Island Generator Deactivation Reliability Needs	40

APPENDIX B: SHORT-TERM RELIABILITY PROCESS SOLUTION LIST	41
APPENDIX C: SUMMARY OF STUDY ASSUMPTIONS.....	42
Generation Assumptions	42
Demand Assumptions	46
Transmission Assumptions.....	48
APPENDIX D: RESOURCE ADEQUACY ASSUMPTIONS.....	51
2025 Q4 STAR MARS Assumptions Matrix.....	51
APPENDIX E: TRANSMISSION SECURITY MARGIN ASSESSMENT.....	58
Introduction	58
Statewide System Margin	59
Lower Hudson Valley (Zones G-J)	66
New York City (Zone J).....	71
Long Island (Zone K)	76
APPENDIX F – ADDITIONAL OUTAGE IMPACTS TO MARGINS.....	81

Executive Summary

This report sets forth the 2025 Quarter 4 Short-Term Assessment of Reliability (“STAR”) findings for the five-year study period of October 15, 2025, through October 15, 2030, considering forecasts of peak power demand, planned upgrades to the transmission system, and changes to the generation mix over the next five years. The deactivation of Dahowa Hydro as an Initiating Generator¹ is evaluated in this STAR. There are no new needs identified associated with the ICAP Ineligible Forced Outage (IIFO) of Dahowa Hydro or other system changes included in this STAR.

This STAR observes no changes to the scope, scale, or nature of the Generator Deactivation Reliability Needs in New York City and Long Island included in the solution solicitation issued by the NYISO on November 10, 2025, following the 2025 Quarter 3 STAR. On January 9, 2026, the NYISO received the proposed solutions to these needs and is in the process of assessing the proposals. The NYISO will evaluate the proposed solutions and issue a Short-Term Reliability Process Report indicating the NYISO’s selection of a solution or combination of solutions, along with a reasoned explanation regarding why particular generation and/or transmission solutions were selected. If proposed solutions, either individually or in combination, are not viable or sufficient to meet the identified needs, interim solutions must be in place to keep the grid reliable. The NYISO’s solution selection process is designed to ensure that executing a Reliability Must Run (RMR) Agreement with generators is a last resort to addressing a reliability need.

The risk of deficiencies beyond the needs previously identified is even greater when considering a range of plausible futures with combined risks. Aging thermal plants, volatile demand driven by electrification and large industrial loads, and the potential for delays in major renewable and transmission projects all contribute to a more complex and less predictable operating environment. The NYISO continues to monitor the status of the planned Empire Wind and Sunrise Wind offshore wind projects, considering the December 22, 2025, orders by the Bureau of Ocean and Energy Management (BOEM) to suspend all ongoing activities.² The 2025-2034 Comprehensive Reliability Plan, issued in November 2025, provides further information regarding reliability risks over the next ten years.³

¹ Per OATT 38.1, an “Initiating Generator” is “a Generator with a nameplate rating that exceeds 1 MW that submits a Generator Deactivation Notice for purposes of becoming Retired or entering into a Mothball Outage or that has entered into an ICAP Ineligible Forced Outage pursuant to Section 5.18.2.1 of the ISO Services Tariff, which action is being evaluated by the ISO in accordance with its Short-Term Reliability Process requirements in this Section 38 of the ISO OATT.”

² The BOEM suspension of ongoing activities at Empire 1 can be found [here](#) and Sunrise Wind [here](#).

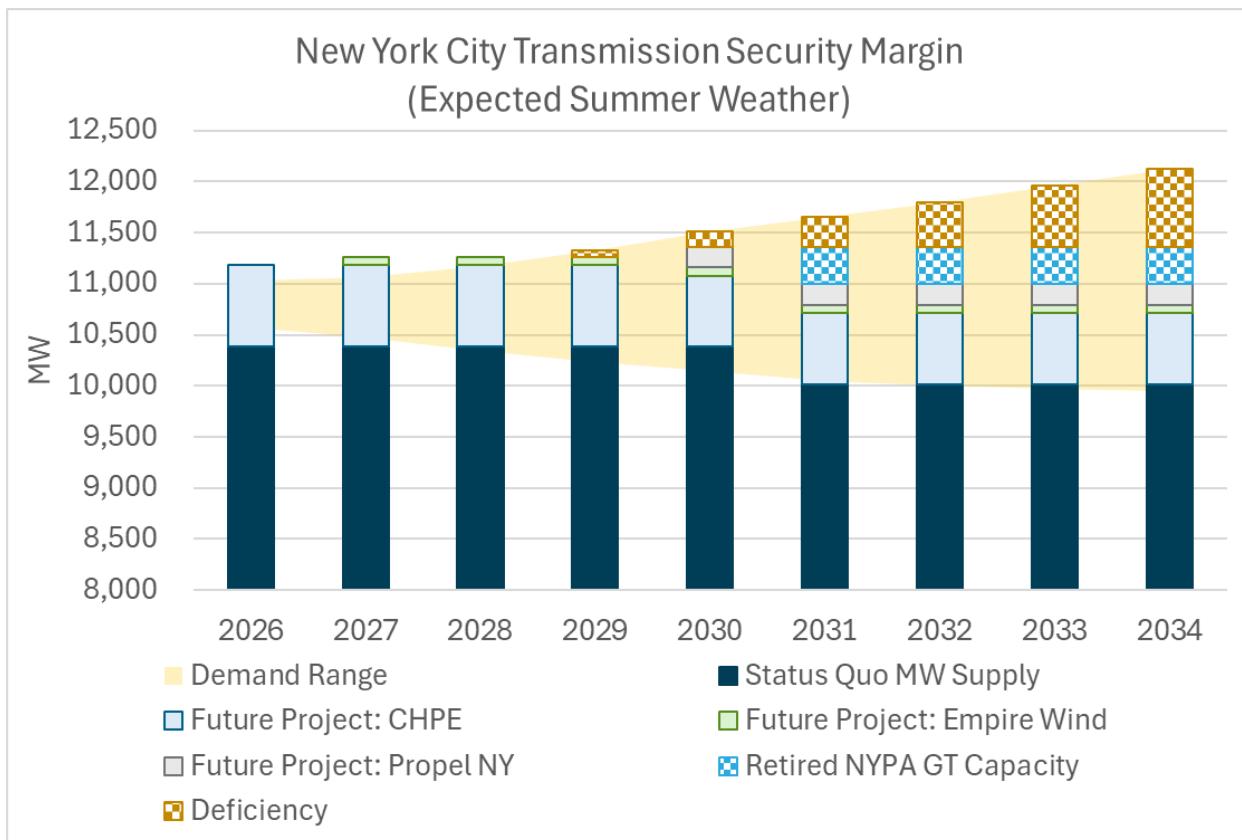
³ 2025-2034 Comprehensive Reliability Plan ([here](#))

New York City Generator Deactivation Reliability Need

This STAR continues to observe the BPTF deficiency identified in the 2025 Quarter 3 STAR in New York City. There are no changes to the scope, scale, or nature of the need that the 2025 Quarter 3 STAR identified in New York City and for which the NYISO solicited solutions on November 10, 2025.

The Generator Deactivation Reliability Need in Zone J is on the BPTF and is driven by the deactivation of Gowanus and Narrows Generators (672 MW nameplate total) in combination with other factors, such as: the range in the demand forecasts based on expected weather, expected generator availability, transmission limitations, and risks associated with the availability of key future planned projects (hereinafter, “New York City BPTF Need”). The scope of the New York City BPTF Need as specified in the November 10, 2025 solution solicitation is shown in the table below.

New York City BPTF Need Included in Solicitation


Summer Peak	2026	2027	2028	2029	2030
MW Deficiency	650	680	790	950	1,130
Duration (hours)	8	9	11	13	13
MWh	3,569	3,782	6,658	8,794	10,922

Once CHPE, Empire Wind, and Propel NY Public Policy Transmission Project enter service and demonstrate their planned power capabilities, the margins within Zone J are expected to improve substantially, but the margins gradually erode thereafter as expected demand for electricity grows. As detailed in the 2025 Quarter 3 STAR and the solution solicitation, even assuming these future planned projects enter service according to their schedules and demonstrate their planned power capabilities and assuming no other generators become unavailable, Zone J would still have observed needs during the summer peak periods of 2029 and 2030 (68 MW in 2029 and 148 MW in 2030). While these planned projects are advancing in their development, the completion is subject to inherent risks commonly observed among large infrastructure projects that may impact timely completion and energization. Figure 1 provides a summary of the factors affecting the New York City bulk power transmission security margin and illustrates the range of potential deficiency until system plans are completed and demonstrate their planned power capabilities to address the identified reliability needs.

The Lower Hudson Valley also has a deficiency of 195 MW over 3 hours (729 MWh) in summer 2030. As described in the 2025 Quarter 3 STAR, the Lower Hudson Valley deficiency is primarily an

exacerbation of the New York City BPTF Need and is also impacted by the BPTF Generator Deactivation Reliability Need identified in Zone K. Accordingly, the NYISO did not separately seek solutions to address the deficiency for the Lower Hudson Valley beyond the solutions for the identified needs in Zones J and K. If there remains a deficiency in the Lower Hudson Valley following evaluation of proposed solutions to address the needs in Zones J and K, the NYISO would address it through the Reliability Planning Process.

Figure 1: Factors Affecting New York City Transmission Security Margin

Long Island Generator Deactivation Reliability Needs

This STAR continues to observe the Generator Deactivation Reliability Needs in the Long Island locality but with changes to scope of the BPTF need as detailed in the solution solicitation issued by the NYISO on November 10, 2025. Specifically, following the publication of the 2025 Quarter 3 STAR, the NYISO received updates to key assumptions in Zone K, which impacted the observed Long Island BPTF Need. Notably, certain large load projects in Zone K, which were included in the expected weather forecast in the Gold Book, have been removed from the model based on updates received from LIPA.⁴ The impact of these demand updates on the Long Island BPTF deficiencies was incorporated in the solution solicitation issued on November 10, 2025.

The scope of the Generator Deactivation Reliability Needs in Long Island that the NYISO solicited solutions to address are shown in the tables below. The Long Island BPTF need is primarily driven by the deactivation of Pinelawn (82 MW nameplate) and the Far Rockaway GTs (121 MW nameplate total), while the Long Island Non-BPTF need is driven by the deactivation of the Far Rockaway GTs. The Interim Service Provider (ISP) rate for the Pinelawn and Far Rockaway GTs became effective December 25, 2025.

Long Island BPTF Need Included in Solicitation

Summer Peak	2026	2027	2028	2029	2030
MW Deficiency	None	111	111	136	189
Duration	None	3	3	3	3
MWh	None	156	363	407	557

Long Island Non-BPTF Need (Far Rockaway Load Pocket) Included in Solicitation

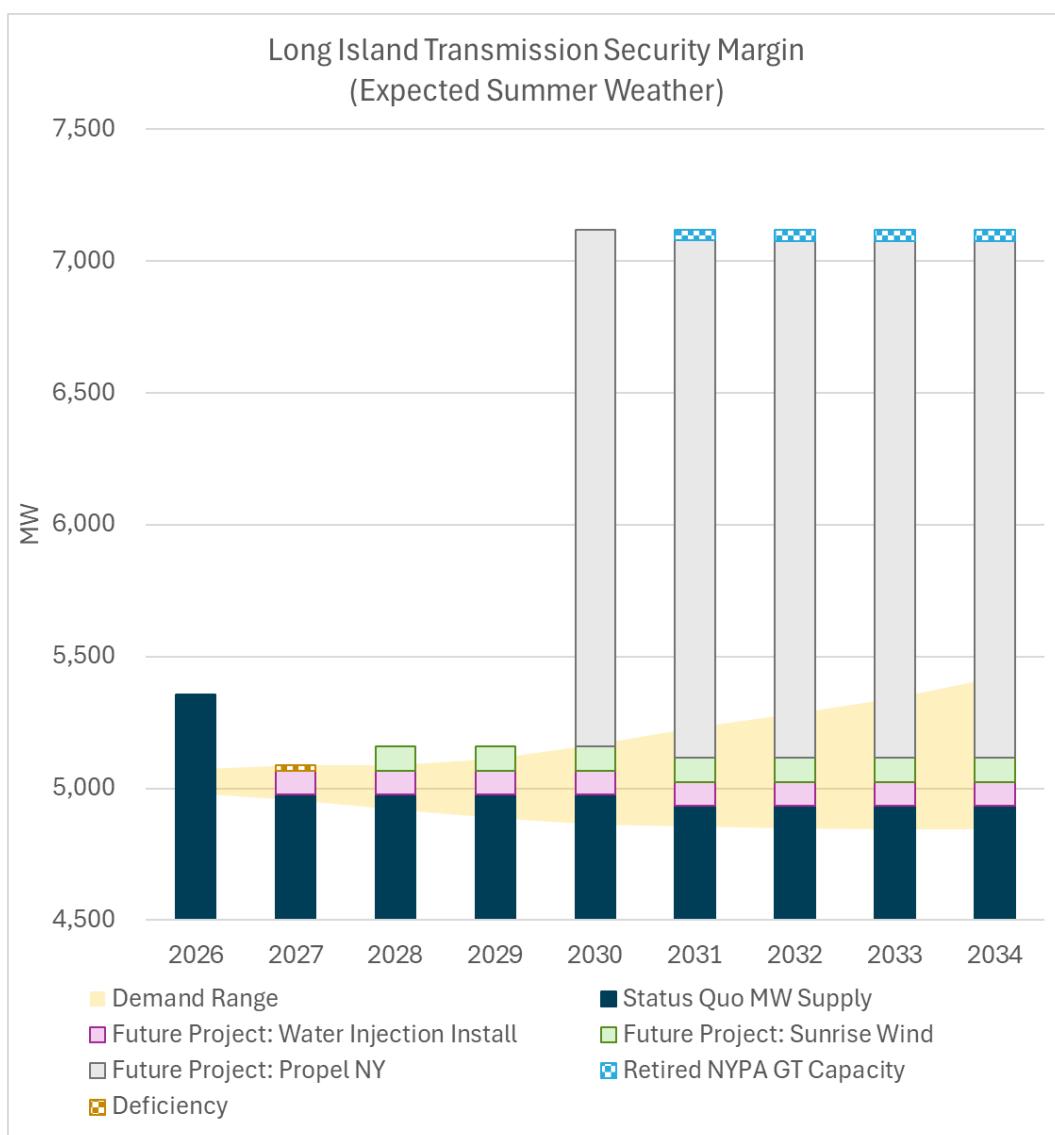

Summer Peak	2026	2027	2028	2029	2030
MW Deficiency	61	68	74	80	72
Duration	13	14	15	15	14
MWh	505	658	736	813	649

Figure 2 provides a summary of the factors affecting the Long Island bulk power transmission security margin and illustrates the range of a potential deficiency until system plans are completed

⁴ Several potential changes to the assumptions for Zone K and their impact to the observed BPTF Generator Deactivation Reliability Need were discussed with NYISO stakeholders at the November 7, 2025 ESPWG/TPAS, which presentation is posted on the NYISO's website (here).

and demonstrate their planned power capabilities to address the identified reliability needs. For instance, the recently updated DEC Peaker Rule compliance plans to install water injection at several Zone K generators planned to be in service by May 2027 shows improvement to the margins, but the margin is still deficient by 21 MW. Once Sunrise Wind (880 MW nameplate, planned in service date July 2027) is delivering power at the planned power capability, the BPTF margins continue to improve in summer 2028, followed by dramatic improvement in 2030 with the planned energization of the Propel NY project in May 2030. The BPTF margins remain positive throughout the remainder of the planning horizon. However, the Long Island BPTF Need would still be observed in summer 2027. The planned projects have negligible impact on the Long Island Non-BPTF Need.

Figure 2 : Factors Affecting Long Island Transmission Security Margin

Reliability Assessment

Included in this STAR is the generator deactivation assessment for the IIFO of Dahowa Hydro. The NYISO performed a transmission security assessment of the BPTF and identified no new reliability need during the STAR study period. National Grid performed a deactivation assessment to evaluate the reliability of the local non-BPTF system with the Dahowa Hydro IIFO. No generator deactivation reliability needs were identified by the NYISO or National Grid in this STAR.

In this STAR, the NYISO performed an assessment of the Bulk Power Transmission Facilities (“BPTF”) and identified no new reliability needs or changes to the scope, scale, or nature of the Generator Deactivation Reliability Needs in New York City and Long Island solicited for following the 2025 Quarter 3 STAR.

The wholesale electricity markets administered by the NYISO are an important tool to help mitigate reliability risks. The markets are designed, and continue to evolve and adapt, to send appropriate price signals for new market entry and the retention of resources that assist in maintaining reliability. The potential risks and resource needs identified in the NYISO’s analyses may be resolved by new capacity resources coming into service, construction of additional transmission facilities, and/or increased energy efficiency and integration of demand-side resources. The NYISO is tracking the progression of many projects that may contribute to grid reliability that have not yet met the inclusion rules for reliability assessments. The NYISO will continue to monitor these resources and other developments to determine whether changing system resources and conditions could impact the reliability of the New York bulk electric grid. Specifically, through the quarterly STAR reports, the NYISO will continue to reassess if the identified reliability needs persist as planned projects are energized and demonstrate their capabilities.

Purpose

The NYISO's Short-Term Reliability Process ("STRP") with its requirements prescribed in Attachments Y and FF of the NYISO's Open Access Transmission Tariff ("OATT") evaluates the first five years of the planning horizon, with a focus on needs arising in the first three years of the study period. With this process in place, the biennial Reliability Planning Process focuses on identifying and resolving longer-term needs through the Reliability Needs Assessment ("RNA") and the Comprehensive Reliability Plan ("CRP").

The first step in the STRP is the Short-Term Assessment of Reliability ("STAR"). STARs are performed quarterly to proactively address reliability needs that may arise within five years ("Short-Term Reliability Process Needs")⁵ due to various changes to the grid, such as generator deactivations, revised generator/transmission plans, and updated demand forecasts. Transmission Owners also assess the impact of generator deactivations on their non-BPTF systems. A Short-Term Reliability Process Need that is observed within the first three years of the study period constitutes a "Near-Term Reliability Need."⁶ Should a Near-Term Reliability Need be identified in a STAR, the NYISO solicits and selects the solution to address the need. If a need arises beyond the first three years of the study period, the NYISO may choose to address the need within the STRP or, if time permits, through the long-term Reliability Planning Process.

This STAR report sets forth the 2025 Quarter 4 findings for the study period from the STAR Start Date (October 15, 2025) through October 15, 2030. The NYISO assessed the potential reliability impacts to the BPTF considering system changes, including the availability of resources and the status of generator/transmission plans in accordance with the NYISO Reliability Planning Process Manual.⁷

Assumptions

The NYISO evaluated the study period using the most recent Reliability Planning Process assumptions and data available as of October 14, 2025 (*i.e.*, the day before the October 15, 2025 Q4 STAR start date). In accordance with the Reliability Planning Process inclusion rules,⁸ generation and transmission projects are included if they have met significant milestones such that there is a

⁵ OATT Section 38.1 contains the tariff definition of a "Short-Term Reliability Process Need."

⁶ OATT Section 38.1 contains the tariff definition of a "Near-Term Reliability Need." See also, OATT Section 38.3.6.

⁷ NYISO Reliability Planning Process Manual, July 11, 2022. See: https://www.nyiso.com/documents/20142/2924447/rpp_mnl.pdf

⁸ See NYISO Reliability Planning Process Manual Section 3.

reasonable expectation of timely completion of the project. A summary of key projects is provided in Appendix C.

This assessment used the major assumptions included in the 2024 RNA, along with several updates to key study assumptions that are provided below. Consistent with the obligations under its tariffs, the NYISO provided information to stakeholders on the modeling assumptions employed in this assessment. Details regarding the study assumptions were reviewed with stakeholders at the joint Electric System Planning Working Group (“ESPGW”)/Transmission Planning Advisory Subcommittee (“TPAS”) meeting on November 7, 2025. The meeting materials are posted on the NYISO’s website.⁹

Generation Assumptions

Study assumptions of generators for this STAR are derived from the 2024 RNA, except for the changes to generation assumptions specified below.

Generator Deactivation Notices

For this STAR, the deactivating generators included in this assessment are listed in Figure 3. A list of all generator deactivations, including those evaluated in prior STARS, is provided in Appendix C. Generator deactivation notices for retirement, mothball outage, or ICAP ineligible forced outage are available on the NYISO’s website under the Short-Term Reliability Process.¹⁰

Figure 3: 2025 Quarter 4 STAR Generator Deactivations

Owner/ Operator	Plant Name	PTID	Zone	Nameplate (MW)	Status	Proposed Deactivation/IIFO Date
Relevate ReDev Borrower II LLC	Dahowa Hydroelectric	323763	F	12.3	IIFO	9/1/2025

⁹ Short-Term Assessment of Reliability: 2025 Q4 Key Study Assumptions, ESPWG/TPAS, November 7, 2025 ([here](#))

¹⁰ See <https://www.nyiso.com/short-term-reliability-process> then Generator Deactivation Notices/Planned Retirement Notices or Generator Deactivation Notices/IIFO Notifications.

Peaker Rule: Ozone Season Oxides of Nitrogen (NOx) Emission Limits for Simple Cycle and Regenerative Combustion**Turbines**

In 2019, the New York State Department of Environmental Conservation (“DEC”) adopted a regulation to limit nitrogen oxides (NOx) emissions from simple-cycle combustion turbines (referred to as the “Peaker Rule”).¹¹ Since May 2023, over 1,600 MW of peaker units have deactivated or limited their operations. A list of peaker generators that were expected to be unavailable in the summer ozone season by May 1, 2025 is provided in Figure 4.

The DEC regulations include a provision to allow an affected generator to continue to operate for up to two years, with a possible further two-year extension, after the compliance deadline if the generator is designated by the NYISO or by the local transmission owner as needed to resolve a reliability need until a permanent solution is in place. Consistent with the DEC’s regulations and detailed in the Short-Term Reliability Process report it issued on November 20, 2023, the NYISO has designated the Gowanus 2 & 3 and Narrows 1 & 2 generators (32 units total) to temporarily continue operation beyond May 2025 until permanent solutions are in place, for an initial period of up to two years (until May 1, 2027).

¹¹ DEC Peaker Rule, 6 N.Y.C.R.R. Part 227-3 (available [here](#)).

Figure 4: Status Changes Due to DEC Peaker Rule

Owner/Operator	Station	Zone	Nameplate (MW)	CRIS (MW) (1)		Capability (MW) (1)		Status Change Date (2)	STAR Evaluation
				Summer	Winter	Summer	Winter		
National Grid	West Babylon 4 (6)(7)	K	52.4	49.0	64.0	41.2	63.4	12/12/2020 (R)	Other
National Grid	Glenwood GT 01 (4)(7)	K	16.0	14.6	19.1	13.0	15.3	02/28/2021 (R)	2020 Q3
Helix Ravenswood, LLC	Ravenswood 11 (12)	J	25.0	20.2	25.7	16.1	22.4	12/1/2021 (IIFO)	2022 Q1/2023 Q3
Helix Ravenswood, LLC	Ravenswood 01 (12)	J	18.6	8.8	11.5	7.7	11.1	1/1/2022 (IIFO)	2022 Q1/2023 Q3
Astoria Generating Company L.P.	Gowanus 1-1 through 1-8	J	160.0	138.7	181.1	133.1	182.2	11/1/2022 (R)	2022 Q2
Astoria Generating Company L.P.	Gowanus 4-1 through 4-8	J	160.0	140.1	182.9	138.8	183.4	11/1/2022 (R)	2022 Q2
Consolidated Edison Co. of NY, Inc.	Hudson Ave 3	J	16.3	16.0	20.9	12.3	15.6	11/1/2022 (R)	2022 Q2
Consolidated Edison Co. of NY, Inc.	Hudson Ave 5	J	16.3	15.1	19.7	15.3	18.6	11/1/2022 (R)	2022 Q2
Central Hudson Gas & Elec. Corp.	Coxsackie GT (8)	G	21.6	21.6	26.0	19.7	25.2	05/01/2023	2024 Q1
Central Hudson Gas & Elec. Corp.	South Cairo	G	21.6	19.8	25.9	18.7	23.1	5/1/2023 (R)	2023 Q4
Consolidated Edison Co. of NY, Inc.	74 St. GT 1 & 2 (10)	J	37.0	39.1	49.2	37.8	43.6	05/01/2023	2022 Q2
NRG Power Marketing LLC	Astoria GT 2-1,2-2,2-3,2-4	J	186.0	165.8	204.1	138.0	184.2	5/1/2023 (R)	2022 Q2
NRG Power Marketing LLC	Astoria GT 3-1,3-2,3-3,3-4	J	186.0	170.7	210.0	139.1	180.4	5/1/2023 (R)	2022 Q2
NRG Power Marketing LLC	Astoria GT 4-1,4-2,4-3,4-4	J	186.0	167.9	206.7	138.5	178.6	5/1/2023 (R)	2022 Q2
Helix Ravenswood, LLC	Ravenswood 10	J	25.0	21.2	27.0	16.1	20.3	5/1/2023 (R)	2022 Q3
National Grid	Glenwood GT 03 (3)	K	55.0	54.7	71.5	54.1	66.6	N/A	
National Grid	Northport GT (9)	K	16.0	13.8	18.0	8.3	12.7	05/01/2023	
National Grid	Port Jefferson GT 01 (9)	K	16.0	14.1	18.4	13.0	15.3	05/01/2023	
National Grid	Shoreham 1 (3)	K	52.9	48.9	63.9	46.0	50.7	N/A	
National Grid	Shoreham 2 (3)	K	18.6	18.5	23.5	16.7	21.3	N/A (11)	2025 Q1
Astoria Generating Company, L.P.	Astoria GT 01	J	16.0	15.7	20.5	13.8	18.0	5/1/2025 (R)	2022 Q4
Consolidated Edison Co. of NY, Inc.	59 St. GT 1 (10)	J	17.1	15.4	20.1	13.9	17.4	05/01/2025	
NRG Power Marketing LLC	Arthur Kill GT 1 (10)	J	20.0	16.5	21.6	12.4	16.1	05/01/2025	
Astoria Generating Company, L.P.	Gowanus 2-1 through 2-8 (5)	J	160.0	152.8	199.6	142.2	182.5	05/01/2025	
Astoria Generating Company, L.P.	Gowanus 3-1 through 3-8 (5)	J	160.0	146.8	191.7	140.2	180.1	05/01/2025	
Astoria Generating Company, L.P.	Narrows 1-1 through 2-8 (5)	J	352.0	309.1	403.6	288.3	372.5	05/01/2025	
	Prior to Summer 2022		112.0	92.6	120.3	78.0	112.2		
	Prior to Summer 2023		1047.8	943.9	1189.9	828.7	1083.2		
	Prior to Summer 2025		725.1	656.3	857.1	610.8	786.6		
	Total		1884.9	1692.8	2167.3	1517.5	1982.0		

Notes

1. MW values are from the 2025 Load and Capacity Data Report except where the 2025 Load and Capacity Data Report lists 0 MW for CRIS and/or Capability. For those instances, previous Load and Capacity Data Report MW values are used.
2. Dates identified by generators in their DEC Peaker Rule compliance plan submittals for transitioning the facility to Retired, Blackstart, or will be out-of-service in the summer ozone season or the date in which the generator entered (or proposed to enter) Retired (R) or Mothball Outage (MO) or the date on which the generator entered ICAP Ineligible Forced Outage (IIFO).
3. In the original compliance plan submittals to the DEC in early 2020, the plan for this unit was to install water injection by May 2023. In June 2021, National Grid Generation amended their compliance plan to eliminate the water injection upgrade with a scheduled retirement on or before May 2023. In August 2021, Long Island Power Authority (LIPA) submitted notification to the DEC, per part 227-3 of the peaker rule, stating that this unit is needed for reliability which allowed the generator to operate until at least May 1, 2025. Subsequently, in September 2024, LIPA submitted another notification to the DEC extending these units to operate until at least May 1, 2027 for reliability purposes. In October 2025, National Grid Generation amended its DEC Peaker Rule compliance plan submittal to again plan to install water injection equipment to comply with the emissions requirements for these units. National Grid Generation states in their October 2025 compliance plan submittal that the target in-service date for the water injection equipment is May 2027.
4. Long Island Power Authority (LIPA) has submitted notifications to the DEC per part 227-3 of the peaker rule stating that these units are needed for reliability allowing these units to operate until at least May 1, 2025. Due to the future nature of these units being operated only as designated by the operator as an emergency operating procedure the NYISO will continue to plan for these units to be unavailable starting May 2023.
5. In their initial compliance plan submittals in response to the DEC Peaker Rule, these units indicated they would be out-of-service during the ozone season (May through September). In November 2023 the NYISO identified the need to temporarily retain these units until permanent solutions are in place, for an initial period of up to two years (May 2027). In July 2025 these units submitted their generator deactivation notice to retire in July 2026. These generator retirements for these units were evaluated in the 2025 Quarter 3 STAR. The IIFO of Gowanus 3-6, Narrows 2-1, and Narrows 2-7 were evaluated in the 2025 Quarter 2 STAR.
6. This unit was evaluated in a stand-alone generator deactivation assessment prior to the creation of the Short-Term Reliability Process.
7. Unit operating as a load modifier through September 2026.
8. In March 2024, Central Hudson submitted an update to its DEC peaker compliance plan to extend the retirement date of Coxsackie GT until December 31, 2025 until a permanent Transmission and Distribution solution to local non-BPTF transmission security issues is completed. At the April 7, 2025 TPAS/ESPWG, Central Hudson presented an LTP update including a delay of the retirement of the Coxsackie GT until May 2026. At the December 3, 2025 TPAS/ESPWG, Central Hudson presented in LTP update which continues to identify the retirement of the Coxsackie GT in May 2026.
9. On May 24, 2023 National Grid notified the New York State Public Service Commission that these units have been classified as black-start only units and are no longer subject to NYISO dispatch.
10. Unit no longer subject to NYISO dispatch and is used for local reliability only.
11. In October 2025 this unit rescinded its Generator Deactivation Notice, but the Generator is not currently participating in the ISO-Administered Markets.
12. The retirement for this unit was evaluated in the 2023 Q3 STAR. This unit retired on October 14, 2023.

Generator Return-to-Service

There are no generators that have returned to service beyond those included in the 2024 RNA.

Generator Additions

There are generation additions beyond those included in the 2024 RNA. A list of generator additions, including updates to planned commercial operation dates compared to the 2024 RNA is provided in Appendix C.

The NYISO continues to monitor the status of the planned Empire Wind and Sunrise Wind offshore wind projects, considering the December 22, 2025, orders by the Bureau of Ocean and Energy Management (BOEM) to suspend all ongoing activities.

Additional Generation Updates

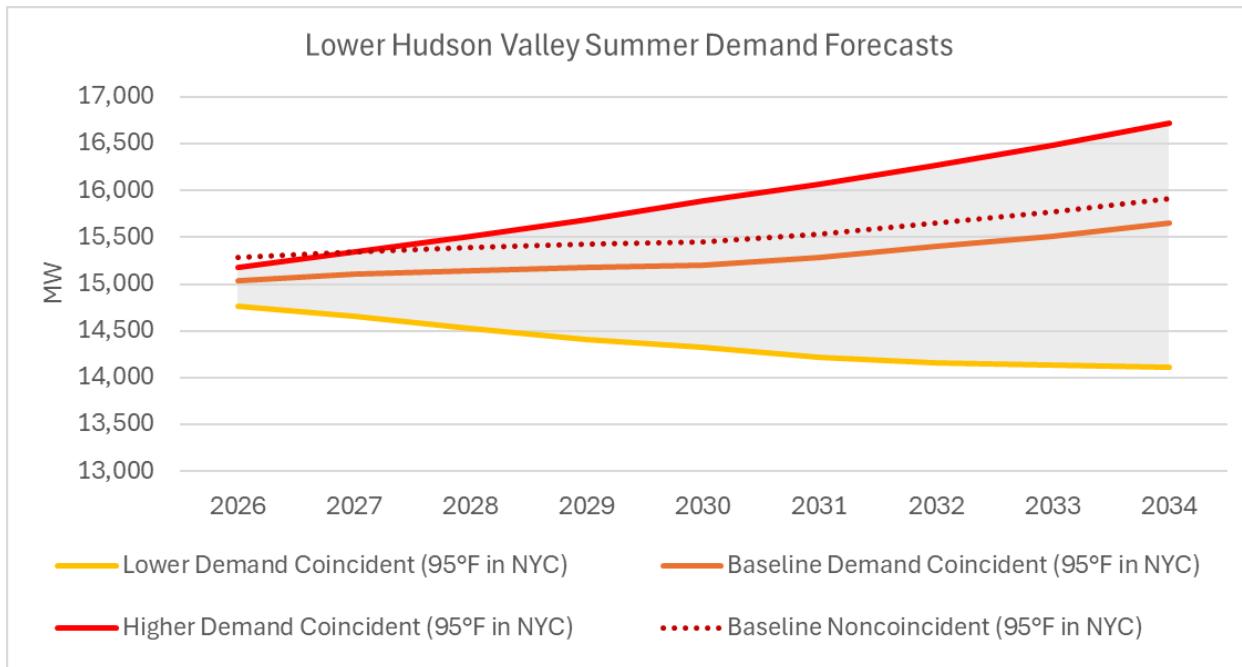
At the March 27, 2024 meeting of the Management Committee, several changes were approved that impact the level of Installed Capacity resources are eligible to provide starting with the Summer 2026 Capability Period. These changes were made as part of the Modeling Improvements for Capacity Accreditation project – Correlated Derates. The Correlated Derates project addresses issues identified in Potomac Economics' Q3 2022 State of the Market Report as "functionally unavailable capacity." Specifically, (1) ambient water-related deratings for steam units, (2) humidity-adjustments for combined and simple cycle combustion turbines, and (3) emergency-only capacity that may not be reliably available in real-time (CLR's). These updated requirements are reflected in the NYISO ICAP manual and the Market Services Tariff Section 5. Overall, these changes reduce the expected DMNC for several generators. Due to the deactivations evaluated in this STAR within New York City and Long Island, the NYISO has proactively accounted for the reduction in summer capability of 110 MW in New York City and 200 MW in Long Island rather than waiting for the publication of the updates in the 2026 Gold Book. The NYISO continues to evaluate additional changes in DMNC in Zones A through I. These MW reductions reflect the expected impacts to DMNC on resources impacted by the rule changes.

Demand Assumptions

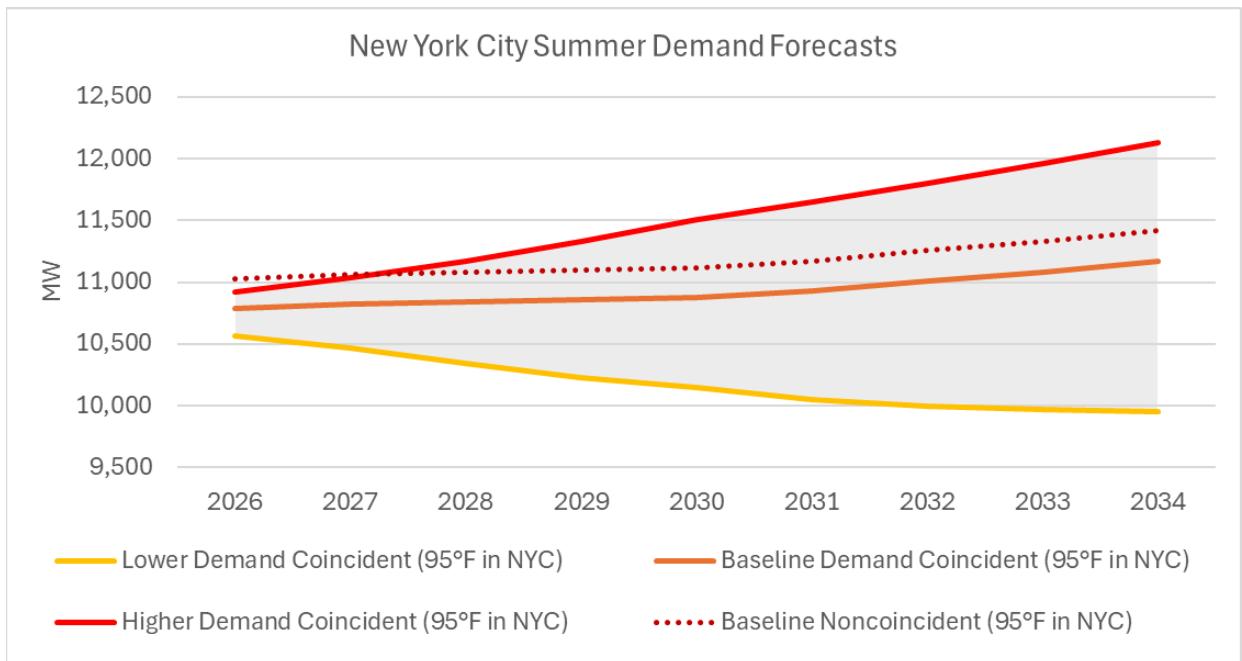
This assessment recognizes that there is a range of possibilities for demand driven by uncertainties in key assumptions, such as population and economic growth, energy efficiency, installation of behind-the-meter renewable energy resources, and electric vehicle adoption and charging patterns that are captured in the 2025 Gold Book with changes in Zone K. Certain load projects in Zone K, which were included in the expected weather Gold Book forecasts have been removed from the model based on status updates regarding these load projects provided by LIPA.

The 2025 Gold Book includes three coincident demand forecasts: Lower Demand, Baseline, and Higher Demand. Each of these forecasts contains differing inputs on economic, electrification, and large load assumptions, but the weather conditions are the same across each of these forecast which are summarized in Appendix C (Figure 23 and Figure 24). The behind-the-meter (BTM) solar, BTM distributed generation, and energy storage forecasts are consistent across all forecasts.

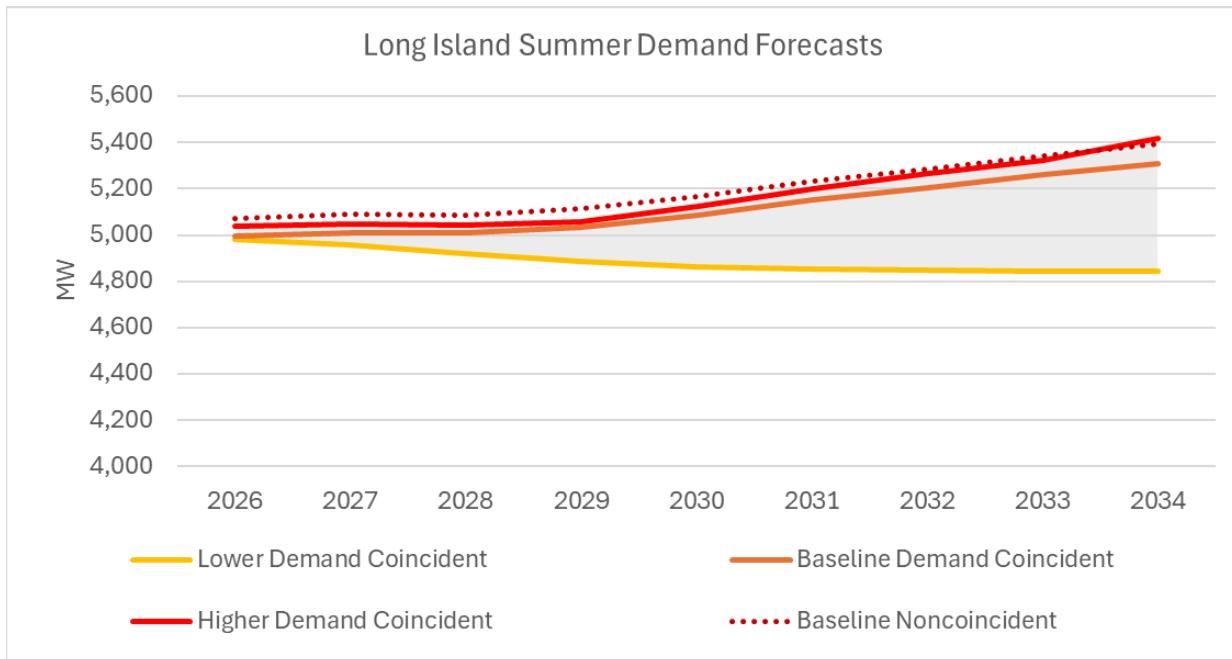
Further details of the Higher Demand and Lower Demand forecasts are summarized as follows:


- **Higher Demand** – The Higher Demand forecast is developed to broadly reflect levels of heating electrification and EV adoption commensurate with the achievement of New York's policy targets. However, the Higher Demand forecast does not include the full potential of peak-mitigating factors, such as managed EV charging and other flexible load and efficiency measures. The Higher Demand forecast assumes additional large load growth beyond that included in the baseline forecast. The Higher Demand econometric and EV and building electrification forecasts assume an increasing population and number of households over the duration of the forecast horizon, and stronger than expected economic growth.
- **Lower Demand** – The Lower Demand forecast assumes a slower EV adoption rate with a greater share of managed charging and a lower saturation of electric heating than the baseline forecast. Lower Demand forecast assumes reduced large load growth and weaker than expected economic growth relative to the baseline forecast.

The result of the differences in the forecasts is that the Higher Demand and Lower Demand forecasts produce lower and upper bounds around the baseline forecast. Figure 5 through Figure 8 provide visual depictions of the three forecasts for the summer peak for Lower Hudson Valley, New York City, Long Island, and Statewide. The NYISO also includes an assessment of the Lower Hudson Valley, New York City, and Long Island localities non-coincident peak in the identification of bulk system generator deactivation reliability needs.


One key assumption in this STAR is that cryptocurrency mining and hydrogen production large loads will be flexible during system peak demand conditions. This assumption, based on communications with load developers and recent operating experience, results in up to approximately 685 MW of large load reduction during the summer and winter peak periods by 2026. The trend of large load development, and their operating characteristics, requires continuous monitoring as they enter service. The NYISO will continue to coordinate with load developers and Transmission Owners.

Additional details of the demand forecasts are provided in Appendix C.


Figure 5: Lower Hudson Valley Demand Forecasts (2025 Gold Book)

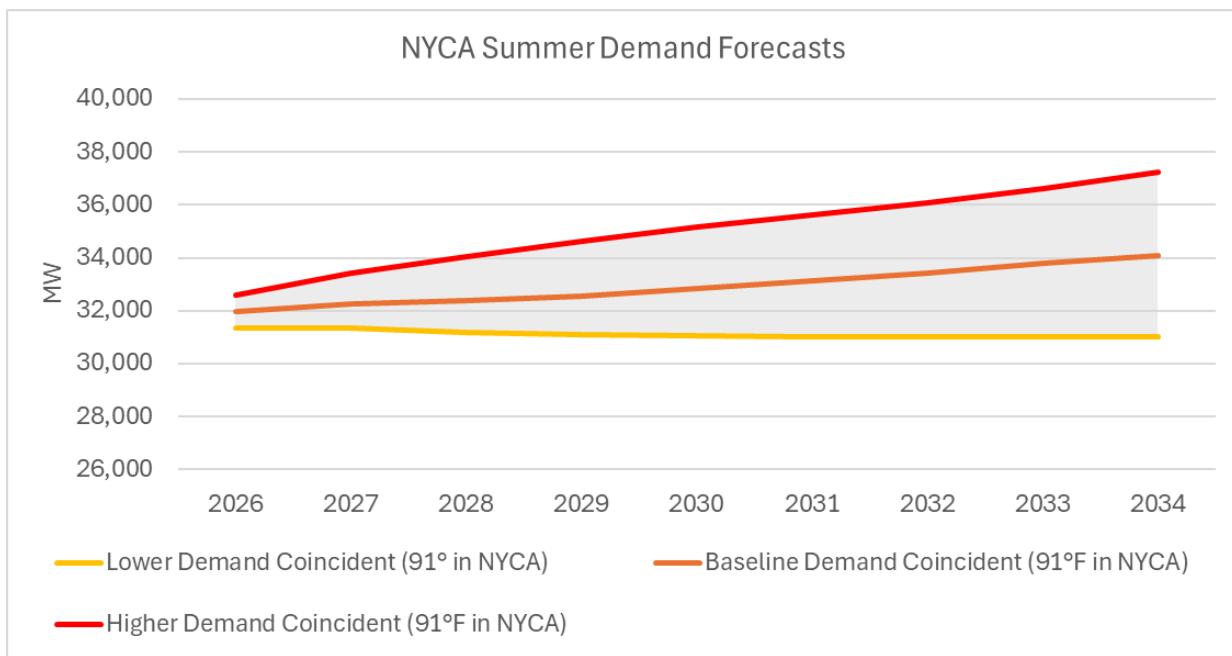

Figure 6: New York City Demand Forecasts (2025 Gold Book)

Figure 7: Long Island Demand Forecasts (2025 Gold Book)

Figure 8: NYCA Demand Forecasts (2025 Gold Book)

Transmission Assumptions

Existing Transmission

The transmission assumptions utilized in this assessment are similar to those used for the 2024 RNA. Figure 9 lists the existing transmission outage assumptions.

Figure 9: Transmission Assumptions

From	To	kV	ID	Out-of-Service Through	
				Prior STAR	Current STAR
Marion	Farragut	345	B3402	Long-Term	
Marion	Farragut	345	C3403	Long-Term	
Plattsburgh (1)	Plattsburgh	230/115	AT1	9/2026	
Stolle Rd	Stolle Rd	115	T11-52	12/2025	In-service
Station 23	Station 42	115	920	12/2025	In-service
E13th Street		345/69	BK17	-	6/2027

Notes

(1) A spare transformer is placed in-service during the outage

Proposed Transmission

Changes to firm projects in the Transmission Owners' Local Transmission Owner Plans ("LTPs") are captured in Section VII of the 2025 Gold Book.

Compared to the 2024 RNA, there are no changes to assumed firm transmission facilities, as captured in Section 7 of the 2025 Gold Book. Details of the proposed transmission assumptions included in the 2024 RNA are provided in Appendix C. Except for the projects listed in Figure 32 in Appendix C, all firm transmission plans captured in the 2025 Gold Book are included.

Findings

Grid reliability is determined by assessing transmission security and resource adequacy. Transmission security is the ability of the electric system to withstand disturbances, such as electric short circuits or unanticipated loss of system elements, without involuntarily disconnecting firm load. Resource adequacy is the ability of electric systems to supply the aggregate electrical demand and energy requirements of customers, accounting for scheduled and reasonably expected unscheduled outages of system elements.

As explained below, this assessment continues to observe the deficiencies identified in the 2025 Quarter 3 STAR and that the scope, scale, and nature of these deficiencies are unchanged from the needs specified in the NYISO's November 2025 solution solicitation. This STAR does not identify any new Short-Term Reliability Process Needs.

Resource Adequacy Assessments

Resource adequacy is the ability of the electric system to supply the aggregate electrical demand and energy requirements of the firm load at all times, considering scheduled and reasonably expected unscheduled outages of system elements. The NYISO performs resource adequacy assessments on a probabilistic basis to capture the random nature of system element outages. If a system has sufficient transmission and generation, the probability of an unplanned disconnection of firm load is equal to or less than the system's standard, which is expressed as a loss of load expectation ("LOLE"). Consistent with the NPCC and NYSRC criterion, the New York State bulk power system is planned to meet an LOLE that, at any given point in time, is less than or equal to an involuntary firm load disconnection that is not more frequent than once in every 10 years, or 0.1 event days per year.

This assessment finds that the planned system through the study period meets the resource adequacy criterion. Details about the resource adequacy study assumptions are provided in Appendix D.

Transmission Security Assessments

Transmission security is the ability of the power system to withstand disturbances, such as electric short circuits or unanticipated loss of system elements, and continue to supply and deliver electricity. The analysis for the transmission security assessment is conducted in accordance with NERC Reliability Standards, NPCC Transmission Design Criteria, and the NYSRC Reliability Rules. Transmission security is assessed deterministically with potential disturbances being applied

without concern for the likelihood of the disturbance in the assessment. These disturbances (single-element and multiple-element contingencies) are categorized as the design criteria contingencies, which are explicitly defined in the reliability criteria. The impacts resulting from applying these design criteria contingencies are assessed to determine whether thermal loading, voltage or stability violations will occur. In addition, the NYISO performs a short circuit analysis to determine if the system can clear faulted facilities reliably under short circuit conditions. The NYISO's "Guideline for Fault Current Assessment"¹² describes the methodology for that analysis.

Transmission security analysis includes the assessment of various combinations of credible system conditions intended to stress the system. As transmission security analysis is deterministic, these various credible combinations of system conditions are evaluated throughout the study period to identify reliability needs. Intermittent generation is represented based on expected output during the modeled system conditions.¹³

Transmission security margins are included in this assessment to identify plausible changes in conditions or assumptions that might adversely impact the reliability of the system. The transmission security margin is the ability to meet load plus losses and system reserve (*i.e.*, total capacity requirement) using NYCA generation, interchange, and including temperature-based generation derates (total resources). This assessment is performed using a deterministic approach through powerflow simulations combined with post-processing spreadsheet-based calculations.¹⁴ For the transmission security margin assessment, margins are evaluated for the statewide system margin, as well as Lower Hudson Valley, New York City, and Long Island localities. This evaluation will identify a BPTF reliability when the margin is less than zero under expected weather, normal transfer criteria conditions for the Lower Hudson Valley, New York City, and Long Island localities. Additional information regarding reliability risks due to various uncertainties such as weather and climate, economic development, or federal and state regulatory and policy adoptions are provided in the 2025-2034 CRP.

For the purposes of identifying reliability needs on the BPTF using transmission security margin calculations, thermal generation MW capability is considered available based on NERC five-year class averages for the relevant type of unit.¹⁵ Derates for thermal generation are included due

¹²Attachment I of Transmission, Expansion, and Interconnection Manual.

¹³The RNA assumptions matrix is posted with the April 18, 2024 TPAS/ESPWG meeting materials, which are available [here](#).

¹⁴At its June 23, 2022, meeting, the NYISO Operating Committee approved revisions to the Reliability Planning Process Manual that reflect the use of transmission security margins and other enhancements.

¹⁵The NERC five-year class average EFORD data is available [here](#). NERC class average derating factors used in the STAR do not have a mechanism for excluding 9300 events (generator outages due to transmission system problems). See further discussion in Oct. 7, 2024 [ICAP/MIWG/PRLWG presentation](#).

to the aging fleet without expected replacement, while the share of intermittent, weather dependent generation is growing.

Steady State Assessment

In the NYISO's evaluation of the BPTF, one voltage violation and two thermal overloads are observed. The identified issues do not result in a Short-Term Reliability Process Need, as they are addressed by modifications to planned system changes or consideration of known operational behavior. No other steady-state transmission security related needs were observed under other system conditions.

The first steady-state transmission security issue identified for the study period under expected summer peak conditions is a thermal violation on the Oakdale 345/115/34.5 kV transformer and Oakdale – North Endicott 115 kV transmission line. The violation occurs under N-1-1 conditions for contingency combinations that result in the loss of the Oakdale – Westover 115 kV and Oakdale – Northside 115 kV transmission lines. This overload is observed as early as summer 2026 and is addressed by the reconfiguration of the Oakdale 345 and 115 kV system along with a second Oakdale 345/115 kV transformer, which facilities are planned to be completed by winter 2030. Prior to completion of this project, NYSEG will utilize an interim operating procedure to address this overload. With the proposed interim load shed operating procedure and the local transmission plans, the NYISO will not solicit for solutions to address these issues but will continue to track the development of the local plans in the quarterly tracking process.

The second steady-state transmission security issue identified for the study period under expected summer peak conditions is a voltage violation at the Oakdale 115 kV station in expected summer peak conditions. The violation occurs under N-1-1 conditions for contingency combinations that result in loss of 345/115 kV transformers along with one of the two 345 kV lines from Oakdale to Fraser or Watercure. NYSEG has two local transmission plans that help to address these issues. The first plan is a reconfiguration at the Frasier 115 kV station that provides stronger voltage support of the transmission system in the local area and is planned to be in service in summer 2027. The second local plan is a reconfiguration of the Oakdale 345 and 115 kV system and a second Oakdale 345/115 kV transformer, which are planned to be completed by winter 2030. Due to the observations in this STAR at Oakdale, NYSEG has proposed interim operating procedures including possible load shedding should the critical contingencies occur. With the proposed interim load shed operating procedure and the local transmission plans, the NYISO will not solicit for solutions to address these issues but will continue to track the development of the local plans in the

quarterly tracking process.

The third steady-state transmission security issue identified for the study period under expected summer peak conditions is a thermal violation on the Moses AT3 230/115 kV transformer. This violation was first observed in the 2024 Quarter 3 STAR winter peak conditions and is impacted by the inclusion of Q1213 - St Lawrence Data and Agricultural Center in the 2025 Quarter 1 STAR. The violation occurs under N-1-1 conditions for contingency combinations that result in the loss of the other three Moses 230/115 kV transformers. This overload is observed as early as summer 2026 and is driven by the growth of the North Country Data Center ("NCDC") load and the addition of St Lawrence Data and Agricultural Center. This issue is addressed by the expected operational behavior of flexible large loads, which would reduce their electrical demand under peak conditions. In consideration of this expected flexibility, the thermal violation on the Moses AT3 230/115 kV transformer would not be observed. As such, there are no thermal criteria violations, and the NYISO will not solicit for solutions to address these issues. However, a reliability risk to note is that more than 2,000 MW of additional load has requested to interconnect in Zone D downstream of the Moses 230/115 kV transformers. The NYISO will continue to monitor the status of these large loads and their anticipated operational behavior in future STARS.

Dynamics Assessment

No BPTF dynamic criteria violations were observed for this assessment. Additionally, no dynamic stability related non-BPTF generator deactivation reliability needs were observed for this assessment.

Short Circuit Assessment

No BPTF short-circuit criteria violations were observed in this assessment. Additionally, no short-circuit non-BPTF generator deactivation reliability needs were observed in this assessment.

Transmission Security Margin Assessment

For the transmission security margin assessment, “tipping points” are evaluated for the Lower Hudson Valley, New York City, and Long Island localities as applicable to the identification of needs as the analysis is based on established Reliability Criteria. In the Lower Hudson Valley and Long Island localities, the BPTF system is designed to remain reliable in the event of two non-simultaneous outages (N-1-1). In the Con Edison service territory, the 345 kV transmission system and specific portions of the 138 kV transmission system are designed to remain reliable and return to normal ratings after the occurrence of two non-simultaneous outages (N-1-1-0).

Consistent with the findings of the 2025 Quarter 3 STAR, this STAR continues to find that the New York City locality (Zone J) would be deficient in the summer through the entire five-year horizon without the completion and energization of future planned projects. This includes deficiencies on the BPTF and non-BPTF within Zone J. The future planned projects associated with New York City include:

- Gowanus-Greenwood 345/138 kV feeder – May 2026
- CHPE, 1,250 MW HVDC – May 2026
- Empire Wind, 816 MW offshore wind – July 2027
- Propel NY Public Policy Transmission Project – May 2030

Until these system plans within New York City are completed and demonstrate their planned power capabilities to address the identified reliability needs, the previously identified BPTF and non-BPTF deficiencies would persist without Gowanus and Narrows.

This STAR finds that the BPTF in the Long Island locality (Zone K) is deficient beginning in summer 2027 and continuing through the remaining five-year horizon, primarily driven by the deactivation of Pinelawn (82 MW nameplate) and the Far Rockaway GTs (121 MW nameplate total) evaluated in the 2025 Quarter 3 STAR, but is also impacted by the completion and energization of future planned projects including the Sunrise Wind (July 2027) along with the Propel NY Public Policy Transmission Project. In addition to the BPTF deficiency, in the 2025 Quarter 3 STAR LIPA also identified non-BPTF system deficiencies on the 69 kV system through the entire five-year horizon.

The NYISO performed “status quo” evaluations the prior to these system plans and other additional resources state-wide demonstrating their planned capabilities (approximately 4,400 MW of generation projects, as described in Figure 21 and Figure 22) during the planning horizon, while maintaining the assumption that demand grows as forecasted for expected weather, including large

load development.

This STAR finds that the Lower Hudson Valley, New York City, and Long Island localities are deficient in the summer. Details are provided below.

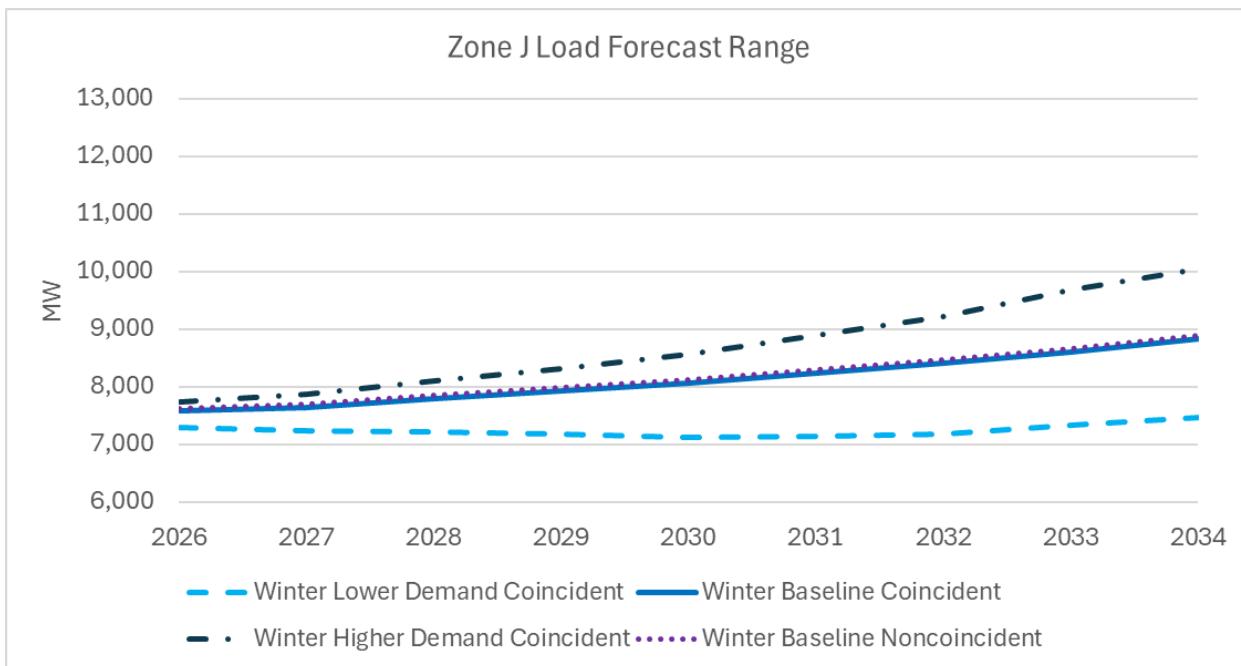
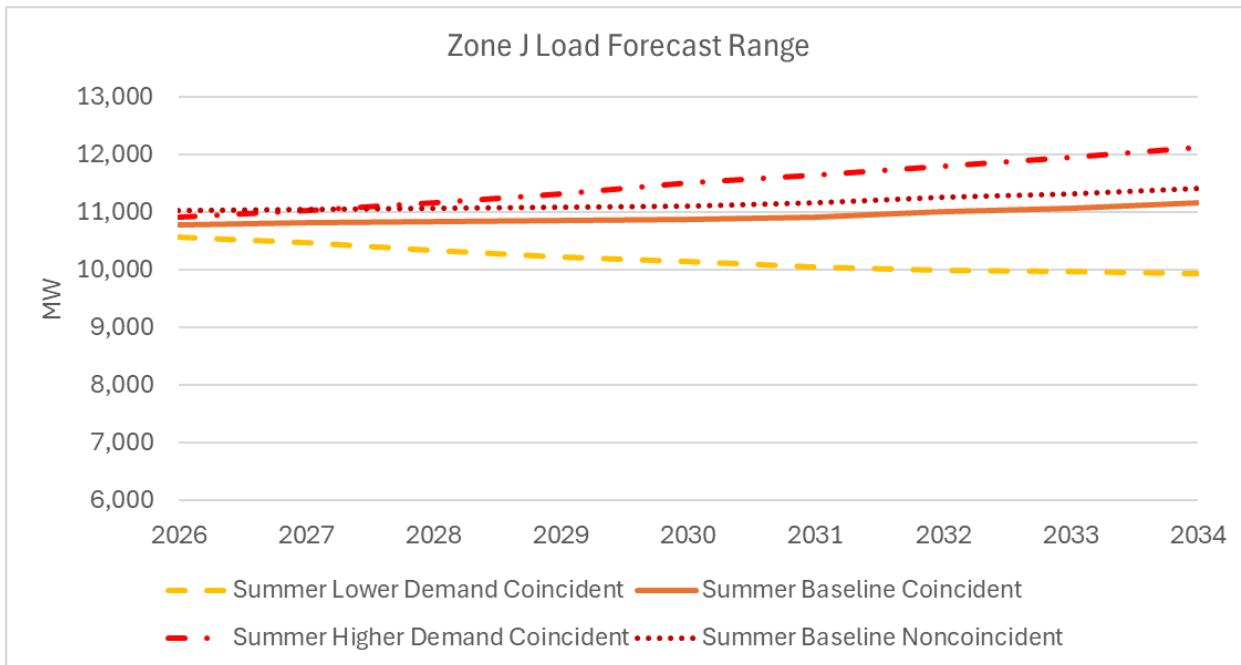
New York City Transmission Security Margin

In the 2025 Quarter 3 STAR, the Gowanus and Narrows proposed generator retirement was evaluated to determine if there were any generator deactivation reliability needs.

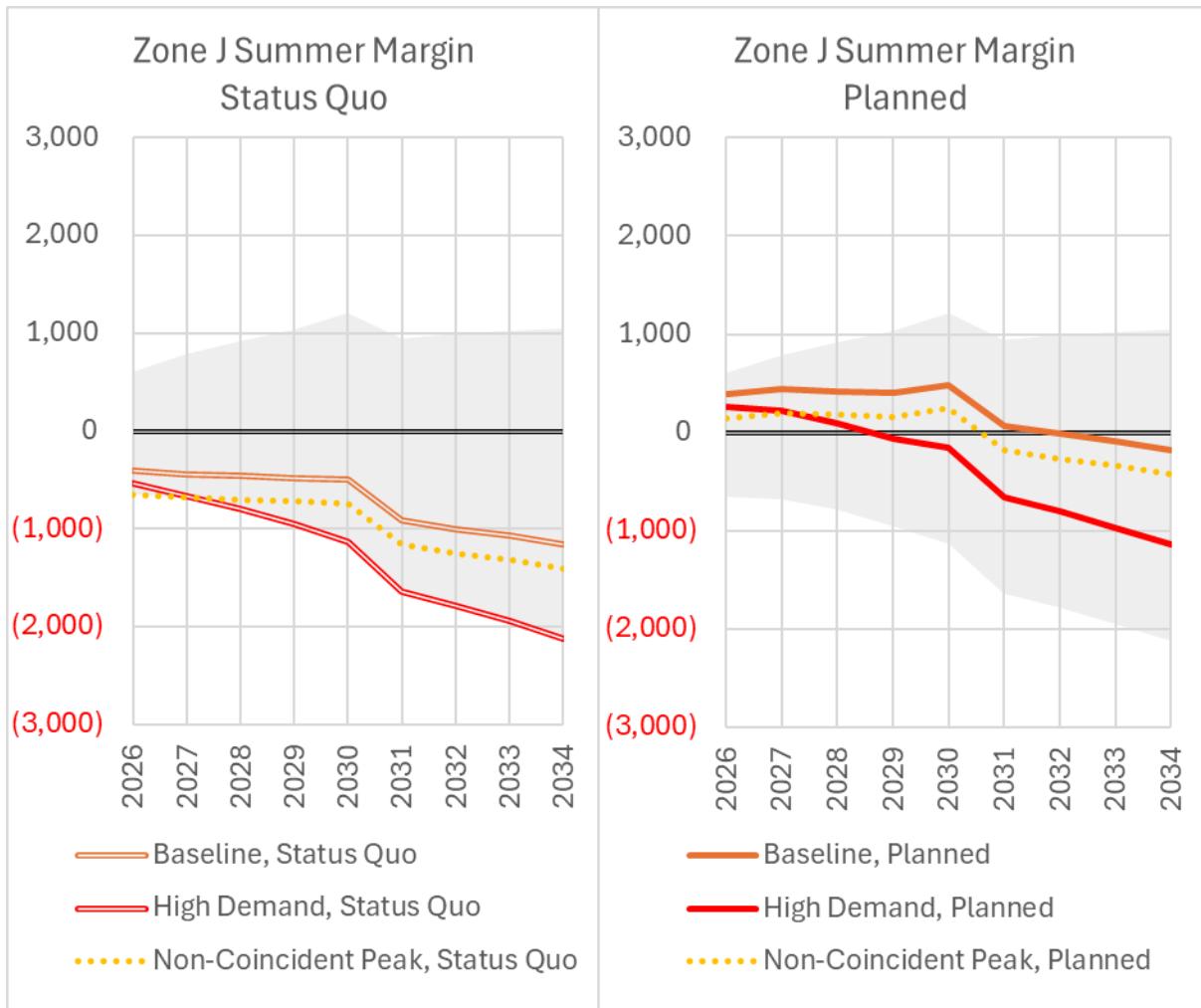
This STAR observed no changes to the Generator Deactivation Reliability Need observed in the 2025 Quarter 3 STAR. The New York City locality (Zone J) would be deficient through the entire five-year horizon until system plans are completed (CHPE, Empire Wind, and Propel NY project) and demonstrate their planned power capabilities. While these planned projects are advancing in their development, the completion is subject to inherent risks commonly observed among large infrastructure projects that may impact timely completion and energization. Key challenges include permitting, material availability, construction complexities, and other unexpected factors.

The following table provides the magnitude and duration of the BPTF deficiency through the five-year study period under summer peak if system plans are not completed. Winter transmission security margins in Zone J remain positive throughout the five-year horizon. In the 2025 Quarter 3 STAR, the NYISO identified these deficiencies as Generator Deactivation Reliability Needs. Further, as these needs were observed within three years following the conclusion of the 365 days that follow the STAR start date, they were also identified as Near-Term Reliability Needs. In accordance with the DEC Peaker Rule, the Gowanus and Narrows generators may extend operation for up to an additional two years (until May 1, 2029) if the NYISO or Con Edison determine that the reliability need still exists and a permanent solution has been identified and is in the process of construction but not yet online. The DEC Peaker Rule, however, does not provide for the Peaker generators to continue operating after this date without meeting the emissions requirement.

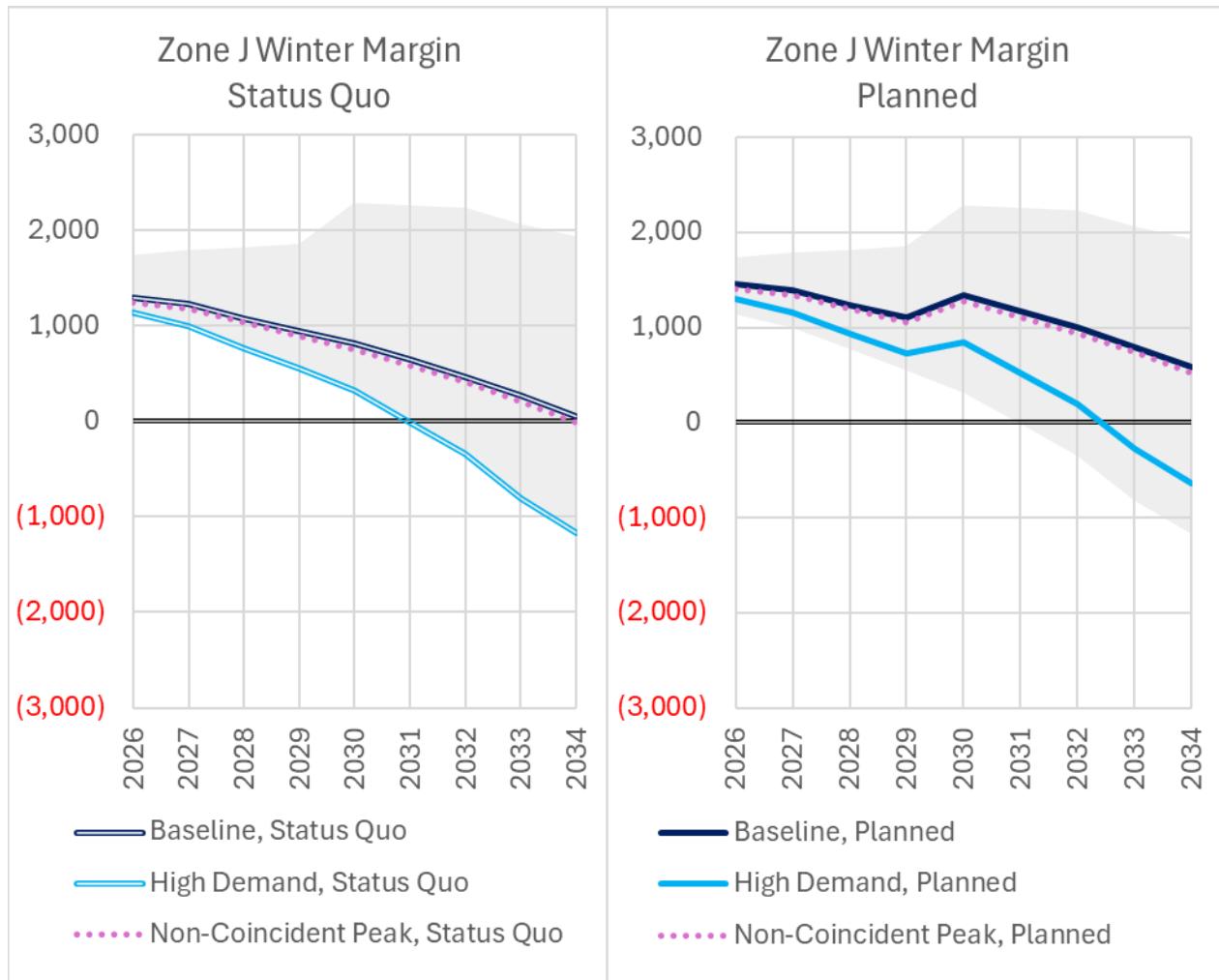
New York City BPTF Deficiencies:



Summer Peak	2026	2027	2028	2029	2030
MW Deficiency	410-650	440-680	460-790	480-950	500-1,130
Duration (hours)	6-8	6-9	8-11	8-13	8-13
MWh	1,709-3,569	1,753-3,782	3,014-6,658	3,227-8,794	3,211-10,922

These deficiencies are driven by the deactivation of Gowanus 2 & 3 and Narrows 1 & 2 generators (672 MW nameplate total) in combination with other factors such as: the range in the demand forecasts based on expected weather, expected generator availability, transmission limitations, and risks associated with the availability of key future planned projects.


Once CHPE, Empire Wind, and Propel NY project enter service and demonstrate their planned power capabilities, the margins within Zone J would improve substantially, but the margin gradually erodes thereafter as expected demand for electricity grows. Even with the planned inclusion of these future planned projects entering service according to schedule and demonstrate their planned power capabilities, and assuming no other generators are unavailable, in 2029, Zone J could still remain deficient by 68 MW over 5 hours (871 MWh), which grows to 148 MW over 6 hours (1,249 MWh) in 2030. Beyond 2030, these deficiencies would be further exacerbated with increasing demand for electricity. Figure 11 and Figure 12 depict the reliability margins for Zone J without any planned projects (“status quo”) and as planned. The New York City summer peak margin is shown in Figure 13 showing the reliability impact of the status quo as well as future planned generation and transmission projects that have met the Reliability Planning Process inclusion rules.

The range in the demand forecast driven by uncertainties in key assumptions, such as population and economic growth, energy efficiency, the installation of behind-the-meter renewable energy resources, and electric vehicle adoption and charging patterns as described in the 2025 Gold Book. The forecasted summer peak demand in New York City has a range of 460 MW in 2026 growing to 1,360 MW in 2030, primarily driven by assumptions in electrification of transportation and buildings. Details of the different load forecasts used in this STAR are shown below in Figure 10. The assumed available supply has also been adjusted to account for expected reductions of 110 MW in generators' dependable maximum net capability (DMNC) and 175 MW reduction in capacity sales from PJM.


Figure 10: Zone J Load Forecast

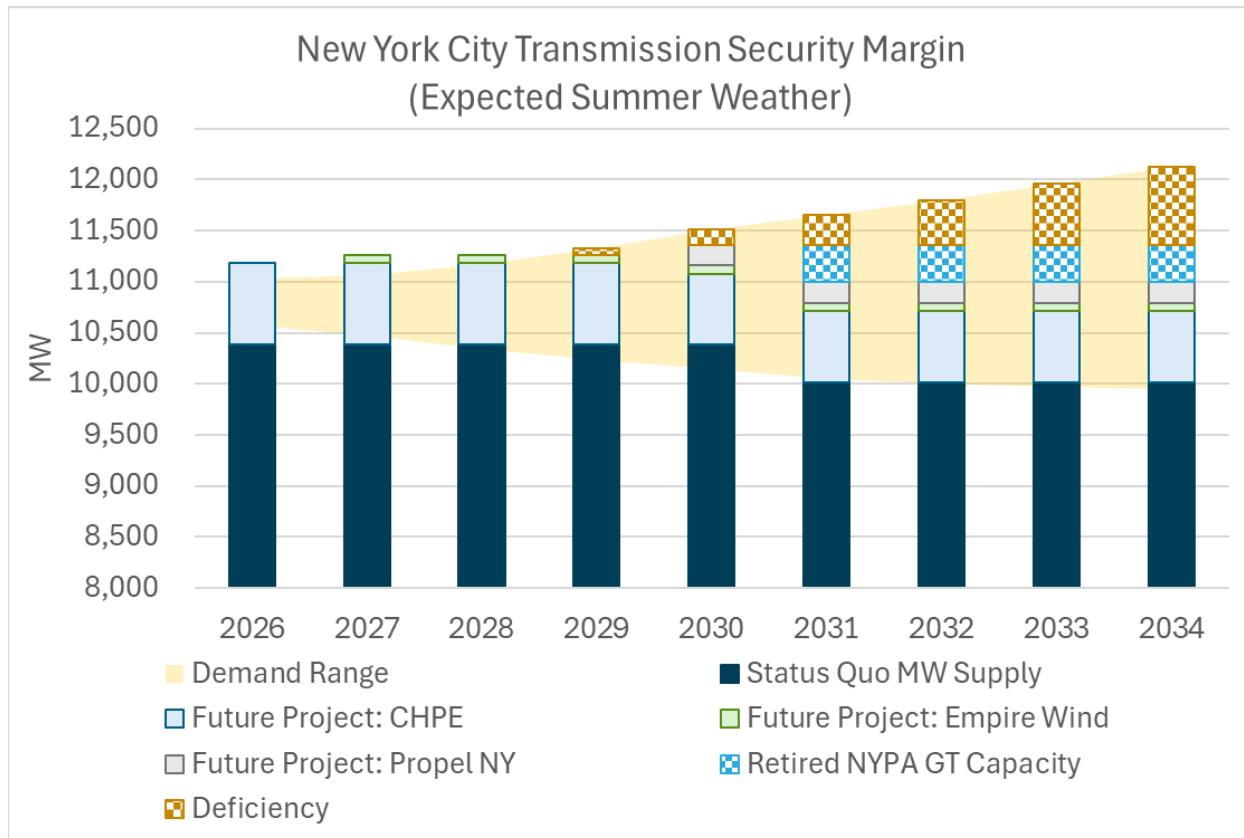

Figure 11: Zone J Summer Transmission Security Margin

Figure 12: Zone J Winter Transmission Security Margin

Figure 13: Factors Affecting New York City Transmission Security Margin

In the 2025 Quarter 3 STAR, Con Edison's non-BPTF system analysis found no Generator Deactivation Reliability Needs following the retirement of the Narrows and Gowanus generators. However, Con Edison projects a potential 250 MW deficiency starting in 2030 within the 345/138 kV BPTF New York City Transmission Load Area (TLA) assuming CHPE, Empire Wind, and Propel NY project entering service and demonstrate their planned power capabilities. Further information on the local reliability needs for the next decade were provided in Con Edison's 2025 Local Transmission Plan (LTP), discussed at a December 2025 stakeholder meeting.¹⁶

Additionally, the Lower Hudson Valley locality (Zones G-J) would be deficient by 195 MW over three hours (729 MWh) in summer 2030 without the completion and demonstration of the planned capabilities of the future planned projects associated with New York City and is also impacted by the BPTF Generator Deactivation Reliability Need identified in Zone K. As the need in the Lower Hudson Valley is an exacerbation of the need observed in New York City, it is also a Generator Deactivation Reliability Need, but it is not a Near-Term Reliability Need. This deficiency is further

¹⁶ Con Edison's LTP update was presented to NYISO stakeholders at the December 3, 2025 TPAS/ESPG meeting ([here](#))

exacerbated through time without any additional capabilities added within the Lower Hudson Valley locality, which includes New York City.

Long Island Transmission Security Margin

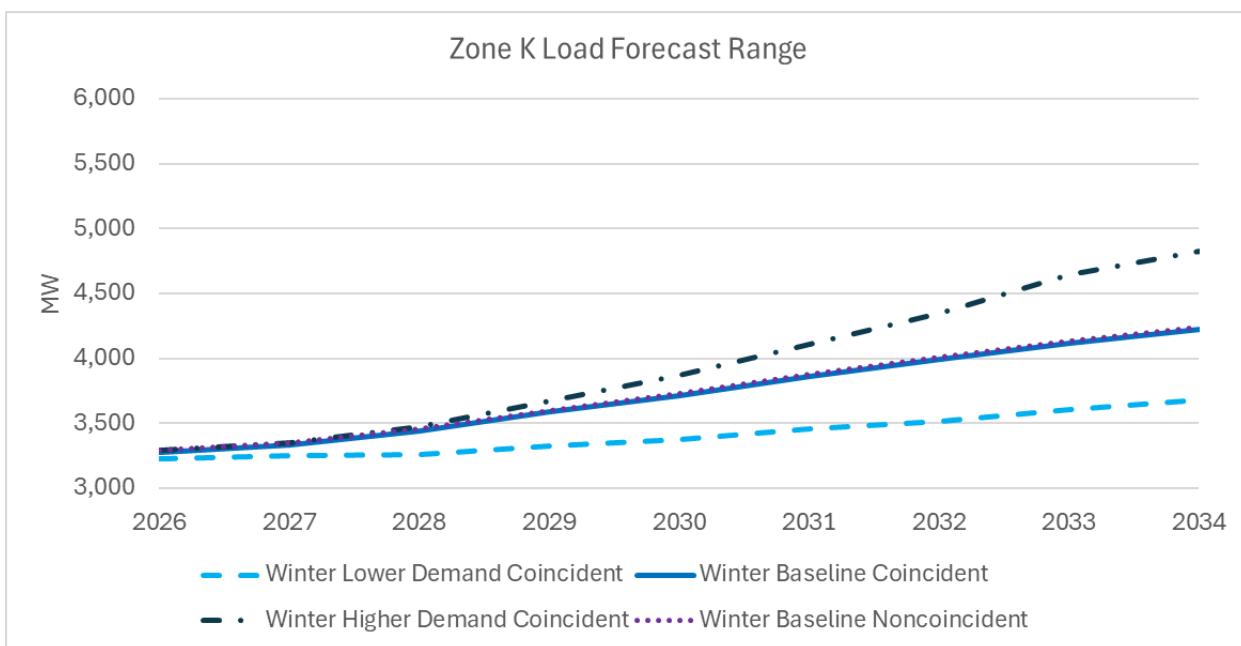
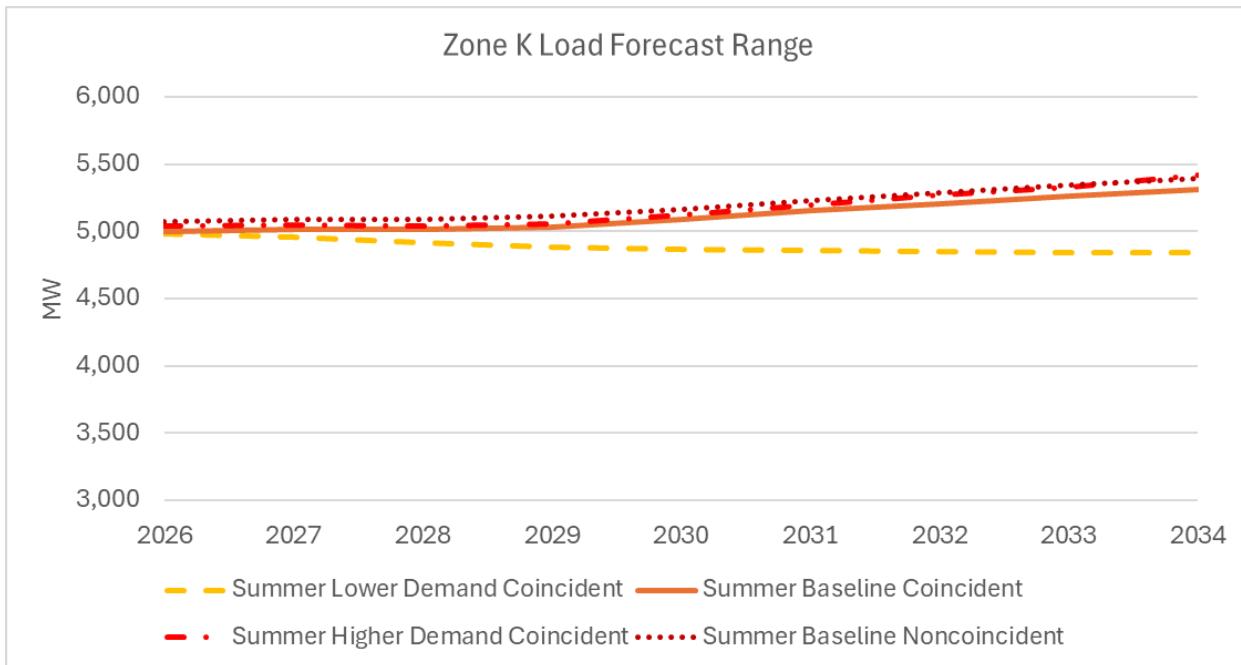
In the 2025 Quarter 3 STAR, the Pinelawn Power 1 (“Pinelawn”) (82 MW nameplate) and Far Rockaway Gas Turbine 1 and 2 (“Far Rockaway GTs”) (121 MW nameplate total) completed their generator deactivation notice requiring the NYISO and LIPA to determine if there are any generator deactivation reliability needs. None of these units in the Long Island service territory are impacted by the DEC Peaker Rule.

In the 2025 Quarter 3 STAR, the NYISO found that Zone K is projected to be deficient without the completion and demonstration of planned capabilities of future projects. The following table provides the magnitude and duration of the BPTF deficiency through the five-year study period under summer peak if system plans are not completed. Winter transmission security margins in Zone K remain positive throughout the five-year horizon.

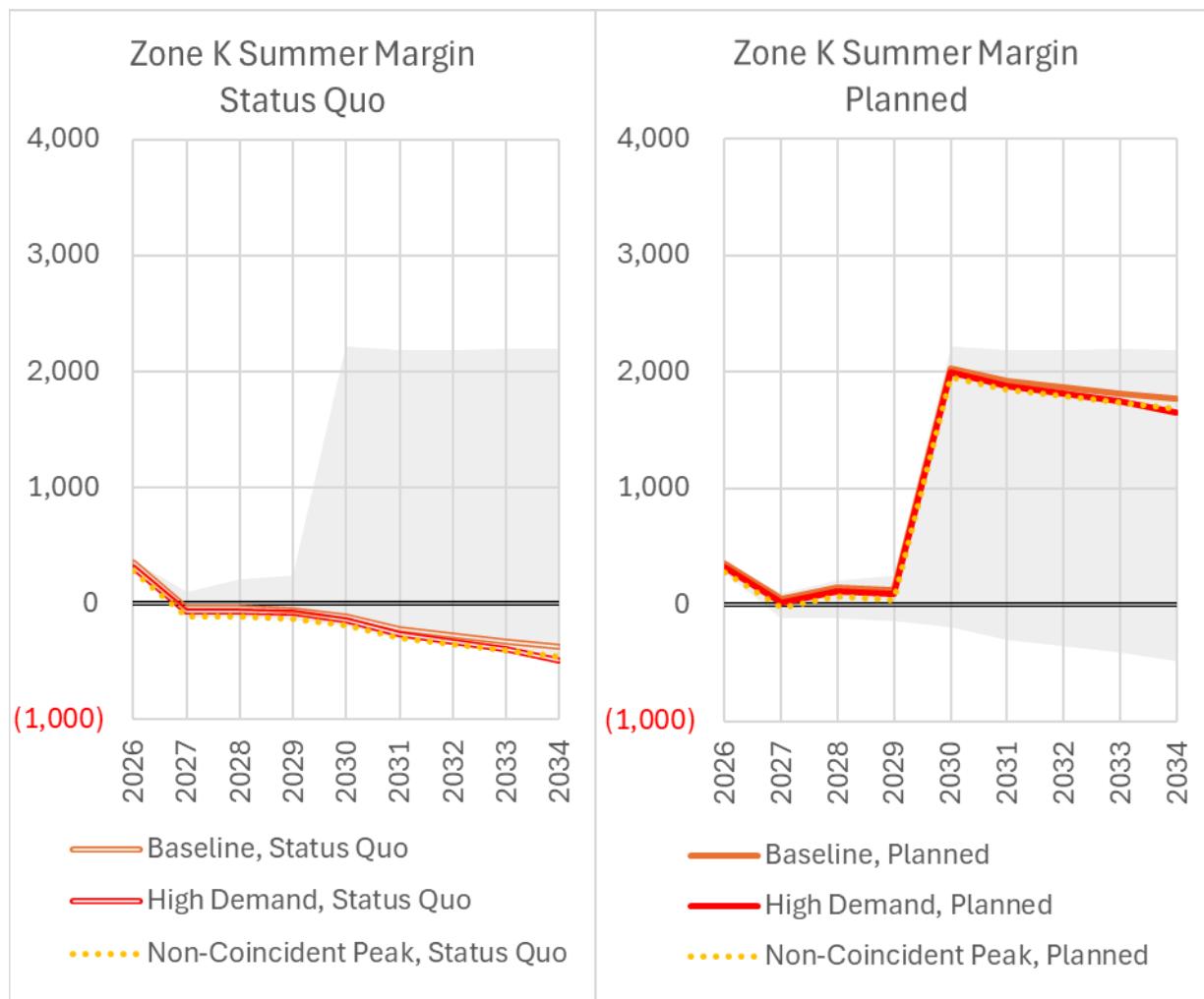
Long Island BPTF Deficiencies

Summer Peak	2026	2027	2028	2029	2030
MW Deficiency	None	34-111	34-111	58-136	110-189
Duration	None	1-3	2-3	2-3	3-3
MWh	None	34-156	139-363	177-407	320-557

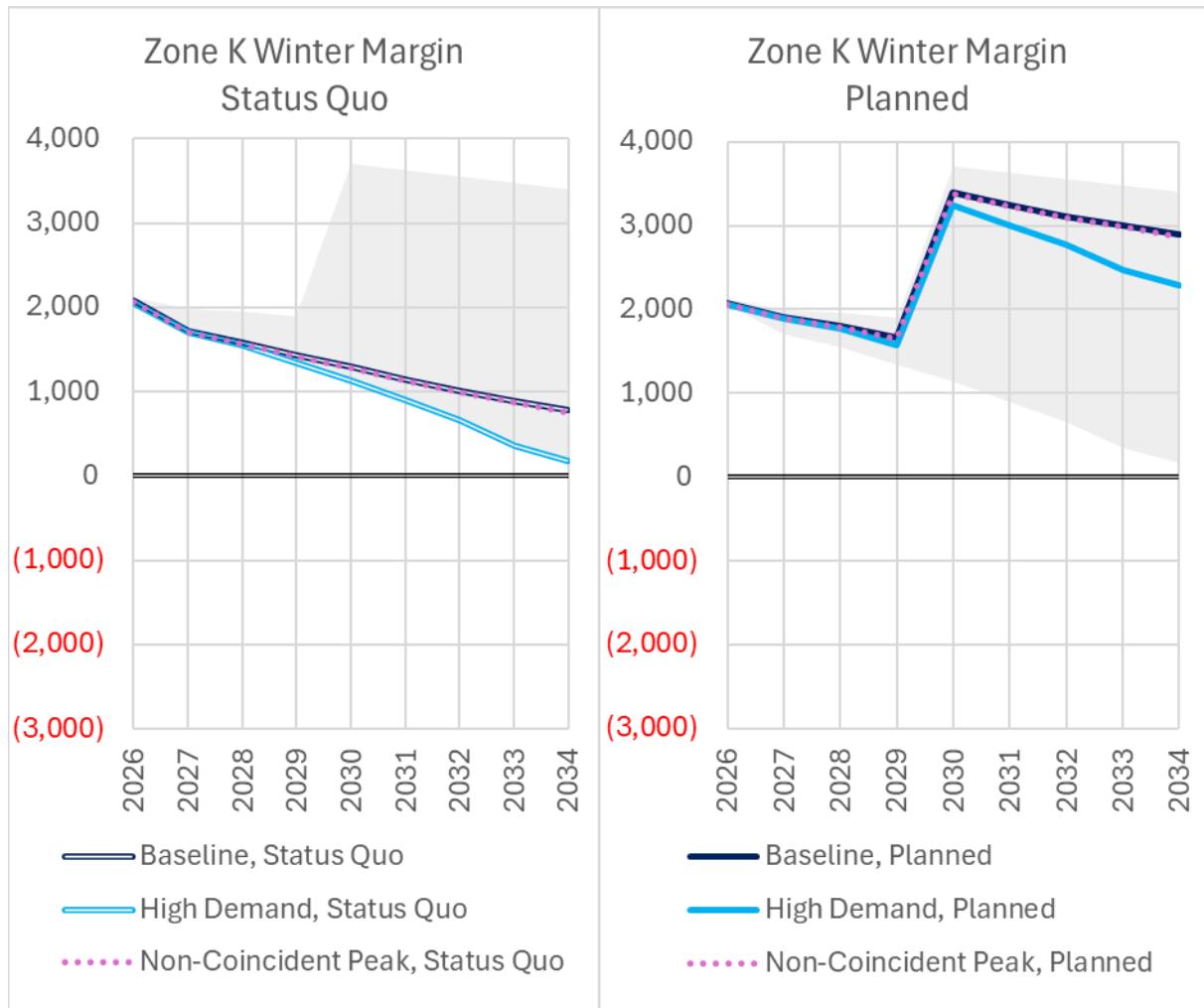
Once Sunrise Wind is delivering power as planned, the margins improve in summer 2028, followed by dramatic improvement in 2030 with the planned energization of the Propel NY project such that margins remain positive throughout the remainder of the planning horizon. However, even if these future planned projects are available according to current schedules, deficiencies under summer peak conditions are still observed in 2027. Specifically, with the planned projects available, the BPTF deficiency is 21 MW over 1 hour (21 MWh) in 2027. The Long Island summer peak margin is shown in Figure 17, which illustrates the reliability impact of the status quo as well as future planned generation and transmission projects that have met the Reliability Planning Process inclusion rules.



These deficiencies are driven by the deactivation of the Pinelawn and Far Rockaway generators in combination with other factors such as: the range in the demand forecasts based on expected weather, expected generator availability, transmission limitations, and risks associated with the availability of key future planned projects. Key inputs into these findings includes planned

assumptions from the start of the STAR for external imports from the Cross-Sound Cable at in accordance with planned imports through early 2027, but starting in summer 2027 this import is assumed at 0 MW. In addition to being generator deactivation reliability needs, the 2025 Quarter 3 STAR also identified these deficiencies as near-term reliability needs. Winter margins in Zone K remain positive throughout the five-year horizon.


The range in the demand forecast driven by uncertainties in key assumptions, such as population and economic growth, energy efficiency, the installation of behind-the-meter renewable energy resources, and electric vehicle adoption and charging patterns as described in the 2025 Gold Book. The forecasted summer peak demand in Long Island has a range of 92 MW in 2026 growing to 302 MW in 2030, primarily driven by assumptions in the demand forecast. Details of the demand forecasts for expected weather used in the determination of the need in this STAR are shown below in Figure 14. The assumed available supply has also been adjusted to account for expected reductions of 200 MW in generators' DMNC based on the Correlated Derates explained above.

In October 2025, National Grid Generation amended its DEC Peaker Rule Compliance plan for Shoreham 1, Shoreham 2, and Glenwood GT 3 to install water injection by May 2027. This would allow these units to continue operation. Additionally, the assumed capacity purchases from ISO-NE into Zone K have been adjusted to account for a LIPA import of 288 MW from ISO-NE until April 2027, with zero flow scheduled thereafter. If these additional generation and import resources are available through the five-year horizon, the observed reliability need on the BTPF would be eliminated.


Figure 14: Zone K Load Forecast Uncertainty

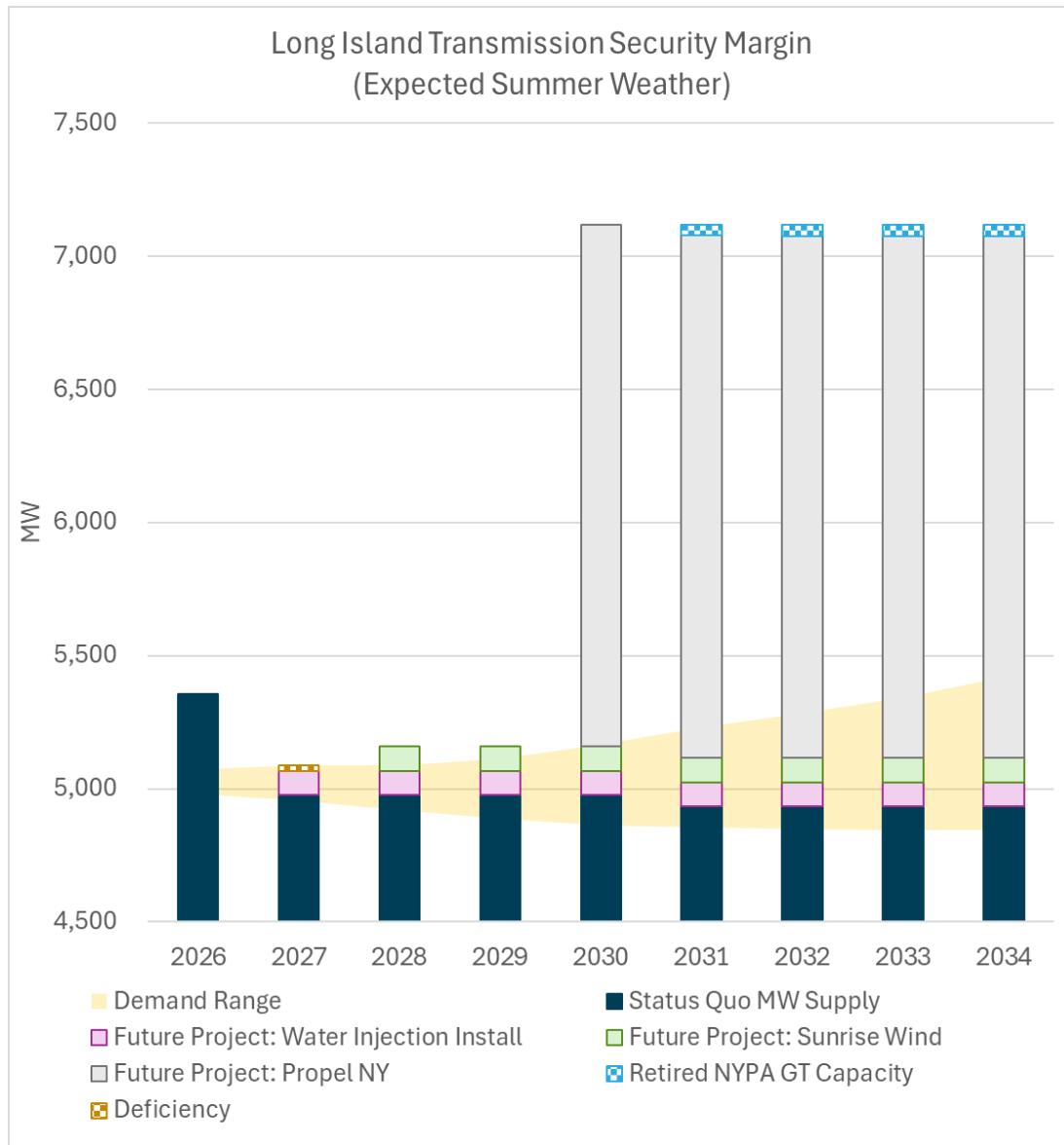
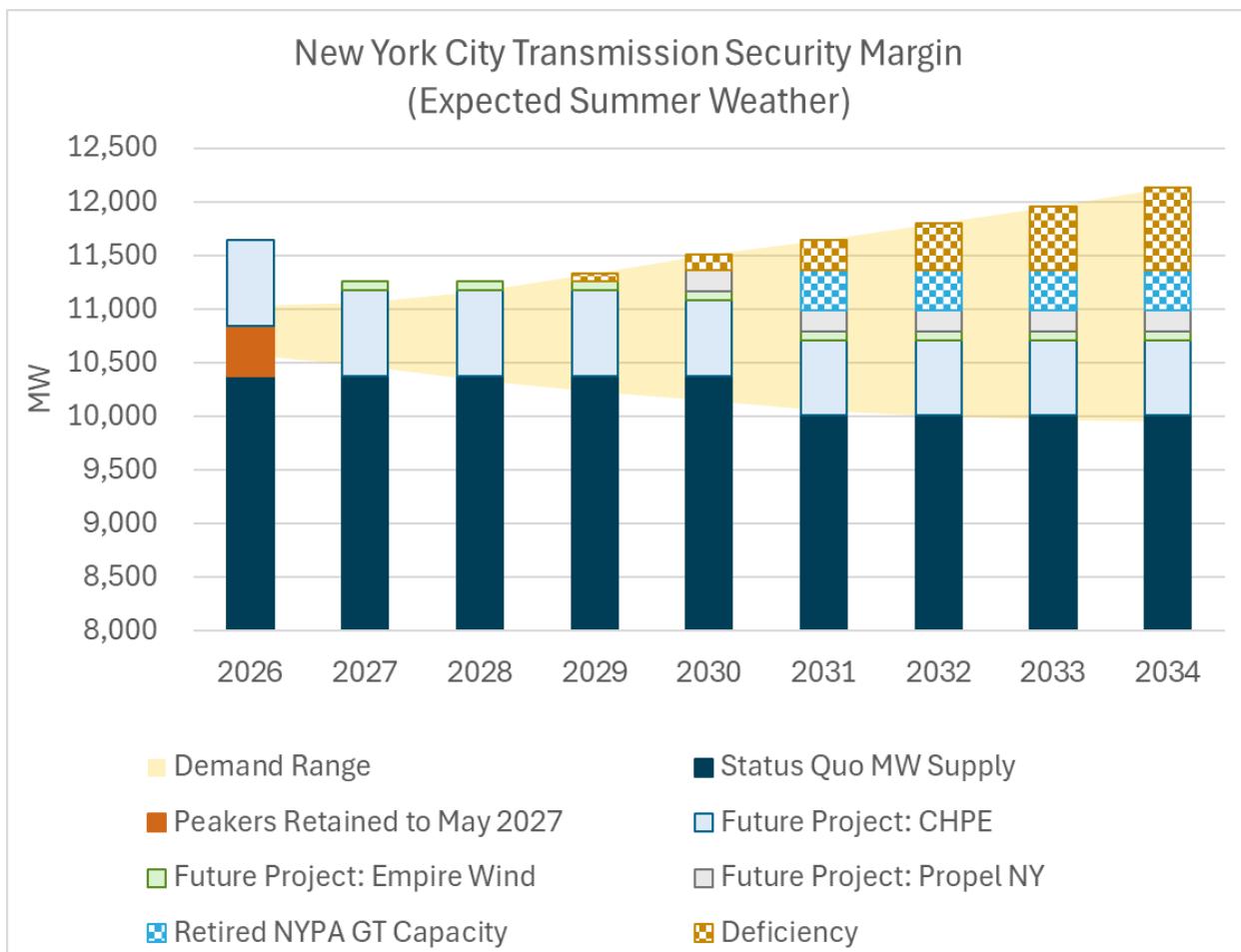

Figure 15: Zone K Summer Transmission Security Margin

Figure 16: Zone K Winter Transmission Security Margin

Figure 17: Factors Affecting Long Island Transmission Security Margin

Solutions to Previously Identified Short-Term Reliability Needs

On October 3, 2023, the NYISO received proposed solutions to the 2023 Quarter 2 STAR need within New York City. On November 20, 2023 the NYISO issued its Short-Term Reliability Process Report identifying the solution selected to address the 2025 New York City need.¹⁷ The results of this determination were reviewed with stakeholders at the November 29, 2023 Management Committee meeting.¹⁸ There were no viable and sufficient solutions submitted to the NYISO in response to its solicitation that met the need in 2025. The NYISO determined that temporarily retaining the peaker generators on the Gowanus 2 & 3 and Narrows 1 & 2 generators is necessary to address the need until a permanent solution is in place. The NYISO's designation of the Gowanus 2 & 3 and Narrows 1 & 2 generators as needed to maintain reliability allows their continued operation beyond May 2025 until the earlier of May 1, 2027, or the date a permanent solution is in place and a reliability need does not exist, consistent with the DEC Peaker Rule. The Gowanus 2 & 3 and Narrows 1 & 2 plant owner, Astoria Generating Company L.P., informed the NYISO that its generators are available to continue operation for so long as they are determined to be needed for reliability and are allowed to continue operating consistent with the Peaker Rule. With the continued operation of these peakers until the earlier of the date (a) the date a permanent solution (*i.e.*, CHPE) is in place and demonstrates dependable capacity supply during summer peak conditions or (b) May 2027, the need for the currently forecasted demand is addressed if CHPE is not delayed beyond 2026, as shown in Figure 18. The deactivation of Gowanus 2 & 3 and Narrows 1 & 2 units is assessed in the 2025 Quarter 3 STAR and the resulting impact to reliability criteria is discussed earlier in the report.


On November 10, 2025 the NYISO issued a solution solicitation to address the New York City and Long Island Generator Deactivation Reliability Needs observed in the 2025 Quarter 2 STAR. On January 9, 2026, the NYISO received the proposed solutions to these needs and is in the process of assessing the proposals.

¹⁷ Short-Term Reliability Process Report: 2025 Near-Term Reliability Need, November 20, 2023 ([here](#)).

¹⁸ Short-Term Reliability Process Report, Management Committee Meeting, November 29, 2023 ([here](#)).

Figure 18: New York City Margin with Designated Peakers

Local Non-BPTF Reliability Assessment

National Grid evaluated the impact of the generator deactivations on their non-BPTF. The NYISO reviewed and verified the analysis performed by National Grid.

National Grid Non-BPTF Generator Deactivation Assessment

For this STAR, National Grid performed a deactivation assessment to evaluate the reliability of the local non-BPTF system for the IIFO of Dahowa Hydro. National Grid did not identify Generator Deactivation Reliability Needs with the IIFO of Dahowa Hydro.

Conclusions and Determination

Consistent with the analysis and explanations above, this assessment finds that the planned BPTF system through the study period meets applicable reliability criteria, other than the reliability needs previously identified in the 2025 Quarter 3 STAR as more fully detailed above. The local non-BPTF issue observed in the 2025 Quarter 3 STAR also continues to be observed. No Generator Deactivation Reliability Needs were identified by National Grid due to the IIFO of Dahowa Hydro.

This STAR observes no changes to the scope, scale, or nature of the Generator Deactivation Reliability Needs in New York City and Long Island included in the solution solicitation issued by the NYISO on November 10, 2025, following the 2025 Quarter 3 STAR. On January 9, 2026, the NYISO received the proposed solutions to these needs and is in the process of assessing the proposals. The NYISO will evaluate the proposed solutions and issue a Short-Term Reliability Process Report indicating NYISO's selection of a solution or combination of solutions, along with a reasoned explanation regarding why particular generation and/or transmission solutions were selected. If proposed solutions, either individually or in combination, are not viable or sufficient to meet the identified needs, interim solutions must be in place to keep the grid reliable. The NYISO's solution selection process is designed to ensure that executing a Reliability Must Run (RMR) Agreement with generators is a last resort to addressing a reliability need.

Appendix A: List of Short-Term Reliability Needs

New York City Generator Deactivation Reliability Needs

Listed below are the Generator Deactivation Reliability Needs in the New York City locality in the solicitation letter for the 2025 Quarter 3 STAR.

BPTF Deficiencies:

Summer Peak	2026	2027	2028	2029	2030
MW Deficiency	650	680	790	950	1,130
Duration (hours)	8	9	11	13	13
MWh	3,569	3,782	6,658	8,794	10,922

The deficiency reported in the 2025 Quarter 3 STAR for the Lower Hudson Valley is primarily an exacerbation of the New York City BPTF Need and is also impacted by the BPTF Generator Deactivation Reliability Need identified in Zone K. Accordingly, the NYISO is not separately seeking solutions to address the deficiency for the Lower Hudson Valley beyond the solutions for the identified needs in Zones J and K. If there remains a deficiency in the Lower Hudson Valley following the solicitation and evaluation of proposed solutions to address the needs in Zones J and K, the NYISO would address it through the Reliability Planning Process.

Long Island Generator Deactivation Reliability Needs

Listed below are the Generator Deactivation Reliability Needs in the Long Island locality as detailed in the solicitation letter for the 2025 Quarter 3 STAR.

BPTF Deficiencies:

Summer Peak	2026	2027	2028	2029	2030
MW Deficiency	None	111	111	136	189
Duration	None	3	3	3	3
MWh	None	156	363	407	557

Non-BPTF Deficiencies (Far Rockaway Load Pocket)

Summer Peak	2026	2027	2028	2029	2030
MW Deficiency	61	68	74	80	72
Duration	13	14	15	15	14
MWh	505	658	736	813	649

Appendix B: Short-Term Reliability Process Solution List

The Short-Term Reliability Process solution list and the status of these solutions is posted on the NYISO website at the following location:

<https://www.nyiso.com/documents/20142/19556596/SolutionStatus-03092021.pdf/>

Appendix C: Summary of Study Assumptions

This assessment used the major assumptions included in the 2024 RNA, with the key updates noted below. Consistent with the NYISO's obligations under its tariffs, the NYISO provided information to stakeholders on the modeling assumptions employed in this assessment. Details regarding the 2024 RNA study assumptions were reviewed with stakeholders at the April 18, 2024, joint Electric System Planning Working Group ("ESPWG")/Transmission Planning Advisory Subcommittee ("TPAS") meeting. Details regarding the 2025 Quarter 4 STAR study assumptions were reviewed with stakeholders at the November 7, 2025, joint ESPWG/ TPAS meeting. The meeting materials are posted on the NYISO's website.¹⁹ The figures below (Figure 19, Figure 20, Figure 21, and Figure 22) summarize the changes to generation, load, and transmission.

Generation Assumptions

¹⁹ Short-Term Assessment of Reliability: 2025 Q3 Key Study Assumptions, ESPWG/TPAS, November 7, 2025 ([here](#)). 2024 RNA Key Study Assumptions, ESPWG/TPAS, April 18, 2024 ([here](#)).

Figure 19: Completed Generator Deactivations

Owner/ Operator	Plant Name	Zone	Nameplate (MW)	CRIS (MW)		Capability (MW)		Status	Deactivation Date (2)	STAR Evaluation (3)
				Summer	Winter	Summer	Winter			
International Paper Company	Ticonderoga (1)	F	9.0	7.6	7.5	9.5	9.8	I	5/1/2017	-
Helix Ravenswood, LLC	Ravenswood 2-4	J	42.9	39.8	50.6	30.7	41.6	I	4/1/2018	-
	Ravenswood 3-1	J	42.9	40.5	51.5	31.9	40.8	I	4/1/2018	-
	Ravenswood 3-2	J	42.9	38.1	48.5	29.4	40.3	I	4/1/2018	-
	Ravenswood 3-4	J	42.9	35.8	45.5	31.2	40.8	I	4/1/2018	-
	Rockville Centre, Village of	K	2.0	2.0	2.0	1.9	1.9	R	3/1/2019	-
Exelon Generation Company LLC	Monroe Livingston	B	2.4	2.4	2.4	2.4	2.4	R	9/1/2019	-
Innovative Energy Systems, Inc.	Steuben County LF	C	3.2	3.2	3.2	3.2	3.2	R	9/1/2019	-
Consolidated Edison Co. of NY, Inc	Hudson Ave 4	J	16.3	13.9	18.2	14.0	16.3	R	9/10/2019	-
New York State Elec. & Gas Corp.	Auburn - State St	C	7.4	5.8	6.2	4.1	7.3	R	10/1/2019	-
Somerset Operating Company, LLC	Somerset	A	655.1	686.5	686.5	676.4	684.4	R	3/12/2020	-
Entergy Nuclear Power Marketing, LLC	Indian Point 2	H	1,299.0	1,026.5	1,026.5	1,011.5	1,029.4	R	4/30/2020	-
Cayuga Operating Company, LLC	Cayuga 1	C	155.3	154.1	154.1	151.0	152.0	R	6/4/2020	-
Entergy Nuclear Power Marketing, LLC	Indian Point 3	H	1,012.0	1,040.4	1,040.4	1,036.3	1,038.3	R	4/30/2021	-
Helix Ravenswood, LLC	Ravenswood GT 11	J	25.0	20.2	25.7	16.1	22.4	I	12/1/2021	2022 Q1
Helix Ravenswood, LLC	Ravenswood GT 1	J	18.6	8.8	11.5	7.7	11.1	I	1/1/2022	2022 Q1
Freeport Electric	Freeport 1-4	K	6.0	4.4	4.4	4.5	5.0	R	5/1/2022	-
Exelon Generation Company LLC	Madison County LF	E	1.6	1.6	1.6	1.6	1.6	I	4/1/2022	2022 Q2
Nassau Energy, LLC	Trigen CC	K	55.0	51.6	60.1	38.5	51.0	R	7/15/2022	2022 Q2
Consolidated Edison Co. of NY, Inc.	Hudson Ave 3	J	16.3	16.0	20.9	12.3	15.6	R	11/1/2022	2022 Q2
Consolidated Edison Co. of NY, Inc.	Hudson Ave 5	J	16.3	15.1	19.7	15.3	18.6	R	11/1/2022	2022 Q2
Astoria Generating Company, L.P.	Gowanus 1-1 through 1-8	J	160.0	138.7	181.1	133.1	182.2	R	11/1/2022	2022 Q2
Astoria Generating Company, L.P.	Gowanus 4-1 through 4-8	J	160.0	140.1	182.9	138.8	183.4	R	11/1/2022	2022 Q2
NRG Power Marketing LLC	Astoria GT 2-1	J	46.5	41.2	50.7	34.9	46.5	R	5/1/2023	2022 Q2
NRG Power Marketing LLC	Astoria GT 2-2	J	46.5	42.4	52.2	34.3	45.6	R	5/1/2023	2022 Q2
NRG Power Marketing LLC	Astoria GT 2-3	J	46.5	41.2	50.7	36.3	46.7	R	5/1/2023	2022 Q2
NRG Power Marketing LLC	Astoria GT 2-4	J	46.5	41.0	50.5	32.5	45.4	R	5/1/2023	2022 Q2
NRG Power Marketing LLC	Astoria GT 3-1	J	46.5	41.2	50.7	34.6	45.0	R	5/1/2023	2022 Q2
NRG Power Marketing LLC	Astoria GT 3-2	J	46.5	43.5	53.5	35.7	45.3	R	5/1/2023	2022 Q2
NRG Power Marketing LLC	Astoria GT 3-3	J	46.5	43.0	52.9	33.9	44.6	R	5/1/2023	2022 Q2
NRG Power Marketing LLC	Astoria GT 3-4	J	46.5	43.0	52.9	34.9	45.5	R	5/1/2023	2022 Q2
NRG Power Marketing LLC	Astoria GT 4-1	J	46.5	42.6	52.4	33.6	43.8	R	5/1/2023	2022 Q2
NRG Power Marketing LLC	Astoria GT 4-2	J	46.5	41.4	51.0	34.3	44.3	R	5/1/2023	2022 Q2
NRG Power Marketing LLC	Astoria GT 4-3	J	46.5	41.1	50.6	35.4	46.4	R	5/1/2023	2022 Q2
NRG Power Marketing LLC	Astoria GT 4-4	J	46.5	42.8	52.7	35.2	44.1	R	5/1/2023	2022 Q2
Helix Ravenswood, LLC	Ravenswood 10	J	25.0	21.2	27.0	16.1	20.3	R	5/1/2023	2022 Q3
Helix Ravenswood, LLC	Ravenswood 01	J	18.6	8.8	11.5	7.7	11.1	R	10/14/2023	2023 Q3
Helix Ravenswood, LLC	Ravenswood 11	J	25.0	20.2	25.7	16.1	22.4	R	10/14/2023	2023 Q3
Astoria Generating Company, L.P.	Gowanus 3-6	J	20.0	17.6	23.0	16.4	20.4	I	7/14/2026	2025 Q2
Astoria Generating Company, L.P.	Narrows 2-1 and 2-7	J	44.0	40.1	52.3	37.9	48.8	I	7/14/2026	2025 Q2
Consolidated Edison Co. of NY, Inc.	59 St. GT 1 (4)	J	17.1	15.4	20.1	13.9	17.4	R	5/1/2025	-
Western New York Wind Corp	Western NY Wind Power	B	6.6	0.0	0.0	0.0	0.0	R	10/15/2023	2023 Q3
Central Hudson Gas & Electric Corp.	South Cairo GT	G	21.6	19.8	25.9	18.7	23.1	R	3/31/2024	2023 Q4
Cubit Power One Inc.	Arthur Kill Cogen	J	11.1	11.1	11.1	11.1	10.2	I	3/2/2024	2024 Q2
NRG Power Marketing, LLC	Arthur Kill GT 1 (4)	J	20	16.5	21.6	12.4	16.1	R	5/1/2025	-
Eastern Generation, LLC	Astoria GT 01	J	16	15.7	20.5	13.8	17.6	R	5/1/2025	2024 Q3
Madison Windpower, LLC	Madison Windpower	E	11.6	11.5	11.5	11.6	11.6	R	5/1/2025	2025 Q1
Casella Waste Systems, Inc	Hyland LFGE	B	4.8	4.8	4.8	4.8	4.8	I	6/1/2025	2025 Q3
			Total	4,591.5	4,200.2	4,526.8	3,997.5	4,366.4		

Notes

(1) Part of SCR program

(2) This table only includes units that have entered into IIFO (I) or have completed the generator deactivation process (R).

(3) "-" denotes that the generator deactivation was assessed prior to the creation of the Short-Term Reliability Process

(4) Unit no longer subject to NYISO dispatch and is used for local reliability only.

Figure 20: Proposed Deactivations

Owner/ Operator	Plant Name (1)	Zone	Nameplate (MW)	CRIS (MW)		Capability (MW)		Status	Deactivation date (2)	STAR Evaluation
				Summer	Winter	Summer	Winter			
Central Hudson Gas & Electric Corp.	Coxsackie GT	G	21.6	21.6	26.0	19.7	22.7	R	12/31/2025 (3)	2024 Q1
MPH Cross Island Power, LLC	Pinelawn Power 1	K	82	78.0	78.0	73.6	76.5	R	11/1/2025	2025 Q3
MPH Rockaway Peakers, LLC	Far Rockaway GT1	K	60.5	53.5	73.1	48.9	52.6	R	11/1/2025	2025 Q3
MPH Rockaway Peakers, LLC	Far Rockaway GT2	K	60.5	55.4	75.7	55.7	59.0	R	11/1/2025	2025 Q3
Astoria Generating Company, L.P.	Gowanus 2-1 through 2-8	J	160	152.8	199.6	142.2	182.5	R	7/14/2026	2025 Q3
Astoria Generating Company, L.P.	Gowanus 3-1 through 3-8 (4)	J	140	129.2	168.7	123.8	159.7	R	7/14/2026	2025 Q3
Astoria Generating Company, L.P.	Narrows 1-1 through 2-8 (5)	J	308	269.0	351.3	250.4	323.7	R	7/14/2026	2025 Q3
Relevate ReDev Borrower II LLC	Dahowa Hydroelectric	F	12.3	10.5	10.5	12.3	12.3	IIFO	9/1/2025	2025 Q4
			Total	844.9	770.0	982.9	726.6			

Notes:

- (1) This table includes units that have proposed to Retire or enter Mothball Outage and have a completed generator deactivation notice but have yet to complete the generator deactivation process.
- (2) Date in which the generator proposed Retire (R) or enter Mothball Outage (MO)
- (3) In March 2024, Central Hudson submitted an update to its DEC peaker compliance plan to extend the retirement date of Coxsackie GT until December 31, 2025 until a permanent transmission and distribution solution to local non-BPTF transmission security issues is completed. At the April 7, 2025 TPAS/ESPWG, Central Hudson presented an LTP update including a delay of the retirement of the Coxsackie GT until May 2026.
- (4) Does not include Gowanus GT 3-6.
- (5) Does not include Narrows GT 2-1 and 2-7.

Figure 21: Large Generation Additions

Proposed Project Inclusion: Large Generation							
Queue	Project Name	MW	Type	Zone	Proposed Date		Included in Prior STAR
					Prior STAR	Current STAR	
396	Baron Winds Phase II	117	W	C	Dec-25		Yes
571	Heritage Wind, LLC	200.1	W	B	Sep-26		Yes
596	Alle Catt II Wind	339.1	W	A	Dec-26		Yes
704	Bear Ridge Solar	100	S	A	Apr-27		Yes
720	Trelinia Solar Energy Center	80	S	C	Apr-28		Yes
721	Excelsior Energy Center	280	S	A	Nov-26		Yes
737	Empire Wind 1	816	W	J	Jul-27		Yes
811	Hecate Energy Cider Solar LLC	500	S	B	Dec-26	Jan-27	Yes
880	Brookside Solar	100	S	D	May-28	Dec-27	Yes
883	Garnet Energy Center, LLC	200	S	B	Apr-28		Yes
950	Hemlock Ridge Solar	200	S	B	May-27	Apr-28	Yes
1079	Somerset Solar	125	S	A	Mar-27	Jun-28	Yes
766/987	Sunrise Wind LLC	924	W	K	Jul-27		Yes

Figure 22: Small Generation Additions

Proposed Project Inclusion: Small Generation							
Queue	Project Name	MW	Type	Zone	Proposed Date		Included in Prior STAR
					Prior STAR	Current STAR	
545	Sky High Solar	20	S	C	Jun-25	Dec-26	Yes
564	Rock District Solar	20	S	F	Feb-27		Yes
572	Greene County 1	20	S	G	May-25	Jun-27	Yes
573	Greene County 2	10	S	G	May-25	Jun-27	Yes
581	Hills Solar	20	S	E	Dec-26		Yes
584	Dog Corners Solar	20	S	C	Apr-26		Yes
586	Watkins Rd Solar	20	S	E	Jul-26	Feb-27	Yes
590	Scipio Solar	18	S	C	Dec-26		Yes
591	Highview Solar	20	S	C	Feb-25	Nov-26	Yes
592	Niagara Solar	20	S	A	Dec-26		Yes
734	Ticonderoga Solar	20	S	F	Dec-26		Yes
804	KCE NY 10	20	ES	A	Oct-26		Yes
827	Arthur Kill Energy Storage 1	15	ES	J	Sep-25	Dec-25	Yes
828	Valley Solar	20	S	C	Nov-24	Jan-27	Yes
832	CS Hawthorn Solar	20	S	F	Dec-26		Yes
833	Dolan Solar	20	S	F	Dec-26		Yes
848	Fairway Solar	20	S	E	Mar-25	May-28	Yes
855	NY13 Solar	20	S	F	Jun-25	Jun-27	Yes
865	Flat Hill Solar	20	S	E	Dec-25		Yes
885	Grassy Knoll Solar	20	S	E	Dec-25	May-28	Yes
1003	Clear View Solar	20	S	C	Dec-25		Yes
1015	Somers Solar, LLC	20	S	F	Dec-26		Yes
1047	Millers Grove Solar	20	S	E	Dec-26		Yes

*All projects have CRIS.

Demand Assumptions

The 2025 Quarter 4 STAR uses the demand forecasts for the study years consistent with the 2025 Gold Book for expected weather conditions with changes to Zone K to account for the removal of certain load projects. Details on the demand forecasts utilized for determining reliability needs are provided below.

Figure 23: Summer Coincident Peak Demand Forecasts

Summer Coincident Peak Demand Forecast (MW)													
Year		A	B	C	D	E	F	G	H	I	J	K	NYCA
2026	Low Demand	2,840	1,842	2,559	839	1,287	2,240	2,262	615	1,316	10,570	4,980	31,350
	Baseline	2,943	1,854	2,568	1,042	1,298	2,255	2,304	620	1,320	10,790	4,996	31,990
	High Demand	3,120	1,995	2,633	1,045	1,308	2,274	2,307	625	1,324	10,920	5,039	32,590
2027	Low Demand	2,820	1,837	2,613	934	1,271	2,243	2,261	613	1,317	10,470	4,961	31,340
	Baseline	2,936	1,846	2,639	1,171	1,293	2,275	2,331	625	1,327	10,820	5,012	32,275
	High Demand	3,214	2,124	2,831	1,287	1,305	2,299	2,339	627	1,333	11,040	5,046	33,445
2028	Low Demand	2,802	1,827	2,716	931	1,256	2,206	2,258	610	1,318	10,340	4,946	31,210
	Baseline	2,925	1,834	2,737	1,173	1,293	2,265	2,344	625	1,336	10,840	5,011	32,383
	High Demand	3,423	2,135	3,034	1,297	1,312	2,284	2,366	628	1,343	11,170	5,041	34,033
2029	Low Demand	2,785	1,816	2,846	928	1,246	2,195	2,254	606	1,319	10,230	4,911	31,136
	Baseline	2,920	1,826	2,876	1,179	1,296	2,264	2,346	627	1,343	10,860	5,034	32,571
	High Demand	3,567	2,137	3,256	1,297	1,316	2,305	2,372	631	1,352	11,330	5,058	34,621
2030	Low Demand	2,768	1,804	2,966	927	1,238	2,186	2,250	603	1,320	10,150	4,898	31,110
	Baseline	2,917	1,821	3,062	1,180	1,307	2,267	2,347	627	1,351	10,880	5,086	32,845
	High Demand	3,596	2,140	3,469	1,298	1,332	2,329	2,387	632	1,360	11,510	5,122	35,175

Figure 24: Winter Coincident Peak Demand Forecasts

Winter Coincident Peak Demand Forecast (MW)													
Year		A	B	C	D	E	F	G	H	I	J	K	NYCA
2026-27	Low Demand	2,208	1,503	2,555	1,055	1,309	1,900	1,599	519	933	7,300	3,229	24,110
	Baseline	2,323	1,525	2,583	1,249	1,333	1,917	1,662	525	947	7,580	3,276	24,920
	High Demand	2,530	1,744	2,656	1,253	1,339	1,934	1,668	529	951	7,740	3,296	25,640
2027-28	Low Demand	2,202	1,499	2,655	1,094	1,300	1,900	1,612	519	937	7,250	3,262	24,230
	Baseline	2,329	1,531	2,688	1,316	1,343	1,939	1,701	528	956	7,650	3,335	25,316
	High Demand	2,668	1,827	2,898	1,469	1,347	1,965	1,719	530	963	7,880	3,350	26,616
2028-29	Low Demand	2,201	1,496	2,763	1,095	1,298	1,875	1,631	519	941	7,220	3,291	24,330
	Baseline	2,346	1,537	2,812	1,321	1,351	1,961	1,738	533	973	7,800	3,443	25,815
	High Demand	2,962	1,843	3,182	1,477	1,363	1,997	1,787	538	994	8,110	3,472	27,725
2029-30	Low Demand	2,200	1,494	2,911	1,094	1,296	1,884	1,638	515	944	7,180	3,352	24,508
	Baseline	2,361	1,540	2,966	1,322	1,374	1,988	1,771	539	989	7,930	3,585	26,365
	High Demand	3,085	1,864	3,406	1,479	1,409	2,069	1,811	550	1,009	8,320	3,673	28,675
2030-31	Low Demand	2,205	1,497	3,123	1,092	1,295	1,894	1,656	517	946	7,120	3,401	24,746
	Baseline	2,386	1,556	3,189	1,324	1,398	2,020	1,814	546	1,007	8,070	3,716	27,026
	High Demand	3,156	1,913	3,679	1,485	1,469	2,158	1,886	568	1,041	8,560	3,871	29,786

Figure 25: Annual Energy Forecasts

Year		Annual Energy Forecast (GWh)											
		A	B	C	D	E	F	G	H	I	J	K	NYCA
2026	Low Demand	15,430	9,150	14,710	6,890	7,010	10,980	9,260	2,770	5,810	48,160	19,890	150,060
	Baseline	16,170	9,280	14,790	8,310	7,190	11,240	9,640	2,790	5,910	50,100	20,040	155,460
	High Demand	17,240	10,040	15,260	8,350	7,240	11,350	9,790	2,820	5,940	51,010	20,270	159,310
2027	Low Demand	15,330	8,970	15,040	7,640	6,850	10,910	9,300	2,770	5,830	47,170	19,700	149,510
	Baseline	16,160	9,150	15,200	9,280	7,130	11,410	9,830	2,800	5,950	50,260	20,040	157,210
	High Demand	18,350	10,970	16,550	10,080	7,150	11,420	10,000	2,840	5,990	51,790	20,390	165,530
2028	Low Demand	15,240	8,850	15,640	7,630	6,780	10,820	9,370	2,770	5,870	46,830	19,630	149,430
	Baseline	16,150	9,080	15,860	9,300	7,150	11,380	10,000	2,810	6,030	50,530	20,330	158,620
	High Demand	19,780	11,300	18,110	10,490	7,210	11,520	10,210	2,870	6,080	52,520	20,770	170,860
2029	Low Demand	15,110	8,730	16,450	7,590	6,700	10,720	9,330	2,770	5,890	46,270	19,680	149,240
	Baseline	16,120	9,000	16,750	9,270	7,160	11,360	10,060	2,820	6,080	50,730	20,800	160,150
	High Demand	21,220	11,330	20,020	10,520	7,420	11,710	10,320	2,890	6,160	53,250	21,350	176,190
2030	Low Demand	15,050	8,650	17,750	7,560	6,660	10,690	9,340	2,770	5,930	46,140	19,920	150,460
	Baseline	16,150	8,980	18,140	9,260	7,250	11,410	10,150	2,840	6,150	51,110	21,420	162,860
	High Demand	21,910	11,490	22,060	10,580	7,740	12,040	10,590	2,930	6,260	54,120	22,130	181,850

Figure 26: Summer Non-Coincident Peak Demand Forecast

Baseline Summer Non-Coincident Peak Demand Forecast (MW)					
Zone	2026	2027	2028	2029	2030
G-J	15,280	15,349	15,392	15,423	15,452
J	11,030	11,060	11,080	11,100	11,120
K	5,072	5,089	5,088	5,112	5,165

Figure 27: Winter Non-Coincident Peak Demand Forecast

Baseline Winter Non-Coincident Peak Demand Forecast (MW)					
Zone	2026-27	2027-28	2028-29	2029-30	2030-31
G-J	10,748	10,870	11,080	11,266	11,474
J	7,630	7,700	7,850	7,990	8,130
K	3,289	3,348	3,457	3,600	3,731

Figure 28: Large Load Demand Forecast

Large Loads Summer Peak Forecasts (MW)										
Zone	A	B	C	D	E	F	G	K	NYCA Total	Flexible Total
2025	250	5	0	166	13	0	32	0	466	416
2026	335	11	72	518	15	0	72	0	1,023	685
2027	335	11	168	647	30	40	93	0	1,324	685
2028	335	11	288	647	41	40	104	7	1,473	685
2029	335	11	442	651	54	40	107	29	1,669	685
2030	335	11	653	651	70	40	110	70	1,940	685
Large Loads Winter Peak Forecasts (MW)										
Zone	A	B	C	D	E	F	G	K	NYCA Total	Flexible Total
2025-26	250	5	0	177	14	0	32	0	478	416
2026-27	335	11	72	582	23	0	72	0	1,095	685
2027-28	335	11	168	647	36	40	93	3	1,333	685
2028-29	335	11	288	651	48	40	104	55	1,532	685
2029-30	335	11	442	651	62	40	107	129	1,777	685
2030-31	335	11	653	651	70	40	110	182	2,052	685

Note: These projections are included in the baseline zonal forecasts, and should not be added as additional load.

Transmission Assumptions

The study assumptions for existing transmission facilities that are modeled as out-of-service are listed in Figure 29. Figure 30 shows the Con Edison series reactor status utilized in this STAR. There is one change in Con Edison series reactor assumptions in this STAR compared to the 2024 RNA. Figure 31 and Figure 32 provide a summary of the transmission projects included in the 2024 RNA as listed in the 2025 Gold Book.

Figure 29: Existing Transmission Facilities Modeled Out-of-Service

From	To	kV	ID	Out-of-Service Through	
				Prior STAR	Current STAR
Marion	Farragut	345	B3402	Long-Term	
Marion	Farragut	345	C3403	Long-Term	
Plattsburgh (1)	Plattsburgh	230/115	AT1	9/2026	
Stolle Rd	Stolle Rd	115	T11-52	12/2025	In-service
Station 23	Station 42	115	920	12/2025	In-service
E13th Street		345/69	BK17	-	6/2027

Notes

(1) A spare transformer is placed in-service during the outage

Figure 30: Con Edison Proposed Series Reactor Status

Terminals		ID	kV	Summer	Winter
Dunwoodie	Mott Haven	71	345	In-Service	By-Passed
Dunwoodie	Mott Haven	72	345	In-Service	By-Passed
Sprainbrook	W. 49th Street	M51	345	In-Service	By-Passed
Sprainbrook	W. 49th Street	M52	345	In-Service	By-Passed
Farragut	Gowanus	41	345	By-Passed	In-Service
Farragut	Gowanus	42	345	By-Passed	In-Service
Sprainbrook	Uninondale Hub	Y49	345	By-Passed	By-Passed

Figure 31: Major Transmission Projects Included in 2024 RNA

Queue	Project Name	MW	POI	Zone	Proposed Date
631/887	TDI Champlain Hudson Power Express (CHPE)	1250	Astoria Annex 345kV	J	May-26
1125	Northern New York Priority Transmission Project (NNYPTP)	N/A	Moses/Adirondack/Porter path	D&E	Dec-25
1289/1667	Propel NY Energy - Alternate Sol 5	N/A	Sprain Brook, Tremont, East Garden City, Shore Road, additional Long Island Substations	I,J,K	May-30
-	Brooklyn Clean Energy Hub	N/A	Between Farragut 345 kV and Rainey 345 kV	J	Jun-28
-	Gowanus/Greenwood PAR Regulated Feeder	N/A	Gowanus 345 kV/Greenwood 138 kV TLA	J	May-25
-	Goethals/Foxhills PAR Regulated Feeder	N/A	Goethals 345 kV/Greenwood 138 kV TLA	J	May-25
-	Eastern Queens Clean Energy Hub	N/A	Between Jamaica 138 kV and Valley Stream/Lake Success 138 kV	J	Jun-28
-	Gowanus/Greenwood PAR Regulated Feeder	N/A	Gowanus 345 kV/Greenwood 138 kV TLA	J	May-26

Figure 32: Transmission Project Inclusion Rules Application for 2024 RNA

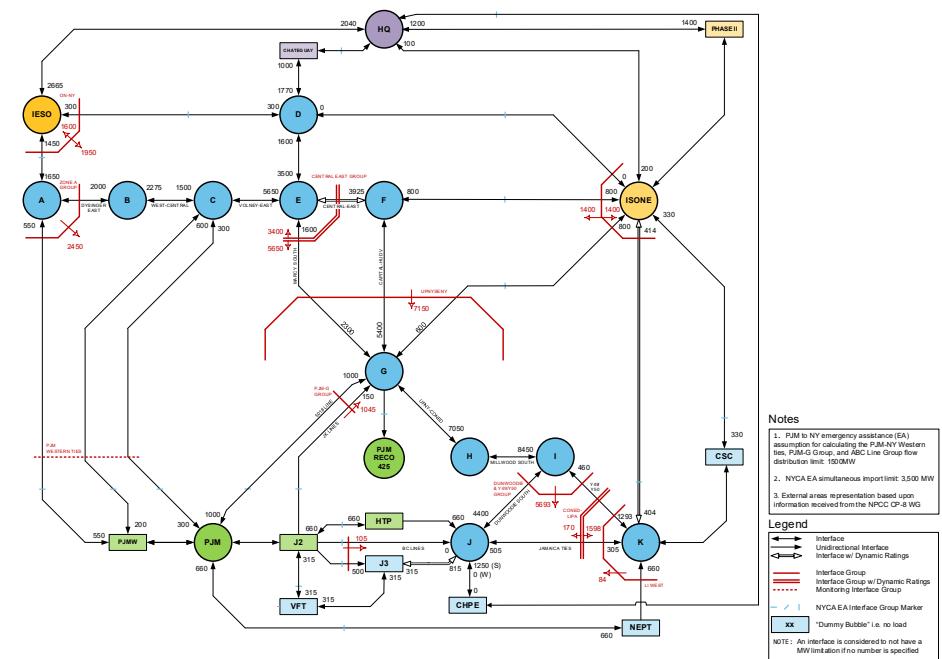
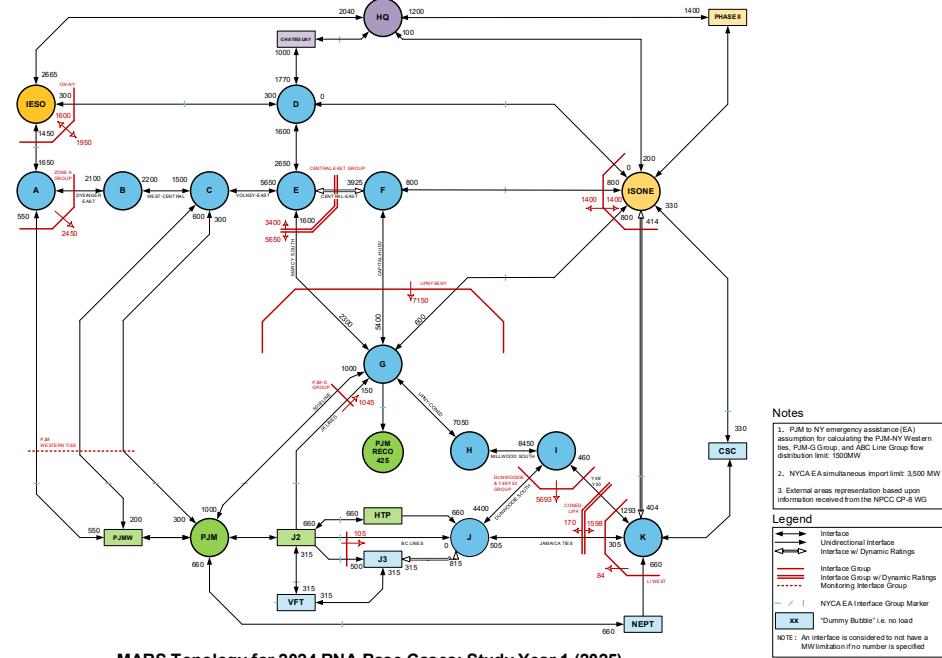
Transmission Project Inclusion Rules Application: Class Year Transmission, TIP, and Firm LTP Projects Not Included in the 2025 RPP Base Cases											
Transmission Owner	Terminals		Line Length (Miles)	Proposed In-Service Date		Nominal Voltage (kV)		# of CKTs	Thermal Ratings		Project Description / Conductor Size
				Prior to	Year	Operating	Design		Summer	Winter	
NYSEG	New Gardenville	New Gardenville	xfmr	W	2030	115/34.5	115/34.5	1	50	60	NYSEG Transformer #7 and Station Reconfiguration
NYSEG	New Gardenville	New Gardenville	xfmr	W	2030	115/34.5	115/34.5	2	50	60	NYSEG Transformer #8 and Station Reconfiguration
NYSEG	New Gardenville	New Gardenville	xfmr	W	2030	230/115	230/115	1	316 MVA	370 MVA	NYSEG Transformer #6 and Station Reconfiguration
Clean Path New York LLC	Fraser 345kV	Rainey 345kV	HVDC	S	2028	492	492	1	1300 MW	1300 MW	+ 400kV Bipolar HVDC cable

Appendix D: Resource Adequacy Assumptions

2025 Q4 STAR MARS Assumptions Matrix

Parameter		2024 RNA Base Cases Key Assumptions (2024 Gold Book)	2025 RPP, 2025 Q3, Q4 STAR Key Assumptions (2025 GB)
0	Relevant Links	<ul style="list-style-type: none"> 2024 RNA Report Appendices 2025-2034 CRP Report Appendices 	<ul style="list-style-type: none"> July 23 ESPWG 2025 Q3 STAR Assumptions Nov. 10, 2025 Q3 STAR Solutions Solicitation Nov 7 ESPWG 2025 Q4 STAR Assumptions
Load Parameters			
1	Peak Load Forecast	<p>Adjusted 2024 Gold Book NYCA baseline peak load forecast. It includes large loads from the NYISO interconnection queue, with forecasted impacts. Baseline load represents coincident summer peak demand and includes the reductions due to projected energy efficiency programs, building codes and standards, BtM storage impacts at peak, distributed energy resources and BtM solar photovoltaic resources; it also reflects expected impacts (increases) from projected electric vehicle usage and electrification.</p> <p>The 2024 GB baseline peak load forecast includes the impact (reduction) of behind-the-meter (BtM) solar at the time of NYCA peak. For the BtM Solar adjustment, gross load forecasts that include the impact of the BtM generation are used for the 2024 RNA, which then allows for a discrete modeling of the BtM solar resources using 5 years of inverter data.</p>	<p>Adjusted 2025 Gold Book NYCA baseline peak load forecast. It includes large loads from the NYISO interconnection queue, with forecasted impacts. Baseline load represents coincident summer peak demand and includes the reductions due to projected energy efficiency programs, building codes and standards, BtM storage impacts at peak, distributed energy resources and BtM solar photovoltaic resources; it also reflects expected impacts (increases) from projected electric vehicle usage and electrification.</p> <p>The 2025 GB baseline peak load forecast includes the impact (reduction) of behind-the-meter (BtM) solar at the time of NYCA peak. For the BtM Solar adjustment, gross load forecasts that include the impact of the BtM generation are used for the 2025 RPP, which then allows for a discrete modeling of the BtM solar resources using 5 years of inverter data.</p>
1a	Proposed large loads	As included in the Baseline Peak Load Forecast from the Gold Book. Certain large loads that are assumed flexible (e.g., crypto, hydrogen) are modeled as EOP step.	As included in the Baseline Peak Load Forecast from the Gold Book. Certain large loads that are assumed flexible (e.g., crypto, hydrogen) are modeled as EOP step.
2	Load Shapes (Multiple Load Shapes)	<p>Used Multiple Load Shape MARS Feature (see March 24, 2022 LTF/ESPWG).</p> <p>8,760-hour historical gross load shapes were used as base shapes for LFU bins:</p> <ul style="list-style-type: none"> Load Bins 1 and 2: 2013 Load Bins 3 and 4: 2018 Load Bins 5 to 7: 2017 <p>Historical load shapes are adjusted to meet zonal (as well as G-J) coincident and non-coincident peak forecasts (summer and winter), while maintaining the energy targets.</p> <p>For the BtM Solar discrete modeling, gross load forecasts that include the impact of the BtM generation are used (additional details under the BtM Solar category below).</p>	<p>Used Multiple Load Shape MARS Feature (see March 24, 2022 LTF/ESPWG).</p> <p>8,760-hour historical gross load shapes were used as base shapes for LFU bins:</p> <ul style="list-style-type: none"> Load Bins 1 and 2: 2013 Load Bins 3 and 4: 2018 Load Bins 5 to 7: 2017 <p>Historical load shapes are adjusted to meet zonal (as well as G-J) coincident and non-coincident peak forecasts (summer and winter), while maintaining the energy targets.</p> <p>For the BtM Solar discrete modeling, gross load forecasts that include the impact of the BtM generation are used (additional details under the BtM Solar category below).</p>
3	Load Forecast Uncertainty (LFU) The LFU model captures the impacts of weather conditions on future loads.	<p>Same summer LFU values as the ones presented in 2023 (as presented at the May 26, 2023 LTF [link] and also presented at the April 18, 2024 LTF [link])</p> <p>New Additional Method for Winter: Winter Dynamic Load Forecast Uncertainty (LFU): In order to reflect uncertainty stemming from</p>	<p>Same summer LFU values as the ones presented in 2023 (as presented at the May 26, 2023 LTF [link] and also presented at the April 18, 2024 LTF [link])</p> <p>Starting 2024 RNA, winter Dynamic Load Forecast Uncertainty (LFU): In order to reflect uncertainty stemming from electrification, electric vehicles</p>

		<p>electrification, electric vehicles (EVs), and large loads, the 2024 RNA will use a winter LFU multipliers model. Over the study period year 2 through year 10, dynamic winter LFU multipliers were calculated, reflecting the increasing share and load behavior of EV charging load, heating electrification, and large load projects. The dynamic winter LFU multipliers increase over the study horizon, reflecting the increasing winter weather sensitivity due to additional EV charging and electric heating load. Note: the first winter of the study period (winter 2024-25) match those calculated using recent winter load and weather data.</p> <p>Additional details are available in the April 18 TPAS/ESPWG/LFTF presentation [link]</p>	<p>(EVs), and large loads, starting with the 2024 RNA used a winter LFU multipliers model. Over the study period year 2 through year 10, dynamic winter LFU multipliers were calculated, reflecting the increasing share and load behavior of EV charging load, heating electrification, and large load projects. The dynamic winter LFU multipliers increase over the study horizon, reflecting the increasing winter weather sensitivity due to additional EV charging and electric heating load. Note: the first winter of the study period (winter 2024-25) match those calculated using recent winter load and weather data.</p> <p>Additional details are available in the May 29 TPAS/ESPWG/LFTF presentation [link]</p>
Generation Parameters			
1	Existing Generating Unit Capacities (e.g., thermal units, large hydro)	2024 Gold Book values: Summer is min of (DMNC, CRIS). Winter is min of (DMNC, CRIS). Adjusted for RNA Base Case inclusion rules application	2025 Gold Book values: Summer is min of (DMNC, CRIS). Winter is min of (DMNC, CRIS). Adjusted for RNA Base Case inclusion rules application
2	Proposed New Units Inclusion Determination	2024 Gold Book with RNA Base Case inclusion rules applied	2025 Gold Book with RNA Base Case inclusion rules applied
3	Retirement, Mothballed Units, IIFO	2024 Gold Book with RNA Base Case inclusion rules applied	2025 Gold Book with RNA Base Case inclusion rules applied
4	Forced and Partial Outage Rates (e.g., thermal units)	<p>Five-year (2019-2023) GADS data for each unit represented.</p> <p>Transition Rates representing the Equivalent Forced Outage Rates (EFORd) during demand periods over the most recent five-year period.</p> <p>For new units or units that are in service for less than three years, NERC 5-year class average EFORd data are used.</p>	<p>Five-year (2020-2024) GADS data for each unit represented.</p> <p>Transition Rates representing the Equivalent Forced Outage Rates (EFORd) during demand periods over the most recent five-year period.</p> <p>For new units or units that are in service for less than three years, NERC 5-year class average EFORd data are used.</p>
5	Modeling of Non-firm Gas Unavailability During Winter Peak Conditions	<p>New:</p> <p>In order to simulate anticipated risks from cold snaps on the gas availability, gas plants available MWs in NYCA are further derated, i.e., all gas-only units with non-firm gas within the NYCA are assumed unavailable. Also, certain dual-fuel units with duct-burn capability are derated. The forecasted winter coincident peak is used to determine when the gas derates are applied in the RNA Base Cases and for each load bin and Study Year.</p>	<p>Starting 2024 RNA:</p> <p>In order to simulate anticipated risks from cold snaps on the gas availability, gas plants available MWs in NYCA are further derated, i.e., all gas-only units with non-firm gas within the NYCA are assumed unavailable. Also, certain dual-fuel units with duct-burn capability are derated. The forecasted winter coincident peak is used to determine when the gas derates are applied in the RNA Base Cases and for each load bin and Study Year.</p>
6	Daily Maintenance	Fixed maintenance based on schedules received by the NYISO.	Fixed maintenance based on schedules received by the NYISO.
7	Weekly Planned Maintenance	<p>MARS is automatically scheduling maintenance based on NYCA capacity and demand.</p> <p>Data: 5y (2019-2023) of historical scheduled maintenance data from Operations and GADS system to determine the number of weeks on maintenance for each thermal unit.</p>	<p>MARS is automatically scheduling maintenance based on NYCA capacity and demand.</p> <p>Data: 5y (2020-2024) of historical scheduled maintenance data from Operations and GADS system to determine the number of weeks on maintenance for each thermal unit.</p>



8	Summer Maintenance	None	None
9	Combustion Turbine Derates	<p>Derate based on temperature correction curves.</p> <p>Thermal derates are based on a ratio of peak load before LFU is applied and LFU applied load.</p> <p>For new units: used data for a unit of same type in same zone, or neighboring zone data.</p>	<p>Derate based on temperature correction curves.</p> <p>Thermal derates are based on a ratio of peak load before LFU is applied and LFU applied load.</p> <p>For new units: used data for a unit of same type in same zone, or neighboring zone data.</p>
10	Existing Landfill Gas (LFG) Plants	<p>Actual hourly plant output over the last 5 years. Program randomly selects an LFG shape of hourly production over the last 5 years for each model replication.</p> <p>Probabilistic model is incorporated based on five years of input shapes, with one shape per replication randomly selected in the Monte Carlo process.</p>	<p>Actual hourly plant output over the last 5 years. Program randomly selects an LFG shape of hourly production over the last 5 years for each model replication.</p> <p>Probabilistic model is incorporated based on five years of input shapes, with one shape per replication randomly selected in the Monte Carlo process.</p>
11	Existing and Proposed Wind Units	<p>New data source: Model-based hourly data over the available past 5 years (2017-2021 developed by DNV-GL). For any unit that was included in the DNV data the data "as is" was used. For any unit not included a weighted zonal average was modeled.</p> <p>Probabilistic model is incorporated based on five years of input shapes with one shape per replication being randomly selected in Monte Carlo process.</p>	<p>Starting 2024 RNA, new data source: Model-based hourly data over the available past 5 years (2020-2024 developed by DNV-GL). For any unit that was included in the DNV data the data "as is" was used. For any unit not included a weighted zonal average was modeled.</p> <p>Probabilistic model is incorporated based on five years of input shapes with one shape per replication being randomly selected in Monte Carlo process.</p>
12	Proposed Offshore Wind Units	<p>RNA Base Case inclusion rules Applied to determine the generator status.</p> <p>New data source: 5 years of hourly model-based data as developed by DNV-GL (2017-2021)</p>	<p>RNA Base Case inclusion rules Applied to determine the generator status.</p> <p>5 years of hourly model-based data as developed by DNV-GL (2020-2024)</p>
13	Existing and Proposed Utility-scale Solar Resources	<p>New data source: Probabilistic model chooses from the model-based data shapes covering past available 5 years (2017-2021), as developed by DNV-GL.</p> <p>One shape per replication is randomly selected in Monte Carlo process.</p>	<p>Probabilistic model chooses from the model-based data shapes covering past available 5 years (2020-2024), as developed by DNV-GL.</p> <p>One shape per replication is randomly selected in Monte Carlo process.</p>
14	BtM Solar Resources	<p>Supply side: Past five years (2017-2021) of 8,760 hourly MW profiles based on sampled inverter data.</p> <p>The MARS random shape mechanism randomly picks one 8,760 hourly shape (of five) for each replication year; similar with the past planning modeling and aligns with the method used for wind, utility solar, landfill gas, and run-of-river facilities.</p> <p>Load side: Gross load forecasts</p>	<p>Supply side: Past five years (2020-2024) of 8,760 hourly MW profiles based on sampled inverter data.</p> <p>The MARS random shape mechanism randomly picks one 8,760 hourly shape (of five) for each replication year; similar with the past planning modeling and aligns with the method used for wind, utility solar, landfill gas, and run-of-river facilities.</p> <p>Load side: Gross load forecasts</p>
15	Existing BTM-NG Program	<p>These units are former load modifiers that sell capacity into the ICAP market.</p> <p>Modeled as cogen type 1 (or type 2 as applicable) unit in MARS. Unit capacity set to CRIS value, load modeled with weekly pattern that can change monthly.</p>	<p>These units are former load modifiers that sell capacity into the ICAP market.</p> <p>Modeled as cogen type 1 (or type 2 as applicable) unit in MARS. Unit capacity set to CRIS value, load modeled with weekly pattern that can change monthly.</p>
16	Existing Small Hydro Resources (e.g., run of river)	Actual hourly plant output over the past 5 years period. Program randomly selects a hydro shape of hourly production over the 5-year window for each model replication. The randomly selected shape is multiplied by their current nameplate rating.	Actual hourly plant output over the past 5 years period. Program randomly selects a hydro shape of hourly production over the 5-year window for each model replication. The randomly selected shape is multiplied by their current nameplate rating.

17	Existing Large Hydro	Probabilistic Model based on 5 years of GADS data. Transition Rates representing the Equivalent Forced Outage Rates (EFORd) during demand periods over the most recent five-year period. Methodology consistent with thermal unit transition rates.	Probabilistic Model based on 5 years of GADS data. Transition Rates representing the Equivalent Forced Outage Rates (EFORd) during demand periods over the most recent five-year period. Methodology consistent with thermal unit transition rates.
18	Proposed front-of-meter Battery Storage	GE MARS 'ES' model is used. Units are given a maximum capacity, maximum stored energy, and a dispatch window.	GE MARS 'ES' model is used. Units are given a maximum capacity, maximum stored energy, and a dispatch window.
19	Existing Energy Limited Resources (ELRs)	GE developed MARS functionality to be used for ELRs. Resource output is aligned with the NYISO's peak load window when most loss-of-load events are expected to occur.	GE developed MARS functionality to be used for ELRs. Resource output is aligned with the NYISO's peak load window when most loss-of-load events are expected to occur.
Transaction – Imports/ Exports			
1	Capacity Purchases	Grandfathered Rights and other awarded long-term rights Modeled using MARS explicit contracts feature.	Grandfathered Rights and other awarded long-term rights Modeled using MARS explicit contracts feature.
2	Capacity Sales	These are long-term contracts filed with FERC. Modeled using MARS explicit contracts feature. Contracts sold from ROS (Zones: A-F). ROS ties to external pool are derated by sales MW amount	These are long-term contracts filed with FERC. Modeled using MARS explicit contracts feature. Contracts sold from ROS (Zones: A-F). ROS ties to external pool are derated by sales MW amount
3	FCM Sales	Model sales for known years Modeled using MARS explicit contracts feature. Contracts sold from ROS (Zones: A-F). ROS ties to external pool are derated by sales MW amount	Model sales for known years Modeled using MARS explicit contracts feature. Contracts sold from ROS (Zones: A-F). ROS ties to external pool are derated by sales MW amount
4	UDRs	Updated with most recent elections/awards information (VFT, HTP, Neptune, CSC) Added CHPE HVDC (from Hydro Quebec into Zone J) at 1250 MW (summer only) starting 2026.	Updated with most recent elections/awards information (VFT, HTP, Neptune, CSC) Added CHPE HVDC (from Hydro Quebec into Zone J) at 1250 MW (summer only) starting 2026.
5	External Deliverability Rights (EDRs)	Cedars Uprate 80 MW. Modeled reflecting External CRIS rights.	Cedars Uprate 80 MW. Modeled reflecting External CRIS rights.
6	Wheel-Through Contract	300 MW HQ through NYISO to ISO-NE. Modeled as firm contract; reduced the transfer limit from HQ to NYISO by 300 MW and increased the transfer limit from NYISO to ISO-NE by 300 MW.	300 MW HQ through NYISO to ISO-NE. Modeled as firm contract; reduced the transfer limit from HQ to NYISO by 300 MW and increased the transfer limit from NYISO to ISO-NE by 300 MW.
MARS Topology: a simplified bubble-and-pipe representation of the transmission system			
1	Interface Limits	Developed by review of previous studies and specific analysis prior and during the RNA study process.	Developed by review of previous studies and specific analysis prior and during the RNA study process. Starting with the 2025 models, Chateaugay to NY limit set to zero for winter.
2	New Transmission	Based on TO-provided firm plans via Gold Book/LTP 2024 processes) and proposed merchant transmission and public policy facilities meeting the RNA Base Case inclusion rules.	Based on TO-provided firm plans (via Gold Book/LTP 2025 processes) and proposed merchant transmission and public policy facilities meeting the Base Case inclusion rules.

3	AC Cable Forced Outage Rates	All existing cable transition rates updated with data received from ConEd and PSEG-LIPA to reflect most recent five-year history.	All existing cable transition rates updated with data received from ConEd and PSEG-LIPA to reflect most recent ten-year history.
4	UDR unavailability	Five-year history of forced outages.	Ten-year history of forced outages.
Emergency Operating Procedures (EOPs)			
1	EOP Steps Order	<p>New order, and new flexible large loads at step 2:</p> <ol style="list-style-type: none"> 1. No EOP Support 2. Flexible Large Loads (400-900 MW) 3. Special Case Resources (SCRs) (Load and Generator) 4. 5% Manual Voltage Reduction 5. 30-Minute Operating Reserve to Zero (655 MW) 6. Voluntary Load Curtailment 7. Public Appeals 8. 5% Remote Controlled Voltage Reduction 9. Emergency Assistance from External Areas 10. Part of the 10-Minute Operating Reserve (910 MW of 1310 MW) to Zero 	<p>Starting 2024 RNA, new EOP order and flexible large loads:</p> <ol style="list-style-type: none"> 1. No EOP Support 2. Flexible Large Loads (about 485 MW at max) 3. Special Case Resources (SCRs) (Load and Generator) 4. 5% Manual Voltage Reduction 5. 30-Minute Operating Reserve to Zero (655MW) 6. Voluntary Load Curtailment 7. Public Appeals 8. 5% Remote Controlled Voltage Reduction 9. Emergency Assistance from External Areas 10. Part of the 10-Minute Operating Reserve (910 MW of 1310 MW) to Zero
2	Special Case Resources (SCR)	<p>SCRs sold for the program discounted to historic availability ("effective capacity"). Monthly variation based on historical experience.</p> <p>Summer values calculated from the latest available July registrations (July 2023 SCR enrollment) held constant for all years of study.</p> <p>New Method:</p> <p>SCRs are modeled as duration-limited resources. The duration limited units are constrained to be called once in a day when a loss of load event occurs, and are invoked between 5 and 7 hours (defined by zone), which is determined based on historical SCR performance in the applicable zone. Hourly response rates are used. The contribution by the SCRs vary monthly by applicable zone. These monthly values are also derived from historical performance of the SCRs. Additional details in the January 3, 2024 ICS/ICAP presentation [link] and May 1, 2024 ICS [link].</p>	<p>SCRs sold for the program discounted to historic availability ("effective capacity"). Monthly variation based on historical experience.</p> <p>Summer values calculated from the latest available July registrations (July 2024 SCR enrollment) held constant for all years of study.</p> <p>Starting 2024 RNA, new method:</p> <p>SCRs are modeled as duration-limited resources. The duration limited units are constrained to be called once in a day when a loss of load event occurs, and are invoked between 5 and 7 hours (defined by zone), which is determined based on historical SCR performance in the applicable zone. Hourly response rates are used. The contribution by the SCRs vary monthly by applicable zone. These monthly values are also derived from historical performance of the SCRs. Additional details in the January 3, 2024 ICS/ICAP presentation [link] and May 1, 2024 ICS [link].</p>
3	EDRP Resources	Not modeled if the values are less than 2 MW.	Not modeled if the values are less than 2 MW.
4	Operating Reserves	<p>655 MW 30-min reserve to zero 910 MW (of 1310 MW) 10-min reserve to zero</p> <p>Note: the 10-min reserve modeling method is updated per NYISO's recommendation (approved at the Oct. 3, 2023 NYSRC ICS [link]) to maintain (or no longer deplete/use) 400 MW of the 1,310 MW 10-min operating reserve at the applicable EOP step. Therefore, the 10-min operating reserve MARS EOP step will use, as needed each MARS replication: 910 MW (=1,310 MW - 400 MW).</p>	<p>655 MW 30-min reserve to zero 910 MW (of 1310 MW) 10-min reserve to zero</p> <p>Note: the 10-min reserve modeling method is updated per NYISO's recommendation (approved at the Oct. 3, 2023 NYSRC ICS [link]) to maintain (or no longer deplete/use) 400 MW of the 1,310 MW 10-min operating reserve at the applicable EOP step. Therefore, the 10-min operating reserve MARS EOP step will use, as needed each MARS replication: 910 MW (=1,310 MW - 400 MW).</p>
5	Other EOPs <i>(e.g., manual voltage reduction, voltage curtailments, public appeals, external assistance, as listed above)</i>	Based on TO information, measured data, and NYISO forecasts. Will use 2024 elections, as available.	Based on TO information, measured data, and NYISO forecasts. Will use 2024 elections, as available.
External Control Areas Modeling Assumptions			

<ul style="list-style-type: none"> External models (NE, HQ, Ontario, PJM) received via the NPCC CP-8 WG process. Starting 2024 RNA, the top 5 (instead of 3) summer and winter peak load days of an external Control Area modeled as coincident with the NYCA top 5 peak load days. Load and capacity fixed through the study years. The renewable and energy limited shapes are removed. EOPs are not represented for the external Control Area capacity models. External Areas adjusted to be between 0.1 and 0.15 event-days/year LOLE by adjusting capacity pro-rata in all areas. Implemented a statewide emergency assistance (from the neighboring systems) limit of 3500 MW. LFU is applied to neighboring systems. Same load historical years are used as NY. 			
1	PJM	Simplified model: The 5 PJM MARS areas (bubbles) were consolidated into one starting 2020 RNA. As per RNA procedure.	Simplified model: The 5 PJM MARS areas (bubbles) were consolidated into one starting 2020 RNA. As per RNA procedure.
2	ISONE	Simplified model: The 8 ISO-NE MARS areas (bubbles) were consolidated into one starting 2020 RNA	Simplified model: The 8 ISO-NE MARS areas (bubbles) were consolidated into one starting 2020 RNA
3	HQ	Per RNA Procedure.	Per RNA Procedure.
4	IESO	Per RNA procedure.	Per RNA procedure.
5	Reserve Sharing	All NPCC Control Areas indicate that they will share reserves equally among all members before sharing with PJM.	All NPCC Control Areas indicate that they will share reserves equally among all members before sharing with PJM.
6	NYCA Emergency Assistance Limit	Implemented a statewide limit of 3,500 MW, additional to the “pipe” limits.	Implemented a statewide limit of 3,500 MW, additional to the “pipe” limits.
Miscellaneous			
1	MARS Model Version	4.14.2179	5.7.3765

2024 RNA MARS Topology²⁰

²⁰ This is the MARS topology used for 2024 Reliability Needs Assessment studies and is not fully re-evaluated for each quarterly STAR.

Appendix E: Transmission Security Margin Assessment

Introduction

The purpose of this assessment is to identify plausible changes in conditions or assumptions that might adversely impact the reliability of the BPTF or “tip” the system into a violation of a transmission security criterion. This assessment is performed using a deterministic approach through a spreadsheet-based method using input from the 2025 Gold Book and the projects that meet the reliability planning inclusion rules for the 2025 Quarter 4 STAR. For this assessment, the statewide system margin is calculated and transmission security margins for the Lower Hudson Valley, New York City, and Long Island localities are calculated.

A BPTF reliability need is identified when the transmission security margin in the Lower Hudson Valley, New York City, or Long Island localities is less than zero. Additional details beyond the system design conditions regarding the statewide system margin, impact of extreme weather, or conditions are provided to more fully understand the impact of various changes to the system such as demand forecast or other parameters in the assessment.

For the evaluation of winter peak conditions, all gas-only units within the NYCA are assumed unavailable with consideration of firm gas fuel contracts. Dual-fuel units with gas-only duct-burn capability are assumed to be available at a lower capacity, accounting for the unavailability of duct-burn. This assessment assumes the remaining units have available fuel for the peak period. This shortage impacts approximately 6,325 MW of gas generation throughout the NYCA.

Transmission security analysis represents discrete snapshots in time of various credible combinations of system conditions. Therefore, the identification of reliability needs only indicates the magnitude of the need (*e.g.*, a thermal overload expressed in terms of percentage of the applicable rating) under those specific system conditions. Additional details are required to fully describe the nature of the need. To describe the nature of the transmission security and statewide system margins more fully, the NYISO uses load shapes to reflect the expected behavior of the load over 24 hours on the summer peak day for the 10-year study horizon. Details of the load shapes are provided in the body of this report in [and](#).

Further details on the assumptions utilized in this assessment are provided in Appendix C. Under expected weather conditions this assessment recognizes that there is a range of possibilities for the expected weather demand forecast driven by key assumptions, such as population and

economic growth, energy efficiency, installation of behind-the-meter renewable energy resources, and electric vehicle adoption and charging patterns that are captured in the 2025 Gold Book. Extreme weather and other risk factors were further explored in the 2025–2034 CRP.

Key to the determination of generator deactivation reliability needs is the availability of future planned projects, such as CHPE, Empire Wind, Sunrise Wind, and the Propel NY project. These evaluations are labeled with “status quo.” The status quo evaluation assumes that transmission and generation projects that are currently planned for but not currently in service (3,600 MW generation projects, as described above) do not enter service during the planning horizon, while maintaining the assumption that demand grows as forecasted, including large load development.

Statewide System Margin

The statewide system margin for New York is evaluated under expected weather for summer and winter conditions with normal transfer criteria. The statewide system margin is the ability to meet the forecasted load and largest loss-of-source contingency (*i.e.*, total capacity requirement) against the NYCA generation (including derates) and external area interchanges. The NYCA generation (from line-item A in the following figures) is comprised of the existing generation plus additions of future generation resources, as well as the removal of deactivating generation, that meet the reliability planning process inclusion rules. The dispatch of renewable generation is aligned with current transmission planning practices for transmission security. Derates for thermal resources based on their NERC five-year class average EFORD are also included.²¹ Additionally, for the statewide system margin, the NYCA generation includes the Oswego export limit with all lines in service.

The decreasing statewide system margin in both summer and winter can be attributed to increasing demand that is not matched by incoming proposed generation that meets inclusion rules. Additionally, the unavailability of non-firm gas is a key driver of deficient statewide margins in the winter peak condition. A negative statewide system margin is not, on its own, a violation of the Reliability Criteria. It is, however, a leading indicator of the system’s inability to securely serve demand under normal operations. This metric is further explored in the 2025-2034 CRP.²²

²¹ The NERC five-year class average EFORD data is available [here](#). NERC class average derating factors used in the STAR do not have a mechanism for excluding 9300 events (generator outages due to transmission system problems), see further discussion in Oct. 7, 2024 [ICAP/MIWG/PRWG presentation](#).

²² The most recent draft of the NYISO’s 2025-2034 Comprehensive Reliability Plan is found with the October, 16, 2025 Operating Committee Materials ([here](#))

Figure 33: Summer Peak Statewide System Margin Calculation - Planned System, Flexible Large Loads Offline

Line	Item	Summer Peak - Expected Summer Weather, Normal Transfer Criteria (MW)								
		2026	2027	2028	2029	2030	2031	2032	2033	2034
A	NYCA Generation (1)	37,705	40,483	41,787	41,787	41,787	41,333	41,333	41,333	41,333
B	NYCA Generation Unavailability (2)	(6,700)	(9,133)	(10,302)	(10,328)	(10,353)	(10,332)	(10,357)	(10,357)	(10,383)
C	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0
D	External Area Interchanges (3)	3,208	2,919	2,919	2,919	2,919	2,919	2,919	2,919	2,919
E	Total Resources (A+B+C+D)	34,212	34,269	34,405	34,379	34,353	33,920	33,894	33,894	33,869
F	Demand Forecast (5)	(31,305)	(31,590)	(31,698)	(31,886)	(32,160)	(32,434)	(32,757)	(33,101)	(33,399)
G	Largest Loss-of-Source Contingency	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)
H	Total Capability Requirement (F+G)	(32,615)	(32,900)	(33,008)	(33,196)	(33,470)	(33,744)	(34,067)	(34,411)	(34,709)
I	Statewide System Margin (E+H)	1,597	1,369	1,397	1,183	883	176	(173)	(517)	(840)
J	Higher Demand Impact	(600)	(1,170)	(1,650)	(2,050)	(2,330)	(2,520)	(2,660)	(2,830)	(3,160)
K	Higher Demand Statewide System Margin (I+J)	997	199	(253)	(867)	(1,447)	(2,344)	(2,833)	(3,347)	(4,000)
L	SCRs (6), (7)	804	804	804	804	804	804	804	804	804
M	Statewide System Margin with SCR (K+L)	1,801	1,003	550	(63)	(643)	(1,540)	(2,029)	(2,543)	(3,197)
N	Operating Reserve	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)
O	Statewide System Margin with Full Operating Reserve (M+N) (4)	491	(307)	(760)	(1,373)	(1,953)	(2,850)	(3,339)	(3,853)	(4,507)

Notes:

1. Reflects the 2025 Gold Book existing summer capacity plus projected additions and deactivations.
2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2025 Gold Book Table I-9a) and solar PV peak reductions (2025 Gold Book Table I-9c). Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORD data published October 2024 (<https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx>). Also includes a reduction of 310 MW based on the impact of Correlated Derates to DMNC on resources impacted by the Modeling Improvements for "Capacity Accreditation project – Correlated Derates" requirements are reflected in the NYISO ICAP manual and the Market Services Tariff Section 5.
3. Interchanges are based on ERAG MMWG values and firm transactions. Includes a 175 MW reduction in capacity sales from PJM. Includes external imports from the Cross-Sound Cable in accordance with planned imports through early 2027, but starting in summer 2027 this import is assumed at 0 MW.
4. For informational purposes.
5. Reflects the 2025 Gold Book Forecast.
6. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.
7. Includes a derate of 401 MW for SCRs

Figure 34: Winter Peak Statewide System Margin – Planned System, Flexible Large Loads Offline

Line	Item	Winter Peak - Baseline Expected Winter Weather, Normal Transfer Criteria (MW)								
		2026-27	2027-28	2028-29	2029-30	2030-31	2031-32	2032-33	2033-34	2034-35
A	NYCA Generation (1)	42,115	43,484	43,864	43,864	43,407	43,407	43,407	43,407	43,407
B	NYCA Generation Unavailability (2)	(8,575)	(9,759)	(10,139)	(10,139)	(10,139)	(10,139)	(10,139)	(10,139)	(10,139)
C	Unavailability of Non-Firm Gas (6)	(6,328)	(6,328)	(6,328)	(6,328)	(5,870)	(5,870)	(5,870)	(5,870)	(5,870)
D	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0
E	External Area Interchanges (3)	849	560	560	560	560	560	560	560	560
F	Total Resources (A+B+C+D+E)	28,061	27,957	27,957	27,957	27,958	27,958	27,958	27,958	27,958
G	Demand Forecast (5)	(24,920)	(25,316)	(25,815)	(26,365)	(27,026)	(27,671)	(28,378)	(29,146)	(29,905)
H	Large Load Flexibility	0	0	0	0	0	0	0	0	0
I	Largest Loss-of-Source Contingency	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)
J	Total Capability Requirement (G+H+I)	(26,230)	(26,626)	(27,125)	(27,675)	(28,336)	(28,981)	(29,688)	(30,456)	(31,215)
K	Statewide System Margin (F+J)	1,831	1,331	832	282	(378)	(1,023)	(1,730)	(2,498)	(3,257)
L	SCRs (7), (8)	721	721	721	721	721	721	721	721	721
M	Statewide System Margin with SCR (K+L)	2,552	2,052	1,553	1,003	343	(302)	(1,009)	(1,777)	(2,536)
N	Operating Reserve	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)
O	Statewide System Margin with Full Operating Reserve (M+N) (4)	1,242	742	243	(307)	(967)	(1,612)	(2,319)	(3,087)	(3,846)

Notes:

1. Reflects the 2025 Gold Book existing winter capacity plus projected additions and deactivations.
2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 15% of the total nameplate, off-shore wind at 20% of the total nameplate. Solar generation is assumed offline for the winter peak hour. Includes derates for thermal resources based on NERC five-year class average EFORD data published October 2024 (<https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx>). Also includes a reduction of 310 MW based on the impact of Correlated Derates to DMNC on resources impacted by the Modeling Improvements for "Capacity Accreditation project – Correlated Derates" requirements are reflected in the NYISO ICAP manual and the Market Services Tariff Section 5.
3. Interchanges are based on ERAG MMWG values and firm transactions. Includes a 175 MW reduction in capacity sales from PJM. Includes external imports from the Cross-Sound Cable in accordance with planned imports through early 2027, but starting in summer 2027 this import is assumed at 0 MW.
4. For informational purposes.
5. Reflects the 2025 Gold Book Forecast.
6. Includes all gas only units that do not have a firm gas contract. Also includes reductions in units with duct burner capabilities.
7. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.
8. Includes a derate of 305 MW for SCRs.

Figure 35: Summer Peak Statewide System Margin Calculation – Planned System, Flexible Large Loads Online

Line	Item	Summer Peak - Expected Summer Weather, Normal Transfer Criteria (MW)								
		2026	2027	2028	2029	2030	2031	2032	2033	2034
A	NYCA Generation (1)	37,705	40,483	41,787	41,787	41,787	41,333	41,333	41,333	41,333
B	NYCA Generation Unavailability (2)	(6,700)	(9,133)	(10,302)	(10,328)	(10,353)	(10,332)	(10,357)	(10,357)	(10,383)
C	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0
D	External Area Interchanges (3)	3,208	2,919	2,919	2,919	2,919	2,919	2,919	2,919	2,919
E	Total Resources (A+B+C+D)	34,212	34,269	34,405	34,379	34,353	33,920	33,894	33,894	33,869
F	Demand Forecast (5)	(31,990)	(32,275)	(32,383)	(32,571)	(32,845)	(33,119)	(33,442)	(33,786)	(34,084)
G	Largest Loss-of-Source Contingency	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)
H	Total Capability Requirement (F+G)	(33,300)	(33,585)	(33,693)	(33,881)	(34,155)	(34,429)	(34,752)	(35,096)	(35,394)
I	Statewide System Margin (E+H)	912	684	712	498	198	(509)	(858)	(1,202)	(1,525)
J	Higher Demand Impact	(600)	(1,170)	(1,650)	(2,050)	(2,330)	(2,520)	(2,660)	(2,830)	(3,160)
K	Higher Demand Statewide System Margin (I+J)	312	(486)	(938)	(1,552)	(2,132)	(3,029)	(3,518)	(4,032)	(4,685)
L	SCRs (6), (7)	804	804	804	804	804	804	804	804	804
M	Statewide System Margin with SCR (K+L)	1,116	318	(135)	(748)	(1,328)	(2,225)	(2,714)	(3,228)	(3,882)
N	Operating Reserve	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)
O	Statewide System Margin with Full Operating Reserve (M+N) (4)	(194)	(992)	(1,445)	(2,058)	(2,638)	(3,535)	(4,024)	(4,538)	(5,192)

Notes:

1. Reflects the 2025 Gold Book existing summer capacity plus projected additions and deactivations.
2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2025 Gold Book Table I-9a) and solar PV peak reductions (2025 Gold Book Table I-9c). Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORD data published October 2024 (<https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx>). Also includes a reduction of 310 MW based on the impact of Correlated Derates to DMNC on resources impacted by the Modeling Improvements for “Capacity Accreditation project – Correlated Derates” requirements are reflected in the NYISO ICAP manual and the Market Services Tariff Section 5.
3. Interchanges are based on ERAG MMWG values and firm transactions. Includes a 175 MW reduction in capacity sales from PJM. Includes external imports from the Cross-Sound Cable in accordance with planned imports through early 2027, but starting in summer 2027 this import is assumed at 0 MW.
4. For informational purposes.
5. Reflects the 2025 Gold Book Forecast.
6. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.
7. Includes a derate of 401 MW for SCRs

Figure 36: Winter Statewide System Margin Calculation – Planned System Flexible Large Loads Online

Line	Item	Winter Peak - Baseline Expected Winter Weather, Normal Transfer Criteria (MW)								
		2026-27	2027-28	2028-29	2029-30	2030-31	2031-32	2032-33	2033-34	2034-35
A	NYCA Generation (1)	42,115	43,484	43,864	43,864	43,407	43,407	43,407	43,407	43,407
B	NYCA Generation Unavailability (2)	(8,575)	(9,759)	(10,139)	(10,139)	(10,139)	(10,139)	(10,139)	(10,139)	(10,139)
C	Unavailability of Non-Firm Gas (6)	(6,328)	(6,328)	(6,328)	(6,328)	(5,870)	(5,870)	(5,870)	(5,870)	(5,870)
D	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0
E	External Area Interchanges (3)	849	560	560	560	560	560	560	560	560
F	Total Resources (A+B+C+D+E)	28,061	27,957	27,957	27,957	27,958	27,958	27,958	27,958	27,958
G	Demand Forecast (5)	(24,920)	(25,316)	(25,815)	(26,365)	(27,026)	(27,671)	(28,378)	(29,146)	(29,905)
H	Large Load Flexibility	685	685	685	685	685	685	685	685	685
I	Largest Loss-of-Source Contingency	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)
J	Total Capability Requirement (G+H+I)	(25,545)	(25,941)	(26,440)	(26,990)	(27,651)	(28,296)	(29,003)	(29,771)	(30,530)
K	Statewide System Margin (F+J)	2,516	2,016	1,517	967	307	(338)	(1,045)	(1,813)	(2,572)
L	SCRs (7), (8)	721	721	721	721	721	721	721	721	721
M	Statewide System Margin with SCR (K+L)	3,237	2,737	2,238	1,688	1,028	383	(324)	(1,092)	(1,851)
N	Operating Reserve	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)
O	Statewide System Margin with Full Operating Reserve (M+N) (4)	1,927	1,427	928	378	(282)	(927)	(1,634)	(2,402)	(3,161)

Notes:

1. Reflects the 2025 Gold Book existing winter capacity plus projected additions and deactivations.
2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 15% of the total nameplate, off-shore wind at 20% of the total nameplate. Solar generation is assumed offline for the winter peak hour. Includes derates for thermal resources based on NERC five-year class average EFORd data published October 2024 (<https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx>). Also includes a reduction of 310 MW based on the impact of Correlated Derates to DMNC on resources impacted by the Modeling Improvements for "Capacity Accreditation project – Correlated Derates" requirements are reflected in the NYISO ICAP manual and the Market Services Tariff Section 5.
3. Interchanges are based on ERAG MMWG values and firm transactions. Includes a 175 MW reduction in capacity sales from PJM. Includes external imports from the Cross-Sound Cable in accordance with planned imports through early 2027, but starting in summer 2027 this import is assumed at 0 MW.
4. For informational purposes.
5. Reflects the 2025 Gold Book Forecast.
6. Includes all gas only units that do not have a firm gas contract. Also includes reductions in units with duct burner capabilities.
7. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.
8. Includes a derate of 305 MW for SCRs.

Figure 37: Summer Statewide System Margin Calculation – Status Quo System

Line	Item	Summer Peak - Expected Summer Weather, Normal Transfer Criteria (MW)								
		2026	2027	2028	2029	2030	2031	2032	2033	2034
A	NYCA Generation (1)	37,363	37,263	37,263	37,263	37,263	36,809	36,809	36,809	36,809
B	NYCA Generation Unavailability (2)	(6,406)	(6,408)	(6,413)	(6,419)	(6,425)	(6,383)	(6,389)	(6,389)	(6,395)
C	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0
D	External Area Interchanges (3)	1,958	1,669	1,669	1,669	1,669	1,669	1,669	1,669	1,669
E	Total Resources (A+B+C+D)	32,915	32,525	32,519	32,513	32,507	32,094	32,088	32,088	32,083
F	Demand Forecast (5)	(31,305)	(31,590)	(31,698)	(31,886)	(32,160)	(32,434)	(32,757)	(33,101)	(33,399)
G	Largest Loss-of-Source Contingency	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)
H	Total Capability Requirement (F+G)	(32,615)	(32,900)	(33,008)	(33,196)	(33,470)	(33,744)	(34,067)	(34,411)	(34,709)
I	Statewide System Margin (E+H)	300	(375)	(489)	(683)	(963)	(1,650)	(1,979)	(2,323)	(2,626)
J	Higher Demand Impact	(600)	(1,170)	(1,650)	(2,050)	(2,330)	(2,520)	(2,660)	(2,830)	(3,160)
K	Higher Demand Statewide System Margin (I+J)	(300)	(1,545)	(2,139)	(2,733)	(3,293)	(4,170)	(4,639)	(5,153)	(5,786)
L	SCRs (6), (7)	804	804	804	804	804	804	804	804	804
M	Statewide System Margin with SCR (K+L)	503	(742)	(1,336)	(1,929)	(2,489)	(3,366)	(3,835)	(4,349)	(4,983)
N	Operating Reserve	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)
O	Statewide System Margin with Full Operating Reserve (M+N) (4)	(807)	(2,052)	(2,646)	(3,239)	(3,799)	(4,676)	(5,145)	(5,659)	(6,293)

Notes:

1. Reflects the 2025 Gold Book existing summer capacity plus projected additions and deactivations.
2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2025 Gold Book Table I-9a) and solar PV peak reductions (2025 Gold Book Table I-9c). Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORD data published October 2024 (<https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx>). Also includes a reduction of 310 MW based on the impact of Correlated Derates to DMNC on resources impacted by the Modeling Improvements for “Capacity Accreditation project – Correlated Derates” requirements are reflected in the NYISO ICAP manual and the Market Services Tariff Section 5.
3. Interchanges are based on ERAG MMWG values and firm transactions. Includes a 175 MW reduction in capacity sales from PJM. Includes external imports from the Cross-Sound Cable in accordance with planned imports through early 2027, but starting in summer 2027 this import is assumed at 0 MW.
4. For informational purposes.
5. Reflects the 2025 Gold Book Forecast.
6. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.
7. Includes a derate of 401 MW for SCRs

Figure 38: Winter Statewide System Margin Calculation – Status Quo System

Line	Item	Winter Peak - Baseline Expected Winter Weather, Normal Transfer Criteria (MW)								
		2026-27	2027-28	2028-29	2029-30	2030-31	2031-32	2032-33	2033-34	2034-35
A	NYCA Generation (1)	39,440	39,323	39,323	39,323	38,865	38,865	38,865	38,865	38,865
B	NYCA Generation Unavailability (2)	(6,162)	(6,150)	(6,150)	(6,150)	(6,149)	(6,149)	(6,149)	(6,149)	(6,149)
C	Unavailability of Non-Firm Gas (6)	(6,328)	(6,328)	(6,328)	(6,328)	(5,870)	(5,870)	(5,870)	(5,870)	(5,870)
D	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0
E	External Area Interchanges (3)	849	560	560	560	560	560	560	560	560
F	Total Resources (A+B+C+D+E)	27,799	27,406							
G	Demand Forecast (5)	(24,920)	(25,316)	(25,815)	(26,365)	(27,026)	(27,671)	(28,378)	(29,146)	(29,905)
H	Large Load Flexibility	685	685	685	685	685	685	685	685	685
I	Largest Loss-of-Source Contingency	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)
J	Total Capability Requirement (G+H+I)	(25,545)	(25,941)	(26,440)	(26,990)	(27,651)	(28,296)	(29,003)	(29,771)	(30,530)
K	Statewide System Margin (F+J)	2,254	1,465	966	416	(245)	(890)	(1,597)	(2,365)	(3,124)
L	SCRs (7), (8)	721	721	721	721	721	721	721	721	721
M	Statewide System Margin with SCR (K+L)	2,975	2,185	1,686	1,136	476	(169)	(876)	(1,644)	(2,403)
N	Operating Reserve	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)	(1,310)
O	Statewide System Margin with Full Operating Reserve (M+N) (4)	1,665	875	376	(174)	(834)	(1,479)	(2,186)	(2,954)	(3,713)

Notes:

- Reflects the 2025 Gold Book existing winter capacity plus projected additions and deactivations.
- Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 15% of the total nameplate, off-shore wind at 20% of the total nameplate. Solar generation is assumed offline for the winter peak hour. Includes derates for thermal resources based on NERC five-year class average EFORd data published October 2024 (<https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx>). Also includes a reduction of 310 MW based on forecasted impacts to DMNC.
- Interchanges are based on ERAG MMWG values and firm transactions. Includes a 175 MW reduction in capacity sales from PJM. Includes an additional 289MW tie line contract in 2026 only.
- For informational purposes.
- Reflects the 2025 Gold Book Forecast.
- Includes all gas only units that do not have a firm gas contract. Also includes reductions in units with duct burner capabilities.
- SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.
- Includes a derate of 305 MW for SCRs.

Lower Hudson Valley (Zones G-J)

The Lower Hudson Valley or southeastern New York (SENY) locality comprises Zones G-J and includes the electrical connections to the RECO load in PJM. To determine the transmission security margin for this area, the NYISO determines the most limiting combination of two non-simultaneous contingency events (N-1-1) to the transmission security margin. As the system changes, the limiting contingency combination may also change.

In summer throughout the study period, the limiting contingency combination is the loss of Knickerbocker – Pleasant Valley 345 kV followed by the loss of Athens-Van Wagner 345 kV (91). The limiting contingency combination for winter throughout the study period is the loss of Ravenswood 3 followed by the loss of Pleasant Valley-Wood St. 345 kV (F30/F31).

Figure 40 and Figure 42 show the calculation of the summer and winter Lower Hudson Valley transmission security margin for baseline expected weather, expected load conditions for the statewide coincident peak hour with normal transfer criteria. This STAR finds that the Lower Hudson Valley is deficient beginning in summer 2030. Under the demand range for expected weather, the Lower Hudson Valley deficiency in 2030 is 195 MW over 3 hours (729 MWh). This deficiency is further exacerbated through time without any additional capabilities added to this locality.

Figure 39: Summer Peak Lower Hudson Valley Margin Calculation – Status Quo System

Summer Peak - Expected Weather, Normal Transfer Criteria (MW)										
Line	Item	2026	2027	2028	2029	2030	2031	2032	2033	2034
A	G-J Demand Forecast	(15,034)	(15,103)	(15,145)	(15,176)	(15,205)	(15,280)	(15,401)	(15,515)	(15,652)
B	RECO Demand	(407)	(407)	(407)	(404)	(404)	(404)	(404)	(404)	(417)
C	Total Demand (A+B)	(15,441)	(15,510)	(15,552)	(15,580)	(15,609)	(15,684)	(15,805)	(15,919)	(16,069)
D	UPNY-SENY Limit (3)	4,700	4,700	4,700	4,700	4,700	4,700	4,700	4,700	4,700
E	ABC PARs to J	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)
F	K - SENY	47	(274)	(274)	(298)	(350)	(456)	(508)	(565)	(616)
G	Total SENY AC Import (D+E+F)	4,736	4,415	4,415	4,391	4,339	4,233	4,181	4,124	4,073
H	Loss of Source Contingency	0	0	0	0	0	0	0	0	0
I	Resource Need (C+G+H)	(10,705)	(11,095)	(11,137)	(11,189)	(11,270)	(11,451)	(11,624)	(11,795)	(11,996)
J	G-J Generation (1)	12,849	12,849	12,849	12,849	12,849	12,439	12,439	12,439	12,439
K	G-J Generation Unavailability (2)	(1,230)	(1,230)	(1,230)	(1,230)	(1,230)	(1,188)	(1,188)	(1,188)	(1,188)
L	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0
M	Net ICAP External Imports (4)	140	140	140	140	140	140	140	140	140
N	Total Resources Available (J+K+L+M)	11,759	11,759	11,759	11,759	11,759	11,392	11,392	11,392	11,392
O	Transmission Security Margin (I+N)	1,054	664	622	570	489	(59)	(233)	(404)	(604)
P	Higher Demand Impact	(142)	(236)	(362)	(509)	(684)	(791)	(865)	(971)	(1,067)
Q	Higher Demand Transmission Security Margin (O+P)	912	428	260	61	(195)	(850)	(1,098)	(1,375)	(1,671)
R	Noncoincident Peak Demand Impact	(246)	(246)	(247)	(247)	(247)	(248)	(250)	(252)	(256)
S	Noncoincident Peak Transmission Security Margin (O+R)	808	418	375	323	242	(307)	(483)	(656)	(860)

Notes:

1. Reflects the 2025 Gold Book existing summer capacity plus projected additions and deactivations.
2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 15% of the total nameplate.
3. Limits for 2026 through 2029 are based on summer peak 2029 representations evaluated in the 2024 RNA. Limits for 2030 through 2034 are based on summer peak 2034 representations evaluated in the 2024 RNA.
4. Interchanges are based on ERAG MMWG values and firm transactions. Includes a 175 MW reduction in capacity sales from PJM.

Figure 40: Summer Peak Lower Hudson Valley Margin Calculation – Planned System

Summer Peak - Expected Weather, Normal Transfer Criteria (MW)										
Line	Item	2026	2027	2028	2029	2030	2031	2032	2033	2034
A	G-J Demand Forecast	(15,034)	(15,103)	(15,145)	(15,176)	(15,205)	(15,280)	(15,401)	(15,515)	(15,652)
B	RECO Demand	(407)	(407)	(407)	(404)	(404)	(404)	(404)	(404)	(417)
C	Total Demand (A+B)	(15,441)	(15,510)	(15,552)	(15,580)	(15,609)	(15,684)	(15,805)	(15,919)	(16,069)
D	UPNY-SENY Limit (3)	4,700	4,700	4,700	4,700	4,500	4,500	4,500	4,500	4,500
E	ABC PARs to J	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)
F	K - SENY	47	(184)	(91)	(115)	(168)	(273)	(326)	(383)	(433)
G	Total SENY AC Import (D+E+F)	4,736	4,505	4,598	4,574	4,321	4,216	4,163	4,106	4,056
H	Loss of Source Contingency	0	0	0	0	0	0	0	0	0
I	Resource Need (C+G+H)	(10,705)	(11,005)	(10,954)	(11,006)	(11,288)	(11,468)	(11,642)	(11,813)	(12,013)
J	G-J Generation (1)	12,894	13,710	13,710	13,710	13,710	13,300	13,300	13,300	13,300
K	G-J Generation Unavailability (2)	(1,269)	(2,004)	(2,005)	(2,005)	(2,005)	(1,963)	(1,963)	(1,964)	(1,964)
L	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0
M	Net ICAP External Imports (4)	1,390	1,390	1,390	1,390	1,390	1,390	1,390	1,390	1,390
N	Total Resources Available (J+K+L+M)	13,014	13,096	13,095	13,095	13,095	12,727	12,727	12,726	12,726
O	Transmission Security Margin (I+N)	2,309	2,090	2,141	2,089	1,807	1,259	1,085	914	713
P	Higher Demand Impact	(142)	(236)	(362)	(509)	(684)	(791)	(865)	(971)	(1,067)
Q	Higher Demand Transmission Security Margin (O+P)	2,167	1,854	1,779	1,580	1,123	468	220	(57)	(354)
R	Noncoincident Peak Demand Impact	(246)	(246)	(247)	(247)	(247)	(248)	(250)	(252)	(256)
S	Noncoincident Peak Transmission Security Margin (O+R)	2,063	1,844	1,894	1,842	1,560	1,011	835	662	457

Notes:

1. Reflects the 2025 Gold Book existing summer capacity plus projected additions and deactivations.
2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2025 Gold Book Table I-9a) and solar PV peak reductions (2025 Gold Book Table I-9c). Derates for run-of-river hydro are included. Includes derates for thermal resources based on NERC five-year class average EFORD data published October 2024 (<https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx>). Also includes a reduction of 110 MW based on the impact of Correlated Derates to DMNC on resources impacted by the Modeling Improvements for “Capacity Accreditation project – Correlated Derates” requirements are reflected in the NYISO ICAP manual and the Market Services Tariff Section 5.
3. Limits for 2026 through 2029 are based on summer peak 2029 representations evaluated in the 2024 RNA. Limits for 2030 through 2034 are based on summer peak 2034 representations evaluated in the 2024 RNA.
4. Interchanges are based on ERAG MMWG values and firm transactions. Includes a 175 MW reduction in capacity sales from PJM.

Figure 41: Winter Peak Lower Hudson Valley Margin Calculation – Status Quo System

Winter Peak - Expected Weather, Normal Transfer Criteria (MW)										
Line	Item	2026-27	2027-28	2028-29	2029-30	2030-31	2031-32	2032-33	2033-34	2034-35
A	G-J Demand Forecast	(10,714)	(10,835)	(11,044)	(11,229)	(11,437)	(11,682)	(11,944)	(12,248)	(12,588)
B	RECO Demand	(246)	(246)	(246)	(236)	(236)	(236)	(236)	(236)	(313)
C	Total Demand (A+B)	(10,960)	(11,081)	(11,290)	(11,465)	(11,673)	(11,918)	(12,180)	(12,484)	(12,901)
D	UPNY-SENY Limit (3)	5,300	5,300	5,300	5,300	5,300	5,300	5,300	5,300	5,300
E	ABC PARs to J	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)
F	K - SENY	47	47	47	47	1,013	1,013	1,013	969	862
G	Total SENY AC Import (D+E+F)	5,336	5,336	5,336	5,336	6,302	6,302	6,302	6,258	6,151
H	Loss of Source Contingency	(973)	(973)	(973)	(973)	(973)	(973)	(973)	(973)	(973)
I	Resource Need (C+G+H)	(6,597)	(6,718)	(6,927)	(7,102)	(6,344)	(6,589)	(6,851)	(7,199)	(7,723)
J	G-J Generation (1)	13,580	13,580	13,580	13,580	13,169	13,169	13,169	13,169	13,169
K	G-J Generation Unavailability (2)	(1,118)	(1,118)	(1,118)	(1,118)	(1,117)	(1,117)	(1,117)	(1,117)	(1,117)
L	Shortage of Gas Fuel Supply (4)	(2,719)	(2,719)	(2,719)	(2,719)	(2,308)	(2,308)	(2,308)	(2,308)	(2,308)
M	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0
N	Net ICAP External Imports (5)	140	140	140	140	140	140	140	140	140
O	Total Resources Available (J+K+L+M+N)	9,883	9,883	9,883	9,883	9,883	9,883	9,883	9,883	9,883
P	Transmission Security Margin (I+O)	3,286	3,165	2,956	2,781	3,540	3,295	3,033	2,685	2,161
Q	Higher Demand Impact	(174)	(257)	(385)	(461)	(618)	(854)	(1,097)	(1,494)	(1,737)
R	Higher Demand Transmission Security Margin (P+Q)	3,112	2,908	2,571	2,320	2,922	2,441	1,936	1,191	424
S	Noncoincident Peak Demand Impact	(34)	(35)	(36)	(37)	(37)	(37)	(38)	(40)	(41)
T	Noncoincident Peak Transmission Security Margin (P+S)	3,252	3,130	2,920	2,744	3,503	3,258	2,995	2,645	2,120

Notes:

1. Reflects the 2025 Gold Book existing winter capacity plus projected additions and deactivations.
2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 15% of the total nameplate, off-shore wind at 20% of the total nameplate. Solar generation is assumed offline for the winter peak hour. Includes derates for thermal resources based on NERC five-year class average EFORD data published October 2024 (<https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx>). Also includes a reduction of 110 MW based on the impact of Correlated Derates to DMNC on resources impacted by the Modeling Improvements for "Capacity Accreditation project – Correlated Derates" requirements are reflected in the NYISO ICAP manual and the Market Services Tariff Section 5.
3. Limits for 2026 through 2029 are based on summer peak 2029 representations evaluated in the 2024 RNA. Limits for 2030 through 2034 are based on summer peak 2034 representations evaluated in the 2024 RNA.
4. Includes all gas only units that do not have a firm gas contract.
5. Interchanges are based on ERAG MMWG values and firm transactions. Includes a 175 MW reduction in capacity sales from PJM.

Figure 42: Winter Peak Lower Hudson Valley Margin Calculation – Planned System

Winter Peak - Expected Weather, Normal Transfer Criteria (MW)										
Line	Item	2026-27	2027-28	2028-29	2029-30	2030-31	2031-32	2032-33	2033-34	2034-35
A	G-J Demand Forecast	(10,714)	(10,835)	(11,044)	(11,229)	(11,437)	(11,682)	(11,944)	(12,248)	(12,588)
B	RECO Demand	(246)	(246)	(246)	(236)	(236)	(236)	(236)	(236)	(313)
C	Total Demand (A+B)	(10,960)	(11,081)	(11,290)	(11,465)	(11,673)	(11,918)	(12,180)	(12,484)	(12,901)
D	UPNY-SENY Limit (3)	5,300	5,300	5,300	5,300	5,700	5,700	5,700	5,700	5,700
E	ABC PARs to J	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)
F	K - SENY	47	47	47	47	1,013	1,013	1,013	1,013	1,013
G	Total SENY AC Import (D+E+F)	5,336	5,336	5,336	5,336	6,702	6,702	6,702	6,702	6,702
H	Loss of Source Contingency	(973)	(973)	(973)	(973)	(973)	(973)	(973)	(973)	(973)
I	Resource Need (C+G+H)	(6,597)	(6,718)	(6,927)	(7,102)	(5,944)	(6,189)	(6,451)	(6,755)	(7,172)
J	G-J Generation (1)	14,441	14,441	14,441	14,441	14,030	14,030	14,030	14,030	14,030
K	G-J Generation Unavailability (2)	(1,816)	(1,816)	(1,816)	(1,816)	(1,815)	(1,815)	(1,815)	(1,815)	(1,815)
L	Shortage of Gas Fuel Supply (4)	(2,719)	(2,719)	(2,719)	(2,719)	(2,308)	(2,308)	(2,308)	(2,308)	(2,308)
M	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0
N	Net ICAP External Imports (5)	140	140	140	140	140	140	140	140	140
O	Total Resources Available (J+K+L+M+N)	10,046	10,046	10,046	10,046	10,047	10,047	10,047	10,047	10,047
P	Transmission Security Margin (I+O)	3,449	3,328	3,119	2,944	4,103	3,858	3,596	3,292	2,875
Q	Higher Demand Impact	(174)	(257)	(385)	(461)	(618)	(854)	(1,097)	(1,494)	(1,737)
R	Higher Demand Transmission Security Margin (P+Q)	3,275	3,071	2,734	2,483	3,485	3,004	2,499	1,798	1,138
S	Noncoincident Peak Demand Impact	(34)	(35)	(36)	(37)	(37)	(37)	(38)	(40)	(41)
T	Noncoincident Peak Transmission Security Margin (P+S)	3,415	3,293	3,083	2,907	4,066	3,821	3,558	3,252	2,834

Notes:

1. Reflects the 2025 Gold Book existing winter capacity plus projected additions and deactivations.
2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 15% of the total nameplate, off-shore wind at 20% of the total nameplate. Solar generation is assumed offline for the winter peak hour. Includes derates for thermal resources based on NERC five-year class average EFORD data published October 2024 (<https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx>). Also includes a reduction of 110 MW based on the impact of Correlated Derates to DMNC on resources impacted by the Modeling Improvements for “Capacity Accreditation project – Correlated Derates” requirements are reflected in the NYISO ICAP manual and the Market Services Tariff Section 5.
3. Limits for 2026 through 2029 are based on summer peak 2029 representations evaluated in the 2024 RNA. Limits for 2030 through 2034 are based on summer peak 2034 representations evaluated in the 2024 RNA.
4. Includes all gas only units that do not have a firm gas contract.
5. Interchanges are based on ERAG MMWG values and firm transactions. Includes a 175 MW reduction in capacity sales from PJM.

New York City (Zone J)

The New York City locality comprises Zone J. Within the Con Edison service territory, the 345 kV transmission system, along with specific portions of the 138 kV transmission system, is designed for the occurrence of two non-simultaneous contingencies and a return to normal (N-1-1-0).²³ Therefore, unlike the Lower Hudson Valley and Long Island localities, the New York City transmission security margin is calculated based on the most limiting N-1-1-0 contingency combination. As the system changes, the limiting contingency combination may also change.

Starting in summer 2026 and continuing throughout the study period, the limiting contingency combination is the loss of the CHPE HVDC cable followed by the loss of Ravenswood 3. In winter 2026-2027 through winter 2029-2030, the limiting contingency combination is the loss of Ravenswood 3 followed by the loss of Mott Haven – Rainey 345 kV (Q12). Starting in winter 2030-2031 and continuing throughout the remainder of the study period, the limiting contingency combination changes to the loss of Ravenswood 3 followed by the loss of Bayonne. The CHPE cable is not included in limiting contingencies in winter due to the assumption that following the in-service status of CHPE, it is scheduled at 0 MW for the winter seasons.

This assessment recognizes that there is a range in the demand forecast driven by uncertainties in key assumptions, such as population and economic growth, energy efficiency, the installation of behind-the-meter renewable energy resources, and electric vehicle adoption and charging patterns. The forecasted summer peak demand in New York City has a range of 460 MW in 2026 growing to 1,360 MW in 2030, primarily driven by assumptions in electrification of transportation and buildings. Baseline demand lies approximately in the middle of the range and is used for the baseline margin (line-item L) in Figure 44. The upper range of this forecast band is used for the higher demand margin (line-item N). The assumed available supply has also been adjusted to account for expected reductions of 110 MW in generators' dependable maximum net capability (DMNC) and 175 MW reduction in capacity sales from PJM.

²³ <https://www.coned.com/-/media/files/coned/documents/business-partners/transmission-planning/transmission-planning-criteria.pdf>

Figure 43: Summer Peak New York City Transmission Security Margin Calculation – Status Quo System

Summer Peak - Baseline Expected Weather, Normal Transfer Criteria (MW)										
Line	Item	2026	2027	2028	2029	2030	2031	2032	2033	2034
A	Zone J Demand Forecast	(10,790)	(10,820)	(10,840)	(10,860)	(10,880)	(10,930)	(11,010)	(11,080)	(11,170)
B	I+K to J (3)	3,900	3,900	3,900	3,900	3,900	3,900	3,900	3,900	3,900
C	ABC PARs to J	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)
D	Total J AC Import (B+C)	3,889	3,889	3,889	3,889	3,889	3,889	3,889	3,889	3,889
E	Loss of Source Contingency	(985)	(985)	(985)	(985)	(985)	(985)	(985)	(985)	(985)
F	Resource Need (A+D+E)	(7,886)	(7,916)	(7,936)	(7,956)	(7,976)	(8,026)	(8,106)	(8,176)	(8,266)
G	J Generation (1)	8,108	8,108	8,108	8,108	8,108	7,698	7,698	7,698	7,698
H	J Generation Unavailability (2)	(772)	(772)	(772)	(772)	(772)	(730)	(730)	(730)	(730)
I	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0
J	Net ICAP External Imports (4)	140	140	140	140	140	140	140	140	140
K	Total Resources Available (G+H+I+J)	7,476	7,476	7,476	7,476	7,476	7,109	7,109	7,109	7,109
L	Baseline Transmission Security Margin (F+K)	(410)	(440)	(460)	(480)	(500)	(917)	(997)	(1,067)	(1,157)
M	Higher Demand Impact	(130)	(220)	(330)	(470)	(630)	(720)	(790)	(880)	(960)
N	Higher Demand Transmission Security Margin (L+M)	(540)	(660)	(790)	(950)	(1,130)	(1,637)	(1,787)	(1,947)	(2,117)
O	Noncoincident Peak Demand Impact	(240)	(240)	(240)	(240)	(240)	(240)	(250)	(250)	(250)
P	Noncoincident Peak Transmission Security Margin (L+O)	(650)	(680)	(700)	(720)	(740)	(1,157)	(1,247)	(1,317)	(1,407)

Notes:

1. Reflects the 2025 Gold Book existing summer capacity plus projected additions and deactivations.
2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 10% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2025 Gold Book Table I-9a) and solar PV peak reductions (2025 Gold Book Table I-9c). Includes derates for thermal resources based on NERC five-year class average EFORD data published October 2024 (<https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx>). Also includes a reduction of 110 MW based on the impact of Correlated Derates to DMNC on resources impacted by the Modeling Improvements for “Capacity Accreditation project – Correlated Derates” requirements are reflected in the NYISO ICAP manual and the Market Services Tariff Section 5.
3. Limits for 2026 through 2029 are based on the summer peak 2029 representations evaluated in the 2024 RNA. Limits for 2030 through 2034 are based on the summer peak 2034 representations evaluated in the 2024 RNA.
4. Interchanges are based on ERAG MMWG values and firm transactions. Includes a 175 MW reduction in capacity sales from PJM.

Figure 44: Summer Peak New York City Transmission Security Margin Calculation – Planned System

Summer Peak - Expected Weather, Normal Transfer Criteria (MW)										
Line	Item	2026	2027	2028	2029	2030	2031	2032	2033	2034
A	Zone J Demand Forecast	(10,790)	(10,820)	(10,840)	(10,860)	(10,880)	(10,930)	(11,010)	(11,080)	(11,170)
B	I+K to J (3)	4,700	4,700	4,700	4,700	4,800	4,800	4,800	4,800	4,800
C	ABC PARs to J	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)
D	Total J AC Import (B+C)	4,689	4,689	4,689	4,689	4,789	4,789	4,789	4,789	4,789
E	Loss of Source Contingency	(2,235)	(2,235)	(2,235)	(2,235)	(2,235)	(2,235)	(2,235)	(2,235)	(2,235)
F	Resource Need (A+D+E)	(8,336)	(8,366)	(8,386)	(8,406)	(8,326)	(8,376)	(8,456)	(8,526)	(8,616)
G	J Generation (1)	8,123	8,939	8,939	8,939	8,939	8,529	8,529	8,529	8,529
H	J Generation Unavailability (2)	(787)	(1,521)	(1,521)	(1,521)	(1,521)	(1,479)	(1,479)	(1,479)	(1,479)
I	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0
J	Net ICAP External Imports (4)	1,390	1,390	1,390	1,390	1,390	1,390	1,390	1,390	1,390
K	Total Resources Available (G+H+I+J)	8,726	8,808	8,808	8,808	8,808	8,440	8,440	8,440	8,440
L	Baseline Transmission Security Margin (F+K)	390	442	422	402	482	64	(16)	(86)	(176)
M	Higher Demand Impact	(130)	(220)	(330)	(470)	(630)	(720)	(790)	(880)	(960)
N	Higher Demand Transmission Security Margin (L+M)	260	222	92	(68)	(148)	(656)	(806)	(966)	(1,136)
O	Noncoincident Peak Demand Impact	(240)	(240)	(240)	(240)	(240)	(240)	(250)	(250)	(250)
P	Noncoincident Peak Transmission Security Margin (L+O)	150	202	182	162	242	(176)	(266)	(336)	(426)

Notes:

1. Reflects the 2025 Gold Book existing summer capacity plus projected additions and deactivations.
2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 10% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2025 Gold Book Table I-9a) and solar PV peak reductions (2025 Gold Book Table I-9c). Includes derates for thermal resources based on NERC five-year class average EFORD data published October 2024 (<https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx>). Also includes a reduction of 110 MW based on the impact of Correlated Derates to DMNC on resources impacted by the Modeling Improvements for “Capacity Accreditation project – Correlated Derates” requirements are reflected in the NYISO ICAP manual and the Market Services Tariff Section 5.
3. Limits for 2026 through 2029 are based on the summer peak 2029 representations evaluated in the 2024 RNA. Limits for 2030 through 2034 are based on the summer peak 2034 representations evaluated in the 2024 RNA.
4. Interchanges are based on ERAG MMWG values and firm transactions. Includes a 175 MW reduction in capacity sales from PJM.

Figure 45: Winter Peak New York City Transmission Security Margin Calculation – Status Quo System

Winter Peak - Baseline Expected Weather, Normal Transfer Criteria (MW)										
Line	Item	2026-27	2027-28	2028-29	2029-30	2030-31	2031-32	2032-33	2033-34	2034-35
A	Zone J Demand Forecast	(7,580)	(7,650)	(7,800)	(7,930)	(8,070)	(8,240)	(8,410)	(8,610)	(8,830)
B	I+K to J (3)	3,900	3,900	3,900	3,900	3,900	3,900	3,900	3,900	3,900
C	ABC PARs to J	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)
D	Total J AC Import (B+C)	3,889	3,889	3,889	3,889	3,889	3,889	3,889	3,889	3,889
E	Loss of Source Contingency	(973)	(973)	(973)	(973)	(973)	(973)	(973)	(973)	(973)
F	Resource Need (A+D+E)	(4,664)	(4,734)	(4,884)	(5,014)	(5,154)	(5,324)	(5,494)	(5,694)	(5,914)
G	J Generation (1)	8,602	8,602	8,602	8,602	8,190	8,190	8,190	8,190	8,190
H	J Generation Unavailability (2)	(721)	(721)	(721)	(721)	(721)	(721)	(721)	(721)	(721)
I	Unavailability of Non-Firm Gas (4)	(2,057)	(2,057)	(2,057)	(2,057)	(1,646)	(1,646)	(1,646)	(1,646)	(1,646)
J	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0
K	Net ICAP External Imports (5)	140	140	140	140	140	140	140	140	140
L	Total Resources Available (G+H+I+J+K)	5,963	5,963	5,963	5,963	5,964	5,964	5,964	5,964	5,964
M	Transmission Security Margin (F+L)	1,300	1,230	1,080	950	810	640	470	270	50
N	Higher Demand Impact	(160)	(230)	(310)	(390)	(490)	(650)	(810)	(1,080)	(1,220)
O	Higher Demand Transmission Security Margin (M+N)	1,140	1,000	770	560	320	(10)	(340)	(810)	(1,170)
P	Noncoincident Peak Demand Impact	(50)	(50)	(50)	(60)	(60)	(60)	(60)	(60)	(60)
Q	Noncoincident Peak Transmission Security Margin (M+P)	1,250	1,180	1,030	890	750	580	410	210	(10)

Notes:

1. Reflects the 2025 Gold Book existing summer capacity plus projected additions and deactivations.
2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 15% of the total nameplate, off-shore wind at 20% of the total nameplate. Solar generation is assumed offline for the winter peak hour. Includes derates for thermal resources based on NERC five-year class average EFORd data published October 2024 (<https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx>). Also includes a reduction of 110 MW based on the impact of Correlated Derates to DMNC on resources impacted by the Modeling Improvements for “Capacity Accreditation project – Correlated Derates” requirements are reflected in the NYISO ICAP manual and the Market Services Tariff Section 5.
3. Limits for 2026 through 2029 are based on the winter peak 2029 representations evaluated in the 2024 RNA. Limits for 2030 through 2034 are based on the winter peak 2034 representations evaluated in the 2024 RNA.
4. Unavailability of non-firm gas is modeled per NYSRC Reliability Rule 154a which became effective May 2024. Includes all gas only units that do not have a firm gas contract.
5. Interchanges are based on ERAG MMWG values and firm transactions. Includes a 175 MW reduction in capacity sales from PJM.

Figure 46: Winter Peak New York City Transmission Security Margin Calculation – Planned System

Winter Peak - Expected Weather, Normal Transfer Criteria (MW)										
Line	Item	2026-27	2027-28	2028-29	2029-30	2030-31	2031-32	2032-33	2033-34	2034-35
A	Zone J Demand Forecast	(7,580)	(7,650)	(7,800)	(7,930)	(8,070)	(8,240)	(8,410)	(8,610)	(8,830)
B	I+K to J (3)	3,900	3,900	3,900	3,900	4,900	4,900	4,900	4,900	4,900
C	ABC PARS to J	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)	(11)
D	Total J AC Import (B+C)	3,889	3,889	3,889	3,889	4,889	4,889	4,889	4,889	4,889
E	Loss of Source Contingency	(973)	(973)	(973)	(973)	(1,606)	(1,606)	(1,606)	(1,606)	(1,606)
F	Resource Need (A+D+E)	(4,664)	(4,734)	(4,884)	(5,014)	(4,787)	(4,957)	(5,127)	(5,327)	(5,547)
G	J Generation (1)	9,433	9,433	9,433	9,433	9,021	9,021	9,021	9,021	9,021
H	J Generation Unavailability (2)	(1,389)	(1,389)	(1,389)	(1,389)	(1,388)	(1,388)	(1,388)	(1,388)	(1,388)
I	Unavailability of Non-Firm Gas (4)	(2,057)	(2,057)	(2,057)	(2,057)	(1,646)	(1,646)	(1,646)	(1,646)	(1,646)
J	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0
K	Net ICAP External Imports (5)	140	140	140	140	140	140	140	140	140
L	Total Resources Available (G+H+I+J+K)	6,127	6,127	6,127	6,127	6,127	6,127	6,127	6,127	6,127
M	Transmission Security Margin (F+L)	1,463	1,393	1,243	1,113	1,340	1,170	1,000	800	580
N	Higher Demand Impact	(160)	(230)	(310)	(390)	(490)	(650)	(810)	(1,080)	(1,220)
O	Higher Demand Transmission Security Margin (M+N)	1,303	1,163	933	723	850	520	190	(280)	(640)
P	Noncoincident Peak Demand Impact	(50)	(50)	(50)	(60)	(60)	(60)	(60)	(60)	(60)
Q	Noncoincident Peak Transmission Security Margin (M+P)	1,413	1,343	1,193	1,053	1,280	1,110	940	740	520

Notes:

1. Reflects the 2025 Gold Book existing summer capacity plus projected additions and deactivations.
2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 15% of the total nameplate, off-shore wind at 20% of the total nameplate. Solar generation is assumed offline for the winter peak hour. Includes derates for thermal resources based on NERC five-year class average EFORD data published October 2024 (<https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx>). Also includes a reduction of 110 MW based on the impact of Correlated Derates to DMNC on resources impacted by the Modeling Improvements for “Capacity Accreditation project – Correlated Derates” requirements are reflected in the NYISO ICAP manual and the Market Services Tariff Section 5.
3. Limits for 2026 through 2029 are based on the winter peak 2029 representations evaluated in the 2024 RNA. Limits for 2030 through 2034 are based on the winter peak 2034 representations evaluated in the 2024 RNA.
4. Unavailability of non-firm gas is modeled per NYSRC Reliability Rule 154a which became effective May 2024. Includes all gas only units that do not have a firm gas contract.
5. Interchanges are based on ERAG MMWG values and firm transactions. Includes a 175 MW reduction in capacity sales from PJM.

Long Island (Zone K)

The Long Island locality comprises Zone K. Within the Long Island Power Authority (LIPA) service territory, the BPTF system (primarily comprised of 138 kV transmission) is designed for N-1-1. To determine the transmission security margin for this area, the most limiting combination of two non-simultaneous contingency events (N-1-1) to the transmission security margin is determined.

For summer 2026 through summer 2029, the most limiting contingency combination is the loss of the Neptune HVDC cable followed by a stuck breaker event at Sprain Brook leading to loss of the Y49 cable. From summer 2030 onward, after the Propel NY project is in service, the limiting contingency combination changes to the loss of the Y50 cable followed by a stuck breaker event at Uniondale. For winter 2026-2027 through winter 2029-2030, the most limiting contingency combination is the loss of the Neptune HVDC cable followed by a stuck breaker event at Sprain Brook. From winter 2030-2031 onward, after the Propel NY project is in service, the limiting contingency combination changes to the loss of the Northport 1 unit followed by loss of a Shore Road-Lake Success 138 kV line (367).

Figures below show the calculation of the summer and winter Long Island transmission security margin. Significant increases in transmission security margins are seen after the Long Island Public Policy transmission project is placed in service.

Figure 47: Summer Peak Long Island Margin Calculation – Status Quo System

Summer Peak - Expected Weather, Normal Transfer Criteria (MW)										
Line	Item	2026	2027	2028	2029	2030	2031	2032	2033	2034
A	Zone K Demand Forecast	(4,996)	(5,012)	(5,011)	(5,034)	(5,086)	(5,151)	(5,203)	(5,260)	(5,310)
B	I+J to K (3)	900	900	900	900	900	900	900	900	900
C	New England Import (NNC)	0	0	0	0	0	0	0	0	0
D	Total K AC Import (B+C)	900	900	900	900	900	900	900	900	900
E	Loss of Source Contingency	(660)	(660)	(660)	(660)	(660)	(660)	(660)	(660)	(660)
F	Resource Need (A+D+E)	(4,756)	(4,772)	(4,771)	(4,794)	(4,846)	(4,911)	(4,963)	(5,020)	(5,070)
G	K Generation (1)	5,001	4,901	4,901	4,901	4,901	4,856	4,856	4,856	4,856
H	K Generation Unavailability (2)	(832)	(823)	(823)	(824)	(825)	(820)	(821)	(821)	(821)
I	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0
J	Net ICAP External Imports (4)	949	660	660	660	660	660	660	660	660
K	Total Resources Available (G+H+I+J)	5,117	4,738	4,737	4,736	4,736	4,695	4,695	4,695	4,694
L	Transmission Security Margin (F+K)	361	(34)	(34)	(58)	(110)	(216)	(268)	(325)	(376)
M	Higher Demand Impact	(43)	(34)	(30)	(24)	(36)	(47)	(63)	(65)	(110)
N	Higher Demand Transmission Security Margin (L+M)	318	(68)	(64)	(82)	(146)	(263)	(331)	(390)	(486)
O	Noncoincident Peak Demand Impact	(76)	(77)	(77)	(78)	(79)	(80)	(81)	(82)	(83)
P	Noncoincident Peak Transmission Security Margin (L+O)	285	(111)	(111)	(136)	(189)	(296)	(349)	(407)	(459)

Notes:

1. Reflects the 2025 Gold Book existing summer capacity plus projected additions and deactivations.
2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 10% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2025 Gold Book Table I-9a) and solar PV peak reductions (2025 Gold Book Table I-9c). Derates for run-of-river hydro are included. Includes derates for thermal resources based on NERC five-year class average EFORD data published October 2023 <https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx>). Also includes a reduction of 200 MW based on the impact of Correlated Derates to DMNC on resources impacted by the Modeling Improvements for “Capacity Accreditation project – Correlated Derates” requirements are reflected in the NYISO ICAP manual and the Market Services Tariff Section 5.
3. Limits for 2026 through 2029 are based on the 2024 LIPA Summer Operating Study. Limits for 2030 through 2034 are based on the 2034-2035W winter peak representations evaluated in the 2024RNA.
4. Interchanges are based on ERAG MMWG values and firm transactions. Includes a 175 MW reduction in capacity sales from PJM. Includes external imports from the Cross-Sound Cable in accordance with planned imports through early 2027, but starting in summer 2027 this import is assumed at 0 MW.

Figure 48: Summer Peak Long Island Margin Calculation – Planned System

Summer Peak - Expected Weather, Normal Transfer Criteria (MW)										
Line	Item	2026	2027	2028	2029	2030	2031	2032	2033	2034
A	Zone K Demand Forecast	(4,996)	(5,012)	(5,011)	(5,034)	(5,086)	(5,151)	(5,203)	(5,260)	(5,310)
B	I+J to K (3)	900	900	900	900	2,200	2,200	2,200	2,200	2,200
C	New England Import (NNC)	0	0	0	0	0	0	0	0	0
D	Total K AC Import (B+C)	900	900	900	900	2,200	2,200	2,200	2,200	2,200
E	Loss of Source Contingency	(660)	(660)	(660)	(660)	0	0	0	0	0
F	Resource Need (A+D+E)	(4,756)	(4,772)	(4,771)	(4,794)	(2,886)	(2,951)	(3,003)	(3,060)	(3,110)
G	K Generation (1)	5,001	5,001	5,925	5,925	5,925	5,880	5,880	5,880	5,880
H	K Generation Unavailability (2)	(832)	(833)	(1,665)	(1,666)	(1,666)	(1,662)	(1,662)	(1,662)	(1,663)
I	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0
J	Net ICAP External Imports (4)	949	660	660	660	660	660	660	660	660
K	Total Resources Available (G+H+I+J)	5,117	4,828	4,920	4,919	4,918	4,878	4,877	4,877	4,877
L	Transmission Security Margin (F+K)	361	56	149	125	2,032	1,927	1,874	1,817	1,767
M	Higher Demand Impact	(43)	(34)	(30)	(24)	(36)	(47)	(63)	(65)	(110)
N	Higher Demand Transmission Security Margin (L+M)	318	22	119	101	1,996	1,880	1,811	1,752	1,657
O	Noncoincident Peak Demand Impact	(76)	(77)	(77)	(78)	(79)	(80)	(81)	(82)	(83)
P	Noncoincident Peak Transmission Security Margin (L+O)	285	(21)	72	47	1,953	1,847	1,793	1,735	1,684

Notes:

1. Reflects the 2025 Gold Book existing summer capacity plus projected additions and deactivations.
2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 10% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2025 Gold Book Table I-9a) and solar PV peak reductions (2025 Gold Book Table I-9c). Derates for run-of-river hydro are included. Includes derates for thermal resources based on NERC five-year class average EFORD data published October 2023 <https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx>. Also includes a reduction of 200 MW based on the impact of Correlated Derates to DMNC on resources impacted by the Modeling Improvements for "Capacity Accreditation project – Correlated Derates" requirements are reflected in the NYISO ICAP manual and the Market Services Tariff Section 5.
3. Limits for 2026 through 2029 are based on the 2024 LIPA Summer Operating Study. Limits for 2030 through 2034 are based on the 2034-2035W winter peak representations evaluated in the 2024RNA.
4. Interchanges are based on ERAG MMWG values and firm transactions. Includes a 175 MW reduction in capacity sales from PJM. Includes external imports from the Cross-Sound Cable in accordance with planned imports through early 2027, but starting in summer 2027 this import is assumed at 0 MW.

Figure 49: Winter Peak Long Island Margin Calculation – Status Quo System

Winter Peak - Expected Weather, Normal Transfer Criteria (MW)										
Line	Item	2026-27	2027-28	2028-29	2029-30	2030-31	2031-32	2032-33	2033-34	2034-35
A	Zone K Demand Forecast	(3,276)	(3,335)	(3,443)	(3,585)	(3,716)	(3,860)	(3,995)	(4,114)	(4,221)
B	I+J to K (3), (4)	900	900	900	900	900	900	900	900	900
C	New England Import (NNC)	0	0	0	0	0	0	0	0	0
D	Total K AC Import (B+C)	900	900	900	900	900	900	900	900	900
E	Loss of Source Contingency	(660)	(660)	(660)	(660)	(660)	(660)	(660)	(660)	(660)
F	Resource Need (A+D+E)	(3,036)	(3,095)	(3,203)	(3,345)	(3,476)	(3,620)	(3,755)	(3,874)	(3,981)
G	K Generation (1)	5,437	5,320	5,320	5,320	5,274	5,274	5,274	5,274	5,274
H	K Generation Unavailability (2)	(852)	(840)	(840)	(840)	(839)	(839)	(839)	(839)	(839)
I	Shortage of Gas Fuel Supply (5)	(318)	(318)	(318)	(318)	(272)	(272)	(272)	(272)	(272)
J	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0
K	Net ICAP External Imports (6)	949	660	660	660	660	660	660	660	660
L	Total Resources Available (G+H+I+J+K)	5,216	4,822	4,822	4,822	4,823	4,823	4,823	4,823	4,823
M	Transmission Security Margin (F+L)	2,180	1,727	1,619	1,477	1,347	1,203	1,068	949	842
N	Higher Demand Impact	(20)	(15)	(29)	(88)	(155)	(246)	(348)	(529)	(601)
O	Higher Demand Transmission Security Margin (M+N)	2,160	1,712	1,590	1,389	1,192	957	720	420	241
P	Noncoincident Peak Demand Impact	(13)	(13)	(14)	(15)	(15)	(16)	(16)	(17)	(17)
Q	Noncoincident Peak Transmission Security Margin (M+P)	2,167	1,714	1,605	1,462	1,332	1,187	1,052	932	825

Notes:

1. Reflects the 2025 Gold Book existing winter capacity plus projected additions and deactivations.
2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 15% of the total nameplate, off-shore wind at 20% of the total nameplate. For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included. Includes derates for thermal resources based on NERC five-year class average EFORd data published October 2024 (<https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx>). Also includes a reduction of 200 MW based on the impact of Correlated Derates to DMNC on resources impacted by the Modeling Improvements for "Capacity Accreditation project – Correlated Derates" requirements are reflected in the NYISO ICAP manual and the Market Services Tariff Section 5.
3. Limits for 2026 through 2029 are based on the 2024 LIPA Summer Operating Study. Limits for 2030 through 2034 are based on the 2034-2035W winter peak representations evaluated in the 2024RNA.
4. As a conservative winter peak assumption these limits utilize the summer values through 2029-2030W.
5. Includes all gas only units that do not have a firm gas contract.
6. Interchanges are based on ERAG MMWG values and firm transactions. Includes a 175 MW reduction in capacity sales from PJM. Includes external imports from the Cross-Sound Cable in accordance with planned imports through early 2027, but starting in summer 2027 this import is assumed at 0 MW.

Figure 50: Winter Peak Long Island Margin Calculation – Planned System

Winter Peak - Baseline Weather, Normal Transfer Criteria (MW)										
Line	Item	2026-27	2027-28	2028-29	2029-30	2030-31	2031-32	2032-33	2033-34	2034-35
A	Zone K Demand Forecast	(3,276)	(3,335)	(3,443)	(3,585)	(3,716)	(3,860)	(3,995)	(4,114)	(4,221)
B	I+J to K (3), (4)	900	900	900	900	2,500	2,500	2,500	2,500	2,500
C	New England Import (NNC)	0	0	0	0	0	0	0	0	0
D	Total K AC Import (B+C)	900	900	900	900	2,500	2,500	2,500	2,500	2,500
E	Loss of Source Contingency	(660)	(660)	(660)	(660)	(399)	(399)	(399)	(399)	(399)
F	Resource Need (A+D+E)	(3,036)	(3,095)	(3,203)	(3,345)	(1,615)	(1,759)	(1,894)	(2,013)	(2,120)
G	K Generation (1)	5,437	6,361	6,361	6,361	6,315	6,315	6,315	6,315	6,315
H	K Generation Unavailability (2)	(852)	(1,591)	(1,591)	(1,591)	(1,591)	(1,591)	(1,591)	(1,591)	(1,591)
I	Shortage of Gas Fuel Supply (5)	(318)	(318)	(318)	(318)	(272)	(272)	(272)	(272)	(272)
J	Temperature Based Generation Derates	0	0	0	0	0	0	0	0	0
K	Net ICAP External Imports (6)	949	660	660	660	660	660	660	660	660
L	Total Resources Available (G+H+I+J+K)	5,216	5,112	5,112	5,112	5,113	5,113	5,113	5,113	5,113
M	Transmission Security Margin (F+L)	2,180	2,017	1,909	1,767	3,498	3,354	3,219	3,100	2,993
N	Higher Demand Impact	(20)	(15)	(29)	(88)	(155)	(246)	(348)	(529)	(601)
O	Higher Demand Transmission Security Margin (M+N)	2,160	2,002	1,880	1,679	3,343	3,108	2,871	2,571	2,392
P	Noncoincident Peak Demand Impact	(13)	(13)	(14)	(15)	(15)	(16)	(16)	(17)	(17)
Q	Noncoincident Peak Transmission Security Margin (M+P)	2,167	2,004	1,895	1,752	3,483	3,338	3,203	3,083	2,976

Notes:

1. Reflects the 2025 Gold Book existing winter capacity plus projected additions and deactivations.
2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 15% of the total nameplate, off-shore wind at 20% of the total nameplate. For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included. Includes derates for thermal resources based on NERC five-year class average EFORD data published October 2024 (<https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx>). Also includes a reduction of 200 MW based on the impact of Correlated Derates to DMNC on resources impacted by the Modeling Improvements for "Capacity Accreditation project – Correlated Derates" requirements are reflected in the NYISO ICAP manual and the Market Services Tariff Section 5.
3. Limits for 2026 through 2029 are based on the 2024 LIPA Summer Operating Study. Limits for 2030 through 2034 are based on the 2034-2035W winter peak representations evaluated in the 2024RNA.
4. As a conservative winter peak assumption these limits utilize the summer values through 2029-2030W.
5. Includes all gas only units that do not have a firm gas contract.
6. Interchanges are based on ERAG MMWG values and firm transactions. Includes external imports from the Cross-Sound Cable in accordance with planned imports through early 2027, but starting in summer 2027 this import is assumed at 0 MW.

Appendix F – Additional Outage Impacts to Margins

The figures in this section show the impact of additional generator and plant outages, or Additional Outage Impacts (AOI), on the statewide system margin and transmission security margins for each locality. The impact of the outages is shown relative to the base margins considering the higher demand forecast with flexible large loads modeled offline.

- Figure 51: AOI - Statewide System Margin
- Figure 52: AOI - Lower Hudson Valley Transmission Security Margin
- Figure 53: AOI - New York City Transmission Security Margin
- Figure 54: AOI - Long Island Transmission Security Margin

Figure 51: AOI - Statewide System Margin

Statewide System Margin													
				Year	2026	2027	2028	2029	2030	2031	2032	2033	2034
Statewide System Margin Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) (1)				312	(486)	(938)	(1,552)	(2,132)	(3,029)	(3,518)	(4,032)	(4,685)	
Unit Name	Summer DMNC (MW)	NERC 5-Year Class Average De-Rate (MW)	Summer De-Rated Capability (MW)	Transmission Security Margin Considering Impact of Generator Outage (Retire, Mothball, IIFO)									
Jamestown 5, 6 & 7	74.7	(7.90)	66.80	246	(552)	(1,005)	(1,619)	(2,199)	(3,096)	(3,584)	(4,098)	(4,752)	
Jamestown 5	19.0	(2.06)	16.94	296	(503)	(955)	(1,569)	(2,149)	(3,046)	(3,535)	(4,049)	(4,702)	
Jamestown 6	16.5	(1.79)	14.71	298	(500)	(953)	(1,567)	(2,146)	(3,044)	(3,532)	(4,046)	(4,700)	
Jamestown 7	39.2	(4.05)	35.15	277	(521)	(974)	(1,587)	(2,167)	(3,064)	(3,553)	(4,067)	(4,720)	
Indeck-Yerkes	43.1	(2.03)	41.07	271	(527)	(980)	(1,593)	(2,173)	(3,070)	(3,559)	(4,073)	(4,726)	
Indeck-Olean	79.0	(3.72)	75.28	237	(561)	(1,014)	(1,627)	(2,207)	(3,104)	(3,593)	(4,107)	(4,761)	
American Ref-Fuel 1 & 2	37.6	(4.08)	33.52	279	(519)	(972)	(1,586)	(2,165)	(3,062)	(3,551)	(4,065)	(4,719)	
American Ref-Fuel 1	18.8	(2.04)	16.76	296	(502)	(955)	(1,569)	(2,149)	(3,046)	(3,534)	(4,048)	(4,702)	
American Ref-Fuel 2	18.8	(2.04)	16.76	296	(502)	(955)	(1,569)	(2,149)	(3,046)	(3,534)	(4,048)	(4,702)	
Fortistar - N.Tonawanda (BTM:NG)	46.5	(2.19)	44.31	268	(530)	(983)	(1,596)	(2,176)	(3,073)	(3,562)	(4,076)	(4,730)	
Model City Energy	5.6	(0.74)	4.86	308	(490)	(943)	(1,557)	(2,137)	(3,034)	(3,522)	(4,036)	(4,690)	
Modern LF	6.4	(0.84)	5.56	307	(491)	(944)	(1,558)	(2,137)	(3,034)	(3,523)	(4,037)	(4,691)	
Chaffee	6.4	(0.84)	5.56	307	(491)	(944)	(1,558)	(2,137)	(3,034)	(3,523)	(4,037)	(4,691)	
Chautauqua LFGE	0.0	0.00	0.00	312	(486)	(938)	(1,552)	(2,132)	(3,029)	(3,518)	(4,032)	(4,685)	
Lockport CC1, CC2, and CC3	210.0	(9.89)	200.11	112	(686)	(1,139)	(1,752)	(2,332)	(3,229)	(3,718)	(4,232)	(4,885)	
Lockport CC1	70.0	(3.30)	66.70	246	(552)	(1,005)	(1,619)	(2,198)	(3,096)	(3,584)	(4,098)	(4,752)	
Lockport CC2	70.0	(3.30)	66.70	246	(552)	(1,005)	(1,619)	(2,198)	(3,096)	(3,584)	(4,098)	(4,752)	
Lockport CC3	70.0	(3.30)	66.70	246	(552)	(1,005)	(1,619)	(2,198)	(3,096)	(3,584)	(4,098)	(4,752)	

Statewide System Margin													
				Year	2026	2027	2028	2029	2030	2031	2032	2033	2034
Statewide System Margin Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) (1)				312	(486)	(938)	(1,552)	(2,132)	(3,029)	(3,518)	(4,032)	(4,685)	
Transmission Security Margin Considering Impact of Generator Outage (Retire, Mothball, IIFO)													
Unit Name	Summer DMNC (MW)	NERC 5-Year Class Average De-Rate (MW)	Summer De-Rated Capability (MW)										
Allegany	62.7	(2.95)	59.75	253	(545)	(998)	(1,612)	(2,192)	(3,089)	(3,577)	(4,091)	(4,745)	
R. E. Ginna	578.8	(11.98)	566.82	(254)	(1,052)	(1,505)	(2,119)	(2,699)	(3,596)	(4,084)	(4,598)	(5,252)	
Batavia	47.5	(2.24)	45.26	267	(531)	(984)	(1,597)	(2,177)	(3,074)	(3,563)	(4,077)	(4,731)	
Nine Mile Point 2 ²	1,283.4	(23.10)	1,260.30	(659)	(1,457)	(1,910)	(2,524)	(3,104)	(4,001)	(4,489)	(5,003)	(5,657)	
Mill Seat	6.4	(0.84)	5.56	307	(491)	(944)	(1,558)	(2,137)	(3,034)	(3,523)	(4,037)	(4,691)	
Hyland LFGE	4.8	(0.63)	4.17	308	(490)	(943)	(1,556)	(2,136)	(3,033)	(3,522)	(4,036)	(4,689)	
Synergy Biogas	0.0	0.00	0.00	312	(486)	(938)	(1,552)	(2,132)	(3,029)	(3,518)	(4,032)	(4,685)	
Red Rochester (BTM:NG)	16.5	(1.79)	14.71	298	(500)	(953)	(1,567)	(2,146)	(3,044)	(3,532)	(4,046)	(4,700)	
James A. FitzPatrick	844.0	(15.19)	828.81	(516)	(1,314)	(1,767)	(2,381)	(2,961)	(3,858)	(4,346)	(4,860)	(5,514)	
Oswego 6	791.7	(85.90)	705.80	(393)	(1,191)	(1,644)	(2,258)	(2,838)	(3,735)	(4,223)	(4,737)	(5,391)	
Oswego 5	820.5	(89.02)	731.48	(419)	(1,217)	(1,670)	(2,284)	(2,863)	(3,760)	(4,249)	(4,763)	(5,417)	
Nine Mile Point 1	619.7	(11.15)	608.55	(296)	(1,094)	(1,547)	(2,161)	(2,740)	(3,637)	(4,126)	(4,640)	(5,294)	
Independence GS1, GS2, GS3, & GS4	996.4	(46.93)	949.47	(637)	(1,435)	(1,888)	(2,502)	(3,081)	(3,978)	(4,467)	(4,981)	(5,635)	
Independence GS1	249.1	(11.73)	237.37	75	(723)	(1,176)	(1,789)	(2,369)	(3,266)	(3,755)	(4,269)	(4,923)	
Independence GS2	249.1	(11.73)	237.37	75	(723)	(1,176)	(1,789)	(2,369)	(3,266)	(3,755)	(4,269)	(4,923)	
Independence GS3	249.1	(11.73)	237.37	75	(723)	(1,176)	(1,789)	(2,369)	(3,266)	(3,755)	(4,269)	(4,923)	
Independence GS4	249.1	(11.73)	237.37	75	(723)	(1,176)	(1,789)	(2,369)	(3,266)	(3,755)	(4,269)	(4,923)	
Syracuse	86.2	(4.06)	82.14	230	(568)	(1,021)	(1,634)	(2,214)	(3,111)	(3,600)	(4,114)	(4,767)	

Statewide System Margin												
Year				2026	2027	2028	2029	2030	2031	2032	2033	2034
Statewide System Margin Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) (1)				312	(486)	(938)	(1,552)	(2,132)	(3,029)	(3,518)	(4,032)	(4,685)
Transmission Security Margin Considering Impact of Generator Outage (Retire, Mothball, IIFO)												
Unit Name	Summer DMNC (MW)	NERC 5-Year Class Average De-Rate (MW)	Summer De-Rated Capability (MW)									
Carr St.-E. Syr	89.6	(4.22)	85.38	227	(571)	(1,024)	(1,637)	(2,217)	(3,114)	(3,603)	(4,117)	(4,771)
Indeck-Oswego	51.9	(2.44)	49.46	263	(535)	(988)	(1,602)	(2,181)	(3,078)	(3,567)	(4,081)	(4,735)
Indeck-Silver Springs	52.7	(2.48)	50.22	262	(536)	(989)	(1,602)	(2,182)	(3,079)	(3,568)	(4,082)	(4,735)
Greenidge 4 (BTM:NG)	29.8	(3.23)	26.57	286	(1,047)	169	(36)	(240)	(494)	(834)	(1,328)	(1,823)
Ontario LFGE	11.2	(1.48)	9.72	303	(495)	(948)	(1,562)	(2,141)	(3,039)	(3,527)	(4,041)	(4,695)
High Acres	9.6	(1.27)	8.33	304	(494)	(947)	(1,560)	(2,140)	(3,037)	(3,526)	(4,040)	(4,694)
Seneca Energy 1 & 2	17.6	(2.32)	15.28	297	(501)	(954)	(1,567)	(2,147)	(3,044)	(3,533)	(4,047)	(4,701)
Seneca Energy 1	8.8	(1.16)	7.64	305	(493)	(946)	(1,560)	(2,139)	(3,037)	(3,525)	(4,039)	(4,693)
Seneca Energy 2	8.8	(1.16)	7.64	305	(493)	(946)	(1,560)	(2,139)	(3,037)	(3,525)	(4,039)	(4,693)
Broome LFGE	2.4	(0.32)	2.08	310	(488)	(941)	(1,554)	(2,134)	(3,031)	(3,520)	(4,034)	(4,687)
Massena	79.5	(3.74)	75.76	237	(561)	(1,014)	(1,628)	(2,208)	(3,105)	(3,593)	(4,107)	(4,761)
Clinton LFGE	6.4	(0.84)	5.56	307	(491)	(944)	(1,558)	(2,137)	(3,034)	(3,523)	(4,037)	(4,691)
Saranac Energy CC1 & CC2	239.4	(11.28)	228.12	84	(714)	(1,167)	(1,780)	(2,360)	(3,257)	(3,746)	(4,260)	(4,913)
Saranac Energy CC1	122.1	(5.75)	116.35	196	(602)	(1,055)	(1,668)	(2,248)	(3,145)	(3,634)	(4,148)	(4,802)
Saranac Energy CC2	117.3	(5.52)	111.78	201	(597)	(1,050)	(1,664)	(2,244)	(3,141)	(3,629)	(4,143)	(4,797)
Sterling	48.4	(2.28)	46.12	266	(532)	(985)	(1,598)	(2,178)	(3,075)	(3,564)	(4,078)	(4,731)
Carthage Energy	52.8	(2.49)	50.31	262	(536)	(989)	(1,602)	(2,182)	(3,079)	(3,568)	(4,082)	(4,736)
Beaver Falls	79.7	(3.75)	75.95	237	(562)	(1,014)	(1,628)	(2,208)	(3,105)	(3,594)	(4,108)	(4,761)

Statewide System Margin													
				Year	2026	2027	2028	2029	2030	2031	2032	2033	2034
Statewide System Margin Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) (1)				312	(486)	(938)	(1,552)	(2,132)	(3,029)	(3,518)	(4,032)	(4,685)	
Transmission Security Margin Considering Impact of Generator Outage (Retire, Mothball, IIFO)													
Unit Name	Summer DMNC (MW)	NERC 5-Year Class Average De-Rate (MW)	Summer De-Rated Capability (MW)										
Broome 2 LFGE	2.1	(0.28)	1.82	311	(487)	(940)	(1,554)	(2,134)	(3,031)	(3,519)	(4,033)	(4,687)	
DANC LFGE	6.4	(0.84)	5.56	307	(491)	(944)	(1,558)	(2,137)	(3,034)	(3,523)	(4,037)	(4,691)	
Oneida-Herkimer LFGE	3.2	(0.42)	2.78	310	(488)	(941)	(1,555)	(2,135)	(3,032)	(3,520)	(4,034)	(4,688)	
Athens 1, 2, and 3	947.7	(44.64)	903.06	(591)	(1,389)	(1,842)	(2,455)	(3,035)	(3,932)	(4,421)	(4,935)	(5,588)	
Athens 1	329.4	(15.51)	313.89	(1)	(799)	(1,252)	(1,866)	(2,446)	(3,343)	(3,831)	(4,345)	(4,999)	
Athens 2	333.3	(15.70)	317.60	(5)	(803)	(1,256)	(1,870)	(2,449)	(3,347)	(3,835)	(4,349)	(5,003)	
Athens 3	285.0	(13.42)	271.58	41	(757)	(1,210)	(1,824)	(2,403)	(3,301)	(3,789)	(4,303)	(4,957)	
Rensselaer	76.8	(3.62)	73.18	239	(559)	(1,012)	(1,625)	(2,205)	(3,102)	(3,591)	(4,105)	(4,758)	
Wheelabrator Hudson Falls	10.4	(1.13)	9.27	303	(495)	(948)	(1,561)	(2,141)	(3,038)	(3,527)	(4,041)	(4,695)	
Selkirk I & II	353.0	(16.63)	336.37	(24)	(822)	(1,275)	(1,888)	(2,468)	(3,365)	(3,854)	(4,368)	(5,022)	
Selkirk-I	76.4	(3.60)	72.80	240	(558)	(1,011)	(1,625)	(2,205)	(3,102)	(3,590)	(4,104)	(4,758)	
Selkirk-II	276.6	(13.03)	263.57	49	(749)	(1,202)	(1,816)	(2,395)	(3,293)	(3,781)	(4,295)	(4,949)	
Indeck-Corinth	128.5	(6.05)	122.45	190	(608)	(1,061)	(1,675)	(2,254)	(3,151)	(3,640)	(4,154)	(4,808)	
Castleton Energy Center	67.0	(3.16)	63.84	249	(549)	(1,002)	(1,616)	(2,196)	(3,093)	(3,581)	(4,095)	(4,749)	
Bethlehem GS1, GS2, GS3	817.2	(38.49)	778.71	(466)	(1,264)	(1,717)	(2,331)	(2,910)	(3,808)	(4,296)	(4,810)	(5,464)	
Bethlehem GS1	272.4	(12.83)	259.57	53	(745)	(1,198)	(1,812)	(2,391)	(3,288)	(3,777)	(4,291)	(4,945)	
Bethlehem GS2	272.4	(12.83)	259.57	53	(745)	(1,198)	(1,812)	(2,391)	(3,288)	(3,777)	(4,291)	(4,945)	
Bethlehem GS3	272.4	(12.83)	259.57	53	(745)	(1,198)	(1,812)	(2,391)	(3,288)	(3,777)	(4,291)	(4,945)	
Colonie LFGTE	6.4	(0.84)	5.56	307	(491)	(944)	(1,558)	(2,137)	(3,034)	(3,523)	(4,037)	(4,691)	
Albany LFGE	5.6	(0.74)	4.86	308	(490)	(943)	(1,557)	(2,137)	(3,034)	(3,522)	(4,036)	(4,690)	

Statewide System Margin													
				Year	2026	2027	2028	2029	2030	2031	2032	2033	2034
Statewide System Margin Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) (1)				312	(486)	(938)	(1,552)	(2,132)	(3,029)	(3,518)	(4,032)	(4,685)	
Transmission Security Margin Considering Impact of Generator Outage (Retire, Mothball, IIFO)													
Unit Name	Summer DMNC (MW)	NERC 5-Year Class Average De-Rate (MW)	Summer De-Rated Capability (MW)										
Fulton LFGE	3.2	(0.42)	2.78	310	(488)	(941)	(1,555)	(2,135)	(3,032)	(3,520)	(4,034)	(4,688)	
Empire CC1 & CC2	591.6	(27.86)	563.74	(251)	(1,049)	(1,502)	(2,116)	(2,696)	(3,593)	(4,081)	(4,595)	(5,249)	
Empire CC1	295.8	(13.93)	281.87	31	(767)	(1,220)	(1,834)	(2,414)	(3,311)	(3,799)	(4,313)	(4,967)	
Empire CC2	295.8	(13.93)	281.87	31	(767)	(1,220)	(1,834)	(2,414)	(3,311)	(3,799)	(4,313)	(4,967)	
Bowline 1 & 2	1,136.3	(123.29)	1,013.01	(701)	(1,499)	(1,951)	(2,565)	(3,145)	(4,042)	(4,531)	(5,045)	(5,698)	
Bowline 1	565.1	(61.31)	503.79	(191)	(989)	(1,442)	(2,056)	(2,636)	(3,533)	(4,021)	(4,535)	(5,189)	
Bowline 2	571.2	(61.98)	509.22	(197)	(995)	(1,448)	(2,061)	(2,641)	(3,538)	(4,027)	(4,541)	(5,194)	
Danskammer 1, 2, 3, & 4	498.2	(54.05)	444.15	(132)	(930)	(1,383)	(1,996)	(2,576)	(3,473)	(3,962)	(4,476)	(5,129)	
Danskammer 1	68.8	(7.46)	61.34	251	(547)	(1,000)	(1,613)	(2,193)	(3,090)	(3,579)	(4,093)	(4,747)	
Danskammer 2	64.9	(7.04)	57.86	255	(543)	(996)	(1,610)	(2,190)	(3,087)	(3,575)	(4,089)	(4,743)	
Danskammer 3	140.2	(15.21)	124.99	188	(611)	(1,063)	(1,677)	(2,257)	(3,154)	(3,643)	(4,157)	(4,810)	
Danskammer 4	224.3	(24.34)	199.96	113	(686)	(1,138)	(1,752)	(2,332)	(3,229)	(3,718)	(4,232)	(4,885)	
Roseton 1 & 2	1,224.1	(132.81)	1,091.29	(779)	(1,577)	(2,030)	(2,643)	(3,223)	(4,120)	(4,609)	(5,123)	(5,777)	
Roseton 1	616.8	(66.92)	549.88	(237)	(1,035)	(1,488)	(2,102)	(2,682)	(3,579)	(4,067)	(4,581)	(5,235)	
Roseton 2	607.3	(65.89)	541.41	(229)	(1,027)	(1,480)	(2,094)	(2,673)	(3,570)	(4,059)	(4,573)	(5,227)	
Hillburn GT	34.7	(3.14)	31.56	281	(517)	(970)	(1,584)	(2,163)	(3,060)	(3,549)	(4,063)	(4,717)	
Shoemaker GT	32.3	(2.92)	29.38	283	(515)	(968)	(1,581)	(2,161)	(3,058)	(3,547)	(4,061)	(4,715)	
DCRRA	6.3	(0.68)	5.62	307	(491)	(944)	(1,558)	(2,137)	(3,035)	(3,523)	(4,037)	(4,691)	
CPV Valley CC1 & CC2	649.8	(30.61)	619.19	(307)	(1,105)	(1,558)	(2,171)	(2,751)	(3,648)	(4,137)	(4,651)	(5,304)	
CPV Valley CC1	320.4	(15.09)	305.31	7	(791)	(1,244)	(1,857)	(2,437)	(3,334)	(3,823)	(4,337)	(4,991)	

Statewide System Margin													
				Year	2026	2027	2028	2029	2030	2031	2032	2033	2034
Statewide System Margin Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) (1)				312	(486)	(938)	(1,552)	(2,132)	(3,029)	(3,518)	(4,032)	(4,685)	
Transmission Security Margin Considering Impact of Generator Outage (Retire, Mothball, IIFO)													
Unit Name	Summer DMNC (MW)	NERC 5-Year Class Average De-Rate (MW)	Summer De-Rated Capability (MW)										
CPV Valley CC2	329.4	(15.51)	313.89	(1)	(799)	(1,252)	(1,866)	(2,446)	(3,343)	(3,831)	(4,345)	(4,999)	
Cricket Valley CC1, CC2, & CC3	1,021.6	(48.12)	973.48	(661)	(1,459)	(1,912)	(2,526)	(3,105)	(4,002)	(4,491)	(5,005)	(5,659)	
Cricket Valley CC1	349.7	(16.47)	333.23	(21)	(819)	(1,272)	(1,885)	(2,465)	(3,362)	(3,851)	(4,365)	(5,018)	
Cricket Valley CC2	345.5	(16.27)	329.23	(17)	(815)	(1,268)	(1,881)	(2,461)	(3,358)	(3,847)	(4,361)	(5,014)	
Cricket Valley CC3	326.4	(15.37)	311.03	1	(797)	(1,249)	(1,863)	(2,443)	(3,340)	(3,829)	(4,343)	(4,996)	
Wheelabrator Westchester	53.5	(5.80)	47.70	265	(533)	(986)	(1,600)	(2,179)	(3,077)	(3,565)	(4,079)	(4,733)	
Arthur Kill ST 2 & 3	883.6	(95.87)	787.73	(475)	(1,273)	(1,726)	(2,340)	(2,919)	(3,817)	(4,305)	(4,819)	(5,473)	
Arthur Kill ST 2	363.2	(39.41)	323.79	(11)	(809)	(1,262)	(1,876)	(2,456)	(3,353)	(3,841)	(4,355)	(5,009)	
Arthur Kill ST 3	520.4	(56.46)	463.94	(151)	(950)	(1,402)	(2,016)	(2,596)	(3,493)	(3,982)	(4,496)	(5,149)	
Brooklyn Navy Yard	249.2	(11.74)	237.46	75	(723)	(1,176)	(1,790)	(2,369)	(3,266)	(3,755)	(4,269)	(4,923)	
Astoria 2, 3, & 5	902.3	(97.90)	804.40	(492)	(1,290)	(1,743)	(2,357)	(2,936)	(3,833)	(4,322)	(4,836)	(5,490)	
Astoria 2	158.0	(17.14)	140.86	172	(626)	(1,079)	(1,693)	(2,273)	(3,170)	(3,658)	(4,172)	(4,826)	
Astoria 3	371.1	(40.26)	330.84	(18)	(816)	(1,269)	(1,883)	(2,463)	(3,360)	(3,848)	(4,362)	(5,016)	
Astoria 5	373.2	(40.49)	332.71	(20)	(818)	(1,271)	(1,885)	(2,464)	(3,362)	(3,850)	(4,364)	(5,018)	
Ravenswood ST 01, 02, & 03	1,724.8	(187.14)	1,537.66	(1,225)	(2,023)	(2,476)	(3,090)	(3,669)	(4,567)	(5,055)	(5,569)	(6,223)	
Ravenswood ST 01	364.5	(39.55)	324.95	(12)	(811)	(1,263)	(1,877)	(2,457)	(3,354)	(3,843)	(4,357)	(5,010)	
Ravenswood ST 02	375.2	(40.71)	334.49	(22)	(820)	(1,273)	(1,887)	(2,466)	(3,363)	(3,852)	(4,366)	(5,020)	
Ravenswood ST 03	985.1	(106.88)	878.22	(566)	(1,364)	(1,817)	(2,430)	(3,010)	(3,907)	(4,396)	(4,910)	(5,563)	
Ravenswood CC 04	222.2	(10.47)	211.73	101	(697)	(1,150)	(1,764)	(2,343)	(3,241)	(3,729)	(4,243)	(4,897)	
East River 1, 2, 6, & 7	630.7	(49.54)	581.16	(269)	(1,067)	(1,520)	(2,133)	(2,713)	(3,610)	(4,099)	(4,613)	(5,266)	

Statewide System Margin													
				Year	2026	2027	2028	2029	2030	2031	2032	2033	2034
Statewide System Margin Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) (1)				312	(486)	(938)	(1,552)	(2,132)	(3,029)	(3,518)	(4,032)	(4,685)	
Unit Name	Summer DMNC (MW)	NERC 5-Year Class Average De-Rate (MW)	Summer De-Rated Capability (MW)	Transmission Security Margin Considering Impact of Generator Outage (Retire, Mothball, IIFO)									
East River 1	153.2	(7.22)	145.98	167	(632)	(1,084)	(1,698)	(2,278)	(3,175)	(3,664)	(4,178)	(4,831)	
East River 2	154.5	(7.28)	147.22	165	(633)	(1,086)	(1,699)	(2,279)	(3,176)	(3,665)	(4,179)	(4,832)	
East River 6	141.5	(15.35)	126.15	186	(612)	(1,065)	(1,678)	(2,258)	(3,155)	(3,644)	(4,158)	(4,811)	
East River 7	181.5	(19.69)	161.81	151	(647)	(1,100)	(1,714)	(2,294)	(3,191)	(3,679)	(4,193)	(4,847)	
Linden Cogen	748.2	(35.24)	712.96	(400)	(1,199)	(1,651)	(2,265)	(2,845)	(3,742)	(4,231)	(4,745)	(5,398)	
KIAC_JFK (BTM:NG)	105.4	(4.96)	100.44	212	(586)	(1,039)	(1,653)	(2,232)	(3,129)	(3,618)	(4,132)	(4,786)	
Gowanus 5 & 6 ⁴	79.9	(8.25)	71.65	241	(557)	(1,010)	(1,624)	(2,203)	-	-	-	-	
Gowanus 5 ⁴	40.0	(4.13)	35.87	277	(521)	(974)	(1,588)	(2,168)	-	-	-	-	
Gowanus 6 ⁴	39.9	(4.12)	35.78	277	(521)	(974)	(1,588)	(2,168)	-	-	-	-	
Kent ⁴	46.0	(4.75)	41.25	271	(527)	(980)	(1,593)	(2,173)	-	-	-	-	
Pouch ⁴	44.7	(4.61)	40.09	272	(526)	(979)	(1,592)	(2,172)	-	-	-	-	
Hellgate 1 & 2 ⁴	79.5	(8.20)	71.30	241	(557)	(1,010)	(1,623)	(2,203)	-	-	-	-	
Hellgate 14	39.9	(4.12)	35.78	277	(521)	(974)	(1,588)	(2,168)	-	-	-	-	
Hellgate 2 ⁴	39.6	(4.09)	35.51	277	(521)	(974)	(1,588)	(2,167)	-	-	-	-	
Harlem River 1 & 2 ⁴	79.5	(8.20)	71.30	241	(557)	(1,010)	(1,623)	(2,203)	-	-	-	-	
Harlem River 1 ⁴	39.9	(4.12)	35.78	277	(521)	(974)	(1,588)	(2,168)	-	-	-	-	
Harlem River 2 ⁴	39.6	(4.09)	35.51	277	(521)	(974)	(1,588)	(2,167)	-	-	-	-	
Vernon Blvd 2 & 3 ⁴	79.9	(8.25)	71.65	241	(557)	(1,010)	(1,624)	(2,203)	-	-	-	-	

Statewide System Margin													
				Year	2026	2027	2028	2029	2030	2031	2032	2033	2034
Statewide System Margin Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) (1)				312	(486)	(938)	(1,552)	(2,132)	(3,029)	(3,518)	(4,032)	(4,685)	
Transmission Security Margin Considering Impact of Generator Outage (Retire, Mothball, IIFO)													
Unit Name	Summer DMNC (MW)	NERC 5-Year Class Average De-Rate (MW)	Summer De-Rated Capability (MW)										
Vernon Blvd 2 ⁴	40.0	(4.13)	35.87	277	(521)	(974)	(1,588)	(2,168)	-	-	-	-	
Vernon Blvd 3 ⁴	39.9	(4.12)	35.78	277	(521)	(974)	(1,588)	(2,168)	-	-	-	-	
Astoria CC 1 & 2	474.0	(22.33)	451.67	(139)	(937)	(1,390)	(2,004)	(2,583)	(3,481)	(3,969)	(4,483)	(5,137)	
Astoria CC 1	237.0	(11.16)	225.84	87	(711)	(1,164)	(1,778)	(2,358)	(3,255)	(3,743)	(4,257)	(4,911)	
Astoria CC 2	237.0	(11.16)	225.84	87	(711)	(1,164)	(1,778)	(2,358)	(3,255)	(3,743)	(4,257)	(4,911)	
Astoria East Energy CC1 & CC2	582.8	(27.45)	555.35	(243)	(1,041)	(1,494)	(2,107)	(2,687)	(3,584)	(4,073)	(4,587)	(5,241)	
Astoria East Energy - CC1	291.4	(13.72)	277.68	35	(763)	(1,216)	(1,830)	(2,409)	(3,307)	(3,795)	(4,309)	(4,963)	
Astoria East Energy - CC2	291.4	(13.72)	277.68	35	(763)	(1,216)	(1,830)	(2,409)	(3,307)	(3,795)	(4,309)	(4,963)	
Astoria Energy 2 - CC3 & CC4	570.3	(26.86)	543.44	(231)	(1,029)	(1,482)	(2,096)	(2,675)	(3,572)	(4,061)	(4,575)	(5,229)	
Astoria Energy 2 - CC3	285.0	(13.42)	271.58	41	(757)	(1,210)	(1,824)	(2,403)	(3,301)	(3,789)	(4,303)	(4,957)	
Astoria Energy 2 - CC4	285.3	(13.44)	271.86	41	(757)	(1,210)	(1,824)	(2,404)	(3,301)	(3,789)	(4,303)	(4,957)	
Bayonne EC CT G1 through G10	604.8	(54.67)	550.13	(238)	(1,036)	(1,489)	(2,102)	(2,682)	(3,579)	(4,068)	(4,582)	(5,235)	
Bayonne EC CTG1	62.0	(5.60)	56.40	256	(542)	(995)	(1,608)	(2,188)	(3,085)	(3,574)	(4,088)	(4,742)	
Bayonne EC CTG2	58.0	(5.24)	52.76	260	(538)	(991)	(1,605)	(2,185)	(3,082)	(3,570)	(4,084)	(4,738)	
Bayonne EC CTG3	58.1	(5.25)	52.85	260	(538)	(991)	(1,605)	(2,185)	(3,082)	(3,570)	(4,084)	(4,738)	
Bayonne EC CTG4	61.1	(5.52)	55.58	257	(541)	(994)	(1,608)	(2,187)	(3,085)	(3,573)	(4,087)	(4,741)	
Bayonne EC CTG5	61.8	(5.59)	56.21	256	(542)	(995)	(1,608)	(2,188)	(3,085)	(3,574)	(4,088)	(4,741)	
Bayonne EC CTG6	61.4	(5.55)	55.85	257	(541)	(994)	(1,608)	(2,188)	(3,085)	(3,573)	(4,087)	(4,741)	
Bayonne EC CTG7	59.7	(5.40)	54.30	258	(540)	(993)	(1,606)	(2,186)	(3,083)	(3,572)	(4,086)	(4,740)	
Bayonne EC CTG8	60.0	(5.42)	54.58	258	(540)	(993)	(1,607)	(2,186)	(3,084)	(3,572)	(4,086)	(4,740)	

Statewide System Margin													
				Year	2026	2027	2028	2029	2030	2031	2032	2033	2034
Statewide System Margin Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) (1)				312	(486)	(938)	(1,552)	(2,132)	(3,029)	(3,518)	(4,032)	(4,685)	
Transmission Security Margin Considering Impact of Generator Outage (Retire, Mothball, IIFO)													
Unit Name	Summer DMNC (MW)	NERC 5-Year Class Average De-Rate (MW)	Summer De-Rated Capability (MW)										
Bayonne EC CTG9	61.3	(5.54)	55.76	257	(541)	(994)	(1,608)	(2,188)	(3,085)	(3,573)	(4,087)	(4,741)	
Bayonne EC CTG10	61.4	(5.55)	55.85	257	(541)	(994)	(1,608)	(2,188)	(3,085)	(3,573)	(4,087)	(4,741)	
Greenport IC 4, 5, & 6	5.6	(0.83)	4.77	308	(490)	(943)	(1,557)	(2,137)	(3,034)	(3,522)	(4,036)	(4,690)	
Greenport IC 4	1.0	(0.15)	0.85	312	(486)	(939)	(1,553)	(2,133)	(3,030)	(3,518)	(4,032)	(4,686)	
Greenport IC 5	1.5	(0.22)	1.28	311	(487)	(940)	(1,553)	(2,133)	(3,030)	(3,519)	(4,033)	(4,687)	
Greenport IC 6	3.1	(0.46)	2.64	310	(488)	(941)	(1,555)	(2,134)	(3,032)	(3,520)	(4,034)	(4,688)	
Freeport 1-2, 1-3, & 2-3	19.2	(2.21)	16.99	296	(503)	(955)	(1,569)	(2,149)	(3,046)	(3,535)	(4,049)	(4,702)	
Freeport 1-2	2.3	(0.34)	1.96	311	(488)	(940)	(1,554)	(2,134)	(3,031)	(3,520)	(4,034)	(4,687)	
Freeport 1-3	2.7	(0.40)	2.30	310	(488)	(941)	(1,554)	(2,134)	(3,031)	(3,520)	(4,034)	(4,688)	
Freeport 2-3	14.2	(1.47)	12.73	300	(498)	(951)	(1,565)	(2,144)	(3,042)	(3,530)	(4,044)	(4,698)	
Charles P Killer 09 through 14	13.5	(1.78)	11.72	301	(497)	(950)	(1,564)	(2,143)	(3,041)	(3,529)	(4,043)	(4,697)	
Charles P Keller 09	1.6	(0.21)	1.39	311	(487)	(940)	(1,553)	(2,133)	(3,030)	(3,519)	(4,033)	(4,687)	
Charles P Keller 10	1.6	(0.21)	1.39	311	(487)	(940)	(1,553)	(2,133)	(3,030)	(3,519)	(4,033)	(4,687)	
Charles P Keller 11	2.4	(0.32)	2.08	310	(488)	(941)	(1,554)	(2,134)	(3,031)	(3,520)	(4,034)	(4,687)	
Charles P Keller 12	2.5	(0.33)	2.17	310	(488)	(941)	(1,554)	(2,134)	(3,031)	(3,520)	(4,034)	(4,687)	
Charles P Keller 13	2.5	(0.33)	2.17	310	(488)	(941)	(1,554)	(2,134)	(3,031)	(3,520)	(4,034)	(4,687)	
Charles P Keller 14	2.9	(0.38)	2.52	310	(488)	(941)	(1,555)	(2,134)	(3,031)	(3,520)	(4,034)	(4,688)	
Wading River 1, 2, & 3	214.8	(22.17)	192.63	120	(678)	(1,131)	(1,745)	(2,324)	(3,222)	(3,710)	(4,224)	(4,878)	
Wading River 1	77.6	(8.01)	69.59	243	(555)	(1,008)	(1,622)	(2,201)	(3,099)	(3,587)	(4,101)	(4,755)	
Wading River 2	64.3	(6.64)	57.66	255	(543)	(996)	(1,610)	(2,189)	(3,087)	(3,575)	(4,089)	(4,743)	

Statewide System Margin													
				Year	2026	2027	2028	2029	2030	2031	2032	2033	2034
Statewide System Margin Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) (1)				312	(486)	(938)	(1,552)	(2,132)	(3,029)	(3,518)	(4,032)	(4,685)	
Transmission Security Margin Considering Impact of Generator Outage (Retire, Mothball, IIFO)													
Unit Name	Summer DMNC (MW)	NERC 5-Year Class Average De-Rate (MW)	Summer De-Rated Capability (MW)										
Wading River 3	72.9	(7.52)	65.38	247	(551)	(1,004)	(1,617)	(2,197)	(3,094)	(3,583)	(4,097)	(4,751)	
Barrett ST 01 & 02	380.5	(41.28)	339.22	(27)	(825)	(1,278)	(1,891)	(2,471)	(3,368)	(3,857)	(4,371)	(5,024)	
Barrett ST 01	192.0	(20.83)	171.17	141	(657)	(1,110)	(1,723)	(2,303)	(3,200)	(3,689)	(4,203)	(4,856)	
Barrett ST 02	188.5	(20.45)	168.05	144	(654)	(1,106)	(1,720)	(2,300)	(3,197)	(3,686)	(4,200)	(4,853)	
Barrett GT 01 through 12	246.6	(23.47)	223.13	89	(709)	(1,162)	(1,775)	(2,355)	(3,252)	(3,741)	(4,255)	(4,908)	
Barrett GT 01	13.7	(1.41)	12.29	300	(498)	(951)	(1,564)	(2,144)	(3,041)	(3,530)	(4,044)	(4,698)	
Barrett GT 02	13.6	(1.40)	12.20	300	(498)	(951)	(1,564)	(2,144)	(3,041)	(3,530)	(4,044)	(4,697)	
Barrett 03	12.2	(1.26)	10.94	302	(497)	(949)	(1,563)	(2,143)	(3,040)	(3,529)	(4,043)	(4,696)	
Barrett 04	14.5	(1.50)	13.00	299	(499)	(951)	(1,565)	(2,145)	(3,042)	(3,531)	(4,045)	(4,698)	
Barrett 05	12.0	(1.24)	10.76	302	(496)	(949)	(1,563)	(2,143)	(3,040)	(3,528)	(4,042)	(4,696)	
Barrett 06	12.9	(1.33)	11.57	301	(497)	(950)	(1,564)	(2,143)	(3,040)	(3,529)	(4,043)	(4,697)	
Barrett 08	12.8	(1.32)	11.48	301	(497)	(950)	(1,564)	(2,143)	(3,040)	(3,529)	(4,043)	(4,697)	
Barrett 09	38.6	(3.49)	35.11	277	(521)	(974)	(1,587)	(2,167)	(3,064)	(3,553)	(4,067)	(4,720)	
Barrett 10	39.2	(3.54)	35.66	277	(521)	(974)	(1,588)	(2,167)	(3,065)	(3,553)	(4,067)	(4,721)	
Barrett 11	38.2	(3.45)	34.75	278	(520)	(973)	(1,587)	(2,167)	(3,064)	(3,552)	(4,066)	(4,720)	
Barrett 12	38.9	(3.52)	35.38	277	(521)	(974)	(1,587)	(2,167)	(3,064)	(3,553)	(4,067)	(4,721)	
Northport 1, 2, 3, and 4	1,582.2	(171.67)	1,410.53	(1,098)	(1,896)	(2,349)	(2,963)	(3,542)	(4,439)	(4,928)	(5,442)	(6,096)	
Northport 1	399.0	(43.29)	355.71	(43)	(841)	(1,294)	(1,908)	(2,487)	(3,385)	(3,873)	(4,387)	(5,041)	
Northport 2	399.0	(43.29)	355.71	(43)	(841)	(1,294)	(1,908)	(2,487)	(3,385)	(3,873)	(4,387)	(5,041)	
Northport 3	386.2	(41.90)	344.30	(32)	(830)	(1,283)	(1,896)	(2,476)	(3,373)	(3,862)	(4,376)	(5,030)	

Statewide System Margin													
				Year	2026	2027	2028	2029	2030	2031	2032	2033	2034
Statewide System Margin Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) (1)				312	(486)	(938)	(1,552)	(2,132)	(3,029)	(3,518)	(4,032)	(4,685)	
Transmission Security Margin Considering Impact of Generator Outage (Retire, Mothball, IIFO)													
Unit Name	Summer DMNC (MW)	NERC 5-Year Class Average De-Rate (MW)	Summer De-Rated Capability (MW)										
Northport 4	398.0	(43.18)	354.82	(42)	(840)	(1,293)	(1,907)	(2,487)	(3,384)	(3,872)	(4,386)	(5,040)	
Port Jefferson GT 02 & 03	79.3	(8.18)	71.12	241	(557)	(1,010)	(1,623)	(2,203)	(3,100)	(3,589)	(4,103)	(4,756)	
Port Jefferson GT 02	39.1	(4.04)	35.06	277	(521)	(974)	(1,587)	(2,167)	(3,064)	(3,553)	(4,067)	(4,720)	
Port Jefferson GT 03	40.2	(4.15)	36.05	276	(522)	(974)	(1,588)	(2,168)	(3,065)	(3,554)	(4,068)	(4,721)	
Port Jefferson 3 & 4	380.0	(41.23)	338.77	(26)	(824)	(1,277)	(1,891)	(2,471)	(3,368)	(3,856)	(4,370)	(5,024)	
Port Jefferson 3	191.0	(20.72)	170.28	142	(656)	(1,109)	(1,722)	(2,302)	(3,199)	(3,688)	(4,202)	(4,856)	
Port Jefferson 4	189.0	(20.51)	168.49	144	(654)	(1,107)	(1,721)	(2,300)	(3,197)	(3,686)	(4,200)	(4,854)	
Hempstead (RR)	74.2	(8.05)	66.15	246	(552)	(1,005)	(1,618)	(2,198)	(3,095)	(3,584)	(4,098)	(4,751)	
Glenwood GT 02, 04, & 05	123.9	(12.79)	111.11	201	(597)	(1,050)	(1,663)	(2,243)	(3,140)	(3,629)	(4,143)	(4,796)	
Glenwood GT 02	40.3	(4.16)	36.14	276	(522)	(975)	(1,588)	(2,168)	(3,065)	(3,554)	(4,068)	(4,721)	
Glenwood GT 04	41.9	(4.32)	37.58	275	(523)	(976)	(1,590)	(2,169)	(3,067)	(3,555)	(4,069)	(4,723)	
Glenwood GT 05	41.7	(4.30)	37.40	275	(523)	(976)	(1,589)	(2,169)	(3,066)	(3,555)	(4,069)	(4,723)	
Holtsville 01 through 10	527.9	(47.72)	480.18	(168)	(966)	(1,419)	(2,032)	(2,612)	(3,509)	(3,998)	(4,512)	(5,165)	
Holtsville 01	54.2	(4.90)	49.30	263	(535)	(988)	(1,601)	(2,181)	(3,078)	(3,567)	(4,081)	(4,735)	
Holtsville 02	56.8	(5.13)	51.67	261	(537)	(990)	(1,604)	(2,183)	(3,081)	(3,569)	(4,083)	(4,737)	
Holtsville 03	51.2	(4.63)	46.57	266	(532)	(985)	(1,599)	(2,178)	(3,076)	(3,564)	(4,078)	(4,732)	
Holtsville 04	53.0	(4.79)	48.21	264	(534)	(987)	(1,600)	(2,180)	(3,077)	(3,566)	(4,080)	(4,733)	
Holtsville 05	52.6	(4.76)	47.84	265	(533)	(986)	(1,600)	(2,180)	(3,077)	(3,565)	(4,079)	(4,733)	
Holtsville 06	49.4	(4.47)	44.93	268	(531)	(983)	(1,597)	(2,177)	(3,074)	(3,563)	(4,077)	(4,730)	
Holtsville 07	54.0	(4.88)	49.12	263	(535)	(988)	(1,601)	(2,181)	(3,078)	(3,567)	(4,081)	(4,734)	

Statewide System Margin													
				Year	2026	2027	2028	2029	2030	2031	2032	2033	2034
Statewide System Margin Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) (1)				312	(486)	(938)	(1,552)	(2,132)	(3,029)	(3,518)	(4,032)	(4,685)	
Transmission Security Margin Considering Impact of Generator Outage (Retire, Mothball, IIFO)													
Unit Name	Summer DMNC (MW)	NERC 5-Year Class Average De-Rate (MW)	Summer De-Rated Capability (MW)										
Holtsville 08	49.9	(4.51)	45.39	267	(531)	(984)	(1,597)	(2,177)	(3,074)	(3,563)	(4,077)	(4,731)	
Holtsville 09	55.4	(5.01)	50.39	262	(536)	(989)	(1,602)	(2,182)	(3,079)	(3,568)	(4,082)	(4,736)	
Holtsville 10	51.4	(4.65)	46.75	266	(532)	(985)	(1,599)	(2,179)	(3,076)	(3,564)	(4,078)	(4,732)	
Shoreham GT 3 & 4	84.7	(8.74)	75.96	237	(562)	(1,014)	(1,628)	(2,208)	(3,105)	(3,594)	(4,108)	(4,761)	
Shoreham GT3	42.9	(4.43)	38.47	274	(524)	(977)	(1,591)	(2,170)	(3,067)	(3,556)	(4,070)	(4,724)	
Shoreham GT4	41.8	(4.31)	37.49	275	(523)	(976)	(1,590)	(2,169)	(3,066)	(3,555)	(4,069)	(4,723)	
East Hampton GT 01, 2, 3, & 4	23.8	(2.47)	21.33	291	(507)	(960)	(1,573)	(2,153)	(3,050)	(3,539)	(4,053)	(4,707)	
East Hampton GT 01	18.4	(1.66)	16.74	296	(502)	(955)	(1,569)	(2,149)	(3,046)	(3,534)	(4,048)	(4,702)	
East Hampton 2	1.8	(0.27)	1.53	311	(487)	(940)	(1,554)	(2,133)	(3,030)	(3,519)	(4,033)	(4,687)	
East Hampton 3	1.8	(0.27)	1.53	311	(487)	(940)	(1,554)	(2,133)	(3,030)	(3,519)	(4,033)	(4,687)	
East Hampton 4	1.8	(0.27)	1.53	311	(487)	(940)	(1,554)	(2,133)	(3,030)	(3,519)	(4,033)	(4,687)	
Southold 1	9.5	(0.98)	8.52	304	(494)	(947)	(1,561)	(2,140)	(3,037)	(3,526)	(4,040)	(4,694)	
S Hampton 1	8.1	(0.84)	7.26	305	(493)	(946)	(1,559)	(2,139)	(3,036)	(3,525)	(4,039)	(4,693)	
Freeport CT 1 & 2	88.8	(9.16)	79.64	233	(565)	(1,018)	(1,632)	(2,211)	(3,109)	(3,597)	(4,111)	(4,765)	
Freeport CT 1	45.8	(4.73)	41.07	271	(527)	(980)	(1,593)	(2,173)	(3,070)	(3,559)	(4,073)	(4,726)	
Freeport CT 2	43.0	(4.44)	38.56	274	(524)	(977)	(1,591)	(2,170)	(3,067)	(3,556)	(4,070)	(4,724)	
Flynn	139.5	(6.57)	132.93	180	(619)	(1,071)	(1,685)	(2,265)	(3,162)	(3,651)	(4,165)	(4,818)	
Greenport GT1	51.0	(4.61)	46.39	266	(532)	(985)	(1,598)	(2,178)	(3,075)	(3,564)	(4,078)	(4,732)	
Far Rockaway GT1 & GT2 ³	-	-	-	-	-	-	-	-	-	-	-	-	
Far Rockaway GT1 ³	-	-	-	-	-	-	-	-	-	-	-	-	

Statewide System Margin													
				Year	2026	2027	2028	2029	2030	2031	2032	2033	2034
Statewide System Margin Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) (1)				312	(486)	(938)	(1,552)	(2,132)	(3,029)	(3,518)	(4,032)	(4,685)	
Transmission Security Margin Considering Impact of Generator Outage (Retire, Mothball, IIFO)													
Unit Name	Summer DMNC (MW)	NERC 5-Year Class Average De-Rate (MW)	Summer De-Rated Capability (MW)										
Far Rockaway GT2 ³	-	-	-	-	-	-	-	-	-	-	-	-	
Bethpage	51.0	(2.40)	48.60	264	(534)	(987)	(1,601)	(2,180)	(3,078)	(3,566)	(4,080)	(4,734)	
Bethpage 3	75.7	(3.57)	72.13	240	(558)	(1,011)	(1,624)	(2,204)	(3,101)	(3,590)	(4,104)	(4,757)	
Bethpage GT4	43.7	(4.51)	39.19	273	(525)	(978)	(1,591)	(2,171)	(3,068)	(3,557)	(4,071)	(4,724)	
Stony Brook (BTM:NG)	0.0	0.00	0.00	312	(486)	(938)	(1,552)	(2,132)	(3,029)	(3,518)	(4,032)	(4,685)	
Brentwood	45.0	(4.64)	40.36	272	(526)	(979)	(1,592)	(2,172)	(3,069)	(3,558)	(4,072)	(4,726)	
Pilgrim GT1 & GT2	83.6	(8.63)	74.97	238	(561)	(1,013)	(1,627)	(2,207)	(3,104)	(3,593)	(4,107)	(4,760)	
Pilgrim GT1	41.3	(4.26)	37.04	275	(523)	(975)	(1,589)	(2,169)	(3,066)	(3,555)	(4,069)	(4,722)	
Pilgrim GT2	42.3	(4.37)	37.93	275	(524)	(976)	(1,590)	(2,170)	(3,067)	(3,556)	(4,070)	(4,723)	
Pinelawn Power 1 ³	-	-	-	-	-	-	-	-	-	-	-	-	
Caithness_CC_1	313.5	(14.77)	298.73	14	(784)	(1,237)	(1,851)	(2,430)	(3,328)	(3,816)	(4,330)	(4,984)	
Islip (RR)	8.0	(0.87)	7.13	305	(493)	(946)	(1,559)	(2,139)	(3,036)	(3,525)	(4,039)	(4,692)	
Babylon (RR)	15.7	(1.70)	14.00	298	(500)	(952)	(1,566)	(2,146)	(3,043)	(3,532)	(4,046)	(4,699)	
Huntington (RR)	24.8	(2.69)	22.11	290	(508)	(961)	(1,574)	(2,154)	(3,051)	(3,540)	(4,054)	(4,707)	

Notes

- Utilizes the Higher Policy Statewide System Margin for Summer Peak with Expected Weather.
- Utilizes the next largest generation contingency outage which is the loss of the Cricket Valley CC1, CC2, & CC3.
- Unit is modeled out of service beginning in 2026 in the baseline margin calculation.
- Unit is modeled out of service beginning in 2031 in the baseline margin calculation.

Figure 52: AOI - Lower Hudson Valley Transmission Security Margin

Lower Hudson Valley													
				Year	2026	2027	2028	2029	2030	2031	2032	2033	2034
Lower Hudson Valley Transmission Security Margin, Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) (1)				2,167	1,854	1,779	1,580	1,123	468	220	(57)	(354)	
Unit Name	Summer DMNC (MW)	NERC 5-Year Class Average De-Rate (MW)	Summer De-Rated Capability (MW)	Transmission Security Margin Considering Impact of Generator Outage (Retire, Mothball, IIFO)									
Bowline 1 & 2	1,136.3	(123.29)	1,013.01	1,154	841	766	567	110	(545)	(793)	(1,070)	(1,367)	
Bowline 1	565.1	(61.31)	503.79	1,664	1,351	1,275	1,076	619	(36)	(284)	(561)	(858)	
Bowline 2	571.2	(61.98)	509.22	1,658	1,345	1,269	1,071	614	(41)	(289)	(566)	(863)	
Danskammer 1, 2, 3, & 4	498.2	(54.05)	444.15	1,723	1,410	1,334	1,136	679	24	(224)	(501)	(798)	
Danskammer 1	68.8	(7.46)	61.34	2,106	1,793	1,717	1,518	1,062	407	159	(119)	(415)	
Danskammer 2	64.9	(7.04)	57.86	2,110	1,796	1,721	1,522	1,065	410	162	(115)	(412)	
Danskammer 3	140.2	(15.21)	124.99	2,042	1,729	1,654	1,455	998	343	95	(182)	(479)	
Danskammer 4	224.3	(24.34)	199.96	1,967	1,654	1,579	1,380	923	268	20	(257)	(554)	
Roseton 1 & 2	1,224.1	(132.81)	1,091.29	1,076	763	687	488	32	(623)	(871)	(1,149)	(1,445)	
Roseton 1	616.8	(66.92)	549.88	1,618	1,304	1,229	1,030	573	(82)	(330)	(607)	(904)	
Roseton 2	607.3	(65.89)	541.41	1,626	1,313	1,237	1,038	582	(74)	(321)	(599)	(895)	
Hillburn GT	34.7	(3.14)	31.56	2,136	1,823	1,747	1,548	1,091	436	188	(89)	(385)	
Shoemaker GT	32.3	(2.92)	29.38	2,138	1,825	1,749	1,550	1,094	438	191	(87)	(383)	
DCRRA	6.3	(0.68)	5.62	2,162	1,849	1,773	1,574	1,117	462	214	(63)	(359)	
CPV Valley CC1 & CC2	649.8	(30.61)	619.19	1,548	1,235	1,159	961	504	(151)	(399)	(676)	(973)	
CPV Valley CC1	320.4	(15.09)	305.31	1,862	1,549	1,473	1,274	818	163	(85)	(363)	(659)	
CPV Valley CC2	329.4	(15.51)	313.89	1,854	1,540	1,465	1,266	809	154	(94)	(371)	(668)	
Cricket Valley CC1, CC2, & CC3	1,021.6	(48.12)	973.48	1,194	881	805	606	149	(506)	(753)	(1,031)	(1,327)	
Cricket Valley CC1	349.7	(16.47)	333.23	1,834	1,521	1,445	1,247	790	135	(113)	(391)	(687)	

Lower Hudson Valley													
				Year	2026	2027	2028	2029	2030	2031	2032	2033	2034
Lower Hudson Valley Transmission Security Margin, Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) (1)				2,167	1,854	1,779	1,580	1,123	468	220	(57)	(354)	
Unit Name	Summer DMNC (MW)	NERC 5-Year Class Average De-Rate (MW)	Summer De-Rated Capability (MW)	Transmission Security Margin Considering Impact of Generator Outage (Retire, Mothball, IIFO)									
Cricket Valley CC2	345.5	(16.27)	329.23	1,838	1,525	1,449	1,251	794	139	(109)	(386)	(683)	
Cricket Valley CC3	326.4	(15.37)	311.03	1,856	1,543	1,468	1,269	812	157	(91)	(368)	(665)	
Wheelabrator Westchester	53.5	(5.80)	47.70	2,120	1,807	1,731	1,532	1,075	420	172	(105)	(402)	
Arthur Kill ST 2 & 3	883.6	(95.87)	787.73	1,380	1,067	991	792	335	(320)	(568)	(845)	(1,142)	
Arthur Kill ST 2	363.2	(39.41)	323.79	1,844	1,531	1,455	1,256	799	144	(104)	(381)	(678)	
Arthur Kill ST 3	520.4	(56.46)	463.94	1,703	1,390	1,315	1,116	659	4	(244)	(521)	(818)	
Brooklyn Navy Yard	249.2	(11.74)	237.46	1,930	1,617	1,541	1,342	885	230	(17)	(295)	(591)	
Astoria 2, 3, & 5	902.3	(97.90)	804.40	1,363	1,050	974	775	319	(337)	(584)	(862)	(1,158)	
Astoria 2	158.0	(17.14)	140.86	2,027	1,713	1,638	1,439	982	327	79	(198)	(495)	
Astoria 3	371.1	(40.26)	330.84	1,837	1,524	1,448	1,249	792	137	(111)	(388)	(685)	
Astoria 5	373.2	(40.49)	332.71	1,835	1,522	1,446	1,247	790	135	(113)	(390)	(687)	
Ravenswood ST 01, 02, & 03	1,724.8	(187.14)	1,537.66	630	317	241	42	(415)	(1,070)	(1,318)	(1,595)	(1,891)	
Ravenswood ST 01	364.5	(39.55)	324.95	1,842	1,529	1,454	1,255	798	143	(105)	(382)	(679)	
Ravenswood ST 02	375.2	(40.71)	334.49	1,833	1,520	1,444	1,245	788	133	(114)	(392)	(688)	
Ravenswood ST 03	985.1	(106.88)	878.22	1,289	976	900	702	245	(410)	(658)	(935)	(1,232)	
Ravenswood CC 04	222.2	(10.47)	211.73	1,956	1,643	1,567	1,368	911	256	8	(269)	(566)	
East River 1, 2, 6, & 7	630.7	(49.54)	581.16	1,586	1,273	1,197	999	542	(113)	(361)	(638)	(935)	
East River 1	153.2	(7.22)	145.98	2,021	1,708	1,633	1,434	977	322	74	(203)	(500)	
East River 2	154.5	(7.28)	147.22	2,020	1,707	1,631	1,433	976	321	73	(204)	(501)	
East River 6	141.5	(15.35)	126.15	2,041	1,728	1,652	1,454	997	342	94	(183)	(480)	

Lower Hudson Valley													
				Year	2026	2027	2028	2029	2030	2031	2032	2033	2034
Lower Hudson Valley Transmission Security Margin, Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) (1)				2,167	1,854	1,779	1,580	1,123	468	220	(57)	(354)	
Unit Name	Summer DMNC (MW)	NERC 5-Year Class Average De-Rate (MW)	Summer De- Rated Capability (MW)	Transmission Security Margin Considering Impact of Generator Outage (Retire, Mothball, IIFO)									
East River 7	181.5	(19.69)	161.81	2,006	1,693	1,617	1,418	961	306	58	(219)	(516)	
Linden Cogen	748.2	(35.24)	712.96	1,454	1,141	1,066	867	410	(245)	(493)	(770)	(1,067)	
KIAC_JFK (BTM:NG)	105.4	(4.96)	100.44	2,067	1,754	1,678	1,479	1,022	367	120	(158)	(454)	
Gowanus 5 & 6 ²	79.9	(8.25)	71.65	2,096	1,783	1,707	1,508	1,051	-	-	-	-	
Gowanus 5 ²	40.0	(4.13)	35.87	2,132	1,818	1,743	1,544	1,087	-	-	-	-	
Gowanus 6 ²	39.9	(4.12)	35.78	2,132	1,819	1,743	1,544	1,087	-	-	-	-	
Kent ²	46.0	(4.75)	41.25	2,126	1,813	1,737	1,539	1,082	-	-	-	-	
Pouch ²	44.7	(4.61)	40.09	2,127	1,814	1,739	1,540	1,083	-	-	-	-	
Hellgate 1 & 2 ²	79.5	(8.20)	71.30	2,096	1,783	1,707	1,508	1,052	-	-	-	-	
Hellgate 1 ²	39.9	(4.12)	35.78	2,132	1,819	1,743	1,544	1,087	-	-	-	-	
Hellgate 2 ²	39.6	(4.09)	35.51	2,132	1,819	1,743	1,544	1,087	-	-	-	-	
Harlem River 1 & 2 ²	79.5	(8.20)	71.30	2,096	1,783	1,707	1,508	1,052	-	-	-	-	
Harlem River 1 ²	39.9	(4.12)	35.78	2,132	1,819	1,743	1,544	1,087	-	-	-	-	
Harlem River 2 ²	39.6	(4.09)	35.51	2,132	1,819	1,743	1,544	1,087	-	-	-	-	
Vernon Blvd 2 & 3 ²	79.9	(8.25)	71.65	2,096	1,783	1,707	1,508	1,051	-	-	-	-	
Vernon Blvd 2 ²	40.0	(4.13)	35.87	2,132	1,818	1,743	1,544	1,087	-	-	-	-	
Vernon Blvd 3 ²	39.9	(4.12)	35.78	2,132	1,819	1,743	1,544	1,087	-	-	-	-	
Astoria CC 1 & 2	474.0	(22.33)	451.67	1,716	1,403	1,327	1,128	671	16	(232)	(509)	(805)	
Astoria CC 1	237.0	(11.16)	225.84	1,942	1,629	1,553	1,354	897	242	(6)	(283)	(580)	
Astoria CC 2	237.0	(11.16)	225.84	1,942	1,629	1,553	1,354	897	242	(6)	(283)	(580)	

Lower Hudson Valley													
				Year	2026	2027	2028	2029	2030	2031	2032	2033	2034
Lower Hudson Valley Transmission Security Margin, Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) (1)				2,167	1,854	1,779	1,580	1,123	468	220	(57)	(354)	
Transmission Security Margin Considering Impact of Generator Outage (Retire, Mothball, IIFO)													
Unit Name	Summer DMNC (MW)	NERC 5-Year Class Average De-Rate (MW)	Summer De- Rated Capability (MW)	2026	2027	2028	2029	2030	2031	2032	2033	2034	
Astoria East Energy CC1 & CC2	582.8	(27.45)	555.35	1,612	1,299	1,223	1,024	568	(87)	(335)	(613)	(909)	
Astoria East Energy - CC1	291.4	(13.72)	277.68	1,890	1,577	1,501	1,302	845	190	(58)	(335)	(631)	
Astoria East Energy - CC2	291.4	(13.72)	277.68	1,890	1,577	1,501	1,302	845	190	(58)	(335)	(631)	
Astoria Energy 2 - CC3 & CC4	570.3	(26.86)	543.44	1,624	1,311	1,235	1,036	579	(76)	(323)	(601)	(897)	
Astoria Energy 2 - CC3	285.0	(13.42)	271.58	1,896	1,583	1,507	1,308	851	196	(52)	(329)	(625)	
Astoria Energy 2 - CC4	285.3	(13.44)	271.86	1,896	1,582	1,507	1,308	851	196	(52)	(329)	(626)	
Bayonne EC CT G1 through G10	604.8	(54.67)	550.13	1,617	1,304	1,228	1,030	573	(82)	(330)	(607)	(904)	
Bayonne EC CTG1	62.0	(5.60)	56.40	2,111	1,798	1,722	1,523	1,067	411	164	(114)	(410)	
Bayonne EC CTG2	58.0	(5.24)	52.76	2,115	1,802	1,726	1,527	1,070	415	167	(110)	(407)	
Bayonne EC CTG3	58.1	(5.25)	52.85	2,115	1,802	1,726	1,527	1,070	415	167	(110)	(407)	
Bayonne EC CTG4	61.1	(5.52)	55.58	2,112	1,799	1,723	1,524	1,067	412	164	(113)	(409)	
Bayonne EC CTG5	61.8	(5.59)	56.21	2,111	1,798	1,722	1,524	1,067	412	164	(113)	(410)	
Bayonne EC CTG6	61.4	(5.55)	55.85	2,112	1,798	1,723	1,524	1,067	412	164	(113)	(410)	
Bayonne EC CTG7	59.7	(5.40)	54.30	2,113	1,800	1,724	1,525	1,069	414	166	(112)	(408)	
Bayonne EC CTG8	60.0	(5.42)	54.58	2,113	1,800	1,724	1,525	1,068	413	165	(112)	(408)	
Bayonne EC CTG9	61.3	(5.54)	55.76	2,112	1,799	1,723	1,524	1,067	412	164	(113)	(410)	
Bayonne EC CTG10	61.4	(5.55)	55.85	2,112	1,798	1,723	1,524	1,067	412	164	(113)	(410)	

Notes

- Utilizes the Higher Policy Transmission Security Margin for Summer Peak with Expected Weather.
- Unit is modeled out of service beginning in 2031 in the baseline margin calculation.

Figure 53: AOI - New York City Transmission Security Margin

New York City													
				Year	2026	2027	2028	2029	2030	2031	2032	2033	2034
New York City Transmission Security Margin, Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) (1)				260	222	92	(68)	(148)	(656)	(806)	(966)	(1,136)	
Transmission Security Margin Considering Impact of Generator Outage (Retire, Mothball, IIFO)													
Unit Name	Summer DMNC (MW)	NERC 5-Year Class Average De- Rate (MW)	Summer De-Rated Capability (MW)										
Arthur Kill ST 2 & 3	883.6	(95.87)	787.73	(528)	(566)	(696)	(856)	(936)	(1,444)	(1,594)	(1,754)	(1,924)	
Arthur Kill ST 2	363.2	(39.41)	323.79	(64)	(102)	(232)	(392)	(472)	(980)	(1,130)	(1,290)	(1,460)	
Arthur Kill ST 3	520.4	(56.46)	463.94	(204)	(242)	(372)	(532)	(612)	(1,120)	(1,270)	(1,430)	(1,600)	
Brooklyn Navy Yard	249.2	(11.74)	237.46	23	(16)	(146)	(306)	(386)	(893)	(1,043)	(1,203)	(1,373)	
Astoria 2, 3, & 5	902.3	(97.90)	804.40	(544)	(583)	(713)	(873)	(953)	(1,460)	(1,610)	(1,770)	(1,940)	
Astoria 2	158.0	(17.14)	140.86	119	81	(49)	(209)	(289)	(797)	(947)	(1,107)	(1,277)	
Astoria 3	371.1	(40.26)	330.84	(71)	(109)	(239)	(399)	(479)	(987)	(1,137)	(1,297)	(1,467)	
Astoria 5	373.2	(40.49)	332.71	(73)	(111)	(241)	(401)	(481)	(989)	(1,139)	(1,299)	(1,469)	
Ravenswood ST 01, 02, & 03 ²	1,724.8	(187.14)	1,537.66	(542)	(1,131)	(1,261)	(1,421)	(1,501)	(2,008)	(2,158)	(2,318)	(2,488)	
Ravenswood ST 01	364.5	(39.55)	324.95	(65)	(103)	(233)	(393)	(473)	(981)	(1,131)	(1,291)	(1,461)	
Ravenswood ST 02	375.2	(40.71)	334.49	(74)	(113)	(243)	(403)	(483)	(990)	(1,140)	(1,300)	(1,470)	
Ravenswood ST 03 (2)	985.1	(106.88)	878.22	117	(471)	(271)	(761)	(841)	(1,349)	(1,499)	(1,659)	(1,829)	
Ravenswood CC 04	222.2	(10.47)	211.73	48	10	(120)	(280)	(360)	(868)	(1,018)	(1,178)	(1,348)	
East River 1, 2, 6, & 7	630.7	(49.54)	581.16	(321)	(359)	(489)	(649)	(729)	(1,237)	(1,387)	(1,547)	(1,717)	
East River 1	153.2	(7.22)	145.98	114	76	(54)	(214)	(294)	(802)	(952)	(1,112)	(1,282)	
East River 2	154.5	(7.28)	147.22	113	74	(56)	(216)	(296)	(803)	(953)	(1,113)	(1,283)	
East River 6	141.5	(15.35)	126.15	134	96	(34)	(194)	(274)	(782)	(932)	(1,092)	(1,262)	
East River 7	181.5	(19.69)	161.81	98	60	(70)	(230)	(310)	(818)	(968)	(1,128)	(1,298)	
Linden Cogen	748.2	(35.24)	712.96	(453)	(491)	(621)	(781)	(861)	(1,369)	(1,519)	(1,679)	(1,849)	
KIAC_JFK (BTM:NG)	105.4	(4.96)	100.44	160	121	(9)	(169)	(249)	(756)	(906)	(1,066)	(1,236)	

New York City												
Year				2026	2027	2028	2029	2030	2031	2032	2033	2034
New York City Transmission Security Margin, Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) (1)				260	222	92	(68)	(148)	(656)	(806)	(966)	(1,136)
Unit Name	Summer DMNC (MW)	NERC 5-Year Class Average De- Rate (MW)	Summer De-Rated Capability (MW)	Transmission Security Margin Considering Impact of Generator Outage (Retire, Mothball, IIFO)								
Gowanus 5 & 6 ³	79.9	(8.25)	71.65	188	150	20	(140)	(220)	-	-	-	-
Gowanus 5 ³	40.0	(4.13)	35.87	224	186	56	(104)	(184)	-	-	-	-
Gowanus 6 ³	39.9	(4.12)	35.78	224	186	56	(104)	(184)	-	-	-	-
Kent ³	46.0	(4.75)	41.25	219	180	50	(110)	(190)	-	-	-	-
Pouch ³	44.7	(4.61)	40.09	220	182	52	(108)	(188)	-	-	-	-
Hellgate 1 & 2 ³	79.5	(8.20)	71.30	189	150	20	(140)	(220)	-	-	-	-
Hellgate 1 ³	39.9	(4.12)	35.78	224	186	56	(104)	(184)	-	-	-	-
Hellgate 2 ³	39.6	(4.09)	35.51	225	186	56	(104)	(184)	-	-	-	-
Harlem River 1 & 2 ³	79.5	(8.20)	71.30	189	150	20	(140)	(220)	-	-	-	-
Harlem River 1 ³	39.9	(4.12)	35.78	224	186	56	(104)	(184)	-	-	-	-
Harlem River 2 ³	39.6	(4.09)	35.51	225	186	56	(104)	(184)	-	-	-	-
Vernon Blvd 2 & 3 ³	79.9	(8.25)	71.65	188	150	20	(140)	(220)	-	-	-	-
Vernon Blvd 2 ³	40.0	(4.13)	35.87	224	186	56	(104)	(184)	-	-	-	-
Vernon Blvd 3 ³	39.9	(4.12)	35.78	224	186	56	(104)	(184)	-	-	-	-
Astoria CC 1 & 2	474.0	(22.33)	451.67	(192)	(230)	(360)	(520)	(600)	(1,107)	(1,257)	(1,417)	(1,587)
Astoria CC 1	237.0	(11.16)	225.84	34	(4)	(134)	(294)	(374)	(882)	(1,032)	(1,192)	(1,362)
Astoria CC 2	237.0	(11.16)	225.84	34	(4)	(134)	(294)	(374)	(882)	(1,032)	(1,192)	(1,362)
Astoria East Energy CC1 & CC2	582.8	(27.45)	555.35	(295)	(334)	(464)	(624)	(704)	(1,211)	(1,361)	(1,521)	(1,691)
Astoria East Energy - CC1	291.4	(13.72)	277.68	(18)	(56)	(186)	(346)	(426)	(933)	(1,083)	(1,243)	(1,413)
Astoria East Energy - CC2	291.4	(13.72)	277.68	(18)	(56)	(186)	(346)	(426)	(933)	(1,083)	(1,243)	(1,413)

New York City												
Year				2026	2027	2028	2029	2030	2031	2032	2033	2034
New York City Transmission Security Margin, Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) (1)				260	222	92	(68)	(148)	(656)	(806)	(966)	(1,136)
Unit Name	Summer DMNC (MW)	NERC 5-Year Class Average De- Rate (MW)	Summer De-Rated Capability (MW)	Transmission Security Margin Considering Impact of Generator Outage (Retire, Mothball, IIFO)								
Astoria Energy 2 - CC3 & CC4	570.3	(26.86)	543.44	(283)	(322)	(452)	(612)	(692)	(1,199)	(1,349)	(1,509)	(1,679)
Astoria Energy 2 - CC3	285.0	(13.42)	271.58	(11)	(50)	(180)	(340)	(420)	(927)	(1,077)	(1,237)	(1,407)
Astoria Energy 2 - CC4	285.3	(13.44)	271.86	(12)	(50)	(180)	(340)	(420)	(928)	(1,078)	(1,238)	(1,408)
Bayonne EC CT G1 through G10	604.8	(54.67)	550.13	(290)	(328)	(458)	(618)	(698)	(1,206)	(1,356)	(1,516)	(1,686)
Bayonne EC CTG1	62.0	(5.60)	56.40	204	165	35	(125)	(205)	(712)	(862)	(1,022)	(1,192)
Bayonne EC CTG2	58.0	(5.24)	52.76	207	169	39	(121)	(201)	(709)	(859)	(1,019)	(1,189)
Bayonne EC CTG3	58.1	(5.25)	52.85	207	169	39	(121)	(201)	(709)	(859)	(1,019)	(1,189)
Bayonne EC CTG4	61.1	(5.52)	55.58	205	166	36	(124)	(204)	(711)	(861)	(1,021)	(1,191)
Bayonne EC CTG5	61.8	(5.59)	56.21	204	165	35	(125)	(205)	(712)	(862)	(1,022)	(1,192)
Bayonne EC CTG6	61.4	(5.55)	55.85	204	166	36	(124)	(204)	(712)	(862)	(1,022)	(1,192)
Bayonne EC CTG7	59.7	(5.40)	54.30	206	167	37	(123)	(203)	(710)	(860)	(1,020)	(1,190)
Bayonne EC CTG8	60.0	(5.42)	54.58	206	167	37	(123)	(203)	(710)	(860)	(1,020)	(1,190)
Bayonne EC CTG9	61.3	(5.54)	55.76	204	166	36	(124)	(204)	(712)	(862)	(1,022)	(1,192)
Bayonne EC CTG10	61.4	(5.55)	55.85	204	166	36	(124)	(204)	(712)	(862)	(1,022)	(1,192)

Notes

- Utilizes the Higher Policy Transmission Security Margin for Summer Peak with Expected Weather.
- In all years the most limiting contingency includes the loss of Ravenswood 3. For this calculation the margin based on the loss of two transmission elements is utilized. Other combinations with loss of generation may be more limiting.
- Unit is modeled out of service beginning in 2031 in the baseline margin calculation.

Figure 54: AOI - Long Island Transmission Security Margin

Long Island													
				Year	2026	2027	2028	2029	2030	2031	2032	2033	2034
Long Island Transmission Security Margin, Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) (1)				318	22	119	101	1,996	1,880	1,811	1,752	1,657	
Unit Name	Summer DMNC (MW)	NERC 5-Year Class Average De-Rate (MW)	Summer De-Rated Capability (MW)	Transmission Security Margin Considering Impact of Generator Outage (Retire, Mothball, IIFO)									
Greenport IC 4, 5, & 6	5.6	(0.83)	4.77	313	17	114	96	1,992	1,875	1,807	1,748	1,652	
Greenport IC 4	1.0	(0.15)	0.85	317	21	118	100	1,996	1,879	1,810	1,751	1,656	
Greenport IC 5	1.5	(0.22)	1.28	317	20	117	100	1,995	1,879	1,810	1,751	1,656	
Greenport IC 6	3.1	(0.46)	2.64	316	19	116	98	1,994	1,877	1,809	1,750	1,654	
Freeport 1-2, 1-3, & 2-3	19.2	(2.21)	16.99	301	5	102	84	1,979	1,863	1,794	1,735	1,640	
Freeport 1-2	2.3	(0.34)	1.96	316	20	117	99	1,994	1,878	1,809	1,750	1,655	
Freeport 1-3	2.7	(0.40)	2.30	316	19	116	99	1,994	1,878	1,809	1,750	1,654	
Freeport 2-3	14.2	(1.47)	12.73	306	9	106	88	1,984	1,867	1,799	1,740	1,644	
Charles P Keller 09 through 14	13.5	(1.78)	11.72	307	10	107	89	1,985	1,868	1,800	1,741	1,645	
Charles P Keller 09	1.6	(0.21)	1.39	317	20	117	100	1,995	1,878	1,810	1,751	1,655	
Charles P Keller 10	1.6	(0.21)	1.39	317	20	117	100	1,995	1,878	1,810	1,751	1,655	
Charles P Keller 11	2.4	(0.32)	2.08	316	20	116	99	1,994	1,878	1,809	1,750	1,655	
Charles P Keller 12	2.5	(0.33)	2.17	316	19	116	99	1,994	1,878	1,809	1,750	1,655	
Charles P Keller 13	2.5	(0.33)	2.17	316	19	116	99	1,994	1,878	1,809	1,750	1,655	
Charles P Keller 14	2.9	(0.38)	2.52	316	19	116	98	1,994	1,877	1,809	1,750	1,654	
Wading River 1, 2, & 3	214.8	(22.17)	192.63	126	(171)	(74)	(92)	1,804	1,687	1,619	1,560	1,464	
Wading River 1	77.6	(8.01)	69.59	249	(48)	49	31	1,927	1,810	1,742	1,683	1,587	
Wading River 2	64.3	(6.64)	57.66	261	(36)	61	43	1,939	1,822	1,754	1,695	1,599	
Wading River 3	72.9	(7.52)	65.38	253	(44)	53	36	1,931	1,814	1,746	1,687	1,591	
Barrett ST 01 & 02	380.5	(41.28)	339.22	(21)	(318)	(221)	(238)	1,657	1,541	1,472	1,413	1,318	

Long Island													
				Year	2026	2027	2028	2029	2030	2031	2032	2033	2034
Long Island Transmission Security Margin, Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) (1)				318	22	119	101	1,996	1,880	1,811	1,752	1,657	
Unit Name	Summer DMNC (MW)	NERC 5-Year Class Average De-Rate (MW)	Summer De-Rated Capability (MW)	Transmission Security Margin Considering Impact of Generator Outage (Retire, Mothball, IIFO)									
Barrett ST 01	192.0	(20.83)	171.17	147	(150)	(53)	(70)	1,825	1,709	1,640	1,581	1,486	
Barrett ST 02	188.5	(20.45)	168.05	150	(146)	(50)	(67)	1,828	1,712	1,643	1,584	1,489	
Barrett GT 01 through 12	246.6	(23.47)	223.13	95	(201)	(105)	(122)	1,773	1,657	1,588	1,529	1,434	
Barrett GT 01	13.7	(1.41)	12.29	306	9	106	89	1,984	1,868	1,799	1,740	1,644	
Barrett GT 02	13.6	(1.40)	12.20	306	9	106	89	1,984	1,868	1,799	1,740	1,645	
Barrett 03	12.2	(1.26)	10.94	307	11	108	90	1,985	1,869	1,800	1,741	1,646	
Barrett 04	14.5	(1.50)	13.00	305	9	106	88	1,983	1,867	1,798	1,739	1,644	
Barrett 05	12.0	(1.24)	10.76	307	11	108	90	1,986	1,869	1,801	1,742	1,646	
Barrett 06	12.9	(1.33)	11.57	307	10	107	89	1,985	1,868	1,800	1,741	1,645	
Barrett 08	12.8	(1.32)	11.48	307	10	107	89	1,985	1,868	1,800	1,741	1,645	
Barrett 09	38.6	(3.49)	35.11	283	(13)	83	66	1,961	1,845	1,776	1,717	1,622	
Barrett 10	39.2	(3.54)	35.66	283	(14)	83	65	1,961	1,844	1,776	1,717	1,621	
Barrett 11	38.2	(3.45)	34.75	283	(13)	84	66	1,962	1,845	1,777	1,718	1,622	
Barrett 12	38.9	(3.52)	35.38	283	(14)	83	66	1,961	1,844	1,776	1,717	1,621	
Northport 1, 2, 3, and 4	1,582.2	(171.67)	1,410.53	(1,092)	(1,389)	(1,292)	(1,310)	586	469	401	342	246	
Northport 1	399.0	(43.29)	355.71	(37)	(334)	(237)	(255)	1,641	1,524	1,456	1,397	1,301	
Northport 2	399.0	(43.29)	355.71	(37)	(334)	(237)	(255)	1,641	1,524	1,456	1,397	1,301	
Northport 3	386.2	(41.90)	344.30	(26)	(323)	(226)	(243)	1,652	1,536	1,467	1,408	1,312	
Northport 4	398.0	(43.18)	354.82	(37)	(333)	(236)	(254)	1,642	1,525	1,457	1,398	1,302	

Long Island													
				Year	2026	2027	2028	2029	2030	2031	2032	2033	2034
Long Island Transmission Security Margin, Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) (1)				318	22	119	101	1,996	1,880	1,811	1,752	1,657	
Unit Name	Summer DMNC (MW)	NERC 5-Year Class Average De-Rate (MW)	Summer De-Rated Capability (MW)	Transmission Security Margin Considering Impact of Generator Outage (Retire, Mothball, IIFO)									
Port Jefferson GT 02 & 03	79.3	(8.18)	71.12	247	(49)	47	30	1,925	1,809	1,740	1,681	1,586	
Port Jefferson GT 02	39.1	(4.04)	35.06	283	(13)	83	66	1,961	1,845	1,776	1,717	1,622	
Port Jefferson GT 03	40.2	(4.15)	36.05	282	(14)	82	65	1,960	1,844	1,775	1,716	1,621	
Port Jefferson 3 & 4	380.0	(41.23)	338.77	(21)	(317)	(220)	(238)	1,658	1,541	1,473	1,414	1,318	
Port Jefferson 3	191.0	(20.72)	170.28	148	(149)	(52)	(69)	1,826	1,710	1,641	1,582	1,487	
Port Jefferson 4	189.0	(20.51)	168.49	150	(147)	(50)	(68)	1,828	1,711	1,643	1,584	1,488	
Hempstead (RR)	74.2	(8.05)	66.15	252	(45)	52	35	1,930	1,814	1,745	1,686	1,591	
Glenwood GT 02, 04, & 05	123.9	(12.79)	111.11	207	(89)	7	(10)	1,885	1,769	1,700	1,641	1,546	
Glenwood GT 02	40.3	(4.16)	36.14	282	(14)	82	65	1,960	1,844	1,775	1,716	1,621	
Glenwood GT 04	41.9	(4.32)	37.58	281	(16)	81	63	1,959	1,842	1,774	1,715	1,619	
Glenwood GT 05	41.7	(4.30)	37.40	281	(16)	81	64	1,959	1,842	1,774	1,715	1,619	
Holtsville 01 through 10	527.9	(47.72)	480.18	(162)	(459)	(362)	(379)	1,516	1,400	1,331	1,272	1,177	
Holtsville 01	54.2	(4.90)	49.30	269	(28)	69	52	1,947	1,831	1,762	1,703	1,607	
Holtsville 02	56.8	(5.13)	51.67	267	(30)	67	49	1,945	1,828	1,760	1,701	1,605	
Holtsville 03	51.2	(4.63)	46.57	272	(25)	72	54	1,950	1,833	1,765	1,706	1,610	
Holtsville 04	53.0	(4.79)	48.21	270	(27)	70	53	1,948	1,832	1,763	1,704	1,609	
Holtsville 05	52.6	(4.76)	47.84	270	(26)	71	53	1,949	1,832	1,763	1,704	1,609	
Holtsville 06	49.4	(4.47)	44.93	273	(23)	74	56	1,951	1,835	1,766	1,707	1,612	
Holtsville 07	54.0	(4.88)	49.12	269	(27)	69	52	1,947	1,831	1,762	1,703	1,608	

Long Island													
				Year	2026	2027	2028	2029	2030	2031	2032	2033	2034
Long Island Transmission Security Margin, Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) (1)				318	22	119	101	1,996	1,880	1,811	1,752	1,657	
Unit Name	Summer DMNC (MW)	NERC 5-Year Class Average De-Rate (MW)	Summer De-Rated Capability (MW)	Transmission Security Margin Considering Impact of Generator Outage (Retire, Mothball, IIFO)									
Holtsville 08	49.9	(4.51)	45.39	273	(24)	73	56	1,951	1,834	1,766	1,707	1,611	
Holtsville 09	55.4	(5.01)	50.39	268	(29)	68	51	1,946	1,829	1,761	1,702	1,606	
Holtsville 10	51.4	(4.65)	46.75	271	(25)	72	54	1,950	1,833	1,765	1,706	1,610	
Shoreham GT 3 & 4	84.7	(8.74)	75.96	242	(54)	43	25	1,920	1,804	1,735	1,676	1,581	
Shoreham GT3	42.9	(4.43)	38.47	280	(17)	80	62	1,958	1,841	1,773	1,714	1,618	
Shoreham GT4	41.8	(4.31)	37.49	281	(16)	81	63	1,959	1,842	1,774	1,715	1,619	
East Hampton GT 01, 2, 3, & 4	23.8	(2.47)	21.33	297	0	97	80	1,975	1,859	1,790	1,731	1,635	
East Hampton GT 01	18.4	(1.66)	16.74	301	5	102	84	1,980	1,863	1,795	1,736	1,640	
East Hampton 2	1.8	(0.27)	1.53	317	20	117	99	1,995	1,878	1,810	1,751	1,655	
East Hampton 3	1.8	(0.27)	1.53	317	20	117	99	1,995	1,878	1,810	1,751	1,655	
East Hampton 4	1.8	(0.27)	1.53	317	20	117	99	1,995	1,878	1,810	1,751	1,655	
Southold 1	9.5	(0.98)	8.52	310	13	110	92	1,988	1,871	1,803	1,744	1,648	
S Hampton 1	8.1	(0.84)	7.26	311	14	111	94	1,989	1,873	1,804	1,745	1,650	
Freeport CT 1 & 2	88.8	(9.16)	79.64	239	(58)	39	21	1,917	1,800	1,732	1,673	1,577	
Freeport CT 1	45.8	(4.73)	41.07	277	(19)	77	60	1,955	1,839	1,770	1,711	1,616	
Freeport CT 2	43.0	(4.44)	38.56	280	(17)	80	62	1,958	1,841	1,773	1,714	1,618	
Flynn	139.5	(6.57)	132.93	185	(111)	(14)	(32)	1,863	1,747	1,678	1,619	1,524	
Greenport GT1	51.0	(4.61)	46.39	272	(25)	72	55	1,950	1,833	1,765	1,706	1,610	
Far Rockaway GT1 & GT2 ²	-	-	-	-	-	-	-	-	-	-	-	-	
Far Rockaway GT1 ²	-	-	-	-	-	-	-	-	-	-	-	-	
Far Rockaway GT2 ²	-	-	-	-	-	-	-	-	-	-	-	-	

Long Island													
				Year	2026	2027	2028	2029	2030	2031	2032	2033	2034
Long Island Transmission Security Margin, Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) (1)				318	22	119	101	1,996	1,880	1,811	1,752	1,657	
Unit Name	Summer DMNC (MW)	NERC 5-Year Class Average De-Rate (MW)	Summer De-Rated Capability (MW)	Transmission Security Margin Considering Impact of Generator Outage (Retire, Mothball, IIFO)									
Bethpage	51.0	(2.40)	48.60	270	(27)	70	52	1,948	1,831	1,763	1,704	1,608	
Bethpage 3	75.7	(3.57)	72.13	246	(50)	46	29	1,924	1,808	1,739	1,680	1,585	
Bethpage GT4	43.7	(4.51)	39.19	279	(18)	79	62	1,957	1,841	1,772	1,713	1,618	
Stony Brook (BTM:NG)	0.0	0.00	0.00	318	22	119	101	1,996	1,880	1,811	1,752	1,657	
Brentwood	45.0	(4.64)	40.36	278	(19)	78	61	1,956	1,840	1,771	1,712	1,616	
Pilgrim GT1 & GT2	83.6	(8.63)	74.97	243	(53)	44	26	1,921	1,805	1,736	1,677	1,582	
Pilgrim GT1	41.3	(4.26)	37.04	281	(15)	81	64	1,959	1,843	1,774	1,715	1,620	
Pilgrim GT2	42.3	(4.37)	37.93	280	(16)	81	63	1,958	1,842	1,773	1,714	1,619	
Pinelawn Power 1 ²	-	-	-	-	-	-	-	-	-	-	-	-	
Caithness_CC_1	313.5	(14.77)	298.73	20	(277)	(180)	(198)	1,698	1,581	1,513	1,454	1,358	
Islip (RR)	8.0	(0.87)	7.13	311	15	111	94	1,989	1,873	1,804	1,745	1,650	
Babylon (RR)	15.7	(1.70)	14.00	304	8	105	87	1,982	1,866	1,797	1,738	1,643	
Huntington (RR)	24.8	(2.69)	22.11	296	(0)	96	79	1,974	1,858	1,789	1,730	1,635	

Notes

- Utilizes the Higher Policy Transmission Security Margin for Summer Peak with Expected Weather.
- Unit is modeled out of service beginning in 2026 in the baseline margin calculation.