

## **Appendices**

# DRAFT 2023-2032 Comprehensive Reliability Plan

A Report from the New York Independent System Operator

Draft for October 2, 2023 ESPWG/TPAS



## **Table of Contents**

| APPENDIX A – GLOSSARY                                                                                                                                                                                                         | 8        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| APPENDIX B – PLANNED PROJECTS AND ASSUMPTIONS                                                                                                                                                                                 | 16       |
| APPENDIX C – TRANSMISSION SECURITY MARGINS (TIPPING POINTS)                                                                                                                                                                   | 21       |
| Introduction 21                                                                                                                                                                                                               |          |
| New York Control Area Statewide System Margins<br>Lower Hudson Valley (Zones G-J) Transmission Security Margins<br>New York City (Zone J) Transmission Security Margins<br>Long Island (Zone K) Transmission Security Margins | 52<br>74 |
| Loss of Gas Fuel Supply Extreme System Condition Impact to Transmission Security Margins126                                                                                                                                   |          |
| Demand Shape Details for Transmission Security Margins146                                                                                                                                                                     |          |
| APPENDIX D - RELIABILITY COMPLIANCE OBLIGATIONS AND ACTIVITIES                                                                                                                                                                | 165      |
| NPCC/NYSRC Area Transmission Reviews                                                                                                                                                                                          |          |
| NERC Planning Assessments (TPL-001)                                                                                                                                                                                           |          |
| Resource Adequacy Compliance Efforts171                                                                                                                                                                                       |          |
| APPENDIX E - BULK POWER TRANSMISSION FACILITIES                                                                                                                                                                               | 172      |



## **Table of Figures**

| Figure 3: List of Planned Additional Generating Resources (Nameplate MW)16                                             |
|------------------------------------------------------------------------------------------------------------------------|
| Figure 4: Status Changes Due to DEC Peaker Rule19                                                                      |
| Figure 5: Total MW Nameplate of Proposed Projects not yet Included in the Reliability Planning Models20                |
| Figure 6: Statewide System Margin (Summer Peak - Expected Weather, Normal Transfer Criteria)                           |
| Figure 7: Statewide System Margin (Hourly) (Summer Peak - Expected Weather, Normal Transfer Criteria)                  |
| Figure 8: Statewide System Margin Hourly Curve (Summer Peak - Expected Weather, Normal Transfer Criteria)              |
| Figure 9: Statewide System Margin (1-in-10-Year Heatwave, Emergency Transfer Criteria)40                               |
| Figure 10: Statewide System Margin (Hourly) (1-in-10-Year Heatwave, Emergency Transfer Criteria)                       |
| Figure 11: Statewide System Margin Hourly Curve (1-in-10-Year Heatwave, Emergency Transfer Criteria)                   |
| Figure 12: Statewide System Margin (1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria)                       |
| Figure 13: Statewide System Margin (Hourly) (1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria)              |
| Figure 14: Statewide System Margin Hourly Curve (1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria)45        |
| Figure 15: Statewide System Margin (Winter Peak - Expected Weather, Normal Transfer Criteria)                          |
| Figure 16: Statewide System Margin (1-in-10-Year Cold Snap, Emergency Transfer Criteria)                               |
| Figure 17: Statewide System Margin (1-in-100-Year Extreme Cold Snap, Emergency Transfer Criteria)                      |
| Figure 18: Summary of Statewide System Margin – Summer                                                                 |
| Figure 19: Summary of Statewide System Margin – Winter50                                                               |
| Figure 20: Statewide System Margin (Expected Weather, With and Without CHPE)51                                         |
| Figure 21: Lower Hudson Valley Transmission Security Margin (Summer Baseline Peak Forecast – Expected Weather)52       |
| Figure 22: Lower Hudson Valley Transmission Security Margin (Summer Peak – Expected Weather, Normal Transfer Criteria) |
|                                                                                                                        |
| Figure 23: Lower Hudson Valley Transmission Security Margin (Hourly) (Summer Peak – Expected Weather, Normal Transfer  |
| Criteria)60                                                                                                            |
| Figure 24: Lower Hudson Valley Transmission Security Margin Hourly Curve (Summer Peak – Expected Weather, Normal       |
| Transfer Criteria)61                                                                                                   |
| Figure 25: Lower Hudson Valley Transmission Security Margin (1-in-10-Year Heatwave, Emergency Transfer Criteria)62     |
| Figure 26: Lower Hudson Valley Transmission Security Margin (Hourly) (1-in-10-Year Heatwave, Emergency Transfer        |
| Criteria)                                                                                                              |
| Figure 27: Lower Hudson Valley Transmission Security Margin Hourly Curve (1-in-10-Year Heatwave, Emergency Transfer    |
| Criteria)                                                                                                              |
| Figure 28: Lower Hudson Valley Transmission Security Margin (1-in-100-Year Extreme Heatwave, Emergency Transfer        |
| Criteria)                                                                                                              |



| Figure 29: Lower Hudson Valley Transmission Security Margin (Hourly) (1-in-100-Year Extreme Heatwave, Emergency        |
|------------------------------------------------------------------------------------------------------------------------|
| Transfer Criteria)                                                                                                     |
| Figure 30: Lower Hudson Valley Transmission Security Margin Hourly Curve (1-in-100-Year Extreme Heatwave, Emergency    |
| Transfer Criteria)67                                                                                                   |
| Figure 31: Lower Hudson Valley Transmission Security Margin (Winter Peak – Expected Weather, Normal Transfer Criteria) |
|                                                                                                                        |
| Figure 32: Lower Hudson Valley Transmission Security Margin (1-in-10-Year Cold Snap, Emergency Transfer Criteria)69    |
| Figure 33: Lower Hudson Valley Transmission Security Margin (1-in-100-year Extreme Cold Snap, Emergency Transfer       |
| Criteria)70                                                                                                            |
| Figure 34: Summary of Lower Hudson Valley Summer Transmission Security Margin – Summer71                               |
| Figure 35: Summary of Lower Hudson Valley Summer Transmission Security Margin – Winter                                 |
| Figure 36: Lower Hudson Valley Transmission Security Margin (Expected Weather, With and Without CHPE)73                |
| Figure 37: Impact of Contingency Combination on Zone J Transmission Security Margin75                                  |
| Figure 38: Summary of New York City Summer Demand Forecasts                                                            |
| Figure 39: Summary of New York City Summer Coincident Peak Demand Range78                                              |
| Figure 40: New York City Transmission Security Margin (Expected Weather, With and Without CHPE)79                      |
| Figure 41: New York City Transmission Security Margin (Summer Peak – Expected Weather, Normal Transfer Criteria with   |
| CHPE)                                                                                                                  |
| Figure 42: New York City Transmission Security Margin (Summer Peak – Expected Weather, Normal Transfer Criteria        |
| without CHPE)85                                                                                                        |
| Figure 43: Summary of New York City Summer Transmission Security Margin Demand Policy Impact – Summer (with CHPE)      |
| Figure 44: Summary of New York City Summer Transmission Security Margin Demand Policy Impact – Summer (without         |
| CHPE)                                                                                                                  |
| Figure 45: New York City Transmission Security Margin (Hourly) (Summer Peak – Baseline Demand Expected Weather,        |
| Normal Transfer Criteria)                                                                                              |
| Figure 46: New York City Transmission Security Margin Hourly Curve (Summer Peak – Expected Weather, Normal Transfer    |
| Criteria)                                                                                                              |
| Figure 47: New York City Transmission Security Margin (Hourly) (Summer Peak – Higher Policy with Expected Weather,     |
| Normal Transfer Criteria)90                                                                                            |
| Figure 48: New York City Transmission Security Margin Hourly Curve (Summer Peak – Baseline and Higher Policy Demand,   |
| Normal Transfer Criteria)91                                                                                            |
| Figure 49: New York City Transmission Security Margin (1-in-10-Year Heatwave, Emergency Transfer Criteria)             |
| Figure 50: New York City Transmission Security Margin (Hourly) (1-in-10-Year Heatwave, Emergency Transfer Criteria)93  |



| Figure 51: New York City Transmission Security Margin Hourly Curve (1-in-10-Year Heatwave, Emergency Transfer Criteria)   |
|---------------------------------------------------------------------------------------------------------------------------|
| Figure 52: New York City Transmission Security Margin (1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria)95     |
| Figure 53: New York City Transmission Security Margin (Hourly) (1-in-100-Year Extreme Heatwave, Emergency Transfer        |
| Criteria)                                                                                                                 |
| Figure 54: New York City Transmission Security Margin Hourly Curve (1-in-100-Year Extreme Heatwave, Emergency Transfer    |
| Criteria)97                                                                                                               |
| Figure 55: New York City Transmission Security Margin (Winter Peak – Expected Weather, Normal Transfer Criteria)98        |
| Figure 56: New York City Transmission Security Margin (1-in-10-Year Cold Snap, Emergency Transfer Criteria)               |
| Figure 57: New York City Transmission Security Margin (1-in-100-year Extreme Cold Snap, Emergency Transfer Criteria) 100  |
| Figure 58: Summary of New York City Summer Transmission Security Margin – Summer                                          |
| Figure 59: Summary of New York City Summer Transmission Security Margin – Winter                                          |
| Figure 60: Impact of Contingency Combination on Zone K Transmission Security Margin                                       |
| Figure 61: Long Island Transmission Security Margin (Summer Peak – Expected Weather, Normal Transfer Criteria)106         |
| Figure 62: Long Island Transmission Security Margin (Hourly) (Summer Peak – Expected Weather, Normal Transfer Criteria)   |
|                                                                                                                           |
| Figure 63: Long Island Transmission Security Margin Hourly Curve (Summer Peak – Expected Weather, Normal Transfer         |
| Criteria)113                                                                                                              |
| Figure 64: Long Island Transmission Security Margin (1-in-10-Year Heatwave, Emergency Transfer Criteria)                  |
| Figure 65: Long Island Transmission Security Margin (Hourly) (1-in-10-Year Heatwave, Emergency Transfer Criteria)115      |
| Figure 66: Long Island Transmission Security Margin Hourly Curve (1-in-10-Year Heatwave, Emergency Transfer Criteria).116 |
| Figure 67: Long Island Transmission Security Margin (1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria)117      |
| Figure 68: Long Island Transmission Security Margin (Hourly) (1-in-100-Year Extreme Heatwave, Emergency Transfer          |
| Criteria)                                                                                                                 |
| Figure 69: Long Island Transmission Security Margin Hourly Curve (1-in-100-Year Extreme Heatwave, Emergency Transfer      |
| Criteria)                                                                                                                 |
| Figure 70: Long Island Transmission Security Margin (Winter Peak – Expected Weather, Normal Transfer Criteria)120         |
| Figure 71: Long Island Transmission Security Margin (1-in-10-Year Cold Snap, Emergency Transfer Criteria)                 |
| Figure 72: Long Island Transmission Security Margin (1-in-100-year Extreme Cold Snap, Emergency Transfer Criteria)122     |
| Figure 73: Summary of Long Island Summer Transmission Security Margin – Summer                                            |
| Figure 74: Summary of Long Island Summer Transmission Security Margin – Winter124                                         |
| Figure 75: Summary of Long Island Summer Transmission Security Margin Demand Policy Impact – Summer                       |
| Figure 76: NYCA Reductions in Gas Units127                                                                                |
| Figure 77: Statewide System Margin with a Shortage of Gas Fuel Supply (Winter Peak - Expected Weather, Normal Transfer    |
| Criteria)                                                                                                                 |

## lew York ISO

| Figure 78: Extreme System Condition – Winter Peak Statewide System Margin (1-in-10-Year Cold Snap, Emergency Transfe   | ٢  |
|------------------------------------------------------------------------------------------------------------------------|----|
| Criteria) with A Shortage of Gas Fuel Supply1                                                                          | 31 |
| Figure 79: Extreme System Condition – Winter Peak Statewide System Margin (1-in-100-Year Extreme Cold Snap,            |    |
| Emergency Transfer Criteria)1                                                                                          | 32 |
| Figure 80: Extreme System Condition – Summary of Winter Peak Statewide System Margin with A Shortage of Gas Fuel       |    |
| Supply1                                                                                                                | 33 |
| Figure 81: Extreme System Condition – Winter Peak Lower Hudson Valley Transmission Security Margin with A Shortage or  | f  |
| Gas Fuel Supply1                                                                                                       | 34 |
| Figure 82: Extreme System Condition – Winter Peak Lower Hudson Valley Transmission Security Margin (1-in-10-Year Cold  |    |
| Snap, Emergency Transfer Criteria) with A Shortage of Gas Fuel Supply1                                                 | 35 |
| Figure 83: Extreme System Condition – Winter Peak Lower Hudson Valley Transmission Security Margin (1-in-100-Year      |    |
| Extreme Cold Snap, Emergency Transfer Criteria) with A Shortage of Gas Fuel Supply                                     | 36 |
| Figure 84: Extreme System Condition – Summary of Winter Peak Lower Hudson Valley Transmission Security Margin with     | Ą  |
| Shortage of Gas Fuel Supply1                                                                                           | 37 |
| Figure 85: Extreme System Condition – Winter Peak New York City Transmission Security Margin with A Shortage of Gas    |    |
| Fuel Supply1                                                                                                           | 38 |
| Figure 86: Extreme System Condition – Winter Peak New York City Transmission Security Margin (1-in-10-Year Cold Snap,  |    |
| Emergency Transfer Criteria) with A Shortage of Gas Fuel Supply1                                                       | 39 |
| Figure 87: Extreme System Condition – Winter Peak New York City Transmission Security Margin (1-in-100-Year Extreme    |    |
| Cold Snap, Emergency Transfer Criteria) with A Shortage of Gas Fuel Supply14                                           | 40 |
| Figure 88: Extreme System Condition – Summary of Winter Peak New York City Transmission Security Margin with A         |    |
| Shortage of Gas Fuel Supply14                                                                                          | 41 |
| Figure 89: Extreme System Condition – Winter Peak Long Island Transmission Security Margin with A Shortage of Gas Fue  | I  |
| Supply14                                                                                                               | 42 |
| Figure 90: Extreme System Condition – Winter Peak Long Island Transmission Security Margin (1-in-10-Year Cold Snap,    |    |
| Emergency Transfer Criteria) with A Shortage of Gas Fuel Supply14                                                      | 43 |
| Figure 91: Extreme System Condition – Winter Peak Long Island Transmission Security Margin (1-in-100-Year Extreme Cold | ł  |
| Snap, Emergency Transfer Criteria) with A Shortage of Gas Fuel Supply14                                                | 44 |
| Figure 92: Extreme System Condition – Summary of Winter Peak Long Island Transmission Security Margin with A Shortage  | е  |
| of Gas Fuel Supply14                                                                                                   | 45 |
| Figure 93: NYCA Expected Weather Summer Peak Demand Shape14                                                            | 47 |
| Figure 94: NYCA Baseline Expected Weather Summer Peak Demand Shape                                                     | 49 |
| Figure 95: Zones A-F Component of NYCA Baseline Expected Weather Summer Peak Demand Shape                              | 50 |
| Figure 96: Zones GHI Component of NYCA Baseline Expected Weather Summer Peak Demand Shape                              | 51 |
| Figure 97: Zone J Component of NYCA Baseline Expected Weather Summer Peak Demand Shape                                 | 52 |



| Figure 98: Zone J Component of NYCA Higher Policy Expected Weather Summer Peak Demand Shape | 153 |
|---------------------------------------------------------------------------------------------|-----|
| Figure 99: Zone K Component of NYCA Baseline Expected Weather Summer Peak Demand Shape      | 154 |
| Figure 100: NYCA Heatwave Demand Shape                                                      | 155 |
| Figure 101: Zones A-F Component of NYCA Heatwave Demand Shape                               | 156 |
| Figure 102: Zones GHI Component of NYCA Heatwave Demand Shape                               | 157 |
| Figure 103: Zone J Component of NYCA Heatwave Demand Shape                                  | 158 |
| Figure 104: Zone K Component of NYCA Heatwave Demand Shape                                  | 159 |
| Figure 105: NYCA Extreme Heatwave Demand Shape                                              | 160 |
| Figure 106: Zones A-F Component of NYCA Extreme Heatwave Demand Shape                       | 161 |
| Figure 107: Zones GHI Component of NYCA Extreme Heatwave Demand Shape                       | 162 |
| Figure 108: Zone J Component of NYCA Extreme Heatwave Demand Shape                          | 163 |
| Figure 109: Zone K Component of NYCA Extreme Heatwave Demand Shape                          | 164 |
| Figure 110: List of NERC Standards for Planning Coordinators and Transmission Planners      | 166 |
| Figure 111: Description of NERC TPL-001 Planning Assessment Study Cases                     | 170 |



#### Appendix A – Glossary

The following glossary offers definitions and explanations of terms used in the Comprehensive Reliability Plan it appends, as well as references to additional source information published by the NYISO and other energy industry entities.

Annual Transmission Reliability Assessment (ATRA): An assessment, conducted by the NYISO staff in cooperation with Market Participants, to determine the System Upgrade Facilities required for each generation project and Class Year Transmission Project to interconnect to the New York State Transmission System in compliance with Applicable Reliability Standards and the NYISO Minimum Interconnection Standard. See <u>NYISO OATT</u>

**Area Transmission Review (ATR)**: An annual report provided to the Northeast Power Coordinating Council Compliance Committee by the NYISO, in its role as Planning Coordinator, in regard to its Area Transmission Review. See <u>NPCC.org</u>

**Baseline Forecast**: Prepared for the NYISO Gold Book, baseline forecasts report the expected New York Control Area load and includes the projected impacts of energy efficiency programs, building codes and standards, distributed energy resources, behind-the-meter energy storage, behind-the-meter solar photovoltaic power, electric vehicle usage, and electrification of heating and other end uses. The baseline forecasts are used in the Reliability Needs Assessment Base Cases for determining Bulk Power Transmission Facilities Reliability Needs for the Reliability Needs Assessment Study Period.

**Best Technology Available (BTA):** Performance goal established by the New York State Department of Environmental Conservation for cooling water intake structures at proposed and existing electric generating plants with intake capacity greater than 20 million gallons per day. See <u>DEC.NY.gov</u>

**New York State Bulk Power Transmission Facility (BPTF):** Facilities identified as the New York State Bulk Power Transmission Facilities in the annual Area Transmission Review submitted to the Northeast Power Coordinating Council by the NYISO. See <u>NYISO OATT</u>

**Clean Energy Standard (CES)**: New York State initiative requiring 70% of electricity consumed in the State to be produced from renewable sources by 2030. See <u>NYSERDA.NY.gov</u>

**Climate Leadership and Community Protection Act (CLCPA)**: New York State statute enacted in 2019 to address and mitigate the effects of climate change. Among other requirements, the law mandates that; (1) 70% of energy consumed in New York State be sourced from renewable resources by 2030, (2) greenhouse gas emissions must be reduced by 40% by 2030, (3) the electric generation sector must be zero greenhouse gas emissions by 2040, and (4) greenhouse gas emissions across all sectors of the economy must be reduced by 85% by 2050. See <u>CLIMATE.NY.gov</u>

**Contingencies:** Actual or potential unexpected failure or outage of a system component such as a generator, transmission line, circuit breaker, switch, or other electrical element. A contingency also may include multiple components, which are related by situations leading to simultaneous component outages. See <u>NYSRC.org</u>

**Dependable Maximum Net Capability (DMNC)**: Sustained maximum net output of a Generator, as demonstrated by the performance of a test or through actual operation, averaged over a continuous time period. See <u>NYISO OATT</u>



**Disturbance**: Severe oscillations or severe step changes of current, voltage and/or frequency usually caused by faults. See <u>NYSRC.org</u>

Electric System Planning Work Group (ESPWG): The stakeholder forum that provides Market Participant input on the NYISO's comprehensive system planning processes. See Committees at <u>NYISO.com</u>

**Emergency Transfer Criteria**: In the event that adequate facilities are not available to supply firm load within Normal Transfer Criteria, emergency transfer criteria may be invoked. Under emergency transfer criteria, transfers may be increased up to, but not exceed, emergency ratings and limits, as follows:

a. Pre-contingency line and equipment loadings may be operated up to LTE ratings for up to four (4) hours, provided the STE ratings are set appropriately. Otherwise, pre-contingency line and equipment loadings must be within normal ratings. Pre-contingency voltages and transmission interface flows must be within applicable pre-contingency voltage and stability limits.

b. Post-contingency line and equipment loadings within STE ratings. Post-contingency voltages and transmission interface flows within applicable post-contingency voltage and stability limits. See <u>NYSRC.org</u>

Fault: An electrical short circuit. See NYSRC.org

**Federal Energy Regulatory Commission (FERC)**: The United States federal agency that regulates the transmission and wholesale sale of electricity and natural gas in interstate commerce.

**FERC Form No. 715**: Annual report by transmitting utilities on transmission planning, constraints, and available transmission capacity. See <u>FERC.gov</u>

**Forced Outage**: Unscheduled inability of a Market Participant's Generator to produce energy that does not meet the notification criteria to be classified as a scheduled outage or de-rate as established in NYISO Procedures. See <u>NYISO.com</u>

**Gold Book**: Annual NYISO publication, also known as the Load and Capacity Data Report. See Library/Reports at <u>NYISO.com</u>

**Installed Capacity (ICAP)**: External or Internal Capacity that is made available pursuant to Tariff requirements and NYISO Procedures. See <u>NYISO Services Tariff</u>

**Installed Capacity Requirement (ICR)**: The annual statewide requirement established by the New York State Reliability Council in order to provide resource adequacy in the New York Control Area. See <u>NYSRC.org</u>

**Installed Reserve Margin (IRM)**: The amount of installed electric generation capacity above 100% of the forecasted peak electric demand that is required to meet New York State Reliability Council resource adequacy criteria.

**Local Transmission Plan (LTP)**: The Local Transmission Owner Plan, developed by each Transmission Owner, which describes its respective plans that may be under consideration or finalized for its own Transmission District. See <u>NYISO OATT</u>

Local Transmission Planning Process (LTPP): The Local Planning Process conducted by each Transmission Owner for its own Transmission District. See <u>NYISO OATT</u>

Loss of Load Expectation (LOLE): A New York State Reliability Council resource adequacy criterion requiring that the probability (or risk) of the unplanned disconnecting of any firm load due to resource deficiencies shall



be, on average, not more than once in ten years, expressed mathematically as 0.1 days per year. See <u>NYSRC.org</u>

- LOLE is generally defined as the expected (weighted average) number of days in a given period (e.g., one study year) when for at least one hour from that day the hourly demand is projected to exceed the zonal resources (event day). Within a day, if the zonal demand exceeds the resources in at least one hour of that day, this will be counted as one event day. The criterion is that the LOLE not exceed one day in 10 years, or LOLE < 0.1 days/year.
- LOLH is generally defined<sup>1</sup> as the expected number of hours per period (e.g., one study year) when a system's hourly demand is projected to exceed the zonal resources (event hour). Within an hour, if the zonal demand exceeds the resources, this will be counted as one event hour.
- EUE, also referred to as loss of energy expectation (LOEE), is generally defined<sup>2</sup> as the expected energy (MWh) per period (e.g., one study year) when the summation of the system's hourly demand is projected to exceed the zonal resources. Within an hour, if the zonal demand exceeds the resources, this deficit will be counted toward the system's EUE.

**Market Monitoring Unit**: The consulting or professional services firm, or other similar entity, responsible for carrying out the Core Market Monitoring Functions and other functions assigned to it in the NYISO's tariffs. . See <u>NYISO OATT</u> Attachment O

**Market Participant**: An entity, excluding the NYISO, that produces, transmits, sells, and/or purchases for resale unforced capacity, energy, or ancillary services in the wholesale market, including entities that buy or sell Transmission Congestion Contracts. See <u>NYISO Services Tariff</u>

Market Administration and Control Area Services Tariff (NYISO Services Tariff): The document addressing the Market Services and the Control Area Services provided by the NYISO, and the terms and conditions, regulated by the FERC, under which those services are provided.

New York Control Area (NYCA): The area under the electrical control of the NYISO, including the entire state of New York, divided into eleven load zones. See <u>NYISO.com</u>

**New York State Department of Environmental Conservation (NYSDEC)**: The agency that implements the New York State Environmental Conservation Law, with some programs also governed by federal law.

**New York Independent System Operator (NYISO)**: A not-for-profit organization that operates New York's bulk electricity grid, wholesale electricity markets and conducts interconnection and transmission planning.

NYISO Procedures (Manuals, Guides, Technical Bulletins): NYISO Manuals specify and explain the procedures and policies used to operate the bulk power system of the New York Control Area and to conduct wholesale electricity markets, consistent with the NYISO Tariffs and Agreements. NYISO Guides serve to assist users with information needed to participate in NYISO Administered Markets. NYISO Technical Bulletins explain changes to, and provide instruction for, NYISO processes and procedures. See <u>NYISO.com</u>

**New York State Department of Public Service (NYDPS)**: The New York State agency that supports the New York State Public Service Commission. See <u>DPS.NY.gov</u>

**New York State Energy Research and Development Authority (NYSERDA):** The New York State public authority charged with conducting a multifaceted energy and environmental research and development program to

https://www.nysrc.org/PDF/Reports/Resource%20Adequacy%20Metric%20Report%20Final%204-20-2020[6431].pdf. <sup>2</sup> Id.

<sup>&</sup>lt;sup>1</sup> NYSRC's "Resource Adequacy Metrics and their Application," available at



meet New York State's diverse economic needs, including administering the state System Benefits Charge, Renewable Portfolio Standard, energy efficiency programs, the Clean Energy Fund, and the NY-Sun Initiative. See <u>NYSERDA.NY.gov</u>

New York State Public Service Commission (NYPSC): The decision-making body of the New York State Department of Public Service, which regulates the state's electric, gas, steam, telecommunications, and water utilities, oversees the cable industry, has the responsibility for setting rates and overseeing that safe and adequate service is provided by New York's utilities, and exercises jurisdiction over the siting of major gas and electric transmission facilities.

**NY-Sun Initiative**: A program run by NYSERDA for the purpose of obtaining more than 6,000 MW-DC of behindthe-meter solar photovoltaic systems by the end of 2023. See <u>NYSERDA.NY.gov</u>

**New York State Reliability Council (NYSRC)**: A not-for-profit entity the mission of which is to annually establish the Installed Reserve Margin, and to promote and preserve the reliability of electric service on the New York State Power System by developing, maintaining, and updating the Reliability Rules with which the NYISO and all entities engaging in electric transmission, ancillary services, energy, and power transactions on the New York State Power System must comply. See <u>NYSRC.org</u>

**Normal Transfer Criteria**: Measures established, in accordance with the North American Electric Reliability Corporation, Northeast Power Coordinating Council, and the New York State Reliability Council's Reliability Rules, to determine that adequate facilities are available to supply firm load in the bulk power transmission system within applicable normal ratings and limits. See <u>NYSRC.org</u>

**Normal Transfer Limit**: The lowest limit based on the most restrictive of three maximum allowable transfers, calculated based on thermal, voltage, and stability testing, considering contingencies, ratings, and limits specified for normal conditions. See <u>NYSRC.org</u>

North American Electric Reliability Corporation (NERC): A not-for-profit international regulatory authority the mission of which is to assure the effective and efficient reduction of risks to the reliability and security of the grid. See <u>NERC.com</u>

**Northeast Power Coordinating Council (NPCC)**: The entity to whom the North American Electric Reliability Corporation has delegated Electric Reliability Organization functions in the New York Control Area. See <u>NYISO OATT</u>

**Open Access Transmission Tariff (OATT)**: The document setting forth the rates, terms, and conditions, accepted or approved by the FERC, under which the NYISO provides transmission service and conducts interconnection and transmission system planning.

**Order No. 890**: Order issued by the FERC in 2007 that amended the regulations and the *pro forma* open access transmission tariff to provide that transmission services and planning are provided on a basis that is just, reasonable and not unduly discriminatory or preferential. See <u>FERC.gov</u>

**Order No. 1000**: Order issued by the FERC in 2011 that amended the transmission planning and cost allocation requirements established in Order No. 890 to provide that Commission-jurisdictional services, including transmission planning, are provided at just and reasonable rates and on a basis that is just and reasonable and not unduly discriminatory or preferential. See <u>FERC.gov</u>

**Outage**: The forced or scheduled removal of generating capacity or a transmission line from service.



**Peak Demand**: The maximum instantaneous power demand, measured in megawatts (MW), and known as peak load, is usually measured, and averaged over an hourly interval. The peak hour is the hour during which the coincident usage was the highest across the entire New York Control Area in a given time period.

**Queue Position**: The order, in the NYISO's Interconnection Queue, of a valid Interconnection Request, Study Request, or Transmission Interconnection Application relative to all other pending Requests. See <u>NYISO OATT</u>

**Rating**: The operational limits of an electric system, facility, or element under a set of specified conditions. Rating categories include Normal Rating, Long-Term Emergency (LTE) Rating, and Short-Term Emergency (STE) Rating, as follows:

1. **Normal Rating:** The capacity rating of a transmission facility that may be carried through consecutive twenty- four (24) hour load cycles.

2. Long-Time Emergency (LTE) Rating: The capacity rating of a transmission facility that can be carried through infrequent, non- consecutive four (4) hour periods.

3. Short-Time Emergency (STE) Rating: The capacity rating of a transmission facility that may be carried during very infrequent contingencies of fifteen (15) minutes or less duration. (Source: NYSRC Reliability Rules). See <u>NYSRC.org</u>

**Reasonably Available Control Technology for Major Facilities of Oxides of Nitrogen (NOx RACT)**: New York State Department of Environmental Conservation regulations for the control of emissions of nitrogen oxides (NOx) from fossil fuel-fired power plants. See <u>DEC.ny.gov</u>

**Reactive Power**: The portion of electric power that establishes and sustains the electric and magnetic fields of alternating-current equipment.

**Reactive Power Resources:** Facilities such as generators, high voltage transmission lines, synchronous condensers, capacitor banks, and static var compensators that provide reactive power.

**Regional Greenhouse Gas Initiative (RGGI)**: A cooperative effort by a group of Northeast and Mid-Atlantic states to limit power sector greenhouse gas emissions using a market-based cap-and-trade approach. See <u>RGGI.org</u>

**Reliability**: The degree of performance of the bulk electric system that results in electricity being delivered to customers within accepted standards and in the amount desired, which can be addressed by considering the adequacy and security of the electric system:

1. Adequacy: The ability of the electric systems to supply the aggregate electrical demand and energy requirements of their customers at all times, taking into account scheduled and reasonably expected unscheduled outages of system elements. Note: Adequacy encompasses both generation and transmission.

2. **Security:** The ability of the electric system to withstand disturbances such as electric short circuits or unanticipated loss of system elements. The ability of the power system to withstand the loss of one or more elements without involuntarily disconnecting firm load. See <u>NYSRC.org</u>

**Reliability Criteria**: The electric power system planning and operating policies, standards, criteria, guidelines, procedures, and rules promulgated by the North American Electric Reliability Corporation, Northeast Power Coordinating Council, and the New York State Reliability Council. See NYISO OATT Attachment Y

**Reliability Need:** A condition identified by the NYISO as a violation or potential violation of one or more Reliability Criteria. See NYISO OATT Attachment Y



**Reliability Needs Assessment (RNA)**: A report that evaluates resource adequacy and transmission system security over years four through ten of a 10-year planning horizon and identifies future needs of the New York electricity grid. It is the first step in the NYISO's reliability planning process. See NYISO OATT Attachment Y

**Reliability Needs Assessment (RNA) Study Period**: The seven-year time period encompassing years four through ten following the year in which the RNA is conducted, which is used in the RNA and the Comprehensive Reliability Plan. See <u>NYISO OATT</u> Attachment Y

**Reliability Planning Process (RPP)**: The process by which the NYISO determines, in the Reliability Needs Assessment, whether any Reliability Need(s) on the New York State Bulk Power Transmission Facilities will arise in the Study Period and addresses any identified Reliability Need(s) in the Comprehensive Reliability Plan. See <u>NYISO OATT</u> Attachment Y

Reliability Solutions: Potential solutions to reliability needs include the following:

1. Alternative Regulated Solutions (ARS): Regulated solutions submitted by a Transmission Owner or other developer in response to a solicitation for solutions to a Reliability Need identified in a Reliability Needs Assessment.

2. **Gap Solution:** A solution to a Reliability Need that is designed to be temporary and to strive to be compatible with permanent market-based proposals. The NYISO may call for a Gap Solution to an imminent threat to reliability of the Bulk Power Transmission Facilities if no market-based solutions, regulated backstop solutions, or alternative regulated solutions can meet the Reliability Needs in a timely manner.

3. **Market-Based Solution:** Investor-proposed project driven by market needs to meet future reliability requirements of the bulk electricity grid as outlined in the Reliability Needs Assessment. These can include generation, transmission, and demand response Programs.

4. **Regulated Backstop Solution:** Proposals are required of certain Transmission Owners to meet Reliability Needs as outlined in the Reliability Needs Assessment.

Those solutions can include generation, transmission, or demand response. Non-Transmission Owner developers may also submit regulated solutions. See <u>NYISO OATT</u> Attachment Y

**Resource Adequacy:** The ability of the electric systems to supply the aggregate electrical demand and energy requirements of their customers at all times, taking into account scheduled and reasonably expected unscheduled outages of system elements. Note: Adequacy encompasses both generation and transmission. See definition of Reliability.

**Responsible Transmission Owner (Responsible TO)**: The Transmission Owner(s) designated by the NYISO to prepare a proposal for a regulated backstop solution to a Reliability Need or to proceed with a regulated solution to a Reliability Need. The Responsible Transmission Owner will normally be the Transmission Owner in whose Transmission District the ISO identifies a Reliability Need and/or that owns a transmission facility on which a Reliability Need arises. See <u>NYISO OATT</u> Attachment Y

**Short-Term Assessment of Reliability (STAR)**: The NYISO's quarterly assessment, in coordination with the Responsible Transmission Owner(s), of whether a Short-Term Reliability Process Need will result from a Generator becoming Retired, entering into a Mothball Outage, or being unavailable due to an Installed Capacity Ineligible Forced Outage, or from other changes to the availability of Resources or to the New York State Transmission System. See <u>NYISO OATT</u> Attachment FF

#### hew York ISO

**Short-Term Reliability Process:** The process by which the NYISO evaluates and addresses the reliability impacts resulting from both: (1) Generator Deactivation Reliability Need(s), and/or (2) other Reliability Needs on or affecting the Bulk Power Transmission Facilities that are identified in a Short-Term Assessment of Reliability. The Short-Term Reliability Process evaluates reliability needs in years one through five of the tenyear Study Period, with a focus on needs in years one through three. See <u>NYISO OATT</u> Attachment FF

**Short-Term Reliability Process Need**: A Generator Deactivation Reliability Need or a condition identified by the NYISO in a Short-Term Assessment of Reliability as a violation or potential violation of one or more Reliability Criteria on the Bulk Power Transmission Facilities. See <u>NYISO OATT</u> Attachment FF

**Short-Term Reliability Process Solution**: A solution to address a Short-Term Reliability Process Need, which may include (1) an Initiating Generator, (2) a solution proposed pursuant to the NYISO Services Tariff, or (3) a Generator identified by the NYISO pursuant to the NYISO Services Tariff. See <u>NYISO OATT</u> and <u>NYISO Services</u> <u>Tariff</u>

Short-Term Assessment of Reliability (STAR) Start Date: The date on which the NYISO next commences a STAR after issuing a written notice to a Market Participant indicating that the Generator Deactivation Notice for its Generator is complete. See <u>NYISO OATT</u> Attachment FF

**Special Case Resource ("SCR")**: Demand Side Resources the Load of which is capable of being interrupted upon demand at the direction of the NYISO, and/or Demand Side Resources that have a Local Generator, which is not visible to the NYISO's Market Information System and is rated 100 kW or higher, that can be operated to reduce Load from the New York State Transmission System or the distribution system at the direction of the NYISO. See <u>NYISO Services Tariff</u>

**Stability:** The ability of an electric system to maintain a state of equilibrium during normal and abnormal system conditions or disturbances. See <u>NYSRC.org</u>

**System & Resource Outlook (formerly "CARIS"):** Biennial report produced by the NYISO, through which it summarizes the current assessments, evaluations, and plans in the biennial Comprehensive System Planning Process, produces a twenty-year projection of congestion on the New York State Transmission System, identifies, ranks, and groups congested elements, and assesses the potential benefits of addressing the identified congestion.

**System Benefits Charge (SBC)**: An amount of money, charged to ratepayers on their electric bills, which is administered and allocated by the New York State Energy Research and Development Authority towards energy-efficiency programs, research and development initiatives, low-income energy programs, and environmental disclosure activities.

**Transfer Capability**: The measure of the ability of interconnected electrical systems to reliably move or transfer power from one area to another over all transmission facilities (or paths) between those areas under specified system conditions.

**Transmission Constraints**: Limitations on the ability of a transmission system to transfer electricity during normal or emergency system conditions.

**Transmission Owner (TO)**: A public utility or authority that owns transmission facilities and provides Transmission Service under the NYISO Tariffs.

**Transmission Security:** The ability of the electric system to withstand disturbances such as electric short circuits or unanticipated loss of system elements. The ability of the power system to withstand the loss of one or more elements without involuntarily disconnecting firm load. See definition of <u>Reliability</u>.



**Unforced Capacity**: The measure by which Installed Capacity Suppliers will be rated to quantify the extent of their contribution to satisfy the New York Control Area Installed Capacity Requirement. See <u>NYISO Services Tariff</u>

**Unforced Capacity Deliverability Rights (UDRs)**: Rights, as measured in MWs, associated with (1) new incremental controllable transmission projects, and (2) new projects to increase the capability of existing controllable transmission projects that have UDRs, that provide a transmission interface to a Locality. which, under certain conditions, allow such Unforced Capacity to be treated as if it were located in the Locality, thereby contributing to an LSE's Locational Minimum Installed Capacity Requirement. When combined with Unforced Capacity which is located in an External Control Area or non-constrained NYCA region either by contract or ownership, and which is deliverable to the NYCA interface in the Locality in which the UDR transmission facility is electrically located, UDRs allow such Unforced Capacity to be treated as if it were located as if it were located in the Locality, thereby contributing to an LSE's Locational Minimum Installed Capacity to be treated as if it were located in the UDR transmission facility is electrically located, UDRs allow such Unforced Capacity to be treated as if it were located in the Locality, thereby contributing to an LSE's Locational Minimum Installed Capacity Requirement. To the extent the NYCA interface is with an External Control Area the Unforced Capacity associated with UDRs must be deliverable to the Interconnection Point. See <u>NYISO Services Tariff</u>

**Weather Normalized**: Adjustments made to normalize the impact of weather when making energy and peak demand forecasts. Using historical weather data, energy analysts can account for the influence of extreme weather conditions and adjust actual energy use and peak demand to estimate what would have happened if the hottest day or the coldest day had been the typical, or "normal," weather conditions. "Normal" is usually calculated by taking the average of the previous 20 years of weather data.

**Zone**: One of the eleven regions in the New York Control Area connected to each other by identified transmission interfaces and designated as Load Zones A-K.



#### **Appendix B – Planned Projects and Assumptions**

The CRP conclusions are based on certain base case assumptions, which are summarized below, as well as in the 2022 RNA<sup>3</sup> and the 2023 Q2 STAR.<sup>4</sup> A key approach to the NYISO's reliability process is to apply conservative inclusion rules so that the assessment only plans for those projects and system changes that have a high level of certainty of being completed or occurring. In determining the inclusion of planned projects, the NYISO reviews of their regulatory, financial, and construction status.

| Figure 1: List of Planned | <b>Additional Generating Resources</b> | (Nameplate MW)     |
|---------------------------|----------------------------------------|--------------------|
|                           |                                        | (inamoplato initi) |

| NYISO<br>Interconnection<br>Queue # | Project Name/(Owner)                                                                        | Zone | Point of Interconnection T                  |    | COD or I/S Date | Summer<br>Peak<br>MW | Notes |
|-------------------------------------|---------------------------------------------------------------------------------------------|------|---------------------------------------------|----|-----------------|----------------------|-------|
| 758                                 | Independence GS1 to GS4<br>{Dynegy Marketing and Trade, LLC)                                | С    | Scriba 345 kV Gas I/S                       |    | 9.0             | 3                    |       |
| 396                                 | Baron Winds (Baron Winds, LLC)                                                              | с    | Hillside - Meyer 230kV                      | w  | I/S             | 238.4                | 2, 4  |
| 422                                 | Eight Point Wind Energy Center<br>(NextEra Energy Resources, LLC)                           | С    | Bennett 115kV                               | w  | I/S             | 101.8                | 2     |
| 775                                 | Puckett Solar<br>(Puckett Solar, LLC)                                                       | с    | Chenango Forks Substation 34.5kV            | S  | I/S             | 20                   | 1     |
| 731                                 | Branscomb Solar<br>(Branscomb Solar, LLC)                                                   | F    | Battenkill - Eastover 115kV                 | S  | I/S             | 20                   | 1     |
| 748                                 | Regan Solar (Regan Solar, LLC)                                                              | F    | Market Hill - Johnstown 69kV                | S  | I/S             | 20                   | 1     |
| 678                                 | 678 Calverton Solar Energy Center<br>(LI Solar Generation, LLC) K                           |      | Edwards Substation 138kV                    | S  | I/S             | 22.9                 | 2     |
| 769                                 | North Country Energy Storage<br>(New York Power Authority)                                  |      |                                             | ES | I/S             | 20                   |       |
| 768                                 | Janis Solar (Janis Solar LLC) C Will                                                        |      | Willet 34.5kV                               | S  | I/S             | 20                   | 1     |
| 682                                 | 682 Grissom Solar (Grissom Solar, LLC) F Ephratah                                           |      | Ephratah - Florida 115kV                    | S  | I/S             | 20                   | 1     |
| 531                                 | 531 Number 3 Wind Energy<br>(Invenergy Wind Development LLC) E Taylorville - Boonville 115k |      | Taylorville - Boonville 115kV               | w  | I/S             | 103.9                | 2     |
| 759                                 | 759 KCE NY6                                                                                 |      | Gardenville - Bethlehem Steel<br>Wind 115kV | ES | 04/2022         | 20                   | 1     |
| 670                                 | Skyline Solar<br>(SunEast Skyline Solar LLC)                                                | E    | Campus Rd - Clinton 46kV                    | S  | 04/2022         | 20                   | 1     |
| 807                                 | Hilltop Solar<br>(SunEast Hilltop Solar LLC)                                                | F    | Eastover - Schaghticoke 115kV               | S  | 07/2022         | 20                   |       |
| 734                                 | Ticonderoga Solar<br>(ELP Ticonderoga Solar LLC)                                            | F    | ELP Ticonderoga Solar LLC                   |    | 08/2022         | 20                   | 1     |
| 735                                 | ELP Stillwater Solar<br>(ELP Stillwater Solar LLC)                                          | F    | Luther Forest - Mohican 115kV               | S  | 09/2022         | 20                   |       |

<sup>3</sup> 2022 RNA Report and Appendices, available at <u>https://www.nyiso.com/documents/20142/2248793/2022-RNA-Report.pdf</u> and <u>https://www.nyiso.com/documents/20142/34651464/2022-RNA-Appendices.pdf</u>.
 <sup>4</sup> 2023 Quarter 2 STAR Report, available at <u>https://www.nyiso.com/documents/20142/16004172/2023-Q2-STAR-Report-Final.pdf</u>;

*see also* 2023 Quarter 2 STAR kepor, available at https://www.hyso.com/documents/20142/15930765/STRP-Q2-2023-Solicitation-Letter-Draft-vFinal.pdf.

## lew York ISO

| NYISO<br>Interconnection<br>Queue # | Project Name/(Owner)                                      | Zone | Point of Interconnection                                              | Туре                            | COD or I/S Date | Summer<br>Peak<br>MW | Notes |
|-------------------------------------|-----------------------------------------------------------|------|-----------------------------------------------------------------------|---------------------------------|-----------------|----------------------|-------|
| 666                                 | Martin Solar (Martin Solar LLC)                           | А    | Arcade - Five Mile 115kV                                              | S                               | 10/2022         | 20                   | 1     |
| 667                                 | Bakerstand Solar<br>(Bakerstand Solar LLC)                | А    | Machias - Maplehurst 34.5kV                                           | s                               | 10/2022         | 20                   | 1     |
| 579                                 | Bluestone Wind<br>(Bluestone Wind, LLC)                   | E    | Afton - Stilesville 115kV                                             | w                               | 10/2022         | 111.8                | 2     |
| 565                                 | Tayandenega Solar<br>(Tayandenega Solar, LLC)             | F    | St. Johnsville - Inghams 115kV                                        | s                               | 10/2022         | 20                   | 1     |
| 505                                 | Ball Hill Wind<br>(Ball Hill Wind Energy, LLC)            | А    | Dunkirk - Gardenville 230kV                                           | w                               | 11/2022         | 100.0                | 2     |
| 721                                 | Excelsior Energy Center<br>(Excelsior Energy Center, LLC) | В    | N. Rochester - Niagara 345 kV                                         | s                               | 11/2022         | 280.0                | 2     |
| 618                                 | High River Solar<br>(High River Energy Center, LLC)       | F    | Inghams - Rotterdam 115kV                                             | S                               | 11/2022         | 90.0                 | 2     |
| 619                                 | East Point Solar<br>(East Point Energy Center, LLC)       | F    | Cobleskill - Marshville 69kV                                          | S                               | 11/2022         | 50.0                 | 2     |
| 564                                 | Rock District Solar<br>(Rock District Solar, LLC)         | F    | Sharon - Cobleskill 69kV                                              | s                               | 12/2022         | 20                   | 1     |
| 570                                 | Albany County 1<br>(Hecate Energy Albany 1 LLC)           | F    | Long Lane - Lafarge 115kV                                             | s                               | 12/2022         | 20                   | 1     |
| 598                                 | Albany County 2<br>(Hecate Energy Albany 2 LLC)           | F    | Long Lane - Lafarge 115kV                                             | S                               | 12/2022         | 20                   | 1     |
| 638                                 | Pattersonville<br>(Pattersonville Solar Facility, LLC)    | F    | Rotterdam - Meco 115kV                                                | S                               | 12/2022         | 20                   | 1     |
| 730                                 | Darby Solar (Darby Solar, LLC)                            | F    | Mohican - Schaghticoke 115kV                                          | S                               | 12/2022         | 20                   | 1     |
| 572                                 | Greene County 1<br>(Hecate Energy Greene 1 LLC)           | G    | Coxsackie - North Catskill 69kV                                       | S                               | 01/2023         | 20                   | 1     |
| 573                                 | Greene County 2<br>(Hecate Energy Greene 2 LLC)           | G    | Coxsackie Substation 13.8kV                                           | s                               | 03/2023         | 10                   | 1     |
| 592                                 | Niagara Solar<br>(Duke Energy Renewables Solar, LLC)      | В    | Bennington 34.5kV Substation                                          | s                               | 05/2023         | 20                   |       |
| 584                                 | Dog Corners Solar<br>(SED NY Holdings LLC)                | С    | Aurora Substation 34.5kV                                              | s                               | 05/2023         | 20                   | 1     |
| 590                                 | Scipio Solar<br>(Duke Energy Renewables Solar, LLC)       | С    | C Scipio 34.5kV Substation S 05/2023                                  |                                 | 18              |                      |       |
| 545                                 | Sky High Solar<br>(Sky High Solar, LLC)                   | С    | Tilden -Tully Center 115kV                                            | lly Center 115kV S 06/2023      |                 | 20                   | 1     |
| 586                                 | Watkins Road Solar<br>(SED NY Holdings LLC)               | E    | Watkins Rd - Ilion 115kV                                              | kV S 06/2023                    |                 | 20                   | 1     |
| 581                                 | Hills Solar<br>(SunEast Hills Solar LLC)                  | E    | Fairfield - Inghams 115kV                                             | field - Inghams 115kV S 08/2023 |                 | 20                   |       |
| 612                                 | South Fork Wind Farm<br>(South Fork Wind, LLC)            | к    | East Hampton 69kV OSW                                                 |                                 | 08/2023         | 96.0                 | 2     |
| 695                                 | South Fork Wind Farm II<br>(South Fork Wind, LLC)         | к    | East Hampton 69kV OSW 08,                                             |                                 | 08/2023         | 40.0                 | 2     |
| 637                                 | Flint Mine Solar<br>(Flint Mine Solar LLC)                | G    | LaFarge - Pleasant Valley 115kV,<br>Feura Bush - North Catskill 115kV | S                               | 09/2023         | 100.0                | 2     |
| 848                                 | Fairway Solar<br>(SunEast Fairway Solar LLC.)             | E    | McIntyre - Colton 115kV                                               | S                               | 10/2023         | 20                   |       |



| NYISO<br>Interconnection<br>Queue # | Project Name/(Owner)                                              | Zone | e Point of Interconnection T      |   | COD or I/S Date | Summer<br>Peak<br>MW | Notes |
|-------------------------------------|-------------------------------------------------------------------|------|-----------------------------------|---|-----------------|----------------------|-------|
| 617                                 | Watkins Glen Solar<br>Watkins Glen Energy Center, LLC             | С    | Bath - Montour Falls 115kV        | S | 11/2023         | 50.0                 | 2     |
| 720                                 | Trelina Solar Energy Center<br>(Trelina Solar Energy Center, LLC) | с    | Border City - Station 168 115 KV  | S | 11/2023         | 80.0                 | 2     |
| 855                                 | NY13 Solar<br>(Bald Mountain Solar LLC)                           | F    | Mohican - Schaghticoke 115kV      | S | 11/2023         | 20                   |       |
| 495                                 | 495 Mohawk Solar (Mohawk Solar LLC) F                             |      | St. Johnsville - Marshville 115kV | w | 11/2024         | 90.5                 | 2     |

Notes

(1) Only these proposed small generators obtained Capacity Resource Interconnection Service (CRIS) and therefore are modeled for the resource adequacy Base Cases.

(2) All proposed large generators obtained or are assumed to obtain both Energy Resource Interconnection Service (ERIS) and CRIS and are modeled both in transmission security and resource adequacy Base Cases, unless otherwise noted as "ERIS only," in which case they are modeled only for the transmission security assessments.

(3) Large generator, ERIS only

(4) Only Part 1 of this generator is in-service (119.2 MW). The remaining MW is planned to be in-service by December 2023.



#### Figure 2: Status Changes Due to DEC Peaker Rule

|                                     |                               |          |                | CRIS (I | VIW) (1) | Capability | / (MW) (1) |                           |                                           |
|-------------------------------------|-------------------------------|----------|----------------|---------|----------|------------|------------|---------------------------|-------------------------------------------|
| Owner/Operator                      | Station                       | Zone     | Nameplate (MW) | Summer  | Winter   | Summer     | Winter     | Status Change<br>Date (2) | STAR Evaluation<br>or Other<br>Assessment |
| National Grid                       | West Babylon 4 (6) (7)        | К        | 52.4           | 49.0    | 64.0     | 41.2       | 63.4       | 12/12/2020 (R)            | Other                                     |
| National Grid                       | Glenwood GT 01 (4) (7)        | К        | 16.0           | 14.6    | 19.1     | 13.0       | 15.3       | 2/28/2021 (R)             | 2020 Q3                                   |
| Helix Ravenswood, LLC               | Ravenswood 11                 | J        | 25.0           | 20.2    | 25.7     | 16.1       | 22.4       | 12/1/2021 (IIFO)          | 2022 Q1                                   |
| Helix Ravenswood, LLC               | Ravenswood 01                 | J        | 18.6           | 8.8     | 11.5     | 7.7        | 11.1       | 1/1/2022 (IIFO)           | 2022 Q1                                   |
| Astoria Generating Company, L.P.    | Gowanus 1-1 through 1-8       | J        | 160.0          | 138.7   | 181.1    | 133.1      | 182.2      | 11/1/2022 (R)             | 2022 Q2                                   |
| Astoria Generating Company, L.P.    | Gowanus 4-1 through 4-8       | J        | 160.0          | 140.1   | 182.9    | 138.8      | 183.4      | 11/1/2022 (R)             | 2022 Q2                                   |
| Consolidated Edison Co. of NY, Inc. | Hudson Ave 3                  | J        | 16.3           | 16.0    | 20.9     | 12.3       | 15.6       | 11/1/2022 (R)             | 2022 Q2                                   |
| Consolidated Edison Co. of NY, Inc. | Hudson Ave 5                  | J        | 16.3           | 15.1    | 19.7     | 15.3       | 18.6       | 11/1/2022 (R)             | 2022 Q2                                   |
| Central Hudson Gas & Elec. Corp.    | Coxsackie GT (8)              | G        | 21.6           | 21.6    | 26.0     | 19.0       | 23.6       | 5/1/2023                  |                                           |
| Central Hudson Gas & Elec. Corp.    | South Cairo (8)               | G        | 21.6           | 19.8    | 25.9     | 18.7       | 23.1       | 5/1/2023                  |                                           |
| Consolidated Edison Co. of NY, Inc. | 74 St. GT 1 & 2 (10)          | J        | 37.0           | 39.1    | 49.2     | 37.8       | 43.6       | 5/1/2023                  | 2022 Q2                                   |
| Astoria Generating Company, L.P.    | Astoria GT 01                 | J        | 16.0           | 15.7    | 20.5     | 13.4       | 19.1       | 5/1/2023                  | 2022 Q4                                   |
| NRG Power Marketing, LLC            | Astoria GT 2-1, 2-2, 2-3, 2-4 | J        | 186.0          | 165.8   | 204.1    | 138.0      | 184.2      | 5/1/2023 (R)              | 2022 Q2                                   |
| NRG Power Marketing, LLC            | Astoria GT 3-1, 3-2, 3-3, 3-4 | J        | 186.0          | 170.7   | 210.0    | 139.1      | 180.4      | 5/1/2023 (R)              | 2022 Q2                                   |
| NRG Power Marketing, LLC            | Astoria GT 4-1, 4-2, 4-3, 4-4 | J        | 186.0          | 167.9   | 206.7    | 138.5      | 178.6      | 5/1/2023 (R)              | 2022 Q2                                   |
| Helix Ravenswood, LLC               | Ravenswood 10                 | J        | 25.0           | 21.2    | 27.0     | 16.1       | 20.3       | 5/1/2023 (R)              | 2022 Q3                                   |
| National Grid                       | Glenwood GT 03 (3) (4)        | К        | 55.0           | 54.7    | 71.5     | 49.9       | 67.2       | 5/1/2023                  |                                           |
| National Grid                       | Northport GT (9)              | К        | 16.0           | 13.8    | 18.0     | 8.3        | 12.7       | 5/1/2023                  |                                           |
| National Grid                       | Port Jefferson GT 01 (9)      | К        | 16.0           | 14.1    | 18.4     | 13.0       | 15.3       | 5/1/2023                  |                                           |
| National Grid                       | Shoreham 1 (3) (4)            | К        | 52.9           | 48.9    | 63.9     | 41.3       | 61.4       | 5/1/2023                  |                                           |
| National Grid                       | Shoreham 2 (3) (4)            | К        | 18.6           | 18.5    | 23.5     | 16.5       | 20.3       | 5/1/2023                  |                                           |
| Consolidated Edison Co. of NY, Inc. | 59 St. GT 1                   | J        | 17.1           | 15.4    | 20.1     | 13.1       | 18.8       | 5/1/2025                  |                                           |
| NRG Power Marketing, LLC            | Arthur Kill GT 1              | J        | 20.0           | 16.5    | 21.6     | 12.3       | 15.8       | 5/1/2025                  |                                           |
| Astoria Generating Company, L.P.    | Gowanus 2-1 through 2-8 (5)   | J        | 160.0          | 152.8   | 199.6    | 142.1      | 182.0      | 5/1/2025                  |                                           |
| Astoria Generating Company, L.P.    | Gowanus 3-1 through 3-8 (5)   | J        | 160.0          | 146.8   | 191.7    | 136.9      | 179.9      | 5/1/2025                  |                                           |
| Astoria Generating Company, L.P.    | Narrows 1-1 through 2-8 (5)   | J        | 352.0          | 309.1   | 403.6    | 285.9      | 369.2      | 5/1/2025                  |                                           |
|                                     | Prior to Sum                  | mer 2022 | 112.0          | 92.6    | 120.3    | 78.0       | 112.2      |                           |                                           |
|                                     | Prior to Sum                  | mer 2023 | 1,190.3        | 1,081.7 | 1,369.3  | 949.1      | 1,249.6    | 7                         |                                           |
|                                     | Prior to Sum                  | mer 2025 | 709.1          | 640.6   | 836.6    | 590.3      | 765.7      | 7                         |                                           |
|                                     |                               | Total    | 2,011.4        | 1,814.9 | 2,326.2  | 1,617.4    | 2,127.5    | 7                         |                                           |

Notes

1. MW values are from the 2023 Load and Capacity Data Report

2. Dates identified by generators in their DEC Peaker Rule compliance plan submittals for transitioning the facility to Retired, Blackstart, or will be out-of-service in the summer ozone season or the date in which the generator entered (or proposed to enter) Retired (R) or Mothball Outage (MO) or the date on which the generator entered ICAP Ineligible Forced Outage (IIFO)

3. Generator changed DEC peaker rule compliance plan as compared to the 2020 RNA and all STARs prior to 2021 Q3

4. Long Island Power Authority (LIPA) has submitted notifications to the DEC per part 227-3 of the peaker rule stating that these units are needed for reliability allowing these units to operate until at least May 1, 2025. Due to the future nature of these units being operated only as designated by the operator as an emergency operating procedure the NYISO will continue to plan for these units be unavailable starting May 2023

5. These units have indicated they will be out-of-service during the ozone season (May through September) in their compliance plans in response to the DEC peaker rule.

6. This unit was evaluated in a stand-alone generator deactivation assessment prior to the creation of the Short-Term Reliability Process

7. Unit operating as a load modifier

8. Central Hudson submitted notification to the DEC per part 227-3 of the peaker rule stating these units are needed for reliability. The most recent LTP update from Central Hudson notes the planned retirement of South Cairo and Coxsakie generators in December 2024. https://www.nyiso.com/documents/20142/26630522/Local-Transmission-Plan-2021.pdf/

9. On May 24, 2023 National Grid notified the New York State Public Service Commission that these units have been classified as black-start only units.

10. Unit no longer subject to NYISO dispatch and is used for local reliability only

In addition to the projects that met the reliability planning base case inclusion rules, a number of other projects are progressing through the <u>NYISO's interconnection process</u> but have not yet met the applicable inclusion rules. Some of these additional generation resources have (a) accepted their cost allocation as part of a completed Class Year Interconnection Facilities Study, (b) are included in the ongoing 2023 Class Year Interconnection Facilities Study, (b) are included in the ongoing 2023 Class Year Interconnection Facilities Study, or (c) are candidates for future interconnection facilities studies. The most recent list of these more advanced projects is contained in Table IV-1 of the 2023 *Load and Capacity Data Report* (Gold Book),<sup>5</sup> and a summary is below:

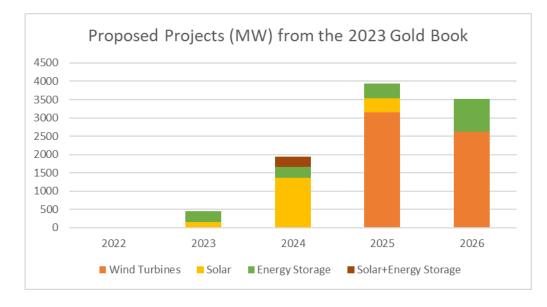



Figure 3: Total MW Nameplate of Proposed Projects not yet Included in the Reliability Planning Models

<sup>&</sup>lt;sup>5</sup> 2023 Load and Capacity Date Report (Gold Book), available at: <u>https://www.nyiso.com/documents/20142/2226333/2023-Gold-Book-Public.pdf</u>.



#### Appendix C – Transmission Security Margins (Tipping Points)

#### Introduction

The purpose of this assessment is to identify plausible changes in conditions or assumptions that might adversely impact the reliability of the system. In June 23, 2022, the Operating Committee approved revisions to the Reliability Planning Process Manual that, among other things, included this assessment that would use powerflow simulations combined with post-processing spreadsheet-based calculations of transmission security margins (a.k.a. "tipping points") within the Lower Hudson Valley (Zones G-J), New York City (Zone J), and Long Island (Zone K) localities; modeling intermittent resources according to their expected availability coincident with the represented system condition; and accounting for the availability of thermal generation based on NERC class average five-year outage rate data in transmission security assessments.<sup>6</sup>

Under this transmission security margins assessment, the NYISO evaluates the margins statewide, as well as Lower Hudson Valley, New York City, and Long Island localities. As transmission security analysis represents discrete snapshots in time of various credible combinations of system conditions, only the magnitude of a reliability need can be identified under those system conditions. Additional details are required to fully describe the nature of the need, such as evaluating the hourly demand shape and its impact on the need. The NYISO identifies a BPTF reliability need when the transmission security margin under expected weather conditions (a) in the Lower Hudson Valley, New York City, and Long Island localities is less than zero or (b) when the statewide system margin is less than zero. Additional details regarding the impact of heatwave, extreme heatwave, or other scenario conditions are provided for informational purposes.

In this CRP, the NYISO performed this assessment using input from the 2023 Gold Book and the projects that meet the 2022 RNA base case inclusion rules with consideration of updates for the quarterly Short-Term Reliability Process.

#### New York Control Area Statewide System Margins

The statewide system margin for the New York Control Area (NYCA) is evaluated under baseline expected summer peak demand forecasts, which includes expected weather for summer and winter conditions with normal transfer criteria. Under current applicable reliability rules and procedures, a Reliability Need would be identified when the statewide margin is negative for the base case assumptions

<sup>&</sup>lt;sup>6</sup> NYISO Reliability Planning Manual at pp 27-29, available (<u>here</u>).

(i.e., baseline summer peak coincident peak ("summer peak") demand, expected weather, normal transfer criteria). The statewide system margin is the ability to meet the forecasted demand and largest loss-ofsource contingency (*i.e.*, total capacity requirement) against the NYCA generation (including derates) and external area interchange. The NYCA generation (from line-item A) is comprised of the existing generation plus additions of future generation resources that meet the reliability planning process base case inclusion rules less the removal of deactivating generation and peaker units. Consistent with current transmission planning practices for transmission security, the NYISO assumed the following for the summer capability period: (1) land-based wind generation is assumed at a 5% of nameplate output and off-shore wind is assumed at 10% of nameplate output, (2) run-of-river hydro is reduced consistent with its average capacity factor, and (3) wholesale solar generation is dispatched based on the ratio of behind-the-meter solar generation ("BtM-PV") BtM solar nameplate capacity and BtM-PV peak reductions stated in the 2023 Gold Book. For the winter capability period: (1) land-based wind generation is assumed at 10% of nameplate output and off-shore wind is 15% of nameplate output, (2) run-of-river hydro is reduced consistent with its average capacity factor, and (3) wholesale solar generation is dispatched at 0 MW for winter peak. Derates for thermal resources based on their NERC five-year class average EFORd are also included.<sup>7</sup> Additionally, the NYCA generation includes the Oswego export limit with all lines in service.

Transmission security analysis represents discrete snapshots in time of various credible combinations of system conditions. When reliability needs are identified, only the magnitude of the need is identified (*e.g.*, a thermal overload expressed in terms of percentage of the applicable rating) under the studied system conditions. Additional details are required to fully describe the nature of the need, such as evaluating the hourly demand shape and its impact on the need. For example, in the 2020 Reliability Needs Assessment,<sup>8</sup> there is information detailing various contingency combinations resulting in thermal overloads within New York City (*see, e.g.*, 2020 RNA Figure 26). To fully describe the nature of these needs, demand-duration shapes were developed for the areas in which needs were observed (*see, e.g.*, 2020 RNA Figure 27).

To describe the nature of the statewide system margins under expected summer peak, heatwave, and extreme heatwave conditions more fully, demand shapes are developed to reflect the expected behavior of the demand over 24 hours on the summer peak day for the 10-year study horizon. Details of the demand shapes are provided later in this appendix. For this assessment, demand shapes were not developed past 2033 and have only been developed for the summer condition.

<sup>7</sup>NERC five-year class average EFORd data

<sup>82020</sup> Reliability Needs Assessment

Baseline peak forecasts and demand shapes assume expected (approximately average) peak day weather. The heatwave and extreme heatwave conditions are defined by the 90<sup>th</sup> and 99<sup>th</sup> percentile summer peak forecasts documented in the Gold Book, respectively. The baseline and percentile summer peak forecasts utilize a cumulative temperature and humidity index, which reflects a weighted average of weather conditions on the peak day and the two preceding days and is based on the historical distribution of peak-day weather. The peak demand forecasts incorporate the projected impacts of increasing temperature trends throughout the forecast horizon. In general, a heatwave (1-in-10-year or 90/10) has a statewide average maximum temperature of 95 degrees Fahrenheit. An extreme heatwave (1-in-100-year or 99/1) has a statewide average maximum temperature of 98 degrees Fahrenheit.

As shown in **Figure 4**, under summer peak demand with expected weather with normal transfer criteria, the statewide system margin (line-item I) ranges between 428 MW in 2024 to 531 MW in 2033. The annual fluctuations are driven by the decreases in NYCA generation (line-item A) and in the demand forecast (line-item F). The narrowest statewide system margin is 95 MW in summer 2025. The impact of the large load queue project forecast ranges from 480 MW in 2024 to 589 MW in 2033 (line-item G). The NYISO performed an additional sensitivity evaluation for informational purposes shown in **Figure 4**, representing the impact of maintaining the full operating reserve within the NYCA (line-item N) on the statewide system margin with full operating reserve is deficient in the first few years (2023 through 2025) under summer peak conditions until the Champlain Hudson Power Express (CHPE) project enters service by summer 2026.<sup>9</sup>

Utilizing the demand shapes for the baseline summer peak demand day with expected weather (**Figure 92**), the statewide system margin for each hour utilizing normal transfer criteria is shown in **Figure 5**. The statewide system margin for each hour is created by using the demand forecast for each hour in the margin calculation (*e.g.*, **Figure 4** line-item F) with additional adjustments in NYCA generation to account for the appropriate derate for solar generation and energy limited resources in each hour (*e.g.*, **Figure 4** line-item B). All other values in the margin calculations are held constant. A graphical representation of the hourly margin for years 2024, 2025, 2028, and 2033 is shown in **Figure 6**. These years are selected due to the DEC Peaker Rule impacts in 2025 along with the year 5 representation (2028) and the last year of the ten-year study horizon for the reliability planning process. For all years in the 10-year study horizon, there are no observed deficiencies considering the statewide coincident peak day demand shape.

<sup>&</sup>lt;sup>9</sup> The CHPE project is currently planned to enter service in May 2026.

It is possible for other combinations of events, such as a 1-in-10-year heatwave<sup>10</sup> ("heatwave") or 1-in-100-year extreme heatwave<sup>11</sup> ("extreme heatwave") to result in a deficient statewide system margin. Figure 7 shows the statewide system margin for heatwave condition under the assumption that the system is using emergency transfer criteria. Although system transmission security is not currently designed under these conditions, Figure 7 shows that insufficient margin exists for in the first few years (2024 and 2025) under summer peak conditions until the CHPE project is in service (line-item K). In 2024, the system is deficient by 745 MW, which worsens to 1,062 MW in 2025. The larger deficiency is primarily due to the reduction in NYCA generation along with demand growth. In 2026, with CHPE in service, the margin returns positive to 327 MW. However, by 2032 the margin again becomes deficient at 237 MW and worsens to a deficiency of 667 MW by 2033. Additionally, Figure 7 also shows the statewide system margin with full operating reserve under heatwave conditions (line-item M). Under this sensitivity there is insufficient margin for all study years.

Utilizing the demand shape for the 1-in-10-year heatwave (**Figure 98**), the statewide system margin for each hour utilizing emergency transfer criteria is shown in **Figure 8**. Under the 1-in-10-year heatwave conditions, the deficiency for the 1-in-10-year heatwave peak day in 2024, shown in Figure 7 at the statewide coincident peak hour, is 1,062 MW. **Figure 8** shows that the system is deficient in nine hours with a total deficiency in the 24-hour period of 8,033 MWh. For years 2026 through 2030, the margin curve for each hour remains sufficient. **Figure 9** provides a graphical representation of the statewide system margin curve for heatwave conditions for the heatwave peak day in summers 2024, 2025, 2028, and 2033.

For the statewide system margin in a 1-in-100-year extreme heatwave, Figure 10 shows that there is insufficient statewide system margin as early as 2024 by 2,453 MW (line-item K). The margin improves in summer 2026 with the CHPE project in service; however, the margin remains deficient for the entire study period. In 2026, the deficiency is 1,359 MW. By 2033, the deficiency worsens to 2,396 MW. These issues are exacerbated with consideration of full operating reserve (line-item M).

Utilizing the demand shape for the 1-in-100-year extreme heatwave (Figure 103), the statewide system margin for each hour utilizing emergency transfer criteria is shown in **Figure 11**. Under the 1-in-100-year extreme heatwave conditions, the deficiency for the extreme heatwave day in summer 2025 shown in Figure 10 as 2,756 MW is seen over 12 hours (23,840 MWh). With the in-service status of CHPE by summer 2026, the deficiency observed for the extreme heatwave day in summer 2026 improves to eight hours (8,897 MWh). By 2033, the extreme heatwave days deficiency extends to nine hours (13,321 MWh).

<sup>&</sup>lt;sup>10</sup> The load forecast utilized for the heatwave condition is the 90<sup>th</sup> percentile (or 90/10) expected load forecast.

<sup>&</sup>lt;sup>11</sup> The load forecast utilized for the extreme heatwave condition is the 99<sup>th</sup> percentile (or 99/1) expected load forecast.

**Figure 12** provides a graphical representation of the statewide system margin curve for heatwave conditions for the peak day in years 2024, 2025, 2028, and 2033. Figure 13 shows the statewide system margin under winter peak demand and expected weather, using normal transfer criteria. For winter peak, the statewide system margin ranges from 9,668 MW in winter 2024-25 to 1,676 MW in winter 2033-34 (line-item J). Under the additional sensitivity evaluation of maintaining the full operating reserve in the NYCA shown in Figure 13, all years are also shown to be sufficient.

Cold snap and extreme cold snap conditions are defined by the 90<sup>th</sup> and 99<sup>th</sup> percentile winter peak forecasts, respectively, which are documented in the 2023 Gold Book. The baseline and percentile winter peak forecasts utilize the historical distribution of winter peak day temperature. In general, a cold snap (1in-10-year or 90/10) reflects a statewide daily average temperature of 5 degrees Fahrenheit. An extreme cold snap (1-in-100-year or 99/1) reflects a statewide daily average temperature of -2 degrees Fahrenheit.

Figure 14 shows the statewide system margin in a 1-in-10-year cold snap ("cold snap") utilizing emergency transfer criteria.<sup>12</sup> Under this condition, the margin is sufficient for all study years (line-item K) and ranges from 9,132 MW in winter 2024-25 to 805 MW in winter 2033-34. Additionally, Figure 14 shows the statewide system margin with full operating reserve, which is also sufficient for all study years until 2033-34 which is deficient by 505 MW.

Figure 15 shows the statewide system margin in a 1-in-100-year extreme cold snap ("extreme cold snap") utilizing emergency transfer criteria.<sup>13</sup> Under this condition the margin is sufficient for all study years (line-item K) until winter 2033-34 which is deficient by 1,572 MW. Additionally, Figure 15 shows the statewide system margin with full operating reserve which is also sufficient for all study years (line-item M) through winter 2031-32. In winter 2032-33, the margin is deficient by 1,267 MW and worsens to 2,882 MW in the following winter.

Figure 16 provides a summary of the summer peak statewide system margins under expected weather, heatwave, and extreme heatwave conditions. Figure 17 Provides a summary of the winter peak statewide system margins under expected weather, cold snap, and extreme cold snap conditions. Figure 18 provides a summary of the statewide system margin with the summer peak baseline demand range from the lower and higher policy demand forecast scenarios.

<sup>&</sup>lt;sup>12</sup> The load forecast utilized for the cold snap condition is the winter 90<sup>th</sup> percentile (or 90/10) expected load forecast.

<sup>&</sup>lt;sup>13</sup> The load forecast utilized for the extreme cold snap condition is the winter 99<sup>th</sup> percentile (or 99/1) expected load forecast.



#### Figure 4: Statewide System Margin (Summer Peak - Expected Weather, Normal Transfer Criteria)

|      |                                                               | Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) |          |          |          |          |          |          |          |          |          |
|------|---------------------------------------------------------------|-------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Line | Item                                                          | 2024                                                                          | 2025     | 2026     | 2027     | 2028     | 2029     | 2030     | 2031     | 2032     | 2033     |
| Α    | NYCA Generation (1)                                           | 38,041                                                                        | 38,266   | 38,266   | 38,266   | 38,266   | 38,266   | 38,266   | 38,266   | 38,266   | 38,266   |
| В    | NYCA Generation Derates (2)                                   | (5,903)                                                                       | (6,554)  | (6,568)  | (6,581)  | (6,594)  | (6,607)  | (6,607)  | (6,621)  | (6,634)  | (6,634)  |
| С    | Temperature Based Generation Derates                          | 0                                                                             | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| D    | External Area Interchanges (3)                                | 1,844                                                                         | 1,844    | 3,094    | 3,094    | 3,094    | 3,094    | 3,094    | 3,094    | 3,094    | 3,094    |
| E    | Total Resources (A+B+C+D)                                     | 33,981                                                                        | 33,555   | 34,792   | 34,779   | 34,766   | 34,752   | 34,752   | 34,739   | 34,726   | 34,726   |
|      |                                                               |                                                                               |          |          |          |          |          |          |          |          |          |
| F    | Demand Forecast (5)                                           | (31,763)                                                                      | (31,626) | (31,436) | (31,292) | (31,164) | (31,126) | (31,266) | (31,526) | (31,886) | (32,296) |
| G    | G Large Load Forecast (6)                                     |                                                                               | (524)    | (569)    | (589)    | (589)    | (589)    | (589)    | (589)    | (589)    | (589)    |
| н    | Largest Loss-of-Source Contingency                            | (1,310)                                                                       | (1,310)  | (1,310)  | (1,310)  | (1,310)  | (1,310)  | (1,310)  | (1,310)  | (1,310)  | (1,310)  |
| I.   | I Total Capability Requirement (F+G+H)                        |                                                                               | (33,460) | (33,315) | (33,191) | (33,063) | (33,025) | (33,165) | (33,425) | (33,785) | (34,195) |
|      |                                                               |                                                                               |          |          |          |          |          |          |          |          |          |
| J    | Statewide System Margin (E+I)                                 | 428                                                                           | 95       | 1,477    | 1,588    | 1,703    | 1,727    | 1,587    | 1,314    | 941      | 531      |
| К    | SCRs (7)                                                      | 860                                                                           | 860      | 860      | 860      | 860      | 860      | 860      | 860      | 860      | 860      |
| L    | Statewide System Margin with SCR (J+K)                        | 1,289                                                                         | 956      | 2,337    | 2,448    | 2,563    | 2,588    | 2,448    | 2,175    | 1,801    | 1,391    |
| М    | M Operating Reserve                                           |                                                                               | (1,310)  | (1,310)  | (1,310)  | (1,310)  | (1,310)  | (1,310)  | (1,310)  | (1,310)  | (1,310)  |
| Ν    | Statewide System Margin with Full Operating Reserve (L+M) (4) | (21)                                                                          | (354)    | 1,027    | 1,138    | 1,253    | 1,278    | 1,138    | 865      | 491      | 81       |

Notes:

1. Reflects the 2023 Gold Book existing summer capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 10% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022

(https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. Interchanges are based on ERAG MMWG values.


4. For informational purposes.

5. Reflects the 2023 Gold Book Forecast without the impact of the large load queue projects included.


6. Forecast of large load queue projects included in this assessment (Q0580 - WNY STAMP, Q0776 - Greenidge, Q0849 - Somerset, Q0580 - Cayuga, Q0979 - North Country Data Center).

7. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.


8. Includes a derate of 364 MW for SCRs.




| Statew                                                                  | (MW)                   |                                                     |                                                                                  |       |       |       |       |       |       |       |      |      |  |
|-------------------------------------------------------------------------|------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|------|------|--|
| Year                                                                    |                        |                                                     | 2024                                                                             | 2025  | 2026  | 2027  | 2028  | 2029  | 2030  | 2031  | 2032 | 2033 |  |
| Statewide System Margin Summer Peak - I<br>Weather, Normal Transfer Cri |                        | -                                                   | 428                                                                              | 95    | 1,477 | 1,588 | 1,703 | 1,727 | 1,587 | 1,314 | 941  | 531  |  |
| Unit Name                                                               | Summer<br>DMNC<br>(MW) | NERC 5-<br>Year Class<br>Average<br>De-Rate<br>(MW) | Transmission Security Margin Impact of Generator Outage (Retire, Mothball, IIFO) |       |       |       |       |       |       |       |      |      |  |
| Lockport CC1, CC2, and CC3                                              | 207.3                  | (8.42)                                              | 229                                                                              | (104) | 1,278 | 1,389 | 1,504 | 1,528 | 1,388 | 1,115 | 742  | 332  |  |
| Lockport CC1                                                            | 69.1                   | (2.81)                                              | 362                                                                              | 29    | 1,411 | 1,521 | 1,636 | 1,661 | 1,521 | 1,248 | 875  | 465  |  |
| Lockport CC2                                                            | 69.1                   | (2.81)                                              | 362                                                                              | 29    | 1,411 | 1,521 | 1,636 | 1,661 | 1,521 | 1,248 | 875  | 465  |  |
| Lockport CC3                                                            | 69.1                   | (2.81)                                              |                                                                                  |       |       |       |       |       |       |       |      |      |  |
| American Ref-Fuel 1 & 2                                                 | 35.8                   | (3.54)                                              | 396                                                                              | 63    | 1,445 | 1,555 | 1,670 | 1,695 | 1,555 | 1,282 | 909  | 499  |  |
| American Ref-Fuel 1                                                     | 17.9                   | (1.77)                                              | 412                                                                              | 79    | 1,461 | 1,572 | 1,686 | 1,711 | 1,571 | 1,298 | 925  | 515  |  |
| American Ref-Fuel 2                                                     | 17.9                   | (1.77)                                              | 412                                                                              | 79    | 1,461 | 1,572 | 1,686 | 1,711 | 1,571 | 1,298 | 925  | 515  |  |
| Fortistar - N.Tonawanda                                                 | 57.3                   | (2.33)                                              | 373                                                                              | 40    | 1,422 | 1,533 | 1,648 | 1,672 | 1,532 | 1,259 | 886  | 476  |  |
| Chaffee                                                                 | 6.4                    | (0.62)                                              | 423                                                                              | 89    | 1,471 | 1,582 | 1,697 | 1,722 | 1,582 | 1,308 | 935  | 525  |  |
| Indeck-Olean                                                            | 77.2                   | (3.13)                                              | 354                                                                              | 21    | 1,403 | 1,514 | 1,628 | 1,653 | 1,513 | 1,240 | 867  | 457  |  |
| Indeck-Yerkes                                                           | 45.8                   | (1.86)                                              | 384                                                                              | 51    | 1,433 | 1,544 | 1,659 | 1,683 | 1,543 | 1,270 | 897  | 487  |  |
| Chautauqua LFGE                                                         | 0.0                    | 0.00                                                | 428                                                                              | 95    | 1,477 | 1,588 | 1,703 | 1,727 | 1,587 | 1,314 | 941  | 531  |  |
| Jamestown 5, 6 & 7                                                      | 82.3                   | (8.22)                                              | 354                                                                              | 21    | 1,403 | 1,514 | 1,628 | 1,653 | 1,513 | 1,240 | 867  | 457  |  |
| Jamestown 7                                                             | 40.4                   | (4.07)                                              | 392                                                                              | 59    | 1,441 | 1,551 | 1,666 | 1,691 | 1,551 | 1,278 | 905  | 495  |  |
| Jamestown 5                                                             | 22.4                   | (2.22)                                              | 408                                                                              | 75    | 1,457 | 1,568 | 1,682 | 1,707 | 1,567 | 1,294 | 921  | 511  |  |
| Jamestown 6                                                             | 19.5                   | (1.93)                                              | 411                                                                              | 78    | 1,459 | 1,570 | 1,685 | 1,710 | 1,570 | 1,296 | 923  | 513  |  |
| Model City Energy                                                       | 5.6                    | (0.54)                                              | 423                                                                              | 90    | 1,472 | 1,583 | 1,697 | 1,722 | 1,582 | 1,309 | 936  | 526  |  |
| Modern LF                                                               | 6.4                    | (0.62)                                              | 423                                                                              | 89    | 1,471 | 1,582 | 1,697 | 1,722 | 1,582 | 1,308 | 935  | 525  |  |
| Mill Seat                                                               | 6.4                    | (0.62)                                              | 423                                                                              | 89    | 1,471 | 1,582 | 1,697 | 1,722 | 1,582 | 1,308 | 935  | 525  |  |
| Synergy Biogas                                                          | 0.0                    | 0.00                                                | 428                                                                              | 95    | 1,477 | 1,588 | 1,703 | 1,727 | 1,587 | 1,314 | 941  | 531  |  |
| Hyland LFGE                                                             | 4.8                    | (0.46)                                              | 424                                                                              | 91    | 1,473 | 1,583 | 1,698 | 1,723 | 1,583 | 1,310 | 936  | 526  |  |
| R. E. Ginna                                                             | 580.3                  | (11.08)                                             | (141)                                                                            | (474) | 908   | 1,019 | 1,133 | 1,158 | 1,018 | 745   | 372  | (38) |  |
| Red Rochester (BTM:NG)                                                  | 12.5                   | (1.24)                                              | 417                                                                              | 84    | 1,466 | 1,576 | 1,691 | 1,716 | 1,576 | 1,303 | 930  | 520  |  |
| Allegany                                                                | 62.2                   | (2.53)                                              | 369                                                                              | 36    | 1,417 | 1,528 | 1,643 | 1,668 | 1,528 | 1,254 | 881  | 471  |  |




| Statewide System Margin Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) |                        |                                                     |       |         |              |             |             |            |              |             |         |       |  |
|-------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------|-------|---------|--------------|-------------|-------------|------------|--------------|-------------|---------|-------|--|
| Year                                                                                                  |                        |                                                     | 2024  | 2025    | 2026         | 2027        | 2028        | 2029       | 2030         | 2031        | 2032    | 2033  |  |
| Statewide System Margin Summer Peak - F<br>Weather, Normal Transfer Cri                               |                        | ed Summer                                           | 428   | 95      | 1,477        | 1,588       | 1,703       | 1,727      | 1,587        | 1,314       | 941     | 531   |  |
| Unit Name                                                                                             | Summer<br>DMNC<br>(MW) | NERC 5-<br>Year Class<br>Average<br>De-Rate<br>(MW) |       | Transm  | iission Secu | rity Margin | Impact of G | enerator O | utage (Retir | e, Mothball | , IIFO) |       |  |
| Batavia                                                                                               | 47.8                   | (1.94)                                              | 383   | 49      | 1,431        | 1,542       | 1,657       | 1,681      | 1,541        | 1,268       | 895     | 485   |  |
| Carr StE. Syr                                                                                         | 86.5                   | (3.51)                                              | 345   | 12      | 1,394        | 1,505       | 1,620       | 1,644      | 1,504        | 1,231       | 858     | 448   |  |
| Syracuse                                                                                              | 87.1                   | (3.54)                                              | 345   | 12      | 1,393        | 1,504       | 1,619       | 1,644      | 1,504        | 1,230       | 857     | 447   |  |
| Broome LFGE                                                                                           | 2.4                    | (0.23)                                              |       |         |              |             |             |            |              |             |         |       |  |
| Broome 2 LFGE                                                                                         | 2.1                    | (0.20)                                              |       |         |              |             |             |            |              |             |         |       |  |
| Independence GS1, GS2, GS3, & GS4                                                                     | 958.8                  | (38.93)                                             | (491) | (825)   | 557          | 668         | 783         | 807        | 667          | 394         | 21      | (389) |  |
| Independence GS1                                                                                      | 239.7                  | (9.73)                                              | 198   | (135)   | 1,247        | 1,358       | 1,473       | 1,497      | 1,357        | 1,084       | 711     | 301   |  |
| Independence GS2                                                                                      | 239.7                  | (9.73)                                              | 198   | (135)   | 1,247        | 1,358       | 1,473       | 1,497      | 1,357        | 1,084       | 711     | 301   |  |
| Independence GS3                                                                                      | 239.7                  | (9.73)                                              | 198   | (135)   | 1,247        | 1,358       | 1,473       | 1,497      | 1,357        | 1,084       | 711     | 301   |  |
| Independence GS4                                                                                      | 239.7                  | (9.73)                                              | 198   | (135)   | 1,247        | 1,358       | 1,473       | 1,497      | 1,357        | 1,084       | 711     | 301   |  |
| Greenidge 4 (BTM:NG)                                                                                  | 24.0                   | (2.38)                                              | 407   | 74      | 1,455        | 1,566       | 1,681       | 1,706      | 1,566        | 1,292       | 919     | 509   |  |
| James A. FitzPatrick                                                                                  | 831.3                  | (18.04)                                             | (385) | (718)   | 664          | 774         | 889         | 914        | 774          | 501         | 128     | (282) |  |
| High Acres                                                                                            | 9.6                    | (0.93)                                              | 420   | 87      | 1,468        | 1,579       | 1,694       | 1,719      | 1,579        | 1,305       | 932     | 522   |  |
| Indeck-Silver Springs                                                                                 | 52.6                   | (2.14)                                              | 378   | 45      | 1,427        | 1,537       | 1,652       | 1,677      | 1,537        | 1,264       | 890     | 480   |  |
| Indeck-Oswego                                                                                         | 52.7                   | (2.14)                                              | 378   | 45      | 1,426        | 1,537       | 1,652       | 1,677      | 1,537        | 1,263       | 890     | 480   |  |
| Nine Mile Point 2                                                                                     | 1,272.1                | (27.60)                                             | (816) | (1,149) | 232          | 343         | 458         | 483        | 343          | 70          | (304)   | (714) |  |
| Nine Mile Point 1                                                                                     | 620.9                  | (13.47)                                             | (179) | (512)   | 870          | 980         | 1,095       | 1,120      | 980          | 707         | 333     | (77)  |  |
| Oswego 6                                                                                              | 823.4                  | (81.52)                                             | (314) | (647)   | 735          | 846         | 961         | 985        | 845          | 572         | 199     | (211) |  |
| Oswego 5                                                                                              | 798.1                  | (79.01)                                             | (291) | (624)   | 758          | 869         | 983         | 1,008      | 868          | 595         | 222     | (188) |  |
| Seneca Energy 1 & 2                                                                                   | 17.6                   | (1.70)                                              | 412   | 79      | 1,461        | 1,572       | 1,687       | 1,711      | 1,571        | 1,298       | 925     | 515   |  |
| Ontario LFGE                                                                                          | 11.2                   | (1.08)                                              | 418   | 85      | 1,467        | 1,578       | 1,692       | 1,717      | 1,577        | 1,304       | 931     | 521   |  |
| Seneca Energy 1                                                                                       | 8.8                    | (0.85)                                              | 420   | 87      | 1,469        | 1,580       | 1,695       | 1,719      | 1,579        | 1,306       | 933     | 523   |  |
| Seneca Energy 2                                                                                       | 8.8                    | (0.85)                                              | 420   | 87      | 1,469        | 1,580       | 1,695       | 1,719      | 1,579        | 1,306       | 933     | 523   |  |
| Clinton LFGE                                                                                          | 6.4                    | (0.62)                                              | 423   | 89      | 1,471        | 1,582       | 1,697       | 1,722      | 1,582        | 1,308       | 935     | 525   |  |




| Statewide System Margin Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) |                        |                                                     |       |        |             |             |             |            |              |              |       |       |  |
|-------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------|-------|--------|-------------|-------------|-------------|------------|--------------|--------------|-------|-------|--|
| Year                                                                                                  |                        |                                                     | 2024  | 2025   | 2026        | 2027        | 2028        | 2029       | 2030         | 2031         | 2032  | 2033  |  |
| Statewide System Margin Summer Peak - E<br>Weather, Normal Transfer Crit                              |                        | ed Summer                                           | 428   | 95     | 1,477       | 1,588       | 1,703       | 1,727      | 1,587        | 1,314        | 941   | 531   |  |
| Unit Name                                                                                             | Summer<br>DMNC<br>(MW) | NERC 5-<br>Year Class<br>Average<br>De-Rate<br>(MW) |       | Transm | ission Secu | rity Margin | Impact of G | enerator O | utage (Retir | e, Mothball, | IIFO) |       |  |
| Massena                                                                                               | 79.9                   | (3.24)                                              | 352   | 19     | 1,400       | 1,511       | 1,626       | 1,651      | 1,511        | 1,237        | 864   | 454   |  |
| Saranac Energy CC1 & CC2                                                                              | 235.5                  | (9.56)                                              | 202   | (131)  | 1,251       | 1,362       | 1,477       | 1,501      | 1,361        | 1,088        | 715   | 305   |  |
| Saranac Energy CC2                                                                                    | 124.9                  | (5.07)                                              | 309   | (25)   | 1,357       | 1,468       | 1,583       | 1,607      | 1,467        | 1,194        | 821   | 411   |  |
| Saranac Energy CC1                                                                                    | 110.6                  | (4.49)                                              | 322   | (11)   | 1,371       | 1,482       | 1,596       | 1,621      | 1,481        | 1,208        | 835   | 425   |  |
| Beaver Falls                                                                                          | 80.3                   | (3.26)                                              | 351   | 18     | 1,400       | 1,511       | 1,625       | 1,650      | 1,510        | 1,237        | 864   | 454   |  |
| Oneida-Herkimer LFGE                                                                                  | 3.2                    | (0.31)                                              | 425   | 92     | 1,474       | 1,585       | 1,700       | 1,724      | 1,584        | 1,311        | 938   | 528   |  |
| DANC LFGE                                                                                             | 6.4                    | (0.62)                                              | 423   | 89     | 1,471       | 1,582       | 1,697       | 1,722      | 1,582        | 1,308        | 935   | 525   |  |
| Carthage Energy                                                                                       | 55.6                   | (2.26)                                              | 375   | 42     | 1,424       | 1,534       | 1,649       | 1,674      | 1,534        | 1,261        | 887   | 477   |  |
| Sterling                                                                                              | 48.3                   | (1.96)                                              | 382   | 49     | 1,431       | 1,541       | 1,656       | 1,681      | 1,541        | 1,268        | 894   | 484   |  |
| Albany LFGE                                                                                           | 5.6                    | (0.54)                                              | 423   | 90     | 1,472       | 1,583       | 1,697       | 1,722      | 1,582        | 1,309        | 936   | 526   |  |
| Castleton Energy Center                                                                               | 66.1                   | (2.68)                                              | 365   | 32     | 1,414       | 1,524       | 1,639       | 1,664      | 1,524        | 1,251        | 877   | 467   |  |
| Selkirk I & II                                                                                        | 350.6                  | (14.23)                                             | 92    | (241)  | 1,141       | 1,251       | 1,366       | 1,391      | 1,251        | 978          | 604   | 194   |  |
| Selkirk-II                                                                                            | 275.9                  | (11.20)                                             | 164   | (169)  | 1,212       | 1,323       | 1,438       | 1,463      | 1,323        | 1,049        | 676   | 266   |  |
| Rensselaer                                                                                            | 77.0                   | (3.13)                                              | 355   | 21     | 1,403       | 1,514       | 1,629       | 1,653      | 1,513        | 1,240        | 867   | 457   |  |
| Selkirk-I                                                                                             | 74.7                   | (3.03)                                              | 357   | 24     | 1,405       | 1,516       | 1,631       | 1,656      | 1,516        | 1,242        | 869   | 459   |  |
| Empire CC1 & CC2                                                                                      | 586.6                  | (23.82)                                             | (134) | (468)  | 914         | 1,025       | 1,140       | 1,165      | 1,025        | 751          | 378   | (32)  |  |
| Empire CC1                                                                                            | 293.3                  | (11.91)                                             | 147   | (186)  | 1,196       | 1,306       | 1,421       | 1,446      | 1,306        | 1,033        | 659   | 249   |  |
| Empire CC2                                                                                            | 293.3                  | (11.91)                                             | 147   | (186)  | 1,196       | 1,306       | 1,421       | 1,446      | 1,306        | 1,033        | 659   | 249   |  |
| Indeck-Corinth                                                                                        | 128.4                  | (5.21)                                              | 305   | (28)   | 1,354       | 1,465       | 1,579       | 1,604      | 1,464        | 1,191        | 818   | 408   |  |
| Colonie LFGTE                                                                                         | 6.4                    | (0.62)                                              | 423   | 89     | 1,471       | 1,582       | 1,697       | 1,722      | 1,582        | 1,308        | 935   | 525   |  |
| Fulton LFGE                                                                                           | 3.2                    | (0.31)                                              | 425   | 92     | 1,474       | 1,585       | 1,700       | 1,724      | 1,584        | 1,311        | 938   | 528   |  |
| Athens 1, 2, and 3                                                                                    | 990.5                  | (40.21)                                             | (522) | (855)  | 527         | 637         | 752         | 777        | 637          | 364          | (9)   | (419) |  |
| Athens 3                                                                                              | 331.3                  | (13.45)                                             | 111   | (223)  | 1,159       | 1,270       | 1,385       | 1,409      | 1,269        | 996          | 623   | 213   |  |
| Athens 1                                                                                              | 329.6                  | (13.38)                                             | 112   | (221)  | 1,161       | 1,272       | 1,386       | 1,411      | 1,271        | 998          | 625   | 215   |  |




| Statewide System Margin Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) |                        |                                                     |       |        |              |             |             |            |              |             |         |       |
|-------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------|-------|--------|--------------|-------------|-------------|------------|--------------|-------------|---------|-------|
| Year                                                                                                  |                        |                                                     | 2024  | 2025   | 2026         | 2027        | 2028        | 2029       | 2030         | 2031        | 2032    | 2033  |
| Statewide System Margin Summer Peak - F<br>Weather, Normal Transfer Cri                               |                        | ed Summer                                           | 428   | 95     | 1,477        | 1,588       | 1,703       | 1,727      | 1,587        | 1,314       | 941     | 531   |
| Unit Name                                                                                             | Summer<br>DMNC<br>(MW) | NERC 5-<br>Year Class<br>Average<br>De-Rate<br>(MW) |       | Transm | iission Secu | rity Margin | Impact of G | enerator O | utage (Retir | e, Mothball | . IIFO) |       |
| Athens 2                                                                                              | 329.6                  | (13.38)                                             | 112   | (221)  | 1,161        | 1,272       | 1,386       | 1,411      | 1,271        | 998         | 625     | 215   |
| Bethlehem GS1, GS2, GS3                                                                               | 818.7                  | (33.24)                                             | (357) | (690)  | 692          | 802         | 917         | 942        | 802          | 529         | 155     | (255) |
| Bethlehem GS1                                                                                         | 272.9                  | (11.08)                                             | 167   | (167)  | 1,215        | 1,326       | 1,441       | 1,465      | 1,325        | 1,052       | 679     | 269   |
| Bethlehem GS2                                                                                         | 272.9                  | (11.08)                                             | 167   | (167)  | 1,215        | 1,326       | 1,441       | 1,465      | 1,325        | 1,052       | 679     | 269   |
| Bethlehem GS3                                                                                         | 272.9                  | (11.08)                                             | 167   | (167)  | 1,215        | 1,326       | 1,441       | 1,465      | 1,325        | 1,052       | 679     | 269   |
| Wheelabrator Hudson Falls                                                                             | 10.4                   | (1.03)                                              | 419   | 86     | 1,468        | 1,578       | 1,693       | 1,718      | 1,578        | 1,305       | 931     | 521   |
| DCRRA                                                                                                 | 6.2                    | (0.61)                                              | 423   | 90     | 1,471        | 1,582       | 1,697       | 1,722      | 1,582        | 1,308       | 935     | 525   |
| Roseton 1 & 2                                                                                         | 1,188.7                | (117.68)                                            | (643) | (976)  | 406          | 517         | 631         | 656        | 516          | 243         | (130)   | (540) |
| Roseton 2                                                                                             | 612.5                  | (60.64)                                             | (123) | (457)  | 925          | 1,036       | 1,151       | 1,175      | 1,035        | 762         | 389     | (21)  |
| Roseton 1                                                                                             | 576.2                  | (57.04)                                             | (91)  | (424)  | 958          | 1,069       | 1,183       | 1,208      | 1,068        | 795         | 422     | 12    |
| Danskammer 1, 2, 3, & 4                                                                               | 496.2                  | (49.12)                                             | (19)  | (352)  | 1,030        | 1,141       | 1,255       | 1,280      | 1,140        | 867         | 494     | 84    |
| Danskammer 4                                                                                          | 222.1                  | (21.99)                                             | 228   | (105)  | 1,277        | 1,388       | 1,502       | 1,527      | 1,387        | 1,114       | 741     | 331   |
| Danskammer 3                                                                                          | 139.7                  | (13.83)                                             | 303   | (31)   | 1,351        | 1,462       | 1,577       | 1,601      | 1,461        | 1,188       | 815     | 405   |
| Danskammer 1                                                                                          | 70.2                   | (6.95)                                              | 365   | 32     | 1,414        | 1,524       | 1,639       | 1,664      | 1,524        | 1,251       | 878     | 468   |
| Danskammer 2                                                                                          | 64.2                   | (6.36)                                              | 371   | 37     | 1,419        | 1,530       | 1,645       | 1,669      | 1,529        | 1,256       | 883     | 473   |
| CPV Valley CC1 & CC2                                                                                  | 651.8                  | (26.46)                                             | (197) | (530)  | 852          | 962         | 1,077       | 1,102      | 962          | 689         | 315     | (95)  |
| CPV Valley CC1                                                                                        | 325.9                  | (13.23)                                             | 116   | (217)  | 1,164        | 1,275       | 1,390       | 1,415      | 1,275        | 1,001       | 628     | 218   |
| CPV Valley CC2                                                                                        | 325.9                  | (13.23)                                             | 116   | (217)  | 1,164        | 1,275       | 1,390       | 1,415      | 1,275        | 1,001       | 628     | 218   |
| Cricket Valley CC1, CC2, & CC3                                                                        | 1,029.3                | (41.79)                                             | (559) | (892)  | 489          | 600         | 715         | 740        | 600          | 327         | (47)    | (457) |
| Cricket Valley CC2                                                                                    | 343.6                  | (13.95)                                             | 99    | (234)  | 1,147        | 1,258       | 1,373       | 1,398      | 1,258        | 984         | 611     | 201   |
| Cricket Valley CC3                                                                                    | 343.3                  | (13.94)                                             | 99    | (234)  | 1,148        | 1,258       | 1,373       | 1,398      | 1,258        | 985         | 611     | 201   |
| Cricket Valley CC1                                                                                    | 342.4                  | (13.90)                                             | 100   | (233)  | 1,148        | 1,259       | 1,374       | 1,399      | 1,259        | 986         | 612     | 202   |
| Bowline 1 & 2                                                                                         | 1,139.0                | (112.76)                                            | (598) | (931)  | 451          | 562         | 676         | 701        | 561          | 288         | (85)    | (495) |
| Bowline 1                                                                                             | 582.0                  | (57.62)                                             | (96)  | (429)  | 953          | 1,063       | 1,178       | 1,203      | 1,063        | 790         | 416     | 6     |




| Statew                                                                | vide System Maı        | rgin Summer P                                       | e Expected S | ummer We | ather, Nor   | mal Transf  | er Criteria | (MW)       |              |             |         |       |
|-----------------------------------------------------------------------|------------------------|-----------------------------------------------------|--------------|----------|--------------|-------------|-------------|------------|--------------|-------------|---------|-------|
| Year                                                                  |                        |                                                     | 2024         | 2025     | 2026         | 2027        | 2028        | 2029       | 2030         | 2031        | 2032    | 2033  |
| Statewide System Margin Summer Peak -<br>Weather, Normal Transfer Cri |                        | ed Summer                                           | 428          | 95       | 1,477        | 1,588       | 1,703       | 1,727      | 1,587        | 1,314       | 941     | 531   |
| Unit Name                                                             | Summer<br>DMNC<br>(MW) | NERC 5-<br>Year Class<br>Average<br>De-Rate<br>(MW) |              | Transm   | iission Secu | rity Margin | Impact of G | enerator O | utage (Retir | e, Mothball | , IIFO) |       |
| Bowline 2                                                             | 557.0                  | (55.14)                                             | (73)         | (407)    | 975          | 1,086       | 1,201       | 1,225      | 1,085        | 812         | 439     | 29    |
| Hillburn GT                                                           | 35.7                   | (3.20)                                              | 396          | 63       | 1,444        | 1,555       | 1,670       | 1,695      | 1,555        | 1,282       | 908     | 498   |
| Shoemaker GT                                                          | 32.7                   | (2.93)                                              | 399          | 65       | 1,447        | 1,558       | 1,673       | 1,698      | 1,558        | 1,284       | 911     | 501   |
| Wheelabrator Westchester                                              | 52.1                   | (5.16)                                              | 381          | 48       | 1,430        | 1,541       | 1,656       | 1,680      | 1,540        | 1,267       | 894     | 484   |
| Astoria Energy 2 - CC3 & CC4                                          | 570.2                  | (23.15)                                             | (119)        | (452)    | 930          | 1,041       | 1,155       | 1,180      | 1,040        | 767         | 394     | (16)  |
| Astoria Energy 2 - CC3                                                | 285.1                  | (11.58)                                             | 155          | (178)    | 1,203        | 1,314       | 1,429       | 1,454      | 1,314        | 1,041       | 667     | 257   |
| Astoria Energy 2 - CC4                                                | 285.1                  | (11.58)                                             | 155          | (178)    | 1,203        | 1,314       | 1,429       | 1,454      | 1,314        | 1,041       | 667     | 257   |
| Astoria East Energy CC1 & CC2                                         | 583.8                  | (23.70)                                             | (132)        | (465)    | 917          | 1,028       | 1,142       | 1,167      | 1,027        | 754         | 381     | (29)  |
| Astoria East Energy - CC1                                             | 291.9                  | (11.85)                                             | 148          | (185)    | 1,197        | 1,308       | 1,422       | 1,447      | 1,307        | 1,034       | 661     | 251   |
| Astoria East Energy - CC2                                             | 291.9                  | (11.85)                                             | 148          | (185)    | 1,197        | 1,308       | 1,422       | 1,447      | 1,307        | 1,034       | 661     | 251   |
| Astoria 2, 3, & 5                                                     | 917.4                  | (90.82)                                             | (398)        | (731)    | 650          | 761         | 876         | 901        | 761          | 487         | 114     | (296) |
| Astoria 5                                                             | 374.7                  | (37.10)                                             | 91           | (242)    | 1,139        | 1,250       | 1,365       | 1,390      | 1,250        | 976         | 603     | 193   |
| Astoria 3                                                             | 372.2                  | (36.85)                                             | 93           | (240)    | 1,142        | 1,252       | 1,367       | 1,392      | 1,252        | 979         | 605     | 195   |
| Astoria 2                                                             | 170.5                  | (16.88)                                             | 275          | (58)     | 1,323        | 1,434       | 1,549       | 1,574      | 1,434        | 1,160       | 787     | 377   |
| Bayonne EC CT G1 through G10                                          | 601.6                  | (53.90)                                             | (119)        | (452)    | 929          | 1,040       | 1,155       | 1,180      | 1,040        | 766         | 393     | (17)  |
| Bayonne EC CTG1                                                       | 61.8                   | (5.54)                                              | 372          | 39       | 1,421        | 1,531       | 1,646       | 1,671      | 1,531        | 1,258       | 885     | 475   |
| Bayonne EC CTG4                                                       | 60.9                   | (5.46)                                              | 373          | 40       | 1,422        | 1,532       | 1,647       | 1,672      | 1,532        | 1,259       | 885     | 475   |
| Bayonne EC CTG9                                                       | 60.5                   | (5.42)                                              | 373          | 40       | 1,422        | 1,533       | 1,647       | 1,672      | 1,532        | 1,259       | 886     | 476   |
| Bayonne EC CTG10                                                      | 60.5                   | (5.42)                                              | 373          | 40       | 1,422        | 1,533       | 1,647       | 1,672      | 1,532        | 1,259       | 886     | 476   |
| Bayonne EC CTG8                                                       | 60.3                   | (5.40)                                              | 373          | 40       | 1,422        | 1,533       | 1,648       | 1,672      | 1,532        | 1,259       | 886     | 476   |
| Bayonne EC CTG2                                                       | 60.2                   | (5.39)                                              | 374          | 40       | 1,422        | 1,533       | 1,648       | 1,672      | 1,532        | 1,259       | 886     | 476   |
| Bayonne EC CTG7                                                       | 60.0                   | (5.38)                                              | 374          | 41       | 1,422        | 1,533       | 1,648       | 1,673      | 1,533        | 1,259       | 886     | 476   |
| Bayonne EC CTG5                                                       | 59.7                   | (5.35)                                              | 374          | 41       | 1,423        | 1,533       | 1,648       | 1,673      | 1,533        | 1,260       | 886     | 476   |
| Bayonne EC CTG6                                                       | 59.6                   | (5.34)                                              | 374          | 41       | 1,423        | 1,533       | 1,648       | 1,673      | 1,533        | 1,260       | 887     | 477   |




| Statewide System Margin Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) |                        |                                                     |                                                              |         |              |             |             |            |              |             |         |         |  |
|-------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------|--------------------------------------------------------------|---------|--------------|-------------|-------------|------------|--------------|-------------|---------|---------|--|
| Year                                                                                                  |                        |                                                     | 2024                                                         | 2025    | 2026         | 2027        | 2028        | 2029       | 2030         | 2031        | 2032    | 2033    |  |
| Statewide System Margin Summer Peak - E<br>Weather, Normal Transfer Crit                              | -                      | ed Summer                                           | 428                                                          | 95      | 1,477        | 1,588       | 1,703       | 1,727      | 1,587        | 1,314       | 941     | 531     |  |
| Unit Name                                                                                             | Summer<br>DMNC<br>(MW) | NERC 5-<br>Year Class<br>Average<br>De-Rate<br>(MW) |                                                              | Transm  | iission Secu | rity Margin | Impact of G | enerator O | utage (Retir | e, Mothball | . IIFO) |         |  |
| Bayonne EC CTG3                                                                                       | 58.1                   | (5.21)                                              | 375                                                          | 42      | 1,424        | 1,535       | 1,650       | 1,674      | 1,534        | 1,261       | 888     | 478     |  |
| KIAC_JFK (BTM:NG)                                                                                     | 98.7                   | (4.01)                                              | 334                                                          | 1       | 1,382        | 1,493       | 1,608       | 1,633      | 1,493        | 1,219       | 846     | 436     |  |
| East River 1, 2, 6, & 7                                                                               | 636.5                  | (44.86)                                             | (163)                                                        | (496)   | 885          | 996         | 1,111       | 1,136      | 996          | 722         | 349     | (61)    |  |
| Brooklyn Navy Yard                                                                                    | 244.6                  | (9.93)                                              | <u>194</u> (139) 1,242 1,353 1,468 1,493 1,353 1,079 706 296 |         |              |             |             |            |              |             |         |         |  |
| East River 7                                                                                          | 184.2                  | (18.24)                                             |                                                              |         |              |             |             |            |              |             |         |         |  |
| East River 2                                                                                          | 155.8                  | (6.33)                                              | 279                                                          | (54)    | 1,328        | 1,438       | 1,553       | 1,578      | 1,438        | 1,165       | 791     | 381     |  |
| East River 1                                                                                          | 155.1                  | (6.30)                                              | 280                                                          | (54)    | 1,328        | 1,439       | 1,554       | 1,578      | 1,438        | 1,165       | 792     | 382     |  |
| East River 6                                                                                          | 141.4                  | (14.00)                                             | 301                                                          | (32)    | 1,350        | 1,460       | 1,575       | 1,600      | 1,460        | 1,187       | 813     | 403     |  |
| Arthur Kill Cogen                                                                                     | 11.1                   | (1.32)                                              | 419                                                          | 85      | 1,467        | 1,578       | 1,693       | 1,718      | 1,578        | 1,304       | 931     | 521     |  |
| Linden Cogen                                                                                          | 789.5                  | (32.05)                                             | (329)                                                        | (662)   | 720          | 830         | 945         | 970        | 830          | 557         | 183     | (227)   |  |
| Ravenswood ST 01, 02, & 03                                                                            | 1,730.3                | (171.30)                                            | (1,131)                                                      | (1,464) | (82)         | 29          | 144         | 168        | 28           | (245)       | (618)   | (1,028) |  |
| Ravenswood ST 03                                                                                      | 987.3                  | (97.74)                                             | (461)                                                        | (794)   | 587          | 698         | 813         | 838        | 698          | 425         | 51      | (359)   |  |
| Ravenswood ST 02                                                                                      | 374.5                  | (37.08)                                             | 91                                                           | (242)   | 1,140        | 1,250       | 1,365       | 1,390      | 1,250        | 977         | 603     | 193     |  |
| Ravenswood ST 01                                                                                      | 368.5                  | (36.48)                                             | 96                                                           | (237)   | 1,145        | 1,256       | 1,370       | 1,395      | 1,255        | 982         | 609     | 199     |  |
| Ravenswood CC 04                                                                                      | 223.2                  | (9.06)                                              | 214                                                          | (119)   | 1,263        | 1,374       | 1,488       | 1,513      | 1,373        | 1,100       | 727     | 317     |  |
| Astoria CC 1 & 2                                                                                      | 476.0                  | (19.33)                                             | (28)                                                         | (361)   | 1,020        | 1,131       | 1,246       | 1,271      | 1,131        | 857         | 484     | 74      |  |
| Astoria CC 1                                                                                          | 238.0                  | (9.66)                                              | 200                                                          | (133)   | 1,249        | 1,359       | 1,474       | 1,499      | 1,359        | 1,086       | 712     | 302     |  |
| Astoria CC 2                                                                                          | 238.0                  | (9.66)                                              | 200                                                          | (133)   | 1,249        | 1,359       | 1,474       | 1,499      | 1,359        | 1,086       | 712     | 302     |  |
| Gowanus 5 & 6                                                                                         | 79.9                   | (8.05)                                              | 357                                                          | 23      | 1,405        | 1,516       | 1,631       | 1,655      | 1,515        | 1,242       | 869     | 459     |  |
| Hellgate 1 & 2                                                                                        | 79.9                   | (8.05)                                              | 357                                                          | 23      | 1,405        | 1,516       | 1,631       | 1,655      | 1,515        | 1,242       | 869     | 459     |  |
| Harlem River 1 & 2                                                                                    | 79.9                   | (8.05)                                              | 357                                                          | 23      | 1,405        | 1,516       | 1,631       | 1,655      | 1,515        | 1,242       | 869     | 459     |  |
| Vernon Blvd 2 & 3                                                                                     | 79.9                   | (8.05)                                              | 357                                                          | 23      | 1,405        | 1,516       | 1,631       | 1,655      | 1,515        | 1,242       | 869     | 459     |  |
| Kent                                                                                                  | 45.8                   | (4.62)                                              | 387                                                          | 54      | 1,436        | 1,547       | 1,661       | 1,686      | 1,546        | 1,273       | 900     | 490     |  |
| Pouch                                                                                                 | 45.1                   | (4.55)                                              | 388                                                          | 55      | 1,436        | 1,547       | 1,662       | 1,687      | 1,547        | 1,274       | 900     | 490     |  |




| Statewide System Margin Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) |                        |                                                     |       |         |              |             |             |            |              |             |         |       |
|-------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------|-------|---------|--------------|-------------|-------------|------------|--------------|-------------|---------|-------|
| Year                                                                                                  |                        |                                                     | 2024  | 2025    | 2026         | 2027        | 2028        | 2029       | 2030         | 2031        | 2032    | 2033  |
| Statewide System Margin Summer Peak - I<br>Weather, Normal Transfer Cri                               |                        | ed Summer                                           | 428   | 95      | 1,477        | 1,588       | 1,703       | 1,727      | 1,587        | 1,314       | 941     | 531   |
| Unit Name                                                                                             | Summer<br>DMNC<br>(MW) | NERC 5-<br>Year Class<br>Average<br>De-Rate<br>(MW) |       | Transm  | iission Secu | rity Margin | Impact of G | enerator O | utage (Retir | e, Mothball | , IIFO) |       |
| Gowanus 5                                                                                             | 40.0                   | (4.03)                                              | 392   | 59      | 1,441        | 1,552       | 1,667       | 1,691      | 1,551        | 1,278       | 905     | 495   |
| Hellgate 2                                                                                            | 40.0                   | (4.03)                                              | 392   | 59      | 1,441        | 1,552       | 1,667       | 1,691      | 1,551        | 1,278       | 905     | 495   |
| Harlem River 2                                                                                        | 40.0                   | (4.03)                                              | 392   | 59      | 1,441        | 1,552       | 1,667       | 1,691      | 1,551        | 1,278       | 905     | 495   |
| Vernon Blvd 2                                                                                         | 40.0                   | (4.03)                                              | 392   | 59      | 1,441        | 1,552       | 1,667       | 1,691      | 1,551        | 1,278       | 905     | 495   |
| Gowanus 6                                                                                             | 39.9                   | (4.02)                                              | 393   | 59      | 1,441        | 1,552       | 1,667       | 1,691      | 1,551        | 1,278       | 905     | 495   |
| Hellgate 1                                                                                            | 39.9                   | (4.02)                                              | 393   | 59      | 1,441        | 1,552       | 1,667       | 1,691      | 1,551        | 1,278       | 905     | 495   |
| Harlem River 1                                                                                        | 39.9                   | (4.02)                                              | 393   | 59      | 1,441        | 1,552       | 1,667       | 1,691      | 1,551        | 1,278       | 905     | 495   |
| Vernon Blvd 3                                                                                         | 39.9                   | (4.02)                                              | 393   | 59      | 1,441        | 1,552       | 1,667       | 1,691      | 1,551        | 1,278       | 905     | 495   |
| Arthur Kill ST 2 & 3                                                                                  | 865.3                  | (85.66)                                             | (351) | (684)   | 697          | 808         | 923         | 948        | 808          | 534         | 161     | (249) |
| Arthur Kill ST 3                                                                                      | 519.0                  | (51.38)                                             | (39)  | (372)   | 1,009        | 1,120       | 1,235       | 1,260      | 1,120        | 846         | 473     | 63    |
| Arthur Kill ST 2                                                                                      | 346.3                  | (34.28)                                             | 116   | (217)   | 1,165        | 1,276       | 1,391       | 1,415      | 1,275        | 1,002       | 629     | 219   |
| Bethpage GT4                                                                                          | 44.4                   | (4.48)                                              | 388   | 55      | 1,437        | 1,548       | 1,663       | 1,687      | 1,547        | 1,274       | 901     | 491   |
| Bethpage                                                                                              | 23.2                   | (0.94)                                              | 406   | 73      | 1,455        | 1,565       | 1,680       | 1,705      | 1,565        | 1,292       | 919     | 509   |
| Stony Brook (BTM:NG)                                                                                  | 0.0                    | 0.00                                                | 428   | 95      | 1,477        | 1,588       | 1,703       | 1,727      | 1,587        | 1,314       | 941     | 531   |
| Freeport CT 2                                                                                         | 40.0                   | (4.03)                                              | 392   | 59      | 1,441        | 1,552       | 1,667       | 1,691      | 1,551        | 1,278       | 905     | 495   |
| Freeport 1-2, 1-3, & 2-3                                                                              | 16.8                   | (1.80)                                              | 413   | 80      | 1,462        | 1,573       | 1,688       | 1,712      | 1,572        | 1,299       | 926     | 516   |
| Freeport 2-3                                                                                          | 12.5                   | (1.26)                                              | 417   | 84      | 1,466        | 1,577       | 1,691       | 1,716      | 1,576        | 1,303       | 930     | 520   |
| Freeport 1-3                                                                                          | 2.3                    | (0.29)                                              | 426   | 93      | 1,475        | 1,586       | 1,701       | 1,725      | 1,585        | 1,312       | 939     | 529   |
| Freeport 1-2                                                                                          | 2.0                    | (0.25)                                              | 427   | 93      | 1,475        | 1,586       | 1,701       | 1,726      | 1,586        | 1,312       | 939     | 529   |
| Northport 1, 2, 3, and 4                                                                              | 1,518.6                | (150.34)                                            | (940) | (1,273) | 109          | 219         | 334         | 359        | 219          | (54)        | (427)   | (837) |
| Holtsville 01 through 10                                                                              | 525.9                  | (47.12)                                             | (50)  | (384)   | 998          | 1,109       | 1,224       | 1,249      | 1,109        | 835         | 462     | 52    |
| Northport 2                                                                                           | 397.5                  | (39.35)                                             | 70    | (263)   | 1,119        | 1,230       | 1,344       | 1,369      | 1,229        | 956         | 583     | 173   |
| Northport 3                                                                                           | 396.5                  | (39.25)                                             | 71    | (262)   | 1,120        | 1,230       | 1,345       | 1,370      | 1,230        | 957         | 584     | 174   |
| Northport 1                                                                                           | 396.2                  | (39.22)                                             | 71    | (262)   | 1,120        | 1,231       | 1,346       | 1,370      | 1,230        | 957         | 584     | 174   |



| Statewide System Margin Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) |                        |                                                     |                                                                |        |              |             |             |            |              |             |         |      |
|-------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------|----------------------------------------------------------------|--------|--------------|-------------|-------------|------------|--------------|-------------|---------|------|
| Year                                                                                                  |                        |                                                     | 2024                                                           | 2025   | 2026         | 2027        | 2028        | 2029       | 2030         | 2031        | 2032    | 2033 |
| Statewide System Margin Summer Peak -<br>Weather, Normal Transfer Cri                                 |                        | ed Summer                                           | 428                                                            | 95     | 1,477        | 1,588       | 1,703       | 1,727      | 1,587        | 1,314       | 941     | 531  |
| Unit Name                                                                                             | Summer<br>DMNC<br>(MW) | NERC 5-<br>Year Class<br>Average<br>De-Rate<br>(MW) |                                                                | Transm | iission Secu | rity Margin | Impact of G | enerator O | utage (Retir | e, Mothball | . IIFO) |      |
| Port Jefferson 3 & 4                                                                                  | 383.5                  | (37.97)                                             | 83                                                             | (250)  | 1,131        | 1,242       | 1,357       | 1,382      | 1,242        | 969         | 595     | 185  |
| Barrett ST 01 & 02                                                                                    | 372.0                  | (36.83)                                             | 93                                                             | (240)  | 1,142        | 1,253       | 1,367       | 1,392      | 1,252        | 979         | 606     | 196  |
| Northport 4                                                                                           | 328.4                  | (32.51)                                             | 132                                                            | (201)  | 1,181        | 1,292       | 1,407       | 1,431      | 1,291        | 1,018       | 645     | 235  |
| Caithness_CC_1                                                                                        | 302.4                  | (12.28)                                             | ) <u>138</u> (195) 1,187 1,298 1,412 1,437 1,297 1,024 651 241 |        |              |             |             |            |              |             |         |      |
| Barrett GT 01 through 12                                                                              | 256.5                  | (24.12)                                             |                                                                |        |              |             |             |            |              |             |         |      |
| Wading River 1, 2, & 3                                                                                | 227.0                  | (22.88)                                             | 224                                                            | (109)  | 1,273        | 1,384       | 1,498       | 1,523      | 1,383        | 1,110       | 737     | 327  |
| Barrett ST 01                                                                                         | 193.7                  | (19.18)                                             | 254                                                            | (79)   | 1,302        | 1,413       | 1,528       | 1,553      | 1,413        | 1,140       | 766     | 356  |
| Port Jefferson 3                                                                                      | 192.0                  | (19.01)                                             | 255                                                            | (78)   | 1,304        | 1,415       | 1,530       | 1,554      | 1,414        | 1,141       | 768     | 358  |
| Port Jefferson 4                                                                                      | 191.5                  | (18.96)                                             | 256                                                            | (77)   | 1,304        | 1,415       | 1,530       | 1,555      | 1,415        | 1,142       | 768     | 358  |
| Barrett ST 02                                                                                         | 178.3                  | (17.65)                                             | 268                                                            | (65)   | 1,316        | 1,427       | 1,542       | 1,567      | 1,427        | 1,153       | 780     | 370  |
| Glenwood GT 02, 04, & 05                                                                              | 132.4                  | (13.35)                                             | 309                                                            | (24)   | 1,358        | 1,469       | 1,583       | 1,608      | 1,468        | 1,195       | 822     | 412  |
| Far Rockaway GT1 & GT2                                                                                | 108.6                  | (9.73)                                              | 330                                                            | (4)    | 1,378        | 1,489       | 1,604       | 1,628      | 1,488        | 1,215       | 842     | 432  |
| Shoreham GT 3 & 4                                                                                     | 85.9                   | (8.66)                                              | 351                                                            | 18     | 1,400        | 1,511       | 1,625       | 1,650      | 1,510        | 1,237       | 864     | 454  |
| Pilgrim GT1 & GT2                                                                                     | 83.2                   | (8.39)                                              | 354                                                            | 20     | 1,402        | 1,513       | 1,628       | 1,652      | 1,512        | 1,239       | 866     | 456  |
| Port Jefferson GT 02 & 03                                                                             | 82.2                   | (8.29)                                              | 354                                                            | 21     | 1,403        | 1,514       | 1,629       | 1,653      | 1,513        | 1,240       | 867     | 457  |
| Wading River 1                                                                                        | 76.8                   | (7.74)                                              | 359                                                            | 26     | 1,408        | 1,519       | 1,633       | 1,658      | 1,518        | 1,245       | 872     | 462  |
| Wading River 2                                                                                        | 75.7                   | (7.63)                                              | 360                                                            | 27     | 1,409        | 1,520       | 1,634       | 1,659      | 1,519        | 1,246       | 873     | 463  |
| Bethpage 3                                                                                            | 74.8                   | (3.04)                                              | 357                                                            | 23     | 1,405        | 1,516       | 1,631       | 1,656      | 1,516        | 1,242       | 869     | 459  |
| Wading River 3                                                                                        | 74.5                   | (7.51)                                              | 361                                                            | 28     | 1,410        | 1,521       | 1,636       | 1,660      | 1,520        | 1,247       | 874     | 464  |
| Hempstead (RR)                                                                                        | 73.0                   | (7.23)                                              | 363                                                            | 29     | 1,411        | 1,522       | 1,637       | 1,662      | 1,522        | 1,248       | 875     | 465  |
| Pinelawn Power 1                                                                                      | 73.0                   | (2.96)                                              | 358                                                            | 25     | 1,407        | 1,518       | 1,632       | 1,657      | 1,517        | 1,244       | 871     | 461  |
| Holtsville 09                                                                                         | 57.2                   | (5.13)                                              | 376                                                            | 43     | 1,425        | 1,536       | 1,650       | 1,675      | 1,535        | 1,262       | 889     | 479  |
| Holtsville 01                                                                                         | 56.3                   | (5.04)                                              | 377                                                            | 44     | 1,426        | 1,536       | 1,651       | 1,676      | 1,536        | 1,263       | 890     | 480  |
| Far Rockaway GT2                                                                                      | 55.8                   | (5.00)                                              | 378                                                            | 44     | 1,426        | 1,537       | 1,652       | 1,676      | 1,536        | 1,263       | 890     | 480  |



| Statewide System Margin Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) |                        |                                                     |      |        |              |             |             |            |              |              |       |      |  |
|-------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------|------|--------|--------------|-------------|-------------|------------|--------------|--------------|-------|------|--|
| Year                                                                                                  |                        |                                                     | 2024 | 2025   | 2026         | 2027        | 2028        | 2029       | 2030         | 2031         | 2032  | 2033 |  |
| Statewide System Margin Summer Peak - E<br>Weather, Normal Transfer Crit                              | -                      | -                                                   | 428  | 95     | 1,477        | 1,588       | 1,703       | 1,727      | 1,587        | 1,314        | 941   | 531  |  |
| Unit Name                                                                                             | Summer<br>DMNC<br>(MW) | NERC 5-<br>Year Class<br>Average<br>De-Rate<br>(MW) |      | Transm | iission Secu | rity Margin | Impact of G | enerator O | utage (Retir | e, Mothball, | IIFO) |      |  |
| Holtsville 02                                                                                         | 55.0                   | (4.93)                                              | 378  | 45     | 1,427        | 1,538       | 1,652       | 1,677      | 1,537        | 1,264        | 891   | 481  |  |
| Holtsville 04                                                                                         | 54.1                   | (4.85)                                              | 379  | 46     | 1,428        | 1,538       | 1,653       | 1,678      | 1,538        | 1,265        | 892   | 482  |  |
| Holtsville 05                                                                                         | 52.8                   | (4.73)                                              | 380  | 47     | 1,429        | 1,540       | 1,654       | 1,679      | 1,539        | 1,266        | 893   | 483  |  |
| Far Rockaway GT1                                                                                      | 52.8                   | (4.73)                                              | 380  | 47     | 1,429        | 1,540       | 1,654       | 1,679      | 1,539        | 1,266        | 893   | 483  |  |
| Greenport GT1                                                                                         | 52.6                   | (4.71)                                              | 380  | 47     | 1,429        | 1,540       | 1,655       | 1,679      | 1,539        | 1,266        | 893   | 483  |  |
| Holtsville 07                                                                                         | 51.6                   | (4.62)                                              | 381  | 48     | 1,430        | 1,541       | 1,656       | 1,680      | 1,540        | 1,267        | 894   | 484  |  |
| Holtsville 10                                                                                         | 50.3                   | (4.51)                                              | 383  | 49     | 1,431        | 1,542       | 1,657       | 1,681      | 1,541        | 1,268        | 895   | 485  |  |
| Holtsville 03                                                                                         | 50.2                   | (4.50)                                              | 383  | 50     | 1,431        | 1,542       | 1,657       | 1,682      | 1,542        | 1,268        | 895   | 485  |  |
| Glenwood GT 02                                                                                        | 49.9                   | (5.03)                                              | 384  | 50     | 1,432        | 1,543       | 1,658       | 1,682      | 1,542        | 1,269        | 896   | 486  |  |
| Holtsville 06                                                                                         | 49.8                   | (4.46)                                              | 383  | 50     | 1,432        | 1,542       | 1,657       | 1,682      | 1,542        | 1,269        | 895   | 485  |  |
| Holtsville 08                                                                                         | 48.6                   | (4.35)                                              | 384  | 51     | 1,433        | 1,544       | 1,658       | 1,683      | 1,543        | 1,270        | 897   | 487  |  |
| Shoreham GT4                                                                                          | 43.1                   | (4.34)                                              | 390  | 56     | 1,438        | 1,549       | 1,664       | 1,689      | 1,549        | 1,275        | 902   | 492  |  |
| Shoreham GT3                                                                                          | 42.8                   | (4.31)                                              | 390  | 57     | 1,438        | 1,549       | 1,664       | 1,689      | 1,549        | 1,276        | 902   | 492  |  |
| Glenwood GT 05                                                                                        | 42.7                   | (4.30)                                              | 390  | 57     | 1,439        | 1,549       | 1,664       | 1,689      | 1,549        | 1,276        | 902   | 492  |  |
| Pilgrim GT2                                                                                           | 41.7                   | (4.20)                                              | 391  | 58     | 1,439        | 1,550       | 1,665       | 1,690      | 1,550        | 1,277        | 903   | 493  |  |
| Port Jefferson GT 02                                                                                  | 41.5                   | (4.18)                                              | 391  | 58     | 1,440        | 1,550       | 1,665       | 1,690      | 1,550        | 1,277        | 904   | 494  |  |
| Pilgrim GT1                                                                                           | 41.5                   | (4.18)                                              | 391  | 58     | 1,440        | 1,550       | 1,665       | 1,690      | 1,550        | 1,277        | 904   | 494  |  |
| Port Jefferson GT 03                                                                                  | 40.7                   | (4.10)                                              | 392  | 59     | 1,440        | 1,551       | 1,666       | 1,691      | 1,551        | 1,277        | 904   | 494  |  |
| Glenwood GT 04                                                                                        | 39.8                   | (4.01)                                              | 393  | 59     | 1,441        | 1,552       | 1,667       | 1,691      | 1,551        | 1,278        | 905   | 495  |  |
| Barrett 12                                                                                            | 39.7                   | (3.56)                                              | 392  | 59     | 1,441        | 1,552       | 1,666       | 1,691      | 1,551        | 1,278        | 905   | 495  |  |
| Barrett 09                                                                                            | 38.5                   | (3.45)                                              | 393  | 60     | 1,442        | 1,553       | 1,667       | 1,692      | 1,552        | 1,279        | 906   | 496  |  |
| Barrett 10                                                                                            | 38.5                   | (3.45)                                              | 393  | 60     | 1,442        | 1,553       | 1,667       | 1,692      | 1,552        | 1,279        | 906   | 496  |  |
| Barrett 11                                                                                            | 38.5                   | (3.45)                                              | 393  | 60     | 1,442        | 1,553       | 1,667       | 1,692      | 1,552        | 1,279        | 906   | 496  |  |
| Huntington (RR)                                                                                       | 24.5                   | (2.43)                                              | 406  | 73     | 1,455        | 1,566       | 1,680       | 1,705      | 1,565        | 1,292        | 919   | 509  |  |

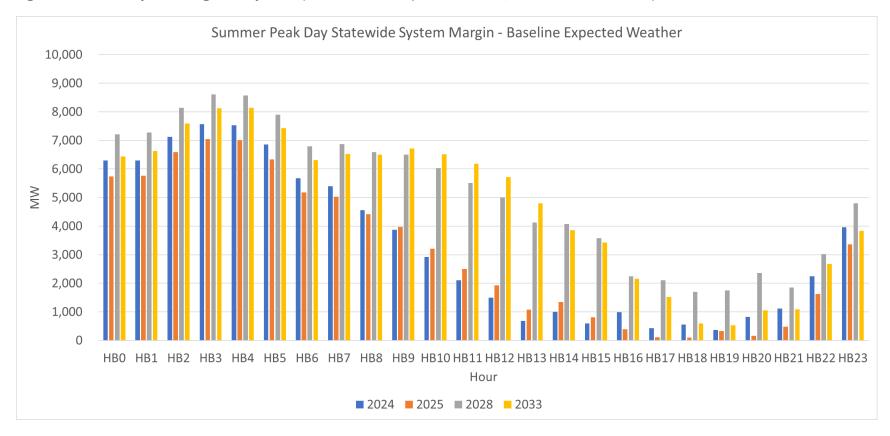


| Statewide System Margin Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) |                        |                                                     |      |        |             |             |             |            |              |              |       |      |
|-------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------|------|--------|-------------|-------------|-------------|------------|--------------|--------------|-------|------|
| Year                                                                                                  |                        |                                                     | 2024 | 2025   | 2026        | 2027        | 2028        | 2029       | 2030         | 2031         | 2032  | 2033 |
| Statewide System Margin Summer Peak - I<br>Weather, Normal Transfer Cri                               | -                      | ed Summer                                           | 428  | 95     | 1,477       | 1,588       | 1,703       | 1,727      | 1,587        | 1,314        | 941   | 531  |
| Unit Name                                                                                             | Summer<br>DMNC<br>(MW) | NERC 5-<br>Year Class<br>Average<br>De-Rate<br>(MW) |      | Transm | ission Secu | rity Margin | Impact of G | enerator O | utage (Retir | e, Mothball, | IIFO) |      |
| East Hampton GT 01, 2, 3, & 4                                                                         | 24.2                   | (2.38)                                              | 407  | 73     | 1,455       | 1,566       | 1,681       | 1,705      | 1,565        | 1,292        | 919   | 509  |
| East Hampton GT 01                                                                                    | 18.5                   | (1.66)                                              | 412  | 78     | 1,460       | 1,571       | 1,686       | 1,710      | 1,570        | 1,297        | 924   | 514  |
| Babylon (RR)                                                                                          | 16.0                   | (1.58)                                              | 414  | 81     | 1,463       | 1,573       | 1,688       | 1,713      | 1,573        | 1,300        | 926   | 516  |
| Barrett GT 02                                                                                         | 15.6                   | (1.57)                                              | 414  | 81     | 1,463       | 1,574       | 1,688       | 1,713      | 1,573        | 1,300        | 927   | 517  |
| Barrett 03                                                                                            | 15.0                   | (1.51)                                              | 415  | 82     | 1,463       | 1,574       | 1,689       | 1,714      | 1,574        | 1,301        | 927   | 517  |
| Barrett 06                                                                                            | 15.0                   | (1.51)                                              | 415  | 82     | 1,463       | 1,574       | 1,689       | 1,714      | 1,574        | 1,301        | 927   | 517  |
| Barrett GT 01                                                                                         | 14.9                   | (1.50)                                              | 415  | 82     | 1,464       | 1,574       | 1,689       | 1,714      | 1,574        | 1,301        | 927   | 517  |
| Barrett 08                                                                                            | 14.4                   | (1.45)                                              | 415  | 82     | 1,464       | 1,575       | 1,690       | 1,714      | 1,574        | 1,301        | 928   | 518  |
| Barrett 04                                                                                            | 13.3                   | (1.34)                                              | 416  | 83     | 1,465       | 1,576       | 1,691       | 1,715      | 1,575        | 1,302        | 929   | 519  |
| Barrett 05                                                                                            | 13.1                   | (1.32)                                              | 417  | 83     | 1,465       | 1,576       | 1,691       | 1,716      | 1,576        | 1,302        | 929   | 519  |
| Southold 1                                                                                            | 9.4                    | (0.95)                                              | 420  | 87     | 1,469       | 1,579       | 1,694       | 1,719      | 1,579        | 1,306        | 932   | 522  |
| S Hampton 1                                                                                           | 8.6                    | (0.87)                                              | 421  | 87     | 1,469       | 1,580       | 1,695       | 1,720      | 1,580        | 1,306        | 933   | 523  |
| Islip (RR)                                                                                            | 8.0                    | (0.79)                                              | 421  | 88     | 1,470       | 1,581       | 1,695       | 1,720      | 1,580        | 1,307        | 934   | 524  |
| East Hampton 2                                                                                        | 1.9                    | (0.24)                                              | 427  | 94     | 1,475       | 1,586       | 1,701       | 1,726      | 1,586        | 1,312        | 939   | 529  |
| East Hampton 3                                                                                        | 1.9                    | (0.24)                                              | 427  | 94     | 1,475       | 1,586       | 1,701       | 1,726      | 1,586        | 1,312        | 939   | 529  |
| East Hampton 4                                                                                        | 1.9                    | (0.24)                                              | 427  | 94     | 1,475       | 1,586       | 1,701       | 1,726      | 1,586        | 1,312        | 939   | 529  |
| Flynn                                                                                                 | 139.0                  | (5.64)                                              | 295  | (38)   | 1,344       | 1,454       | 1,569       | 1,594      | 1,454        | 1,181        | 807   | 397  |
| Brentwood                                                                                             | 45.5                   | (4.59)                                              | 387  | 54     | 1,436       | 1,547       | 1,662       | 1,686      | 1,546        | 1,273        | 900   | 490  |
| Greenport IC 4, 5, & 6                                                                                | 5.6                    | (0.71)                                              | 423  | 90     | 1,472       | 1,583       | 1,698       | 1,722      | 1,582        | 1,309        | 936   | 526  |
| Greenport IC 6                                                                                        | 3.1                    | (0.39)                                              | 426  | 92     | 1,474       | 1,585       | 1,700       | 1,725      | 1,585        | 1,311        | 938   | 528  |
| Greenport IC 5                                                                                        | 1.5                    | (0.19)                                              | 427  | 94     | 1,476       | 1,586       | 1,701       | 1,726      | 1,586        | 1,313        | 940   | 530  |
| Greenport IC 4                                                                                        | 1.0                    | (0.13)                                              | 428  | 94     | 1,476       | 1,587       | 1,702       | 1,726      | 1,586        | 1,313        | 940   | 530  |
| Charles P Killer 09 through 14                                                                        | 15.1                   | (1.79)                                              | 415  | 82     | 1,464       | 1,574       | 1,689       | 1,714      | 1,574        | 1,301        | 928   | 518  |
| Charles P Keller 14                                                                                   | 3.2                    | (0.38)                                              | 426  | 92     | 1,474       | 1,585       | 1,700       | 1,724      | 1,584        | 1,311        | 938   | 528  |



| States                                                               | vide System Mai        | rgin Summer Po                                      | eak - Baselin                                                                                                 | e Expected S | ummer We | ather, Nor | mal Transf | er Criteria | (MW)  |       |      |      |
|----------------------------------------------------------------------|------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------|----------|------------|------------|-------------|-------|-------|------|------|
| Year                                                                 |                        |                                                     | 2024                                                                                                          | 2025         | 2026     | 2027       | 2028       | 2029        | 2030  | 2031  | 2032 | 2033 |
| Statewide System Margin Summer Peak -<br>Weather, Normal Transfer Cr | -                      | ed Summer                                           | 428                                                                                                           | 95           | 1,477    | 1,588      | 1,703      | 1,727       | 1,587 | 1,314 | 941  | 531  |
| Unit Name                                                            | Summer<br>DMNC<br>(MW) | NERC 5-<br>Year Class<br>Average<br>De-Rate<br>(MW) | Transmission Security Margin Impact of Generator Outage (Retire, Mothball, IIFO)         De-Rate         (MW) |              |          |            |            |             |       |       |      |      |
| Charles P Keller 12                                                  | 2.8                    | (0.33)                                              | 426                                                                                                           | 93           | 1,475    | 1,585      | 1,700      | 1,725       | 1,585 | 1,312 | 938  | 528  |
| Charles P Keller 13                                                  | 2.8                    | (0.33)                                              | 426                                                                                                           | 93           | 1,475    | 1,585      | 1,700      | 1,725       | 1,585 | 1,312 | 938  | 528  |
| Charles P Keller 11                                                  | 2.7                    | (0.32)                                              | 426                                                                                                           | 93           | 1,475    | 1,585      | 1,700      | 1,725       | 1,585 | 1,312 | 938  | 528  |
| Charles P Keller 09                                                  | 1.8                    | (0.21)                                              | 427                                                                                                           | 94           | 1,475    | 1,586      | 1,701      | 1,726       | 1,586 | 1,312 | 939  | 529  |
| Charles P Keller 10                                                  | 1.8                    | (0.21)                                              | 427                                                                                                           | 94           | 1,475    | 1,586      | 1,701      | 1,726       | 1,586 | 1,312 | 939  | 529  |
| Freeport CT 1 & 2                                                    | 85.4                   | (8.61)                                              | 352                                                                                                           | 18           | 1,400    | 1,511      | 1,626      | 1,650       | 1,510 | 1,237 | 864  | 454  |
| Freeport CT 1                                                        | 45.4                   | (4.58)                                              | 388                                                                                                           | 54           | 1,436    | 1,547      | 1,662      | 1,686       | 1,546 | 1,273 | 900  | 490  |

Notes


1. Utilizes the Statewide System Margin for Summer Peak with Expected Weather.



|      | Summ  | er Peak - B | aseline Ex | pected Sur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nmer Wea | ther, Norm | al Transfer | Criteria (N | 1W)   |       |  |
|------|-------|-------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|-------------|-------------|-------|-------|--|
|      |       |             |            | 7,1477,2167,2327,1396,9516,7026,47,1987,2777,3097,2387,0786,8626,68,0478,1348,1808,1257,9867,7957,98,5108,6048,6568,6158,4888,3148,78,4788,5758,6338,5978,4778,3098,77,8017,8987,9547,9137,7867,6077,46,6826,7966,8646,8246,6946,5096,36,6876,8686,9856,9786,8736,7066,96,61226,5046,7856,9016,8966,8226,75,5646,0336,3876,5596,6046,5726,94,9855,5125,9136,1246,2026,2036,73,5864,1284,5384,7494,8254,8204,73,5514,0724,4633,8553,9133,8953,63,1103,5723,9103,5743,5823,5113,41,8812,2432,4922,5502,4782,3222,71,5881,7031,7271,5871,31495451,6901,7491,7281,5391,2359415 |          |            |             |             |       |       |  |
| Hour | 2024  | 2025        | 2026       | 2027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2028     | 2029       | 2030        | 2031        | 2032  | 2033  |  |
| HBO  | 6,296 | 5,735       | 7,078      | 7,147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7,216    | 7,232      | 7,139       | 6,951       | 6,702 | 6,438 |  |
| HB1  | 6,300 | 5,757       | 7,115      | 7,198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7,277    | 7,309      | 7,238       | 7,078       | 6,862 | 6,633 |  |
| HB2  | 7,118 | 6,589       | 7,956      | 8,047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8,134    | 8,180      | 8,125       | 7,986       | 7,795 | 7,595 |  |
| HB3  | 7,561 | 7,041       | 8,414      | 8,510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8,604    | 8,656      | 8,615       | 8,488       | 8,314 | 8,130 |  |
| HB4  | 7,525 | 7,004       | 8,379      | 8,478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8,575    | 8,633      | 8,597       | 8,477       | 8,309 | 8,133 |  |
| HB5  | 6,859 | 6,331       | 7,702      | 7,801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7,898    | 7,954      | 7,913       | 7,786       | 7,607 | 7,422 |  |
| HB6  | 5,675 | 5,179       | 6,566      | 6,682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6,796    | 6,864      | 6,824       | 6,694       | 6,509 | 6,312 |  |
| HB7  | 5,392 | 5,031       | 6,497      | 6,687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6,868    | 6,985      | 6,978       | 6,873       | 6,706 | 6,524 |  |
| HB8  | 4,555 | 4,422       | 6,012      | 6,314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6,590    | 6,785      | 6,832       | 6,769       | 6,642 | 6,493 |  |
| HB9  | 3,865 | 3,971       | 5,695      | 6,122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6,504    | 6,785      | 6,901       | 6,896       | 6,822 | 6,721 |  |
| HB10 | 2,921 | 3,210       | 5,039      | 5,564                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6,033    | 6,387      | 6,559       | 6,604       | 6,572 | 6,517 |  |
| HB11 | 2,105 | 2,504       | 4,399      | 4,985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5,512    | 5,913      | 6,124       | 6,202       | 6,203 | 6,178 |  |
| HB12 | 1,493 | 1,929       | 3,847      | 4,454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5,005    | 5,421      | 5,641       | 5,727       | 5,734 | 5,718 |  |
| HB13 | 678   | 1,082       | 2,987      | 3,586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,128    | 4,538      | 4,749       | 4,825       | 4,820 | 4,797 |  |
| HB14 | 999   | 1,341       | 3,217      | 3,551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,072    | 4,463      | 3,855       | 3,913       | 3,895 | 3,854 |  |
| HB15 | 598   | 808         | 2,609      | 3,110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3,572    | 3,910      | 3,574       | 3,582       | 3,511 | 3,421 |  |
| HB16 | 984   | 396         | 1,493      | 1,881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,243    | 2,492      | 2,550       | 2,478       | 2,322 | 2,153 |  |
| HB17 | 428   | 111         | 1,633      | 1,873                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,107    | 2,237      | 2,197       | 2,032       | 1,783 | 1,516 |  |
| HB18 | 555   | 95          | 1,477      | 1,588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,703    | 1,727      | 1,587       | 1,314       | 954   | 588   |  |
| HB19 | 365   | 326         | 1,642      | 1,690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,749    | 1,728      | 1,539       | 1,235       | 941   | 531   |  |
| HB20 | 820   | 165         | 2,044      | 2,311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,357    | 2,328      | 2,137       | 1,838       | 1,451 | 1,045 |  |
| HB21 | 1,116 | 473         | 1,771      | 1,806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,854    | 1,830      | 2,128       | 1,842       | 1,474 | 1,085 |  |
| HB22 | 2,239 | 1,617       | 2,926      | 2,967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3,017    | 2,998      | 3,640       | 3,376       | 3,036 | 2,676 |  |
| HB23 | 3,960 | 3,366       | 4,689      | 4,743                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,803    | 4,801      | 4,672       | 4,443       | 4,144 | 3,828 |  |

# Figure 5: Statewide System Margin (Hourly) (Summer Peak - Expected Weather, Normal Transfer Criteria)





# Figure 6: Statewide System Margin Hourly Curve (Summer Peak - Expected Weather, Normal Transfer Criteria)



### Figure 7: Statewide System Margin (1-in-10-Year Heatwave, Emergency Transfer Criteria)

|      |                                                           |          | Su       | mmer Peak | - 1-in-10-Ye | ar Heatwav | e, Emergen | cy Transfer ( | Criteria (MV | V)       |          |
|------|-----------------------------------------------------------|----------|----------|-----------|--------------|------------|------------|---------------|--------------|----------|----------|
| Line | Item                                                      | 2024     | 2025     | 2026      | 2027         | 2028       | 2029       | 2030          | 2031         | 2032     | 2033     |
| Α    | NYCA Generation (1)                                       | 38,041   | 38,266   | 38,266    | 38,266       | 38,266     | 38,266     | 38,266        | 38,266       | 38,266   | 38,266   |
| В    | NYCA Generation Derates (2)                               | (5,903)  | (6,554)  | (6,568)   | (6,581)      | (6,594)    | (6,607)    | (6,607)       | (6,621)      | (6,634)  | (6,634)  |
| С    | Temperature Based Generation Derates                      | (185)    | (176)    | (176)     | (176)        | (176)      | (176)      | (176)         | (176)        | (176)    | (176)    |
| D    | External Area Interchanges (3)                            | 1,844    | 1,844    | 3,094     | 3,094        | 3,094      | 3,094      | 3,094         | 3,094        | 3,094    | 3,094    |
| E    | SCRs (4), (5)                                             | 860      | 860      | 860       | 860          | 860        | 860        | 860           | 860          | 860      | 860      |
| F    | Total Resources (A+B+C+D+E)                               | 34,657   | 34,240   | 35,477    | 35,463       | 35,450     | 35,437     | 35,437        | 35,424       | 35,410   | 35,410   |
|      |                                                           |          |          |           |              |            |            |               |              |          |          |
| G    | Demand Forecast (6)                                       | (33,579) | (33,432) | (33,232)  | (33,079)     | (32,943)   | (32,905)   | (33,053)      | (33,329)     | (33,709) | (34,139) |
| н    | Large Load Forecast (7)                                   | (513)    | (560)    | (608)     | (629)        | (629)      | (629)      | (629)         | (629)        | (629)    | (629)    |
| 1    | Largest Loss-of-Source Contingency                        | (1,310)  | (1,310)  | (1,310)   | (1,310)      | (1,310)    | (1,310)    | (1,310)       | (1,310)      | (1,310)  | (1,310)  |
| J    | Total Capability Requirement (G+H+I)                      | (35,401) | (35,302) | (35,149)  | (35,018)     | (34,882)   | (34,844)   | (34,992)      | (35,268)     | (35,648) | (36,078) |
|      |                                                           |          |          |           |              |            |            |               |              |          |          |
| K    | Statewide System Margin (F+J)                             | (745)    | (1,062)  | 327       | 445          | 568        | 593        | 445           | 156          | (237)    | (667)    |
| L    | Operating Reserve                                         | (1,310)  | (1,310)  | (1,310)   | (1,310)      | (1,310)    | (1,310)    | (1,310)       | (1,310)      | (1,310)  | (1,310)  |
| М    | Statewide System Margin with Full Operating Reserve (K+L) | (2,055)  | (2,372)  | (983)     | (865)        | (742)      | (717)      | (865)         | (1,154)      | (1,547)  | (1,977)  |

Notes:

1. Reflects the 2023 Gold Book existing summer capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 10% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022

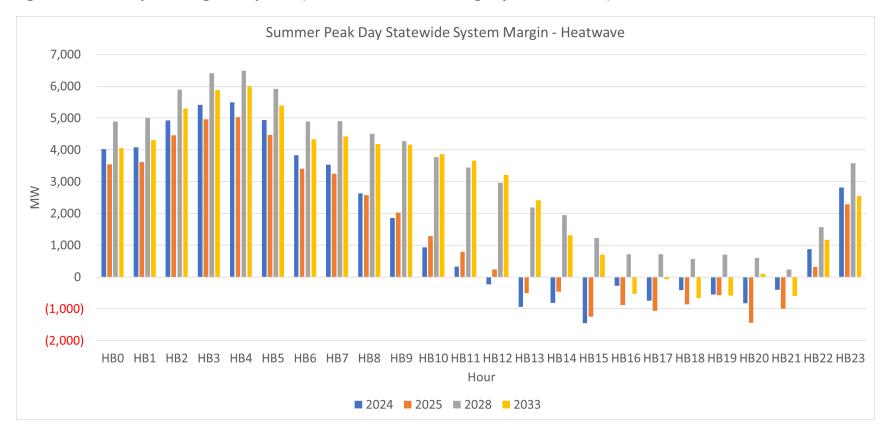
(https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. Interchanges are based on ERAG MMWG values.

4. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.

5. Includes a derate of 364 MW for SCRs.

6. Reflects the final 10-year peak forecasts presented to stakeholders at the April 5, 2023 LFTF/ESPWG without the inclusion of the large load queue projects.


7. Forecast of large load queue projects included in this assessment (Q0580 – WNY STAMP, Q0776 – Greenidge, Q0849 – Somerset, Q0580 – Cayuga, Q0979 – North Country Data Center).



|      |         | Sumr    | ner Peak - | Heatwave, | Emergenc    | y Transfer ( | Criteria (M | W)    |       |       |
|------|---------|---------|------------|-----------|-------------|--------------|-------------|-------|-------|-------|
|      |         |         |            | Statewic  | le System I | Margin       |             |       |       |       |
| Hour | 2024    | 2025    | 2026       | 2027      | 2028        | 2029         | 2030        | 2031  | 2032  | 2033  |
| HB0  | 4,025   | 3,540   | 4,846      | 4,863     | 4,887       | 4,864        | 4,764       | 4,572 | 4,325 | 4,052 |
| HB1  | 4,086   | 3,609   | 4,928      | 4,963     | 5,006       | 5,006        | 4,930       | 4,766 | 4,551 | 4,311 |
| HB2  | 4,928   | 4,459   | 5,786      | 5,833     | 5,890       | 5,908        | 5,850       | 5,708 | 5,516 | 5,302 |
| HB3  | 5,419   | 4,955   | 6,288      | 6,342     | 6,408       | 6,436        | 6,392       | 6,262 | 6,086 | 5,888 |
| HB4  | 5,492   | 5,028   | 6,364      | 6,420     | 6,490       | 6,523        | 6,484       | 6,361 | 6,191 | 6,001 |
| HB5  | 4,935   | 4,471   | 5,802      | 5,855     | 5,919       | 5,946        | 5,901       | 5,771 | 5,592 | 5,394 |
| HB6  | 3,834   | 3,407   | 4,753      | 4,815     | 4,886       | 4,915        | 4,865       | 4,728 | 4,540 | 4,328 |
| HB7  | 3,534   | 3,246   | 4,665      | 4,785     | 4,903       | 4,964        | 4,935       | 4,811 | 4,631 | 4,423 |
| HB8  | 2,636   | 2,571   | 4,101      | 4,316     | 4,507       | 4,624        | 4,634       | 4,535 | 4,375 | 4,180 |
| HB9  | 1,856   | 2,022   | 3,673      | 3,993     | 4,270       | 4,455        | 4,514       | 4,454 | 4,329 | 4,162 |
| HB10 | 933     | 1,281   | 3,026      | 3,429     | 3,776       | 4,016        | 4,118       | 4,094 | 3,997 | 3,859 |
| HB11 | 333     | 790     | 2,594      | 3,051     | 3,442       | 3,718        | 3,850       | 3,851 | 3,778 | 3,661 |
| HB12 | (236)   | 237     | 2,049      | 2,526     | 2,958       | 3,264        | 3,406       | 3,411 | 3,337 | 3,216 |
| HB13 | (935)   | (510)   | 1,274      | 1,746     | 2,192       | 2,508        | 2,646       | 2,643 | 2,554 | 2,418 |
| HB14 | (812)   | (464)   | 1,277      | 1,493     | 1,942       | 2,260        | 1,587       | 1,572 | 1,466 | 1,310 |
| HB15 | (1,447) | (1,245) | 414        | 807       | 1,226       | 1,513        | 1,123       | 1,067 | 914   | 709   |
| HB16 | (280)   | (884)   | 66         | 362       | 711         | 77           | 97          | (25)  | (251) | (527) |
| HB17 | (745)   | (1,062) | 327        | 488       | 717         | 836          | 773         | 576   | 276   | (75)  |
| HB18 | (414)   | (863)   | 400        | 445       | 568         | 593          | 445         | 156   | (237) | (667) |
| HB19 | (552)   | (575)   | 629        | 622       | 699         | 689          | 503         | 192   | (124) | (586) |
| HB20 | (819)   | (1,437) | 348        | 558       | 605         | 1,433        | 1,244       | 940   | 541   | 96    |
| HB21 | (402)   | (993)   | 227        | 203       | 235         | 194          | 489         | 200   | (176) | (594) |
| HB22 | 878     | 318     | 1,563      | 1,546     | 1,569       | 1,524        | 2,162       | 1,894 | 1,551 | 1,168 |
| HB23 | 2,811   | 2,287   | 3,561      | 3,560     | 3,581       | 3,544        | 3,410       | 3,176 | 2,878 | 2,546 |

# Figure 8: Statewide System Margin (Hourly) (1-in-10-Year Heatwave, Emergency Transfer Criteria)





# Figure 9: Statewide System Margin Hourly Curve (1-in-10-Year Heatwave, Emergency Transfer Criteria)



### Figure 10: Statewide System Margin (1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria)

|      |                                                           |          | Summe    | r Peak - 1-ir | n-100-Year E | xtreme Hea | twave, Eme | rgency Tran | sfer Criteria | a (MW)   |          |
|------|-----------------------------------------------------------|----------|----------|---------------|--------------|------------|------------|-------------|---------------|----------|----------|
| Line | Item                                                      | 2024     | 2025     | 2026          | 2027         | 2028       | 2029       | 2030        | 2031          | 2032     | 2033     |
| Α    | NYCA Generation (1)                                       | 38,041   | 38,266   | 38,266        | 38,266       | 38,266     | 38,266     | 38,266      | 38,266        | 38,266   | 38,266   |
| В    | NYCA Generation Derates (2)                               | (5,903)  | (6,554)  | (6,568)       | (6,581)      | (6,594)    | (6,607)    | (6,607)     | (6,621)       | (6,634)  | (6,634)  |
| С    | Temperature Based Generation Derates                      | (389)    | (370)    | (370)         | (370)        | (370)      | (370)      | (370)       | (370)         | (370)    | (370)    |
| D    | External Area Interchanges (3)                            | 1,844    | 1,844    | 3,094         | 3,094        | 3,094      | 3,094      | 3,094       | 3,094         | 3,094    | 3,094    |
| E    | SCRs (4), (5)                                             | 860      | 860      | 860           | 860          | 860        | 860        | 860         | 860           | 860      | 860      |
| F    | Total Resources (A+B+C+D+E)                               | 34,453   | 34,045   | 35,282        | 35,269       | 35,256     | 35,243     | 35,243      | 35,229        | 35,216   | 35,216   |
|      |                                                           |          |          |               |              |            |            |             |               |          |          |
| G    | Demand Forecast (6)                                       | (35,060) | (34,907) | (34,697)      | (34,538)     | (34,398)   | (34,360)   | (34,515)    | (34,801)      | (35,194) | (35,645) |
| н    | Large Load Forecast (7)                                   | (536)    | (585)    | (635)         | (657)        | (657)      | (657)      | (657)       | (657)         | (657)    | (657)    |
| 1    | Largest Loss-of-Source Contingency                        | (1,310)  | (1,310)  | (1,310)       | (1,310)      | (1,310)    | (1,310)    | (1,310)     | (1,310)       | (1,310)  | (1,310)  |
| J    | Total Capability Requirement (G+H+I)                      | (36,906) | (36,801) | (36,642)      | (36,505)     | (36,366)   | (36,327)   | (36,483)    | (36,769)      | (37,161) | (37,613) |
|      |                                                           |          |          |               |              |            |            |             |               |          |          |
| К    | Statewide System Margin (F+J)                             | (2,453)  | (2,756)  | (1,359)       | (1,236)      | (1,110)    | (1,085)    | (1,240)     | (1,539)       | (1,945)  | (2,396)  |
| L    | Operating Reserve                                         | (1,310)  | (1,310)  | (1,310)       | (1,310)      | (1,310)    | (1,310)    | (1,310)     | (1,310)       | (1,310)  | (1,310)  |
| М    | Statewide System Margin with Full Operating Reserve (K+L) | (3,763)  | (4,066)  | (2,669)       | (2,546)      | (2,420)    | (2,395)    | (2,550)     | (2,849)       | (3,255)  | (3,706)  |

Notes:

1. Reflects the 2023 Gold Book existing summer capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 10% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022

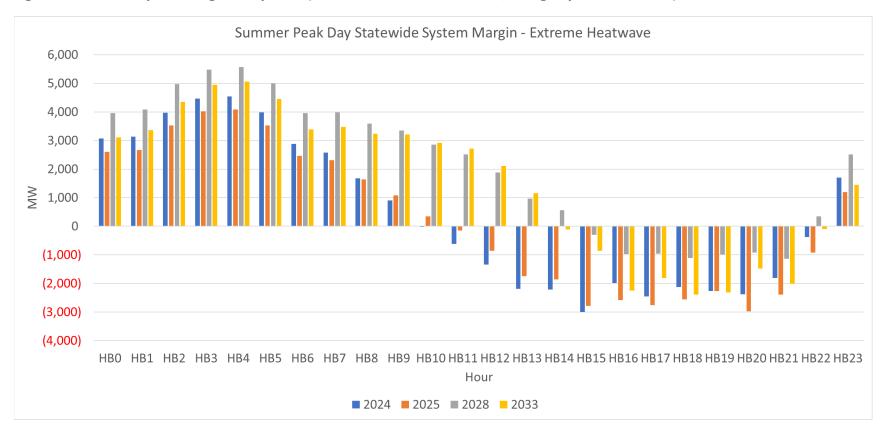
(https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. Interchanges are based on ERAG MMWG values.

4. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.

5. Includes a derate of 364 MW for SCRs.

6. Reflects the final 10-year peak forecasts presented to stakeholders at the April 5, 2023 LFTF/ESPWG without the inclusion of the large load queue projects.


7. Forecast of large load queue projects included in this assessment (Q0580 - WNY STAMP, Q0776 - Greenidge, Q0849 - Somerset, Q0580 - Cayuga, Q0979 - North Country Data Center).



|      | Summ    | er Peak - 1 | -in-100-Ye | ar Extreme | Heatwave    | , Emergeno | y Transfer | Criteria (M | IW)     |         |
|------|---------|-------------|------------|------------|-------------|------------|------------|-------------|---------|---------|
|      |         |             |            | Statewic   | le System I | Margin     |            |             |         |         |
| Hour | 2024    | 2025        | 2026       | 2027       | 2028        | 2029       | 2030       | 2031        | 2032    | 2033    |
| HB0  | 3,070   | 2,602       | 3,915      | 3,938      | 3,964       | 3,942      | 3,839      | 3,642       | 3,390   | 3,106   |
| HB1  | 3,131   | 2,671       | 3,998      | 4,038      | 4,083       | 4,083      | 4,005      | 3,836       | 3,615   | 3,365   |
| HB2  | 3,973   | 3,521       | 4,856      | 4,908      | 4,967       | 4,985      | 4,925      | 4,778       | 4,580   | 4,356   |
| HB3  | 4,464   | 4,017       | 5,358      | 5,417      | 5,485       | 5,513      | 5,467      | 5,332       | 5,150   | 4,942   |
| HB4  | 4,537   | 4,090       | 5,434      | 5,495      | 5,567       | 5,600      | 5,559      | 5,431       | 5,255   | 5,055   |
| HB5  | 3,980   | 3,533       | 4,872      | 4,929      | 4,997       | 5,024      | 4,976      | 4,841       | 4,656   | 4,448   |
| HB6  | 2,879   | 2,469       | 3,822      | 3,890      | 3,963       | 3,993      | 3,940      | 3,798       | 3,604   | 3,382   |
| HB7  | 2,579   | 2,308       | 3,734      | 3,860      | 3,980       | 4,041      | 4,010      | 3,881       | 3,695   | 3,477   |
| HB8  | 1,681   | 1,633       | 3,171      | 3,390      | 3,585       | 3,702      | 3,709      | 3,605       | 3,439   | 3,234   |
| HB9  | 901     | 1,084       | 2,742      | 3,068      | 3,347       | 3,532      | 3,589      | 3,524       | 3,393   | 3,216   |
| HB10 | (22)    | 343         | 2,095      | 2,504      | 2,853       | 3,094      | 3,193      | 3,164       | 3,061   | 2,913   |
| HB11 | (622)   | (148)       | 1,664      | 2,126      | 2,519       | 2,795      | 2,925      | 2,921       | 2,842   | 2,715   |
| HB12 | (1,342) | (852)       | 967        | 1,449      | 1,884       | 2,190      | 2,329      | 2,329       | 2,246   | 2,113   |
| HB13 | (2,191) | (1,750)     | 41         | 519        | 967         | 1,283      | 1,417      | 1,408       | 1,309   | 1,158   |
| HB14 | (2,219) | (1,856)     | (108)      | 114        | 567         | 885        | 207        | 183         | 67      | (106)   |
| HB15 | (3,004) | (2,787)     | (1,121)    | (722)      | (301)       | (13)       | (410)      | (475)       | (640)   | (864)   |
| HB16 | (1,988) | (2,578)     | (1,621)    | (1,319)    | (967)       | (1,601)    | (1,588)    | (1,720)     | (1,959) | (2,256) |
| HB17 | (2,453) | (2,756)     | (1,359)    | (1,193)    | (961)       | (842)      | (912)      | (1,119)     | (1,432) | (1,804) |
| HB18 | (2,122) | (2,557)     | (1,286)    | (1,236)    | (1,110)     | (1,085)    | (1,240)    | (1,539)     | (1,945) | (2,396) |
| HB19 | (2,260) | (2,269)     | (1,057)    | (1,060)    | (978)       | (988)      | (1,182)    | (1,503)     | (1,832) | (2,315) |
| HB20 | (2,376) | (2,980)     | (1,187)    | (971)      | (922)       | (93)       | (289)      | (602)       | (1,013) | (1,477) |
| HB21 | (1,809) | (2,385)     | (1,158)    | (1,176)    | (1,141)     | (1,181)    | (891)      | (1,189)     | (1,574) | (2,010) |
| HB22 | (378)   | (922)       | 330        | 319        | 344         | 300        | 933        | 659         | 307     | (92)    |
| HB23 | 1,705   | 1,198       | 2,479      | 2,483      | 2,507       | 2,471      | 2,333      | 2,094       | 1,788   | 1,443   |

# Figure 11: Statewide System Margin (Hourly) (1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria)





# Figure 12: Statewide System Margin Hourly Curve (1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria)



### Figure 13: Statewide System Margin (Winter Peak - Expected Weather, Normal Transfer Criteria)

|      |                                                               |          | w        | 'inter Peak - B | aseline Expe | cted Winter \ | Neather, Nor | mal Transfer | Criteria (MW | ()       |          |
|------|---------------------------------------------------------------|----------|----------|-----------------|--------------|---------------|--------------|--------------|--------------|----------|----------|
| Line | Item                                                          | 2024-25  | 2025-26  | 2026-27         | 2027-28      | 2028-29       | 2029-30      | 2030-31      | 2031-32      | 2032-33  | 2033-34  |
| Α    | NYCA Generation (1)                                           | 40,941   | 41,226   | 41,226          | 41,226       | 41,226        | 41,226       | 41,226       | 41,226       | 41,226   | 41,226   |
| В    | NYCA Generation Derates (2)                                   | (6,846)  | (7,163)  | (7,163)         | (7,163)      | (7,163)       | (7,163)      | (7,163)      | (7,163)      | (7,163)  | (7,163)  |
| С    | Temperature Based Generation Derates                          | 0        | 0        | 0               | 0            | 0             | 0            | 0            | 0            | 0        | 0        |
| D    | External Area Interchanges (3)                                | 1,268    | 1,268    | 1,268           | 1,268        | 1,268         | 1,268        | 1,268        | 1,268        | 1,268    | 1,268    |
| E    | Total Resources (A+B+C+D)                                     | 35,363   | 35,331   | 35,331          | 35,331       | 35,331        | 35,331       | 35,331       | 35,331       | 35,331   | 35,331   |
|      |                                                               |          |          |                 |              |               |              |              |              |          |          |
| F    | Demand Forecast (5)                                           | (23,895) | (24,196) | (24,656)        | (25,182)     | (25,844)      | (26,716)     | (27,746)     | (28,936)     | (30,306) | (31,756) |
| G    | Large Load Forecast (6)                                       | (490)    | (559)    | (579)           | (589)        | (589)         | (589)        | (589)        | (589)        | (589)    | (589)    |
| Н    | Largest Loss-of-Source Contingency                            | (1,310)  | (1,310)  | (1,310)         | (1,310)      | (1,310)       | (1,310)      | (1,310)      | (1,310)      | (1,310)  | (1,310)  |
| 1    | Total Capability Requirement (F+G+H)                          | (25,695) | (26,065) | (26,545)        | (27,081)     | (27,743)      | (28,615)     | (29,645)     | (30,835)     | (32,205) | (33,655) |
|      |                                                               |          |          |                 |              |               |              |              |              |          |          |
| J    | Statewide System Margin (E+I)                                 | 9,668    | 9,266    | 8,786           | 8,250        | 7,588         | 6,716        | 5,686        | 4,496        | 3,126    | 1,676    |
| К    | SCRs (7)(8)                                                   | 486      | 486      | 486             | 486          | 486           | 486          | 486          | 486          | 486      | 486      |
| L    | Statewide System Margin with SCR (J+K)                        | 10,154   | 9,752    | 9,272           | 8,736        | 8,074         | 7,202        | 6,172        | 4,982        | 3,612    | 2,162    |
| М    | Operating Reserve                                             | (1,310)  | (1,310)  | (1,310)         | (1,310)      | (1,310)       | (1,310)      | (1,310)      | (1,310)      | (1,310)  | (1,310)  |
| Ν    | Statewide System Margin with Full Operating Reserve (L+M) (4) | 8,844    | 8,442    | 7,962           | 7,426        | 6,764         | 5,892        | 4,862        | 3,672        | 2,302    | 852      |

Notes:

1. Reflects the 2023 Gold Book existing summer capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 10% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022 (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. Interchanges are based on ERAG MMWG values.

4. For informational purposes.

5. Reflects the final 10-year peak forecasts presented to stakeholders at the April 5, 2023 LFTF/ESPWG without the inclusion of the large load queue projects.

6. Forecast of large load queue projects included in this assessment (Q0580 - WNY STAMP, Q0776 - Greenidge, Q0849 - Somerset, Q0580 - Cayuga, Q0979 - North Country Data Center).

7. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.

8. Includes a derate of 211 MW for SCRs.



### Figure 14: Statewide System Margin (1-in-10-Year Cold Snap, Emergency Transfer Criteria)

|      |                                                           |          |          | Winter Pea | ak - 1-in-10-Y | ear Cold Snap | , Emergency 1 | Fransfer Crite | ria (MW) |          |          |
|------|-----------------------------------------------------------|----------|----------|------------|----------------|---------------|---------------|----------------|----------|----------|----------|
| Line | Item                                                      | 2024-25  | 2025-26  | 2026-27    | 2027-28        | 2028-29       | 2029-30       | 2030-31        | 2031-32  | 2032-33  | 2033-34  |
| Α    | NYCA Generation (1)                                       | 40,941   | 41,226   | 41,226     | 41,226         | 41,226        | 41,226        | 41,226         | 41,226   | 41,226   | 41,226   |
| В    | NYCA Generation Derates (2)                               | (6,846)  | (7,163)  | (7,163)    | (7,163)        | (7,163)       | (7,163)       | (7,163)        | (7,163)  | (7,163)  | (7,163)  |
| С    | Temperature Based Generation Derates                      | 0        | 0        | 0          | 0              | 0             | 0             | 0              | 0        | 0        | 0        |
| D    | External Area Interchanges (3)                            | 1,268    | 1,268    | 1,268      | 1,268          | 1,268         | 1,268         | 1,268          | 1,268    | 1,268    | 1,268    |
| E    | SCRs (4), (5)                                             | 486      | 486      | 486        | 486            | 486           | 486           | 486            | 486      | 486      | 486      |
| F    | Total Resources (A+B+C+D+E)                               | 35,849   | 35,817   | 35,817     | 35,817         | 35,817        | 35,817        | 35,817         | 35,817   | 35,817   | 35,817   |
|      |                                                           |          |          |            |                |               |               |                |          |          |          |
| G    | Demand Forecast (6)                                       | (24,896) | (25,211) | (25,690)   | (26,239)       | (26,928)      | (27,836)      | (28,910)       | (30,151) | (31,579) | (33,089) |
| Н    | Large Load Forecast (7)                                   | (510)    | (582)    | (603)      | (614)          | (614)         | (614)         | (614)          | (614)    | (614)    | (614)    |
| L.   | Largest Loss-of-Source Contingency                        | (1,310)  | (1,310)  | (1,310)    | (1,310)        | (1,310)       | (1,310)       | (1,310)        | (1,310)  | (1,310)  | (1,310)  |
| J    | Total Capability Requirement (G+H+I)                      | (26,717) | (27,104) | (27,604)   | (28,163)       | (28,852)      | (29,760)      | (30,833)       | (32,074) | (33,502) | (35,012) |
|      |                                                           |          |          |            |                |               |               |                |          |          |          |
| К    | Statewide System Margin (F+J)                             | 9,132    | 8,714    | 8,214      | 7,654          | 6,965         | 6,057         | 4,984          | 3,743    | 2,315    | 805      |
| L    | Operating Reserve                                         | (1,310)  | (1,310)  | (1,310)    | (1,310)        | (1,310)       | (1,310)       | (1,310)        | (1,310)  | (1,310)  | (1,310)  |
| М    | Statewide System Margin with Full Operating Reserve (K+L) | 7,822    | 7,404    | 6,904      | 6,344          | 5,655         | 4,747         | 3,674          | 2,433    | 1,005    | (505)    |

Notes:

1. Reflects the 2023 Gold Book existing winter capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022

(https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. Interchanges are based on ERAG MMWG values.

4. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.

5. Includes a derate of 211 MW for SCRs.

6. Reflects the final 10-year peak forecasts presented to stakeholders at the April 5, 2023 LFTF/ESPWG without the inclusion of the large load queue projects.

7. Forecast of large load queue projects included in this assessment (Q0580 - WNY STAMP, Q0776 - Greenidge, Q0849 - Somerset, Q0580 - Cayuga, Q0979 - North Country Data Center).



### Figure 15: Statewide System Margin (1-in-100-Year Extreme Cold Snap, Emergency Transfer Criteria)

|       |                                                           |          | W        | nter Peak - 1- | in-100-Year l | Extreme Cold | Snap, Emerge | ency Transfer | Criteria (MW | /)       |          |
|-------|-----------------------------------------------------------|----------|----------|----------------|---------------|--------------|--------------|---------------|--------------|----------|----------|
| Line  | Item                                                      | 2024-25  | 2025-26  | 2026-27        | 2027-28       | 2028-29      | 2029-30      | 2030-31       | 2031-32      | 2032-33  | 2033-34  |
| Α     | NYCA Generation (1)                                       | 40,941   | 41,226   | 41,226         | 41,226        | 41,226       | 41,226       | 41,226        | 41,226       | 41,226   | 41,226   |
| В     | NYCA Generation Derates (2)                               | (6,846)  | (7,163)  | (7,163)        | (7,163)       | (7,163)      | (7,163)      | (7,163)       | (7,163)      | (7,163)  | (7,163)  |
| С     | Temperature Based Generation Derates                      | 0        | 1        | 2              | 3             | 4            | 5            | 6             | 7            | 8        | 9        |
| D     | External Area Interchanges (3)                            | 1,268    | 1,268    | 1,268          | 1,268         | 1,268        | 1,268        | 1,268         | 1,268        | 1,268    | 1,268    |
| E     | SCRs (4), (5)                                             | 486      | 486      | 486            | 486           | 486          | 486          | 486           | 486          | 486      | 486      |
| F     | Total Resources (A+B+C+D+E)                               | 35,849   | 35,818   | 35,819         | 35,820        | 35,821       | 35,822       | 35,823        | 35,824       | 35,825   | 35,826   |
|       |                                                           |          |          |                |               |              |              |               |              |          |          |
| G     | Demand Forecast (6)                                       | (26,662) | (26,995) | (27,510)       | (28,097)      | (28,835)     | (29,810)     | (30,957)      | (32,287)     | (33,815) | (35,431) |
| Н     | Large Load Forecast (7)                                   | (547)    | (624)    | (646)          | (657)         | (657)        | (657)        | (657)         | (657)        | (657)    | (657)    |
| 1     | Largest Loss-of-Source Contingency                        | (1,310)  | (1,310)  | (1,310)        | (1,310)       | (1,310)      | (1,310)      | (1,310)       | (1,310)      | (1,310)  | (1,310)  |
| J     | Total Capability Requirement (G+H+I)                      | (28,518) | (28,929) | (29,466)       | (30,064)      | (30,803)     | (31,777)     | (32,925)      | (34,255)     | (35,783) | (37,398) |
|       |                                                           |          |          |                |               |              |              |               |              |          |          |
| К     | Statewide System Margin (F+J)                             | 7,330    | 6,889    | 6,353          | 5,756         | 5,019        | 4,045        | 2,899         | 1,570        | 43       | (1,572)  |
| L     | Operating Reserve                                         | (1,310)  | (1,310)  | (1,310)        | (1,310)       | (1,310)      | (1,310)      | (1,310)       | (1,310)      | (1,310)  | (1,310)  |
| М     | Statewide System Margin with Full Operating Reserve (K+L) | 6,020    | 5,579    | 5,043          | 4,446         | 3,709        | 2,735        | 1,589         | 260          | (1,267)  | (2,882)  |
| Neter |                                                           |          |          |                |               |              |              |               |              |          |          |

Notes:

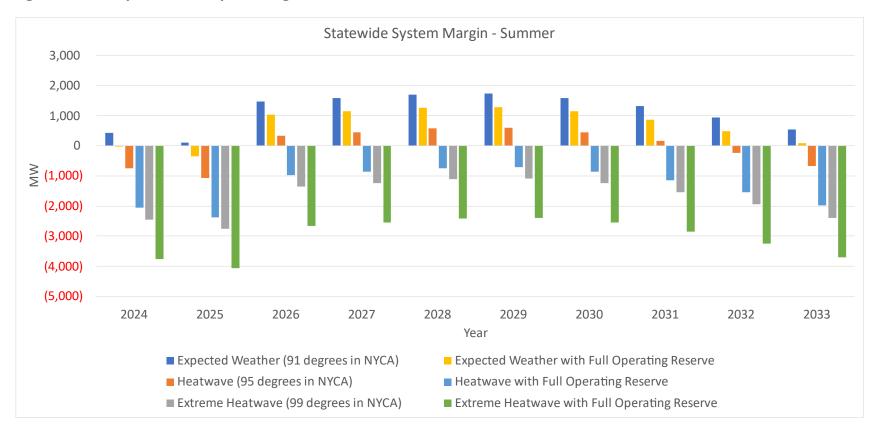
1. Reflects the 2023 Gold Book existing winter capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022

(https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

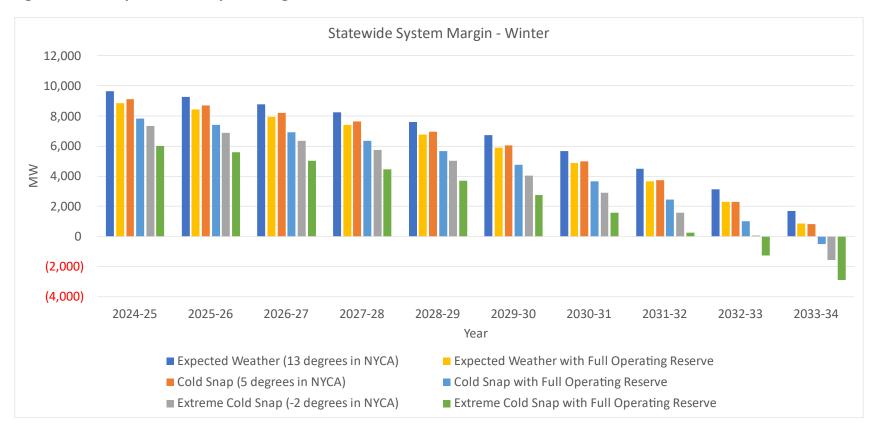
3. Interchanges are based on ERAG MMWG values.

4. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.


5. Includes a derate of 211 MW for SCRs.

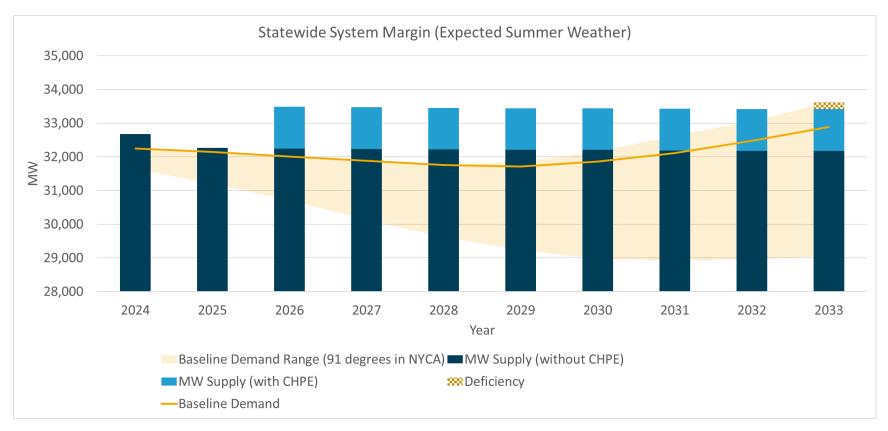
6. Reflects the final 10-year peak forecasts presented to stakeholders at the April 5, 2023 LFTF/ESPWG without the inclusion of the large load queue projects.

7. Forecast of large load queue projects included in this assessment (Q0580 – WNY STAMP, Q0776 – Greenidge, Q0849 – Somerset, Q0580 – Cayuga, Q0979 – North Country Data Center).




# Figure 16: Summary of Statewide System Margin – Summer



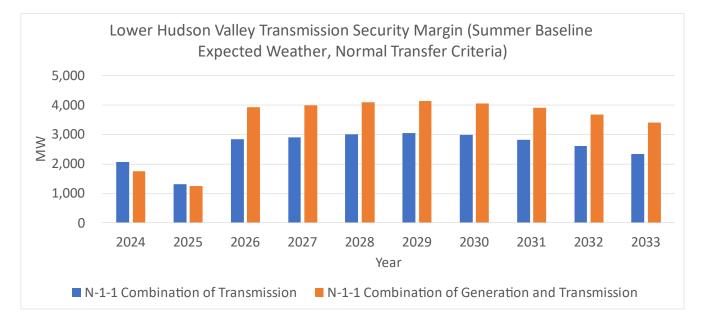



# Figure 17: Summary of Statewide System Margin - Winter





# Figure 18: Statewide System Margin (Expected Weather, With and Without CHPE)






# Lower Hudson Valley (Zones G-J) Transmission Security Margins

The Lower Hudson Valley, or southeastern New York (SENY) region, is comprised of Zones G-J and includes the electrical connections to the RECO load in PJM. To determine the transmission security margin for this area, the most limiting combination of two non-simultaneous contingency events (N-1-1) to the transmission security margin was determined. Design criteria N-1-1 combinations include various combinations of losses of generation and transmission. As the system changes the limiting contingency combination may also change. Figure 19 shows how the summer transmission security margin changes through time in consideration of the planned transmission system changes which impact the most limiting contingency combination for the year being evaluated. In summer 2024, the most limiting contingency combination to the transmission security margin under peak demand conditions is the loss of Ravenswood 3 followed by the loss of Pleasant Valley – Wood St. 345 kV (F30/F31). Starting in summer 2026, the limiting contingency combination changes to the loss of Knickerbocker – Pleasant Valley 345 kV followed by the loss of Athens – Van Wagner 345 kV and one of the Athens gas/steam combinations. The limiting contingency combination for winter also changes through time in consideration of the planned transmission system changes. Starting in winter 2024-25 and for the remainder of the 10-year study horizon, the limiting contingency combination is the loss of Ravenswood 3 followed by the loss of Pleasant Valley - Wood St. 345 kV (F30/F31).





As transmission security analysis represents discrete snapshots in time of various credible combinations of system conditions, only the magnitude of a reliability need can be identified under those



system conditions. Additional details are required to fully describe the nature of the need, such as evaluating the hourly demand shape and its impact on the need. To describe the nature of the Lower Hudson Valley transmission security margin, demand shapes are developed for the Zones G, H, I, and J components of the statewide demand shape. Details of the demand shapes are provided later in this appendix. For this assessment, demand shapes were not developed past 2033 and are limited to the summer conditions.

**Figure 20** shows the calculation of the Lower Hudson Valley transmission security margin for the statewide coincident summer peak demand hour with expected weather and with normal transfer criteria. The Lower Hudson Valley transmission security margin is sufficient for the 10-year horizon (line-item 0). The transmission security margin coincident with the statewide system peak ranges from 1,752 MW in summer 2024 to 2,337 MW in summer 2033. The narrowest margin is in summer 2025 with 1,245 MW of margin. Considering the summer baseline peak demand transmission security margin, the Lower Hudson Valley would require several additional outages beyond design criteria to have a deficient transmission security margin.

The demand shapes for the Lower Hudson Valley show the contributions of Zones G, H, I, (Figure 94) and J (Figure 95) towards the statewide shape (which represents the statewide coincident peak) for each hour of the day. Utilizing the demand shapes for the baseline summer peak day with expected weather, the Lower Hudson Valley transmission security margin for each hour utilizing normal transfer criteria is shown in **Figure 21**. The Lower Hudson Valley transmission security margin for each hour is created by using the demand forecast for each hour in the margin calculation (*i.e.*, **Figure 20** line-item A) with additional adjustments to account for the appropriate derate for solar generation and energy limited resources in each hour (*i.e.*, **Figure 20** line-item K). All other values in the margin calculations are held constant. A graphical representation of the hourly margin for the Lower Hudson Valley for the peak day in years 2024, 2025, 2028, and 2033 is provided in **Figure 22**. For all years in the 10-year study horizon, the assessment did not observe deficiencies considering the demand shapes under expected demand, normal transfer criteria for the Lower Hudson Valley.

It is possible for other combinations of events, such as a 1-in-10-year heatwave or 1-in-100-year extreme heatwave, to result in a deficient transmission security margin. Figure 23 shows that the Lower Hudson Valley transmission security margin for the statewide coincident peak hour under the 1-in-10-year heatwave condition with the assumption that the system is using emergency transfer criteria. The transmission security margin under 1-in-10-year heatwave condition is sufficient for all years. The margin ranges from 1,749 MW in summer 2024 to 2,128 MW in summer 2033. The demand shapes for the Lower

Hudson Valley under heatwave conditions are shown in **Figure 100** (Zones G, H, and I) and **Figure 101** (Zone J). Utilizing the Lower Hudson Valley demand-duration heatwave shapes, the transmission security margin for each hour under emergency transfer criteria is shown in **Figure 24**. For all years in the 10-year horizon, there are no observed transmission security margin deficiencies considering the heatwave demand duration shapes for the Lower Hudson Valley with emergency transfer criteria. A graphical representation of the hourly margin for the Lower Hudson Valley for the peak day in years 2024, 2025, 2028, and 2033 under heatwave, emergency transfer criteria conditions is provided in **Figure 25**.

Under a 1-in-100-year extreme heatwave, which also assumes the use of emergency transfer criteria, the margin is sufficient for all years as shown in **Figure 26**. The margin ranges from 657 MW in summer 2024 to 1,020 in Summer 2033. The demand shapes for the Lower Hudson Valley under extreme heatwave conditions are shown in Figure 105 (Zones G, H, I, and J) and Figure 106 (Zone J). Utilizing the Lower Hudson Valley demand-duration extreme heatwave shapes, the transmission security margin for each hour utilizing emergency transfer criteria is shown in **Figure 27**. **Figure 28** provides a graphical representation of the hourly transmission security margin for the peak day in years 2024, 2025, 2028, and 2033.

Figure 29 shows the Lower Hudson Valley transmission security margin under winter peak demand with expected weather. For winter peak demand, the margin is sufficient for all years and ranges from 7,505 MW in winter 2024-25 to 4,303 MW in winter 2033-34 (line-item 0). Considering the winter baseline peak demand transmission security margin, multiple outages in the lower Hudson Valley would be required to show a deficient transmission security margin.

Figure 30 shows the Lower Hudson Valley transmission security margin in a 1-in-10-year cold snap with emergency transfer criteria. Under this condition, the margin is sufficient for all study years and ranges from 7,905 MW in winter 2024-25 to 4,570 MW in winter 2033-33 (line-item P). The 1-in-100-year extreme cold snap shown in Figure 31 (also assuming emergency transfer criteria) shows sufficient margin for all study years ranging from 7,120 MW in winter 2024-25 to 3,552 in winter 2033-34 (line-item P).

Figure 32 provides are summary of the summer peak demand Lower Hudson Valley transmission security margins under expected summer weather, heatwave, and extreme heatwave conditions. Figure 33 provides a summary of the winter peak Lower Hudson Valley transmission security margins under expected winter weather, cold snap, and extreme cold snap conditions. Figure 34 provides a summary of the Lower Hudson Valley transmission security margin with the summer peak baseline demand range from the lower and higher policy demand forecasts.



### Figure 20: Lower Hudson Valley Transmission Security Margin (Summer Peak – Expected Weather, Normal Transfer Criteria)

|      | Summer Pe                            | ak - Baseline | Expected W | /eather, Nor | mal Transfe | r Criteria (M       | W)       |          |          |          |          |
|------|--------------------------------------|---------------|------------|--------------|-------------|---------------------|----------|----------|----------|----------|----------|
| Line | Item                                 | 2024          | 2025       | 2026         | 2027        | 2028                | 2029     | 2030     | 2031     | 2032     | 2033     |
| Α    | G-J Demand Forecast (4)              | (15,214)      | (15,206)   | (15,140)     | (15,074)    | (14,971)            | (14,931) | (14,998) | (15,160) | (15,378) | (15,642) |
| В    | RECO Demand                          | (389)         | (389)      | (389)        | (387)       | <mark>(</mark> 387) | (387)    | (387)    | (387)    | (388)    | (388)    |
| С    | Total Demand (A+B)                   | (15,603)      | (15,595)   | (15,529)     | (15,461)    | (15,358)            | (15,318) | (15,385) | (15,547) | (15,766) | (16,030) |
|      |                                      |               |            |              |             |                     |          |          |          |          |          |
| D    | UPNY-SENY Limit (3)                  | 5,725         | 5,725      | 5,025        | 5,025       | 5,025               | 5,025    | 5,025    | 5,025    | 5,025    | 5,025    |
| E    | ABC PARs to J                        | (11)          | (11)       | (11)         | (11)        | (11)                | (11)     | (11)     | (11)     | (11)     | (11)     |
| F    | K - SENY                             | (83)          | (83)       | (83)         | (83)        | (83)                | (83)     | (83)     | (83)     | (83)     | (83)     |
| G    | Total SENY AC Import (D+E+F)         | 5,631         | 5,631      | 4,931        | 4,931       | 4,931               | 4,931    | 4,931    | 4,931    | 4,931    | 4,931    |
|      |                                      |               |            |              |             |                     |          |          |          |          |          |
| Н    | Loss of Source Contingency           | (987)         | (987)      | 0            | 0           | 0                   | 0        | 0        | 0        | 0        | 0        |
| 1    | Resource Need (C+G+H)                | (10,959)      | (10,951)   | (10,598)     | (10,530)    | (10,427)            | (10,387) | (10,454) | (10,616) | (10,835) | (11,099) |
|      |                                      |               |            |              |             |                     |          |          |          |          |          |
| J    | G-J Generation (1)                   | 13,481        | 12,991     | 12,991       | 12,991      | 12,991              | 12,991   | 12,991   | 12,991   | 12,991   | 12,991   |
| K    | G-J Generation Derates (2)           | (1,086)       | (1,110)    | (1,113)      | (1,114)     | (1,115)             | (1,116)  | (1,118)  | (1,118)  | (1,119)  | (1,120)  |
| L    | Temperature Based Generation Derates | 0             | 0          | 0            | 0           | 0                   | 0        | 0        | 0        | 0        | 0        |
| М    | Net ICAP External Imports            | 315           | 315        | 1,565        | 1,565       | 1,565               | 1,565    | 1,565    | 1,565    | 1,565    | 1,565    |
| Ν    | Total Resources Available (J+K+L+M)  | 12,711        | 12,196     | 13,444       | 13,442      | 13,441              | 13,440   | 13,438   | 13,438   | 13,437   | 13,436   |
|      |                                      |               |            |              |             |                     |          |          |          |          |          |
| 0    | Transmission Security Margin (I+N)   | 1,752         | 1,245      | 2,846        | 2,912       | 3,014               | 3,053    | 2,984    | 2,822    | 2,602    | 2,337    |

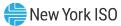
Notes:

1. Reflects the 2023 Gold Book existing summer capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 10% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022 (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2033 are based on the summer peak 2032 representations evaluated in the 2022 RNA.




|                                                                |                     | Lower Hud                                    | son Valle | у         |            |            |          |           |            |            |             |       |
|----------------------------------------------------------------|---------------------|----------------------------------------------|-----------|-----------|------------|------------|----------|-----------|------------|------------|-------------|-------|
|                                                                | Year                |                                              | 2024      | 2025      | 2026       | 2027       | 2028     | 2029      | 2030       | 2031       | 2032        | 2033  |
| Lower Hudson Valley Transmission<br>Expected Summer Weather, ! |                     |                                              | 1,752     | 1,245     | 2,846      | 2,912      | 3,014    | 3,053     | 2,984      | 2,822      | 2,602       | 2,337 |
| Unit Name                                                      | Summer DMNC<br>(MW) | NERC 5-Year Class<br>Average De-Rate<br>(MW) | Tra       | insmissio | n Security | v Margin I | mpact of | Generator | r Outage ( | [Retire, M | othball, II | IFO)  |
| Ravenswood ST 01, 02, & 03 (2)                                 | 1,730.3             | (171.30)                                     | 505       | (252)     | 1,287      | 1,353      | 1,455    | 1,494     | 1,425      | 1,263      | 1,043       | 778   |
| Roseton 1 & 2                                                  | 1,188.7             | (117.68)                                     | 681       | 174       | 1,775      | 1,841      | 1,943    | 1,982     | 1,913      | 1,751      | 1,531       | 1,266 |
| Bowline 1 & 2                                                  | 1,139.0             | (112.76)                                     | 725       | 219       | 1,819      | 1,886      | 1,988    | 2,026     | 1,958      | 1,796      | 1,576       | 1,311 |
| Cricket Valley CC1, CC2, & CC3                                 | 1,029.3             | (41.79)                                      | 764       | 257       | 1,858      | 1,925      | 2,026    | 2,065     | 1,997      | 1,835      | 1,615       | 1,349 |
| Ravenswood ST 03 (2)                                           | 987.3               | (97.74)                                      | 1,174     | 418       | 1,956      | 2,023      | 2,124    | 2,163     | 2,095      | 1,933      | 1,712       | 1,447 |
| Astoria 2, 3, & 5                                              | 917.4               | (90.82)                                      | 925       | 418       | 2,019      | 2,086      | 2,187    | 2,226     | 2,158      | 1,996      | 1,775       | 1,510 |
| Arthur Kill ST 2 & 3                                           | 865.3               | (85.66)                                      | 972       | 465       | 2,066      | 2,133      | 2,234    | 2,273     | 2,205      | 2,043      | 1,822       | 1,557 |
| Linden Cogen                                                   | 789.5               | (32.05)                                      | 994       | 488       | 2,088      | 2,155      | 2,257    | 2,295     | 2,227      | 2,065      | 1,845       | 1,579 |
| CPV Valley CC1 & CC2                                           | 651.8               | (26.46)                                      | 1,126     | 620       | 2,220      | 2,287      | 2,389    | 2,427     | 2,359      | 2,197      | 1,977       | 1,711 |
| East River 1, 2, 6, & 7                                        | 636.5               | (44.86)                                      | 1,160     | 653       | 2,254      | 2,321      | 2,422    | 2,461     | 2,393      | 2,231      | 2,010       | 1,745 |
| Roseton 2                                                      | 612.5               | (60.64)                                      | 1,200     | 693       | 2,294      | 2,360      | 2,462    | 2,501     | 2,432      | 2,270      | 2,050       | 1,785 |
| Bayonne EC CT G1 through G10                                   | 601.6               | (53.90)                                      | 1,204     | 697       | 2,298      | 2,365      | 2,466    | 2,505     | 2,437      | 2,275      | 2,054       | 1,789 |
| Astoria East Energy CC1 & CC2                                  | 583.8               | (23.70)                                      | 1,191     | 685       | 2,285      | 2,352      | 2,454    | 2,493     | 2,424      | 2,262      | 2,042       | 1,777 |
| Bowline 1                                                      | 582.0               | (57.62)                                      | 1,227     | 721       | 2,321      | 2,388      | 2,490    | 2,528     | 2,460      | 2,298      | 2,078       | 1,812 |
| Roseton 1                                                      | 576.2               | (57.04)                                      | 1,232     | 726       | 2,326      | 2,393      | 2,495    | 2,533     | 2,465      | 2,303      | 2,083       | 1,818 |
| Astoria Energy 2 - CC3 & CC4                                   | 570.2               | (23.15)                                      | 1,205     | 698       | 2,299      | 2,365      | 2,467    | 2,506     | 2,437      | 2,275      | 2,055       | 1,790 |
| Bowline 2                                                      | 557.0               | (55.14)                                      | 1,250     | 743       | 2,344      | 2,410      | 2,512    | 2,551     | 2,482      | 2,320      | 2,100       | 1,835 |
| Arthur Kill ST 3                                               | 519.0               | (51.38)                                      | 1,284     | 777       | 2,378      | 2,445      | 2,546    | 2,585     | 2,517      | 2,355      | 2,134       | 1,869 |
| Danskammer 1, 2, 3, & 4                                        | 496.2               | (49.12)                                      | 1,304     | 798       | 2,398      | 2,465      | 2,567    | 2,606     | 2,537      | 2,375      | 2,155       | 1,890 |
| Astoria CC 1 & 2                                               | 476.0               | (19.33)                                      | 1,295     | 788       | 2,389      | 2,456      | 2,557    | 2,596     | 2,528      | 2,366      | 2,145       | 1,880 |
| Astoria 5                                                      | 374.7               | (37.10)                                      | 1,414     | 907       | 2,508      | 2,575      | 2,676    | 2,715     | 2,647      | 2,485      | 2,264       | 1,999 |
| Ravenswood ST 02                                               | 374.5               | (37.08)                                      | 1,414     | 908       | 2,508      | 2,575      | 2,677    | 2,715     | 2,647      | 2,485      | 2,265       | 1,999 |
| Astoria 3                                                      | 372.2               | (36.85)                                      | 1,416     | 910       | 2,510      | 2,577      | 2,679    | 2,717     | 2,649      | 2,487      | 2,267       | 2,001 |
| Ravenswood ST 01                                               | 368.5               | (36.48)                                      | 1,420     | 913       | 2,514      | 2,580      | 2,682    | 2,721     | 2,652      | 2,490      | 2,270       | 2,005 |



|                                                              |                     | Lower Hud                                    | son Valle | y        |            |            |          |           |            |           |             |       |
|--------------------------------------------------------------|---------------------|----------------------------------------------|-----------|----------|------------|------------|----------|-----------|------------|-----------|-------------|-------|
|                                                              | Year                |                                              | 2024      | 2025     | 2026       | 2027       | 2028     | 2029      | 2030       | 2031      | 2032        | 2033  |
| Lower Hudson Valley Transmission<br>Expected Summer Weather, | 5 0 ,               |                                              | 1,752     | 1,245    | 2,846      | 2,912      | 3,014    | 3,053     | 2,984      | 2,822     | 2,602       | 2,337 |
| Unit Name                                                    | Summer DMNC<br>(MW) | NERC 5-Year Class<br>Average De-Rate<br>(MW) | Tra       | nsmissio | n Security | ' Margin I | mpact of | Generator | r Outage ( | Retire, M | othball, II | IFO)  |
| Arthur Kill ST 2                                             | 346.3               | (34.28)                                      | 1,440     | 933      | 2,534      | 2,600      | 2,702    | 2,741     | 2,672      | 2,510     | 2,290       | 2,025 |
| Cricket Valley CC2                                           | 343.6               | (13.95)                                      | 1,422     | 915      | 2,516      | 2,583      | 2,684    | 2,723     | 2,655      | 2,493     | 2,272       | 2,007 |
| Cricket Valley CC3                                           | 343.3               | (13.94)                                      | 1,422     | 916      | 2,516      | 2,583      | 2,685    | 2,723     | 2,655      | 2,493     | 2,273       | 2,007 |
| Cricket Valley CC1                                           | 342.4               | (13.90)                                      | 1,423     | 916      | 2,517      | 2,584      | 2,685    | 2,724     | 2,656      | 2,494     | 2,274       | 2,008 |
| CPV Valley CC1                                               | 325.9               | (13.23)                                      | 1,439     | 932      | 2,533      | 2,600      | 2,701    | 2,740     | 2,672      | 2,510     | 2,289       | 2,024 |
| CPV Valley CC2                                               | 325.9               | (13.23)                                      | 1,439     | 932      | 2,533      | 2,600      | 2,701    | 2,740     | 2,672      | 2,510     | 2,289       | 2,024 |
| Astoria East Energy - CC1                                    | 291.9               | (11.85)                                      | 1,472     | 965      | 2,566      | 2,632      | 2,734    | 2,773     | 2,704      | 2,542     | 2,322       | 2,057 |
| Astoria East Energy - CC2                                    | 291.9               | (11.85)                                      | 1,472     | 965      | 2,566      | 2,632      | 2,734    | 2,773     | 2,704      | 2,542     | 2,322       | 2,057 |
| Astoria Energy 2 - CC3                                       | 285.1               | (11.58)                                      | 1,478     | 971      | 2,572      | 2,639      | 2,740    | 2,779     | 2,711      | 2,549     | 2,329       | 2,063 |
| Astoria Energy 2 - CC4                                       | 285.1               | (11.58)                                      | 1,478     | 971      | 2,572      | 2,639      | 2,740    | 2,779     | 2,711      | 2,549     | 2,329       | 2,063 |
| Brooklyn Navy Yard                                           | 244.6               | (9.93)                                       | 1,517     | 1,010    | 2,611      | 2,678      | 2,779    | 2,818     | 2,750      | 2,588     | 2,367       | 2,102 |
| Astoria CC 1                                                 | 238.0               | (9.66)                                       | 1,523     | 1,017    | 2,617      | 2,684      | 2,786    | 2,824     | 2,756      | 2,594     | 2,374       | 2,108 |
| Astoria CC 2                                                 | 238.0               | (9.66)                                       | 1,523     | 1,017    | 2,617      | 2,684      | 2,786    | 2,824     | 2,756      | 2,594     | 2,374       | 2,108 |
| Ravenswood CC 04                                             | 223.2               | (9.06)                                       | 1,537     | 1,031    | 2,631      | 2,698      | 2,800    | 2,839     | 2,770      | 2,608     | 2,388       | 2,123 |
| Danskammer 4                                                 | 222.1               | (21.99)                                      | 1,551     | 1,045    | 2,645      | 2,712      | 2,814    | 2,853     | 2,784      | 2,622     | 2,402       | 2,137 |
| East River 7                                                 | 184.2               | (18.24)                                      | 1,586     | 1,079    | 2,680      | 2,746      | 2,848    | 2,887     | 2,818      | 2,656     | 2,436       | 2,171 |
| Astoria 2                                                    | 170.5               | (16.88)                                      | 1,598     | 1,091    | 2,692      | 2,759      | 2,860    | 2,899     | 2,831      | 2,669     | 2,448       | 2,183 |
| East River 2                                                 | 155.8               | (6.33)                                       | 1,602     | 1,095    | 2,696      | 2,763      | 2,864    | 2,903     | 2,835      | 2,673     | 2,453       | 2,187 |
| East River 1                                                 | 155.1               | (6.30)                                       | 1,603     | 1,096    | 2,697      | 2,763      | 2,865    | 2,904     | 2,836      | 2,674     | 2,453       | 2,188 |
| East River 6                                                 | 141.4               | (14.00)                                      | 1,624     | 1,118    | 2,718      | 2,785      | 2,887    | 2,925     | 2,857      | 2,695     | 2,475       | 2,209 |
| Danskammer 3                                                 | 139.7               | (13.83)                                      | 1,626     | 1,119    | 2,720      | 2,786      | 2,888    | 2,927     | 2,858      | 2,696     | 2,476       | 2,211 |
| KIAC_JFK (BTM:NG)                                            | 98.7                | (4.01)                                       | 1,657     | 1,150    | 2,751      | 2,818      | 2,919    | 2,958     | 2,890      | 2,728     | 2,507       | 2,242 |
| Gowanus 5 & 6                                                | 79.9                | (8.05)                                       | 1,680     | 1,173    | 2,774      | 2,840      | 2,942    | 2,981     | 2,913      | 2,751     | 2,530       | 2,265 |
| Hellgate 1 & 2                                               | 79.9                | (8.05)                                       | 1,680     | 1,173    | 2,774      | 2,840      | 2,942    | 2,981     | 2,913      | 2,751     | 2,530       | 2,265 |



|                                                              | Lower Hudson Valley        |                                              |                                                                                  |       |       |       |       |       |       |       |       |       |  |  |
|--------------------------------------------------------------|----------------------------|----------------------------------------------|----------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|
|                                                              | Year                       |                                              | 2024                                                                             | 2025  | 2026  | 2027  | 2028  | 2029  | 2030  | 2031  | 2032  | 2033  |  |  |
| Lower Hudson Valley Transmission<br>Expected Summer Weather, |                            |                                              | 1,752                                                                            | 1,245 | 2,846 | 2,912 | 3,014 | 3,053 | 2,984 | 2,822 | 2,602 | 2,337 |  |  |
| Unit Name                                                    | Summer DMNC<br>(MW)        | NERC 5-Year Class<br>Average De-Rate<br>(MW) | Transmission Security Margin Impact of Generator Outage (Retire, Mothball, IIFO) |       |       |       |       |       |       |       |       |       |  |  |
| Harlem River 1 & 2                                           | 79.9                       | (8.05)                                       | 1,680                                                                            | 1,173 | 2,774 | 2,840 | 2,942 | 2,981 | 2,913 | 2,751 | 2,530 | 2,265 |  |  |
| Vernon Blvd 2 & 3                                            | 79.9                       | (8.05)                                       | 1,680                                                                            | 1,173 | 2,774 | 2,840 | 2,942 | 2,981 | 2,913 | 2,751 | 2,530 | 2,265 |  |  |
| Danskammer 1                                                 | 70.2                       | (6.95)                                       | 1,688                                                                            | 1,182 | 2,782 | 2,849 | 2,951 | 2,989 | 2,921 | 2,759 | 2,539 | 2,273 |  |  |
| Danskammer 2                                                 | 64.2                       | (6.36)                                       | 1,694                                                                            | 1,187 | 2,788 | 2,854 | 2,956 | 2,995 | 2,927 | 2,765 | 2,544 | 2,279 |  |  |
| Bayonne EC CTG1                                              | 61.8                       | (5.54)                                       | 1,695                                                                            | 1,189 | 2,789 | 2,856 | 2,958 | 2,996 | 2,928 | 2,766 | 2,546 | 2,280 |  |  |
| Bayonne EC CTG4                                              | 60.9                       | (5.46)                                       | 1,696                                                                            | 1,190 | 2,790 | 2,857 | 2,959 | 2,997 | 2,929 | 2,767 | 2,547 | 2,281 |  |  |
| Bayonne EC CTG9                                              | 60.5                       | (5.42)                                       | 1,696                                                                            | 1,190 | 2,790 | 2,857 | 2,959 | 2,998 | 2,929 | 2,767 | 2,547 | 2,282 |  |  |
| Bayonne EC CTG10                                             | 60.5                       | (5.42)                                       | 1,696                                                                            | 1,190 | 2,790 | 2,857 | 2,959 | 2,998 | 2,929 | 2,767 | 2,547 | 2,282 |  |  |
| Bayonne EC CTG8                                              | 60.3                       | (5.40)                                       | 1,697                                                                            | 1,190 | 2,791 | 2,857 | 2,959 | 2,998 | 2,929 | 2,767 | 2,547 | 2,282 |  |  |
| Bayonne EC CTG2                                              | 60.2                       | (5.39)                                       | 1,697                                                                            | 1,190 | 2,791 | 2,857 | 2,959 | 2,998 | 2,930 | 2,768 | 2,547 | 2,282 |  |  |
| Bayonne EC CTG7                                              | 60.0                       | (5.38)                                       | 1,697                                                                            | 1,190 | 2,791 | 2,858 | 2,959 | 2,998 | 2,930 | 2,768 | 2,547 | 2,282 |  |  |
| Bayonne EC CTG5                                              | 59.7                       | (5.35)                                       | 1,697                                                                            | 1,191 | 2,791 | 2,858 | 2,960 | 2,998 | 2,930 | 2,768 | 2,548 | 2,282 |  |  |
| Bayonne EC CTG6                                              | 59.6                       | (5.34)                                       | 1,697                                                                            | 1,191 | 2,791 | 2,858 | 2,960 | 2,998 | 2,930 | 2,768 | 2,548 | 2,282 |  |  |
| Bayonne EC CTG3                                              | 58.1                       | (5.21)                                       | 1,699                                                                            | 1,192 | 2,793 | 2,859 | 2,961 | 3,000 | 2,931 | 2,769 | 2,549 | 2,284 |  |  |
| Wheelabrator Westchester                                     | 52.1                       | (5.16)                                       | 1,705                                                                            | 1,198 | 2,799 | 2,865 | 2,967 | 3,006 | 2,937 | 2,775 | 2,555 | 2,290 |  |  |
| Kent                                                         | 45.8                       | (4.62)                                       | 1,710                                                                            | 1,204 | 2,804 | 2,871 | 2,973 | 3,011 | 2,943 | 2,781 | 2,561 | 2,296 |  |  |
| Pouch                                                        | 45.1                       | (4.55)                                       | 1,711                                                                            | 1,204 | 2,805 | 2,872 | 2,973 | 3,012 | 2,944 | 2,782 | 2,561 | 2,296 |  |  |
| Gowanus 5                                                    | 40.0                       | (4.03)                                       | 1,716                                                                            | 1,209 | 2,810 | 2,876 | 2,978 | 3,017 | 2,948 | 2,786 | 2,566 | 2,301 |  |  |
| Hellgate 2                                                   | 40.0                       | (4.03)                                       | 1,716                                                                            | 1,209 | 2,810 | 2,876 | 2,978 | 3,017 | 2,948 | 2,786 | 2,566 | 2,301 |  |  |
| Harlem River 2                                               | 40.0                       | (4.03)                                       | 1,716                                                                            | 1,209 | 2,810 | 2,876 | 2,978 | 3,017 | 2,948 | 2,786 | 2,566 | 2,301 |  |  |
| Vernon Blvd 2                                                | 40.0                       | (4.03)                                       | 1,716                                                                            | 1,209 | 2,810 | 2,876 | 2,978 | 3,017 | 2,948 | 2,786 | 2,566 | 2,301 |  |  |
| Gowanus 6                                                    | 39.9                       | (4.02)                                       | 1,716                                                                            | 1,209 | 2,810 | 2,876 | 2,978 | 3,017 | 2,948 | 2,786 | 2,566 | 2,301 |  |  |
| Hellgate 1                                                   | 39.9                       | (4.02)                                       | 1,716                                                                            | 1,209 | 2,810 | 2,876 | 2,978 | 3,017 | 2,948 | 2,786 | 2,566 | 2,301 |  |  |
| Harlem River 1                                               | Harlem River 1 39.9 (4.02) |                                              |                                                                                  |       | 2,810 | 2,876 | 2,978 | 3,017 | 2,948 | 2,786 | 2,566 | 2,301 |  |  |



| Y                                                                | Year                |                                              |       |          |            |          |          | 2029      | 2030       | 2031      | 2032        | 2033  |
|------------------------------------------------------------------|---------------------|----------------------------------------------|-------|----------|------------|----------|----------|-----------|------------|-----------|-------------|-------|
| Lower Hudson Valley Transmission S<br>Expected Summer Weather, N | 1,752               | 1,245                                        | 2,846 | 2,912    | 3,014      | 3,053    | 2,984    | 2,822     | 2,602      | 2,337     |             |       |
| Unit Name                                                        | Summer DMNC<br>(MW) | NERC 5-Year Class<br>Average De-Rate<br>(MW) | Tra   | nsmissio | n Security | Margin I | mpact of | Generator | r Outage ( | Retire, M | othball, II | IFO)  |
| Vernon Blvd 3                                                    | 39.9                | (4.02)                                       | 1,716 | 1,209    | 2,810      | 2,876    | 2,978    | 3,017     | 2,948      | 2,786     | 2,566       | 2,301 |
| Hillburn GT                                                      | 35.7                | (3.20)                                       | 1,719 | 1,212    | 2,813      | 2,880    | 2,981    | 3,020     | 2,952      | 2,790     | 2,570       | 2,304 |
| Shoemaker GT                                                     | 32.7                | (2.93)                                       | 1,722 | 1,215    | 2,816      | 2,882    | 2,984    | 3,023     | 2,955      | 2,793     | 2,572       | 2,307 |
| Arthur Kill Cogen                                                | 11.1                | (1.32)                                       | 1,742 | 1,235    | 2,836      | 2,902    | 3,004    | 3,043     | 2,975      | 2,813     | 2,592       | 2,327 |
| DCRRA                                                            | (0.61)              | 1,746                                        | 1,239 | 2,840    | 2,907      | 3,008    | 3,047    | 2,979     | 2,817      | 2,596     | 2,331       |       |

Notes

1. Utilizes the Transmission Security Margin for Summer Peak (Baseline Demand) with Expected Weather.

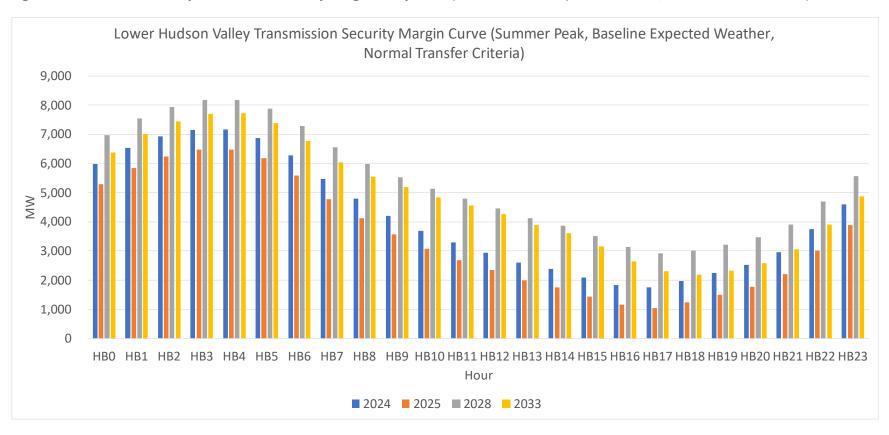

1. In 2024 and 2025 the most limiting contingency includes the loss of Ravenswood 3. For this calculation the margin based on the loss of two transmission elements is utilized. Other combinations with loss of generation may be more limiting.



Figure 21: Lower Hudson Valley Transmission Security Margin (Hourly) (Summer Peak – Expected Weather, Normal Transfer Criteria)

|      | Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW) |       |       |           |            |           |       |       |       |       |  |  |  |  |
|------|-------------------------------------------------------------------------------|-------|-------|-----------|------------|-----------|-------|-------|-------|-------|--|--|--|--|
|      |                                                                               |       | G-    | Transmiss | ion Securi | ty Margin |       |       |       |       |  |  |  |  |
| Hour | 2024                                                                          | 2025  | 2026  | 2027      | 2028       | 2029      | 2030  | 2031  | 2032  | 2033  |  |  |  |  |
| HB0  | 5,988                                                                         | 5,284 | 6,857 | 6,896     | 6,968      | 6,996     | 6,949 | 6,830 | 6,558 | 6,372 |  |  |  |  |
| HB1  | 6,534                                                                         | 5,842 | 7,414 | 7,458     | 7,532      | 7,564     | 7,524 | 7,418 | 7,167 | 7,000 |  |  |  |  |
| HB2  | 6,923                                                                         | 6,238 | 7,813 | 7,856     | 7,931      | 7,967     | 7,931 | 7,838 | 7,601 | 7,450 |  |  |  |  |
| HB3  | 7,152                                                                         | 6,470 | 8,045 | 8,091     | 8,164      | 8,202     | 8,173 | 8,078 | 7,854 | 7,706 |  |  |  |  |
| HB4  | 7,167                                                                         | 6,484 | 8,059 | 8,104     | 8,178      | 8,216     | 8,188 | 8,095 | 7,871 | 7,725 |  |  |  |  |
| HB5  | 6,876                                                                         | 6,188 | 7,760 | 7,804     | 7,877      | 7,912     | 7,879 | 7,783 | 7,543 | 7,389 |  |  |  |  |
| HB6  | 6,275                                                                         | 5,578 | 7,158 | 7,207     | 7,286      | 7,326     | 7,290 | 7,186 | 6,931 | 6,766 |  |  |  |  |
| HB7  | 5,464                                                                         | 4,775 | 6,374 | 6,447     | 6,550      | 6,603     | 6,576 | 6,475 | 6,214 | 6,045 |  |  |  |  |
| HB8  | 4,791                                                                         | 4,124 | 5,748 | 5,856     | 5,988      | 6,065     | 6,055 | 5,964 | 5,710 | 5,548 |  |  |  |  |
| HB9  | 4,210                                                                         | 3,569 | 5,225 | 5,371     | 5,536      | 5,637     | 5,648 | 5,574 | 5,330 | 5,182 |  |  |  |  |
| HB10 | 3,698                                                                         | 3,076 | 4,758 | 4,931     | 5,122      | 5,248     | 5,271 | 5,212 | 4,975 | 4,842 |  |  |  |  |
| HB11 | 3,296                                                                         | 2,686 | 4,384 | 4,576     | 4,787      | 4,927     | 4,964 | 4,911 | 4,684 | 4,557 |  |  |  |  |
| HB12 | 2,949                                                                         | 2,347 | 4,049 | 4,250     | 4,469      | 4,615     | 4,657 | 4,605 | 4,375 | 4,254 |  |  |  |  |
| HB13 | 2,611                                                                         | 2,001 | 3,706 | 3,906     | 4,124      | 4,269     | 4,309 | 4,257 | 4,019 | 3,894 |  |  |  |  |
| HB14 | 2,378                                                                         | 1,758 | 3,463 | 3,655     | 3,869      | 4,010     | 4,044 | 3,986 | 3,739 | 3,608 |  |  |  |  |
| HB15 | 2,084                                                                         | 1,441 | 3,131 | 3,306     | 3,505      | 3,631     | 3,650 | 3,575 | 3,306 | 3,155 |  |  |  |  |
| HB16 | 1,836                                                                         | 1,164 | 2,830 | 2,974     | 3,147      | 3,247     | 3,240 | 3,138 | 2,833 | 2,652 |  |  |  |  |
| HB17 | 1,752                                                                         | 1,038 | 2,670 | 2,776     | 2,916      | 2,986     | 2,949 | 2,817 | 2,528 | 2,311 |  |  |  |  |
| HB18 | 1,975                                                                         | 1,245 | 2,846 | 2,912     | 3,014      | 3,053     | 2,984 | 2,822 | 2,452 | 2,200 |  |  |  |  |
| HB19 | 2,250                                                                         | 1,498 | 3,083 | 3,128     | 3,210      | 3,234     | 3,150 | 2,974 | 2,602 | 2,337 |  |  |  |  |
| HB20 | 2,523                                                                         | 1,771 | 3,348 | 3,389     | 3,467      | 3,487     | 3,403 | 3,228 | 2,853 | 2,590 |  |  |  |  |
| HB21 | 2,965                                                                         | 2,217 | 3,792 | 3,832     | 3,910      | 3,930     | 3,851 | 3,681 | 3,317 | 3,061 |  |  |  |  |
| HB22 | 3,757                                                                         | 3,018 | 4,592 | 4,632     | 4,706      | 4,727     | 4,655 | 4,497 | 4,155 | 3,915 |  |  |  |  |
| HB23 | 4,607                                                                         | 3,882 | 5,455 | 5,497     | 5,572      | 5,597     | 5,537 | 5,399 | 5,084 | 4,869 |  |  |  |  |

linew York ISO



# Figure 22: Lower Hudson Valley Transmission Security Margin Hourly Curve (Summer Peak – Expected Weather, Normal Transfer Criteria)



### Figure 23: Lower Hudson Valley Transmission Security Margin (1-in-10-Year Heatwave, Emergency Transfer Criteria)

| Summer Peak - 1-in-10-Year Heatwave, Emergency Transfer Criteria (MW) |                                       |          |          |          |          |          |          |          |          |          |          |  |
|-----------------------------------------------------------------------|---------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|
| Line                                                                  | Item                                  | 2024     | 2025     | 2026     | 2027     | 2028     | 2029     | 2030     | 2031     | 2032     | 2033     |  |
| Α                                                                     | G-J Demand Forecast (6)               | (15,859) | (15,850) | (15,781) | (15,712) | (15,605) | (15,564) | (15,634) | (15,803) | (16,032) | (16,306) |  |
| В                                                                     | RECO Demand                           | (412)    | (412)    | (412)    | (410)    | (410)    | (410)    | (410)    | (410)    | (411)    | (411)    |  |
| С                                                                     | Total Demand (A+B)                    | (16,271) | (16,262) | (16,193) | (16,122) | (16,015) | (15,974) | (16,044) | (16,213) | (16,443) | (16,717) |  |
|                                                                       |                                       |          |          |          |          |          |          |          |          |          |          |  |
| D                                                                     | UPNY-SENY Limit (5)                   | 5,450    | 5,450    | 5,650    | 5,650    | 5,650    | 5,650    | 5,650    | 5,650    | 5,650    | 5,650    |  |
| E                                                                     | ABC PARs to J                         | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     |  |
| F                                                                     | K - SENY                              | (313)    | (295)    | (288)    | (285)    | (297)    | (310)    | (333)    | (355)    | (384)    | (423)    |  |
| G                                                                     | Total SENY AC Import (D+E+F)          | 5,126    | 5,144    | 5,351    | 5,354    | 5,342    | 5,329    | 5,306    | 5,284    | 5,255    | 5,216    |  |
|                                                                       |                                       |          |          |          |          |          |          |          |          |          |          |  |
| Н                                                                     | Loss of Source Contingency            | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |  |
| 1                                                                     | Resource Need (C+G+H)                 | (11,146) | (11,118) | (10,842) | (10,768) | (10,674) | (10,645) | (10,739) | (10,930) | (11,188) | (11,501) |  |
|                                                                       |                                       |          |          |          |          |          |          |          |          |          |          |  |
| J                                                                     | G-J Generation (1)                    | 13,481   | 12,991   | 12,991   | 12,991   | 12,991   | 12,991   | 12,991   | 12,991   | 12,991   | 12,991   |  |
| K                                                                     | G-J Generation Derates (2)            | (1,086)  | (1,110)  | (1,113)  | (1,114)  | (1,115)  | (1,116)  | (1,118)  | (1,118)  | (1,119)  | (1,120)  |  |
| L                                                                     | Temperature Based Generation Derates  | (87)     | (78)     | (78)     | (78)     | (78)     | (78)     | (78)     | (78)     | (78)     | (78)     |  |
| М                                                                     | Net ICAP External Imports             | 315      | 315      | 1,565    | 1,565    | 1,565    | 1,565    | 1,565    | 1,565    | 1,565    | 1,565    |  |
| Ν                                                                     | SCRs (3), (4)                         | 271      | 271      | 271      | 271      | 271      | 271      | 271      | 271      | 271      | 271      |  |
| 0                                                                     | Total Resources Available (J+K+L+M+N) | 12,895   | 12,389   | 13,636   | 13,635   | 13,634   | 13,633   | 13,631   | 13,631   | 13,630   | 13,629   |  |
|                                                                       |                                       |          |          |          |          |          |          |          |          |          |          |  |
| Ρ                                                                     | Transmission Security Margin (I+O)    | 1,749    | 1,271    | 2,794    | 2,867    | 2,960    | 2,987    | 2,893    | 2,702    | 2,442    | 2,128    |  |
| Matazi                                                                |                                       |          |          |          |          |          |          |          |          |          |          |  |

Notes:

1. Reflects the 2023 Gold Book existing summer capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 10% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022 (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.

4. Includes a derate of 226 MW for SCRs.

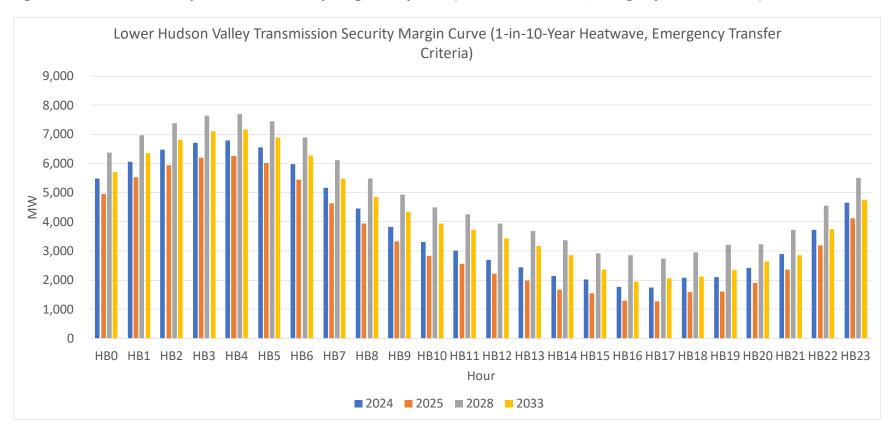

5. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2032 are based on the summer peak 2033 representations evaluated in the 2022 RNA.



Figure 24: Lower Hudson Valley Transmission Security Margin (Hourly) (1-in-10-Year Heatwave, Emergency Transfer Criteria)

|      | Summer Peak - Heatwave, Emergency Transfer Criteria (MW) |       |       |           |            |           |                      |       |       |       |  |  |  |  |
|------|----------------------------------------------------------|-------|-------|-----------|------------|-----------|----------------------|-------|-------|-------|--|--|--|--|
|      |                                                          |       | G-    | Transmiss | ion Securi | ty Margin |                      |       |       |       |  |  |  |  |
| Hour | 2024                                                     | 2025  | 2026  | 2027      | 2028       | 2029      | 2030                 | 2031  | 2032  | 2033  |  |  |  |  |
| HB0  | 5,491                                                    | 4,947 | 6,442 | 6,330     | 6,371      | 6,371     | 6,298                | 6,154 | 5,922 | 5,695 |  |  |  |  |
| HB1  | 6,062                                                    | 5,527 | 7,020 | 6,914     | 6,962      | 6,968     | 6,903                | 6,772 | 6,561 | 6,351 |  |  |  |  |
| HB2  | 6,463                                                    | 5,932 | 7,428 | 7,322     | 7,373      | 7,385     | 7,325                | 7,207 | 7,010 | 6,814 |  |  |  |  |
| HB3  | 6,717                                                    | 6,186 | 7,682 | 7,580     | 7,630      | 7,646     | 7,592                | 7,472 | 7,287 | 7,095 |  |  |  |  |
| HB4  | 6,786                                                    | 6,255 | 7,751 | 7,647     | 7,698      | 7,713     | 7,660                | 7,542 | 7,358 | 7,168 |  |  |  |  |
| HB5  | 6,546                                                    | 6,016 | 7,506 | 7,400     | 7,446      | 7,457     | 7,397                | 7,276 | 7,077 | 6,879 |  |  |  |  |
| HB6  | 5,982                                                    | 5,443 | 6,941 | 6,835     | 6,882      | 6,892     | 6,827                | 6,696 | 6,481 | 6,271 |  |  |  |  |
| HB7  | 5,156                                                    | 4,625 | 6,137 | 6,046     | 6,107      | 6,121     | 6,058                | 5,924 | 5,697 | 5,477 |  |  |  |  |
| HB8  | 4,448                                                    | 3,932 | 5,460 | 5,394     | 5,472      | 5,498     | 5,444                | 5,310 | 5,079 | 4,853 |  |  |  |  |
| HB9  | 3,816                                                    | 3,320 | 4,871 | 4,831     | 4,930      | 4,968     | 4,924                | 4,797 | 4,562 | 4,338 |  |  |  |  |
| HB10 | 3,313                                                    | 2,832 | 4,402 | 4,380     | 4,494      | 4,547     | 4,507                | 4,386 | 4,149 | 3,932 |  |  |  |  |
| HB11 | 3,015                                                    | 2,548 | 4,130 | 4,122     | 4,249      | 4,309     | 4,279                | 4,159 | 3,929 | 3,712 |  |  |  |  |
| HB12 | 2,691                                                    | 2,221 | 3,799 | 3,801     | 3,943      | 4,018     | 3,992                | 3,872 | 3,636 | 3,418 |  |  |  |  |
| HB13 | 2,433                                                    | 1,973 | 3,552 | 3,528     | 3,682      | 3,764     | 3,740                | 3,623 | 3,395 | 3,173 |  |  |  |  |
| HB14 | 2,131                                                    | 1,673 | 3,251 | 3,197     | 3,359      | 3,448     | 3,423                | 3,302 | 3,079 | 2,851 |  |  |  |  |
| HB15 | 2,017                                                    | 1,554 | 3,117 | 2,755     | 2,917      | 3,003     | 2,969                | 2,836 | 2,612 | 2,365 |  |  |  |  |
| HB16 | 1,760                                                    | 1,289 | 2,834 | 2,694     | 2,846      | 2,922     | 2,871                | 2,721 | 2,484 | 1,944 |  |  |  |  |
| HB17 | 1,749                                                    | 1,271 | 2,794 | 2,599     | 2,724      | 2,776     | 2,705                | 2,585 | 2,347 | 2,058 |  |  |  |  |
| HB18 | 2,076                                                    | 1,591 | 3,092 | 2,867     | 2,960      | 2,987     | 2,893                | 2,702 | 2,442 | 2,128 |  |  |  |  |
| HB19 | 2,108                                                    | 1,604 | 3,365 | 3,123     | 3,202      | 3,220     | 3,114                | 2,914 | 2,659 | 2,339 |  |  |  |  |
| HB20 | 2,420                                                    | 1,904 | 3,391 | 3,170     | 3,237      | 3,244     | 3,138                | 2,940 | 2,669 | 2,629 |  |  |  |  |
| HB21 | 2,893                                                    | 2,364 | 3,851 | 3,655     | 3,715      | 3,715     | 3 <mark>,61</mark> 3 | 3,419 | 3,146 | 2,844 |  |  |  |  |
| HB22 | 3,731                                                    | 3,193 | 4,682 | 4,512     | 4,562      | 4,559     | 4,463                | 4,281 | 4,016 | 3,733 |  |  |  |  |
| HB23 | 4,654                                                    | 4,113 | 5,603 | 5,462     | 5,507      | 5,503     | 5,417                | 5,256 | 5,005 | 4,749 |  |  |  |  |

low York ISO







### Figure 26: Lower Hudson Valley Transmission Security Margin (1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria)

| Summer Peak - 1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria (MW) |                                       |          |          |          |          |          |          |          |          |          |          |  |
|--------------------------------------------------------------------------------|---------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|
| Line                                                                           | Item                                  | 2024     | 2025     | 2026     | 2027     | 2028     | 2029     | 2030     | 2031     | 2032     | 2033     |  |
| А                                                                              | G-J Demand Forecast (6)               | (16,476) | (16,467) | (16,395) | (16,323) | (16,212) | (16,170) | (16,243) | (16,419) | (16,655) | (16,941) |  |
| В                                                                              | RECO Demand                           | (429)    | (429)    | (429)    | (426)    | (426)    | (426)    | (426)    | (426)    | (427)    | (427)    |  |
| С                                                                              | Total Demand (A+B)                    | (16,905) | (16,896) | (16,824) | (16,749) | (16,638) | (16,596) | (16,669) | (16,845) | (17,082) | (17,368) |  |
|                                                                                |                                       |          |          |          |          |          |          |          |          |          |          |  |
| D                                                                              | UPNY-SENY Limit (5)                   | 5,450    | 5,450    | 5,650    | 5,650    | 5,650    | 5,650    | 5,650    | 5,650    | 5,650    | 5,650    |  |
| E                                                                              | ABC PARs to J                         | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     |  |
| F                                                                              | K - SENY                              | (676)    | (658)    | (650)    | (646)    | (660)    | (674)    | (698)    | (721)    | (751)    | (793)    |  |
| G                                                                              | Total SENY AC Import (D+E+F)          | 4,763    | 4,781    | 4,989    | 4,993    | 4,979    | 4,965    | 4,941    | 4,918    | 4,888    | 4,846    |  |
|                                                                                |                                       |          |          |          |          |          |          |          |          |          |          |  |
| Н                                                                              | Loss of Source Contingency            | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |  |
| I                                                                              | Resource Need (C+G+H)                 | (12,142) | (12,114) | (11,834) | (11,756) | (11,660) | (11,631) | (11,729) | (11,928) | (12,194) | (12,522) |  |
|                                                                                |                                       |          |          |          |          |          |          |          |          |          |          |  |
| J                                                                              | G-J Generation (1)                    | 13,481   | 12,991   | 12,991   | 12,991   | 12,991   | 12,991   | 12,991   | 12,991   | 12,991   | 12,991   |  |
| K                                                                              | G-J Generation Derates (2)            | (1,086)  | (1,110)  | (1,113)  | (1,114)  | (1,115)  | (1,116)  | (1,118)  | (1,118)  | (1,119)  | (1,120)  |  |
| L                                                                              | Temperature Based Generation Derates  | (183)    | (164)    | (164)    | (164)    | (164)    | (164)    | (164)    | (164)    | (164)    | (164)    |  |
| М                                                                              | Net ICAP External Imports             | 315      | 315      | 1,565    | 1,565    | 1,565    | 1,565    | 1,565    | 1,565    | 1,565    | 1,565    |  |
| Ν                                                                              | SCRs (3), (4)                         | 271      | 271      | 271      | 271      | 271      | 271      | 271      | 271      | 271      | 271      |  |
| 0                                                                              | Total Resources Available (J+K+L+M+N) | 12,798   | 12,302   | 13,550   | 13,549   | 13,547   | 13,546   | 13,545   | 13,545   | 13,543   | 13,542   |  |
|                                                                                |                                       |          |          |          |          |          |          |          |          |          |          |  |
| Р                                                                              | Transmission Security Margin (I+O)    | 657      | 188      | 1,716    | 1,792    | 1,887    | 1,915    | 1,816    | 1,617    | 1,349    | 1,020    |  |
|                                                                                |                                       |          |          |          |          |          |          |          |          |          |          |  |

Notes:

1. Reflects the 2023 Gold Book existing summer capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 10% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022 (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.

4. Includes a derate of 226 MW for SCRs.

5. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2032 are based on the summer peak 2033 representations evaluated in the 2022 RNA.



Figure 27: Lower Hudson Valley Transmission Security Margin (Hourly) (1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria)

|      | Summer Peak - 1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria (MW) |       |       |             |             |           |       |       |                      |       |  |  |  |  |
|------|--------------------------------------------------------------------------------|-------|-------|-------------|-------------|-----------|-------|-------|----------------------|-------|--|--|--|--|
|      |                                                                                |       | G     | J Transmiss | sion Securi | ty Margin |       |       |                      |       |  |  |  |  |
| Hour | 2024                                                                           | 2025  | 2026  | 2027        | 2028        | 2029      | 2030  | 2031  | 2032                 | 2033  |  |  |  |  |
| HB0  | 4,708                                                                          | 4,176 | 5,675 | 5,559       | 5,600       | 5,600     | 5,524 | 5,375 | 5,140                | 4,902 |  |  |  |  |
| HB1  | 5,280                                                                          | 4,757 | 6,252 | 6,143       | 6,190       | 6,197     | 6,129 | 5,993 | 5,778                | 5,559 |  |  |  |  |
| HB2  | 5,681                                                                          | 5,161 | 6,660 | 6,551       | 6,602       | 6,614     | 6,551 | 6,428 | 6,226                | 6,021 |  |  |  |  |
| HB3  | 5,935                                                                          | 5,416 | 6,915 | 6,810       | 6,859       | 6,875     | 6,819 | 6,693 | 6,504                | 6,302 |  |  |  |  |
| HB4  | 6,005                                                                          | 5,486 | 6,985 | 6,878       | 6,928       | 6,943     | 6,888 | 6,764 | 6,576                | 6,375 |  |  |  |  |
| HB5  | 5,766                                                                          | 5,247 | 6,740 | 6,630       | 6,677       | 6,687     | 6,625 | 6,499 | 6,296                | 6,087 |  |  |  |  |
| HB6  | 5,201                                                                          | 4,672 | 6,172 | 6,064       | 6,110       | 6,120     | 6,052 | 5,916 | 5 <mark>,</mark> 697 | 5,476 |  |  |  |  |
| HB7  | 4,372                                                                          | 3,850 | 5,363 | 5,269       | 5,329       | 5,343     | 5,277 | 5,137 | 4,906                | 4,675 |  |  |  |  |
| HB8  | 3,660                                                                          | 3,152 | 4,682 | 4,611       | 4,689       | 4,712     | 4,656 | 4,516 | 4,279                | 4,043 |  |  |  |  |
| HB9  | 3,025                                                                          | 2,536 | 4,087 | 4,043       | 4,139       | 4,175     | 4,128 | 3,994 | 3,754                | 3,520 |  |  |  |  |
| HB10 | 2,522                                                                          | 2,048 | 3,617 | 3,589       | 3,700       | 3,751     | 3,707 | 3,579 | 3,336                | 3,107 |  |  |  |  |
| HB11 | 2,225                                                                          | 1,762 | 3,343 | 3,329       | 3,454       | 3,511     | 3,477 | 3,350 | 3,114                | 2,886 |  |  |  |  |
| HB12 | 1,827                                                                          | 1,362 | 2,938 | 2,933       | 3,074       | 3,145     | 3,115 | 2,987 | 2,742                | 2,511 |  |  |  |  |
| HB13 | 1,510                                                                          | 1,053 | 2,630 | 2,600       | 2,749       | 2,829     | 2,799 | 2,674 | 2,437                | 2,200 |  |  |  |  |
| HB14 | 1,144                                                                          | 691   | 2,267 | 2,205       | 2,365       | 2,450     | 2,420 | 2,290 | 2,058                | 1,814 |  |  |  |  |
| HB15 | 968                                                                            | 509   | 2,073 | 1,702       | 1,862       | 1,945     | 1,905 | 1,763 | 1,528                | 1,264 |  |  |  |  |
| HB16 | 652                                                                            | 188   | 1,733 | 1,587       | 1,738       | 1,812     | 1,755 | 1,595 | 1,349                | 791   |  |  |  |  |
| HB17 | 657                                                                            | 188   | 1,716 | 1,513       | 1,638       | 1,690     | 1,612 | 1,484 | 1,240                | 934   |  |  |  |  |
| HB18 | 992                                                                            | 519   | 2,026 | 1,792       | 1,887       | 1,915     | 1,816 | 1,617 | 1,349                | 1,020 |  |  |  |  |
| HB19 | 1,026                                                                          | 536   | 2,303 | 2,054       | 2,136       | 2,154     | 2,045 | 1,837 | 1,574                | 1,239 |  |  |  |  |
| HB20 | 1,397                                                                          | 894   | 2,386 | 2,161       | 2,229       | 2,237     | 2,127 | 1,922 | 1,645                | 1,589 |  |  |  |  |
| HB21 | 1,927                                                                          | 1,411 | 2,905 | 2,703       | 2,763       | 2,765     | 2,658 | 2,458 | 2,179                | 1,865 |  |  |  |  |
| HB22 | 2,822                                                                          | 2,299 | 3,791 | 3,618       | 3,667       | 3,665     | 3,564 | 3,378 | 3,108                | 2,812 |  |  |  |  |
| HB23 | 3,804                                                                          | 3,275 | 4,768 | 4,625       | 4,669       | 4,666     | 4,577 | 4,411 | 4,154                | 3,888 |  |  |  |  |

linew York ISO

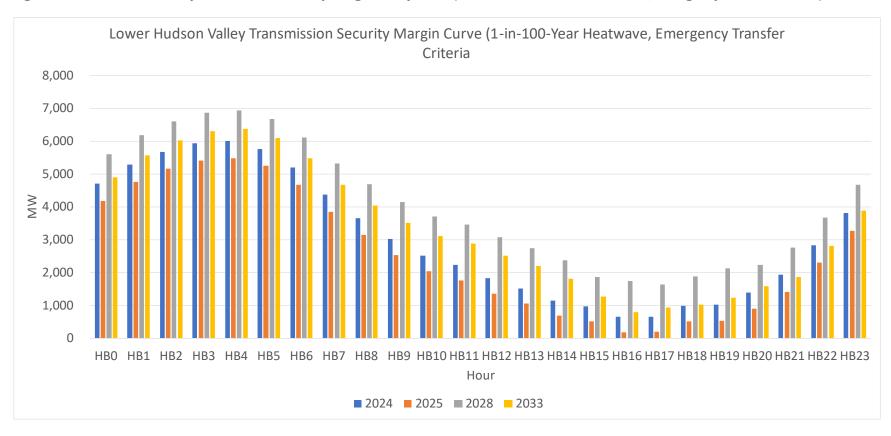



Figure 28: Lower Hudson Valley Transmission Security Margin Hourly Curve (1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria)



### Figure 29: Lower Hudson Valley Transmission Security Margin (Winter Peak – Expected Weather, Normal Transfer Criteria)

| Winter Peak - Baseline Expected Weather, Normal Transfer Criteria (MW) |                                      |          |          |          |          |          |          |          |          |          |          |  |
|------------------------------------------------------------------------|--------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|
| Line                                                                   | Item                                 | 2024-25  | 2025-26  | 2026-27  | 2027-28  | 2028-29  | 2029-30  | 2030-31  | 2031-32  | 2032-33  | 2033-34  |  |
| А                                                                      | G-J Demand Forecast (5)              | (10,500) | (10,596) | (10,779) | (10,969) | (11,220) | (11,568) | (11,986) | (12,483) | (13,055) | (13,659) |  |
| В                                                                      | RECO Demand                          | (229)    | (229)    | (229)    | (234)    | (234)    | (234)    | (234)    | (234)    | (240)    | (240)    |  |
| С                                                                      | Total Demand (A+B)                   | (10,729) | (10,825) | (11,008) | (11,203) | (11,454) | (11,802) | (12,220) | (12,717) | (13,295) | (13,899) |  |
|                                                                        | -                                    |          |          |          |          |          |          |          |          |          |          |  |
| D                                                                      | UPNY-SENY Limit (3), (4)             | 5,725    | 5,725    | 5,725    | 5,725    | 5,725    | 5,725    | 5,725    | 5,725    | 5,725    | 5,725    |  |
| E                                                                      | ABC PARs to J                        | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     |  |
| F                                                                      | K - SENY (4)                         | (83)     | (83)     | (83)     | (83)     | (83)     | (83)     | (83)     | (83)     | (83)     | (83)     |  |
| G                                                                      | Total SENY AC Import (D+E+F)         | 5,631    | 5,631    | 5,631    | 5,631    | 5,631    | 5,631    | 5,631    | 5,631    | 5,631    | 5,631    |  |
|                                                                        |                                      |          |          |          |          |          |          |          |          |          |          |  |
| Н                                                                      | Loss of Source Contingency           | (968)    | (968)    | (968)    | (968)    | (968)    | (968)    | (968)    | (968)    | (968)    | (968)    |  |
| 1                                                                      | Resource Need (C+G+H)                | (6,066)  | (6,162)  | (6,345)  | (6,540)  | (6,791)  | (7,139)  | (7,557)  | (8,054)  | (8,632)  | (9,236)  |  |
|                                                                        |                                      |          |          |          |          |          |          |          |          |          |          |  |
| J                                                                      | G-J Generation (1)                   | 14,510   | 14,475   | 14,475   | 14,475   | 14,475   | 14,475   | 14,475   | 14,475   | 14,475   | 14,475   |  |
| K                                                                      | G-J Generation Derates (2)           | (1,253)  | (1,250)  | (1,250)  | (1,250)  | (1,250)  | (1,250)  | (1,250)  | (1,250)  | (1,250)  | (1,250)  |  |
| L                                                                      | Temperature Based Generation Derates | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |  |
| М                                                                      | Net ICAP External Imports            | 315      | 315      | 315      | 315      | 315      | 315      | 315      | 315      | 315      | 315      |  |
| N                                                                      | Total Resources Available (J+K+L+M)  | 13,571   | 13,540   | 13,540   | 13,540   | 13,540   | 13,540   | 13,540   | 13,540   | 13,540   | 13,540   |  |
|                                                                        |                                      |          |          |          |          |          |          |          |          |          |          |  |
| 0                                                                      | Transmission Security Margin (I+N)   | 7,505    | 7,377    | 7,194    | 6,999    | 6,748    | 6,400    | 5,982    | 5,485    | 4,907    | 4,303    |  |
| Marken av                                                              |                                      |          |          |          |          |          |          |          |          |          |          |  |

Notes:

1. Reflects the 2023 Gold Book existing winter capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022 (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2033 are based also based on the summer peak 2025 representations evaluated in the post-2020 RNA analysis which does not include the impact of CHPE.

4. As a conservative winter peak assumption these limits utilize the summer values.



### Figure 30: Lower Hudson Valley Transmission Security Margin (1-in-10-Year Cold Snap, Emergency Transfer Criteria)

| Winter Peak - 1-in-10-Year Cold Snap, Emergency Transfer Criteria (MW) |                                       |          |          |          |          |          |          |          |          |          |          |  |
|------------------------------------------------------------------------|---------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|
| Line                                                                   | Item                                  | 2024-25  | 2025-26  | 2026-27  | 2027-28  | 2028-29  | 2029-30  | 2030-31  | 2031-32  | 2032-33  | 2033-34  |  |
| Α                                                                      | G-J Demand Forecast (7)               | (10,940) | (11,041) | (11,231) | (11,430) | (11,691) | (12,054) | (12,489) | (13,008) | (13,603) | (14,232) |  |
| В                                                                      | RECO Demand                           | (243)    | (243)    | (243)    | (248)    | (248)    | (248)    | (248)    | (248)    | (254)    | (254)    |  |
| С                                                                      | Total Demand (A+B)                    | (11,183) | (11,284) | (11,474) | (11,678) | (11,939) | (12,302) | (12,737) | (13,256) | (13,857) | (14,486) |  |
|                                                                        |                                       |          |          |          |          |          |          |          |          |          |          |  |
| D                                                                      | UPNY-SENY Limit (5), (6)              | 5,450    | 5,450    | 5,450    | 5,450    | 5,450    | 5,450    | 5,450    | 5,450    | 5,450    | 5,450    |  |
| E                                                                      | ABC PARs to J                         | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     |  |
| F                                                                      | K - SENY (6)                          | (82)     | (82)     | (82)     | (82)     | (82)     | (82)     | (82)     | (82)     | (82)     | (82)     |  |
| G                                                                      | Total SENY AC Import (D+E+F)          | 5,357    | 5,357    | 5,357    | 5,357    | 5,357    | 5,357    | 5,357    | 5,357    | 5,357    | 5,357    |  |
|                                                                        |                                       |          |          |          |          |          |          |          |          |          |          |  |
| н                                                                      | Loss of Source Contingency            | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |  |
| 1                                                                      | Resource Need (C+G+H)                 | (5,826)  | (5,927)  | (6,117)  | (6,321)  | (6,582)  | (6,945)  | (7,380)  | (7,899)  | (8,500)  | (9,129)  |  |
|                                                                        |                                       |          |          |          |          |          |          |          |          |          |          |  |
| J                                                                      | G-J Generation (1)                    | 14,510   | 14,475   | 14,475   | 14,475   | 14,475   | 14,475   | 14,475   | 14,475   | 14,475   | 14,475   |  |
| К                                                                      | G-J Generation Derates (2)            | (1,253)  | (1,250)  | (1,250)  | (1,250)  | (1,250)  | (1,250)  | (1,250)  | (1,250)  | (1,250)  | (1,250)  |  |
| L                                                                      | Temperature Based Generation Derates  | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |  |
| М                                                                      | Net ICAP External Imports             | 315      | 315      | 315      | 315      | 315      | 315      | 315      | 315      | 315      | 315      |  |
| Ν                                                                      | SCRs (3), (4)                         | 160      | 160      | 160      | 160      | 160      | 160      | 160      | 160      | 160      | 160      |  |
| 0                                                                      | Total Resources Available (J+K+L+M+N) | 13,731   | 13,700   | 13,700   | 13,700   | 13,700   | 13,700   | 13,700   | 13,700   | 13,700   | 13,700   |  |
|                                                                        |                                       |          |          |          |          |          |          |          |          |          |          |  |
| Р                                                                      | Transmission Security Margin (I+O)    | 7,905    | 7,773    | 7,583    | 7,379    | 7,118    | 6,755    | 6,320    | 5,801    | 5,199    | 4,570    |  |

Notes:

1. Reflects the 2023 Gold Book existing winter capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022 (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.

4. Includes a derate of 133 MW for SCRs.

5. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2033 are based also based on the summer peak 2025 representations evaluated in the post-2020 RNA analysis which does not include the impact of CHPE.

6. As a conservative winter peak assumption these limits utilize the summer values.



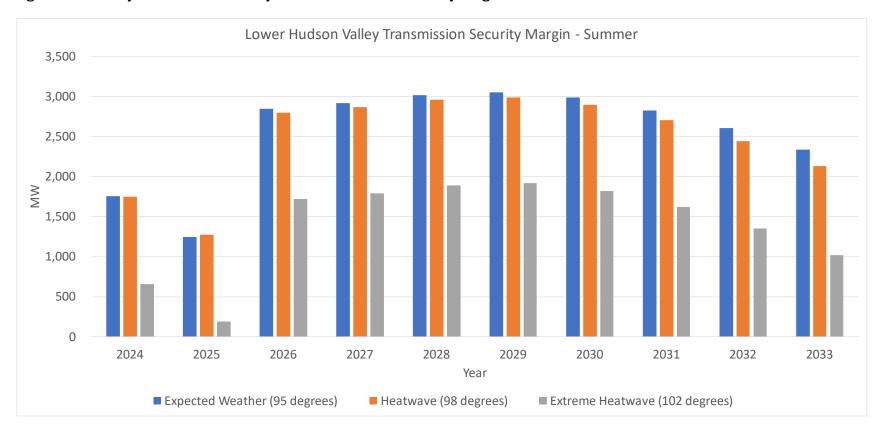
### Figure 31: Lower Hudson Valley Transmission Security Margin (1-in-100-year Extreme Cold Snap, Emergency Transfer Criteria)

| Winter Peak - 1-in-100-Year Extreme Cold Snap, Emergency Transfer Criteria (MW) |                                       |          |          |          |          |          |          |          |          |          |          |
|---------------------------------------------------------------------------------|---------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Line                                                                            | Item                                  | 2024-25  | 2025-26  | 2026-27  | 2027-28  | 2028-29  | 2029-30  | 2030-31  | 2031-32  | 2032-33  | 2033-34  |
| Α                                                                               | G-J Demand Forecast (7)               | (11,716) | (11,822) | (12,027) | (12,239) | (12,519) | (12,907) | (13,373) | (13,929) | (14,567) | (15,240) |
| В                                                                               | RECO Demand                           | (252)    | (252)    | (252)    | (258)    | (258)    | (258)    | (258)    | (258)    | (264)    | (264)    |
| С                                                                               | Total Demand (A+B)                    | (11,968) | (12,074) | (12,279) | (12,497) | (12,777) | (13,165) | (13,631) | (14,187) | (14,831) | (15,504) |
|                                                                                 |                                       |          |          |          |          |          |          |          |          |          |          |
| D                                                                               | UPNY-SENY Limit (5), (6)              | 5,450    | 5,450    | 5,450    | 5,450    | 5,450    | 5,450    | 5,450    | 5,450    | 5,450    | 5,450    |
| E                                                                               | ABC PARs to J                         | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     |
| F                                                                               | K - SENY (6)                          | (82)     | (82)     | (82)     | (82)     | (82)     | (82)     | (82)     | (82)     | (82)     | (82)     |
| G                                                                               | Total SENY AC Import (D+E+F)          | 5,357    | 5,357    | 5,357    | 5,357    | 5,357    | 5,357    | 5,357    | 5,357    | 5,357    | 5,357    |
|                                                                                 |                                       |          |          |          |          |          |          |          |          |          |          |
| Н                                                                               | Loss of Source Contingency            | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| 1                                                                               | Resource Need (C+G+H)                 | (6,611)  | (6,717)  | (6,922)  | (7,140)  | (7,420)  | (7,808)  | (8,274)  | (8,830)  | (9,474)  | (10,147) |
|                                                                                 |                                       |          |          |          |          |          |          |          |          |          |          |
| J                                                                               | G-J Generation (1)                    | 14,510   | 14,475   | 14,475   | 14,475   | 14,475   | 14,475   | 14,475   | 14,475   | 14,475   | 14,475   |
| К                                                                               | G-J Generation Derates (2)            | (1,253)  | (1,250)  | (1,250)  | (1,250)  | (1,250)  | (1,250)  | (1,250)  | (1,250)  | (1,250)  | (1,250)  |
| L                                                                               | Temperature Based Generation Derates  | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| М                                                                               | Net ICAP External Imports             | 315      | 315      | 315      | 315      | 315      | 315      | 315      | 315      | 315      | 315      |
| Ν                                                                               | SCRs (3), (4)                         | 160      | 160      | 160      | 160      | 160      | 160      | 160      | 160      | 160      | 160      |
| 0                                                                               | Total Resources Available (J+K+L+M+N) | 13,731   | 13,700   | 13,700   | 13,700   | 13,700   | 13,700   | 13,700   | 13,700   | 13,700   | 13,700   |
|                                                                                 |                                       |          |          |          |          |          |          |          |          |          |          |
| Р                                                                               | Transmission Security Margin (I+O)    | 7,120    | 6,982    | 6,777    | 6,560    | 6,280    | 5,892    | 5,426    | 4,870    | 4,225    | 3,552    |

Notes:

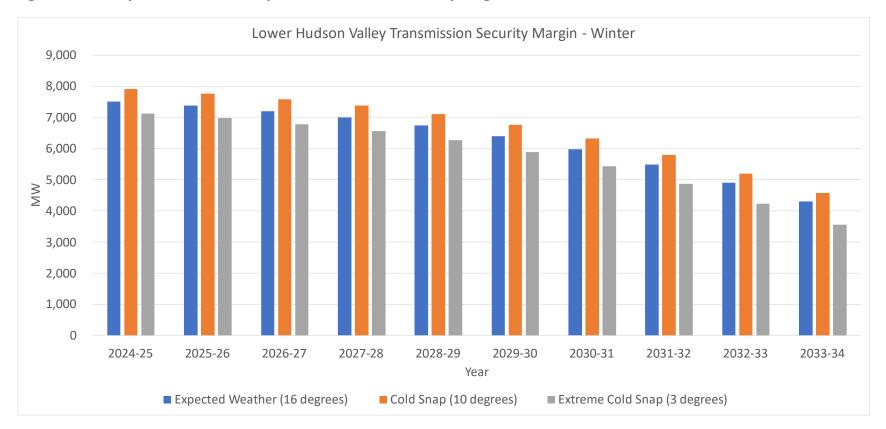
1. Reflects the 2023 Gold Book existing winter capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022 (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).


3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.

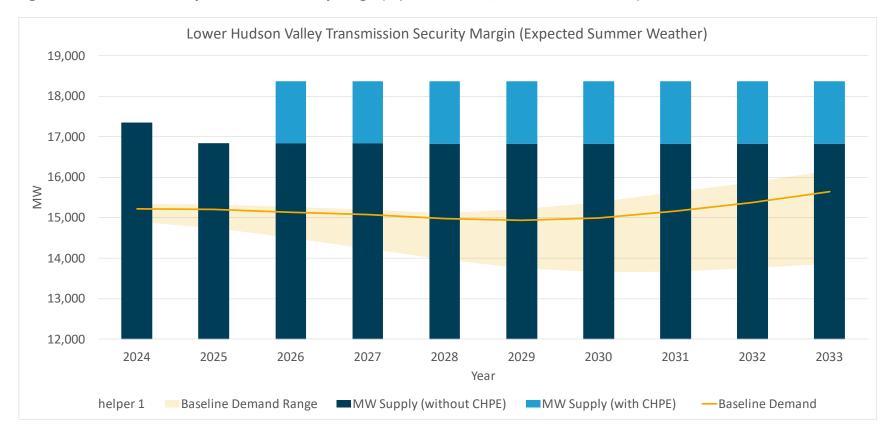
4. Includes a derate of 133 MW for SCRs.

5. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2033 are based also based on the summer peak 2025 representations evaluated in the post-2020 RNA analysis which does not include the impact of CHPE.


6. As a conservative winter peak assumption these limits utilize the summer values.






# Figure 32: Summary of Lower Hudson Valley Summer Transmission Security Margin – Summer





# Figure 33: Summary of Lower Hudson Valley Summer Transmission Security Margin – Winter





## Figure 34: Lower Hudson Valley Transmission Security Margin (Expected Weather, With and Without CHPE)



## New York City (Zone J) Transmission Security Margins

Within the Con Edison service territory, the 345 kV transmission system, along with specific portions of the 138 kV transmission system, are designed for the occurrence of two non-simultaneous contingencies and a return to normal (N-1-1-0).<sup>14</sup> Design criteria N-1-1-0 combinations include various combinations of the loss of generation and transmission facilities. As the system changes, the limiting contingency combination may also change.

Figure 35 shows how the summer transmission security margin changes through time based on planned transmission system changes and the impact on the most limiting contingency combination for the year being evaluated. In summers 2024 and 2025, the Con Edison 345 kV transmission system is most limiting for the combined loss of Ravenswood 3 followed by the loss of Mott Haven – Rainey 345 kV (Q12) (N-1-1-0). Starting in summer 2026, the most limiting contingency combination to the Con Edison 345 kV transmission system changes to the loss of CHPE followed by the loss of Ravenswood 3. Other contingency combinations result in changing the power flowing into Zone J from other NYCA zones. For example, in considering the possible combinations of N-1-1-0 events, these can include a mix of generation and transmission, two transmission events, or two generation events. Figure 35 shows the transmission security margin for the contingency combinations of: Ravenswood 3 and Mott Haven – Rainey (Q12) 345 kV, Ravenswood 3, and Bayonne Energy Center (for years 2024 and 2025) or CHPE and Ravenswood 3 (years 2026 through 2033), and Sprain Brook-W. 49th St. 345 kV (M51 and M52). As seen in Figure 35, the interface flow with the lowest value (3,191 MW for the loss of M51/M52) does not result in the smallest transmission security margin. The limiting contingency combination for all winters is the loss of Ravenswood 3 followed by the loss of Mott Haven – Rainey 345 kV (Q12). This is due to the assumption that following the in-service status of CHPE by summer 2026—its schedule is 0 MW for the winter seasons.

<sup>&</sup>lt;sup>14</sup> <u>Con Edison, TP-7100-18 Transmission Planning Criteria, dated August 2019</u>.



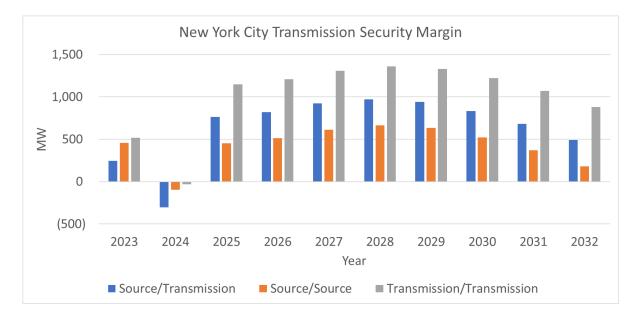
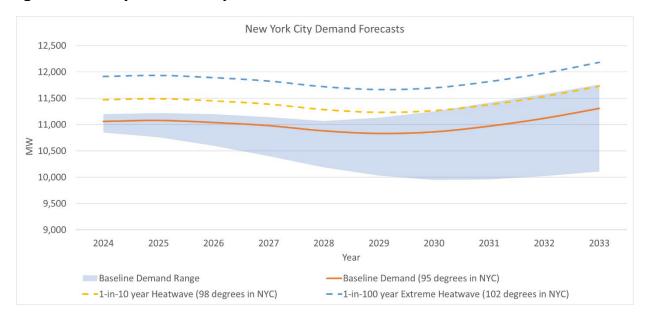



Figure 35: Impact of Contingency Combination on Zone J Transmission Security Margin

As transmission security analysis represents discrete snapshots in time of various credible combinations of system conditions, only the magnitude of a reliability need can be identified under those system conditions. Additional details are required to fully describe the nature of the need such as evaluating the hourly demand shape and its impact on the need. To describe the nature of the New York City transmission security margin, demand shapes are developed for the Zone J component of the statewide demand shape. Details of the demand shapes are provided later in this appendix. For this assessment, demand shapes are not developed past 2033 and only developed for the summer conditions.

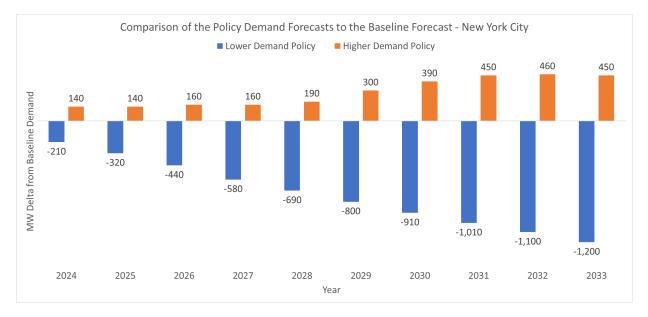
**Figure 39** shows the calculation of the New York City transmission security margin for the statewide coincident summer peak demand hour with expected weather and with normal transfer criteria. The New York City transmission security margin coincident with the statewide system peak ranges from 244 MW in summer 2024 to 182 MW by summer 2033 with year 2025 having a deficient margin of 306 MW (line-item L). Additionally, **Figure 39** shows the impact on the transmission security margin with the higher demand policy forecast, resulting in a deficiency of 446 MW in 2025. Regardless of the demand forecast under expected weather and normal transfer criteria, the New York City transmission security margin improves in 2026 with the anticipated addition of the CHPE connection from Hydro Quebec to New York City. However, the margin gradually erodes following the addition of the CHPE project as the baseline demand grows in New York City. For the higher demand policy forecast with the addition of the CHPE project, the margin is deficient by 88 MW by 2032 worsening to a deficiency of 268 MW by 2033 (line-item N). **Figure 41** provides a summary of the results for the baseline demand transmission security margin with the CHPE project in service by summer 2026. Figure 42 provides a summary of the results with a delay in the CHPE




project.

The demand shapes for New York City show the contribution of Zone J (Figure 95) towards the statewide shape (which represents the statewide coincident peak) for each hour of the day. Utilizing the demand shape for the expected weather summer peak day, the New York City transmission security margin for each hour is shown in Figure 43. The hourly margin is created by using the demand forecast for each hour in the margin calculation (*i.e.*, Figure 39 line-item A) with additional adjustments to account for the appropriate derate for solar generation and energy limited resources in each hour (*i.e.*, Figure 39 line-item H). All other values in the margin calculations are held constant. For all years in the 10-year study horizon, Figure 43 shows that in 2025 the margin is deficient over seven hours (2,221 MWh). However, the Zone J demand during the system peak day does not necessarily peak during the same hour as the NYCA as a whole. In summer 2025, the Zone J peak hour is 17, while the statewide peak is hour 18. As such, the New York City transmission security margin under a non-statewide coincident peak hour for summer 2025 is a deficiency of 524 MW. For all other years, the margin is sufficient. However, the hourly margin within New York city is as narrow as 9 MW during a non-coincident peak hour by 2033. A graphical representation of the New York City transmission security margin curve for summer peak expected weather for the peak day in years 2024, 2025, 2028, and 2033 is provided Figure 44.

This assessment recognizes that there is uncertainty in the demand forecast driven by uncertainties in key assumptions, such as population and economic growth, energy efficiency, the installation of behindthe-meter renewable energy resources, and electric vehicle adoption and charging patterns. These risks can be considered in the transmission security margin calculations through the use of the lower and higher policy scenarios published in the 2023 Gold Book. Both the lower and higher demand policy forecasts reflect achievement of all state policy targets through alternative pathways and assume the same weather factors as the baseline demand forecast. Figure 36 provides a summary of the New York City demand forecasts from the 2023 Gold Book. The range of the demand forecast for both the lower and higher demand policy forecasts as compared to the baseline demand forecast within New York City is also provided in Figure 37. Based on the lower demand policy forecast, the transmission security in New York City is narrowly sufficient in 2025 at 14 MW. However, the higher demand policy forecast shows that the transmission security margin in New York City could be deficient by up to 446 MW (Figure 39, line-item N). For the higher demand policy forecast, the transmission security margin is sufficient following the inclusion of the CHPE project in year 2026; however, the transmission security margin becomes deficient again in year 2032 by 88 MW worsening to 268 MW by 2033. Figure 45 provides the hourly transmission security margin with the higher demand policy forecast. As shown in **Figure 46**, the margin with the higher demand policy forecast is deficient for 9 hours.








## Figure 36: Summary of New York City Summer Demand Forecasts





Overall, the New York City transmission security margin improves in 2026 when the CHPE project enters service (currently scheduled in spring 2026). However, the margin gradually erodes through time as demand grows. As shown in **Figure 38**, the forecasted reliability margins within New York City may also not be sufficient beyond 2025 if (i) the CHPE project experiences a significant delay or (ii) additional power plants become unavailable, or (iii) demand significantly exceeds current forecasts. For the baseline or higher demand policy forecast, the reliability margins continue to be deficient for the ten-year planning horizon without the CHPE project in service or other offsetting changes or solutions. In addition, while the



CHPE project will contribute to reliability in the summer, the facility is not expected to provide any capacity in the winter. The details of the margin calculations without the CHPE project are provided in **Figure 40** with a graphical summary provided in **Figure 42**.



Figure 38: New York City Transmission Security Margin (Expected Weather, With and Without CHPE)

It is possible for other combinations of events, such as 1-in-10-year heatwaves and 1-in-100-year extreme heatwaves, to result in a deficient transmission security margin. Figure 47 shows the New York City transmission security margin for the statewide coincident peak hour under the 1-in-10-year heatwave condition with the assumption that the system is using emergency transfer criteria. As seen in Figure 47, the margin is deficient for summers 2024, 2025, and 2033; however, the margin is sufficient beginning in 2026 through 2032 due to the inclusion of the CHPE project, as well as the demand forecast (line-item M). The demand shapes for Zone J under a heatwave is provided in **Figure 101**. Utilizing the New York City demand-duration heatwave shape, the transmission security margin for each hour utilizing emergency transfer criteria is shown in **Figure 48**. As shown in **Figure 48**, the deficiency in summer 2025 is observed over 11 hours (3,910 MWh). While Figure 47 does not show the system to be deficient in year 2032, the demand shape results in a four-hour deficiency (288 MWh) as seen in **Figure 48**. In 2033, the MWh deficiency is observed over seven hours (1,250 MWh). **Figure 49** provides a graphical representation of the New York City transmission security margin curve for the 1-in-10-year heatwave for the peak day in years 2024, 2025, 2028, and 2033.

The 1-in-100-year extreme heatwave transmission security margin in Figure 50 shows that the transmission security margin is deficient for all years in the 10-year horizon (line-item M). As shown in **Figure 51**, the minimum deficiency for any year is projected to be over seven hours in year 2026 (1,260)

MWh) with a maximum deficiency of 12 hours in year 2033 (5,936 MWh). **Figure 52** provides a graphical representation of the New York City transmission security margin curve for the 1-in-100-year extreme heatwave for the peak day in years 2024, 2025, 2028, and 2033.

**Figure 53** shows the New York City transmission security margin under winter peak demand with expected weather conditions and with normal transfer criteria. For winter peak demand, the margins are sufficient for all years and range from 4,363 MW in winter 2024-25 to 2,183 in winter 2033-34 (line-item L). Considering the winter baseline peak demand transmission security margin, multiple outages in New York City would be required to show a deficient transmission security margin.

Figure 54 shows the New York City transmission security margin in a 1-in-10-year cold snap with emergency transfer criteria. Under this condition the margins are sufficient for all years and ranges from 4,174 MW in winter 2024-25 to 1,903 MW in winter 2033-34. Similarly, Figure 55 shows the New York City transmission security margins for the 1-in-100-year extreme cold snap with emergency transfer criteria. The margin under this condition is sufficient for all years and ranges from 3,615 MW in winter 2024-25 to 1,185 MW in winter 2033-34.

Figure 56 provides a summary of the summer peak New York City transmission security margins under expected summer weather, heatwave, and extreme heatwave conditions. Figure 57 provides a summary of the winter peak New York City transmission security margins under expected winter weather, cold snap, and extreme cold snap conditions.



#### Figure 39: New York City Transmission Security Margin (Summer Peak – Expected Weather, Normal Transfer Criteria with CHPE)

|        | Summer Peak - Basel                                                                                                                            | ine Expect                   | ed Weathe                      | er, Normal T                   | Fransfer Cr                    | iteria (MW                     | /)                             |                                |          |                                  |                                                                                                                     |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|----------|----------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Line   | Item                                                                                                                                           | 2024                         | 2025                           | 2026                           | 2027                           | 2028                           | 2029                           | 2030                           | 2031     | 2032                             | 2033                                                                                                                |
| Α      | Zone J Demand Forecast (4)                                                                                                                     | (11,060)                     | (11,080)                       | (11,040)                       | (10,980)                       | (10,880)                       | (10,830)                       | (10,860)                       | (10,970) | (11,120)                         | (11,310)                                                                                                            |
|        |                                                                                                                                                |                              |                                |                                |                                |                                |                                |                                |          |                                  |                                                                                                                     |
| В      | I+K to J (3)                                                                                                                                   | 3,904                        | 3,904                          | 4,622                          | 4,622                          | 4,622                          | 4,622                          | 4,622                          | 4,622    | 4,622                            | 4,622                                                                                                               |
| С      | ABC PARs to J                                                                                                                                  | (11)                         | (11)                           | (11)                           | (11)                           | (11)                           | (11)                           | (11)                           | (11)     | (11)                             | (11)                                                                                                                |
| D      | Total J AC Import (B+C)                                                                                                                        | 3,893                        | 3,893                          | 4,611                          | 4,611                          | 4,611                          | 4,611                          | 4,611                          | 4,611    | 4,611                            | 4,611                                                                                                               |
|        |                                                                                                                                                |                              |                                |                                |                                |                                |                                |                                |          |                                  |                                                                                                                     |
| Е      | Loss of Source Contingency                                                                                                                     | <mark>(987)</mark>           | (987)                          | (2,237)                        | (2,237)                        | (2,237)                        | (2,237)                        | (2,237)                        | (2,237)  | (2,237)                          | (2,237)                                                                                                             |
| F      | Resource Need (A+D+E)                                                                                                                          | (8,154)                      | (8,174)                        | (8,666)                        | (8,606)                        | (8,506)                        | (8,456)                        | (8,486)                        | (8,596)  | (8,746)                          | (8,936)                                                                                                             |
|        |                                                                                                                                                |                              |                                |                                |                                |                                |                                |                                |          |                                  |                                                                                                                     |
| G      | J Generation (1)                                                                                                                               | 8,749                        | 8,159                          | 8,159                          | 8,159                          | 8,159                          | 8,159                          | 8,159                          | 8,159    | 8,159                            | 8,159                                                                                                               |
| Н      | J Generation Derates (2)                                                                                                                       | (665)                        | (605)                          | (605)                          | (605)                          | (605)                          | (605)                          | (605)                          | (605)    | (605)                            | (605)                                                                                                               |
| 1      | Temperature Based Generation Derates                                                                                                           | 0                            | 0                              | 0                              | 0                              | 0                              | 0                              | 0                              | 0        | 0                                | 0                                                                                                                   |
| J      | Net ICAP External Imports                                                                                                                      | 315                          | 315                            | 1,565                          | 1,565                          | 1,565                          | 1,565                          | 1,565                          | 1,565    | 1,565                            | 1,565                                                                                                               |
| К      | Total Resources Available (G+H+I+J)                                                                                                            | 8,399                        | 7,868                          | 9,118                          | 9,118                          | 9,118                          | 9,118                          | 9,118                          | 9,118    | 9,118                            | 9,118                                                                                                               |
|        |                                                                                                                                                |                              |                                |                                |                                |                                |                                |                                |          |                                  |                                                                                                                     |
| L      | Baseline Transmission Security Margin (F+K)                                                                                                    | 244                          | (306)                          | 452                            | 512                            | 612                            | 662                            | 632                            | 522      | 372                              | 182                                                                                                                 |
| М      | Higher Policy Demand Impact                                                                                                                    | (140)                        | (140)                          | (160)                          | (160)                          | (190)                          | (300)                          | (390)                          | (450)    | (460)                            | (450)                                                                                                               |
| Ν      | Higher Policy Transmission Security Margin (L+M)                                                                                               | 104                          | (446)                          | 292                            | 352                            | 422                            | 362                            | 242                            | 72       | (88)                             | (268)                                                                                                               |
| L<br>M | Net ICAP External Imports<br>Total Resources Available (G+H+I+J)<br>Baseline Transmission Security Margin (F+K)<br>Higher Policy Demand Impact | 315<br>8,399<br>244<br>(140) | 315<br>7,868<br>(306)<br>(140) | 1,565<br>9,118<br>452<br>(160) | 1,565<br>9,118<br>512<br>(160) | 1,565<br>9,118<br>612<br>(190) | 1,565<br>9,118<br>662<br>(300) | 1,565<br>9,118<br>632<br>(390) |          | 1,565<br>3 9,118<br>522<br>(450) | 1,565         1,565           3         9,118         9,118           522         372           (450)         (460) |

Notes:

1. Reflects the 2023 Gold Book existing summer capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 10% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022 (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2033 are based on the summer peak 2032 representations evaluated in the 2022 RNA.



|                                                          | New York City           Year         2024         2025         2026         2027         2028         2029         2031         2032         2033 |                                              |       |             |            |           |            |          |           |           |             |         |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------|-------------|------------|-----------|------------|----------|-----------|-----------|-------------|---------|
|                                                          | Year                                                                                                                                              |                                              | 2024  | 2025        | 2026       | 2027      | 2028       | 2029     | 2030      | 2031      | 2032        | 2033    |
| New York City Transmission Securi<br>Summer Weather, Nor | ty Margin, Summer Peak<br>mal Transfer Criteria (M                                                                                                |                                              | 117   | (446)       | 292        | 352       | 422        | 362      | 242       | 72        | (88)        | (268)   |
| Unit Name                                                | Summer DMNC (MW)                                                                                                                                  | NERC 5-Year Class<br>Average De-Rate<br>(MW) | Tra   | nsmission S | Security N | largin Im | ipact of G | enerator | Outage (l | Retire, M | othball, II | FO)     |
| Astoria Energy 2 - CC3 & CC4                             | 570.2                                                                                                                                             | (23.15)                                      | (430) | (993)       | (255)      | (195)     | (125)      | (185)    | (305)     | (475)     | (635)       | (815)   |
| Astoria Energy 2 - CC3                                   | 285.1                                                                                                                                             | (11.58)                                      | (157) | (719)       | 19         | 79        | 149        | 89       | (31)      | (201)     | (361)       | (541)   |
| Astoria Energy 2 - CC4                                   | 285.1                                                                                                                                             | (11.58)                                      | (157) | (719)       | 19         | 79        | 149        | 89       | (31)      | (201)     | (361)       | (541)   |
| Astoria East Energy CC1 & CC2                            | 583.8                                                                                                                                             | (23.70)                                      | (443) | (1,006)     | (268)      | (208)     | (138)      | (198)    | (318)     | (488)     | (648)       | (828)   |
| Astoria East Energy - CC1                                |                                                                                                                                                   |                                              |       |             |            | 72        | 142        | 82       | (38)      | (208)     | (368)       | (548)   |
| Astoria East Energy - CC2                                | Astoria East Energy - CC2 291.9 (11.85)                                                                                                           |                                              |       |             |            | 72        | 142        | 82       | (38)      | (208)     | (368)       | (548)   |
| Astoria 2, 3, & 5                                        |                                                                                                                                                   |                                              |       |             | (534)      | (474)     | (404)      | (464)    | (584)     | (754)     | (914)       | (1,094) |
| Astoria 5                                                | 374.7                                                                                                                                             | (37.10)                                      | (221) | (784)       | (46)       | 14        | 84         | 24       | (96)      | (266)     | (426)       | (606)   |
| Astoria 3                                                | 372.2                                                                                                                                             | (36.85)                                      | (219) | (781)       | (43)       | 17        | 87         | 27       | (93)      | (263)     | (423)       | (603)   |
| Astoria 2                                                | 170.5                                                                                                                                             | (16.88)                                      | (37)  | (600)       | 138        | 198       | 268        | 208      | 88        | (82)      | (242)       | (422)   |
| Bayonne EC CT G1 through G10                             | 601.6                                                                                                                                             | (53.90)                                      | (431) | (994)       | (256)      | (196)     | (126)      | (186)    | (306)     | (476)     | (636)       | (816)   |
| Bayonne EC CTG1                                          | 61.8                                                                                                                                              | (5.54)                                       | 61    | (502)       | 236        | 296       | 366        | 306      | 186       | 16        | (144)       | (324)   |
| Bayonne EC CTG4                                          | 60.9                                                                                                                                              | (5.46)                                       | 61    | (501)       | 237        | 297       | 367        | 307      | 187       | 17        | (143)       | (323)   |
| Bayonne EC CTG9                                          | 60.5                                                                                                                                              | (5.42)                                       | 62    | (501)       | 237        | 297       | 367        | 307      | 187       | 17        | (143)       | (323)   |
| Bayonne EC CTG10                                         | 60.5                                                                                                                                              | (5.42)                                       | 62    | (501)       | 237        | 297       | 367        | 307      | 187       | 17        | (143)       | (323)   |
| Bayonne EC CTG8                                          | 60.3                                                                                                                                              | (5.40)                                       | 62    | (501)       | 237        | 297       | 367        | 307      | 187       | 17        | (143)       | (323)   |
| Bayonne EC CTG2                                          | 60.2                                                                                                                                              | (5.39)                                       | 62    | (501)       | 237        | 297       | 367        | 307      | 187       | 17        | (143)       | (323)   |
| Bayonne EC CTG7                                          | 60.0                                                                                                                                              | (5.38)                                       | 62    | (501)       | 237        | 297       | 367        | 307      | 187       | 17        | (143)       | (323)   |
| Bayonne EC CTG5                                          |                                                                                                                                                   |                                              |       |             | 238        | 298       | 368        | 308      | 188       | 18        | (142)       | (322)   |
| Bayonne EC CTG6                                          | (5.34)                                                                                                                                            | 63                                           | (500) | 238         | 298        | 368       | 308        | 188      | 18        | (142)     | (322)       |         |
| Bayonne EC CTG3                                          | 64                                                                                                                                                | (499)                                        | 239   | 299         | 369        | 309       | 189        | 19       | (141)     | (321)     |             |         |
| KIAC_JFK (BTM:NG)                                        | 98.7                                                                                                                                              | (4.01)                                       | 22    | (541)       | 197        | 257       | 327        | 267      | 147       | (23)      | (183)       | (363)   |
| East River 1, 2, 6, & 7                                  |                                                                                                                                                   |                                              |       | (1,038)     | (300)      | (240)     | (170)      | (230)    | (350)     | (520)     | (680)       | (860)   |
| Brooklyn Navy Yard                                       |                                                                                                                                                   |                                              |       |             | 57         | 117       | 187        | 127      | 7         | (163)     | (323)       | (503)   |



|                                                            |                                                   | New      | York City |         |       |       |       |       |       |       |       |         |
|------------------------------------------------------------|---------------------------------------------------|----------|-----------|---------|-------|-------|-------|-------|-------|-------|-------|---------|
|                                                            | Year                                              |          | 2024      | 2025    | 2026  | 2027  | 2028  | 2029  | 2030  | 2031  | 2032  | 2033    |
| New York City Transmission Securit<br>Summer Weather, Norr | y Margin, Summer Peak<br>mal Transfer Criteria (M |          | 117       | (446)   | 292   | 352   | 422   | 362   | 242   | 72    | (88)  | (268)   |
| East River 7                                               | 184.2                                             | (18.24)  | (49)      | (612)   | 126   | 186   | 256   | 196   | 76    | (94)  | (254) | (434)   |
| East River 2                                               | 155.8                                             | (6.33)   | (33)      | (595)   | 143   | 203   | 273   | 213   | 93    | (77)  | (237) | (417)   |
| East River 1                                               | 155.1                                             | (6.30)   | (32)      | (595)   | 143   | 203   | 273   | 213   | 93    | (77)  | (237) | (417)   |
| East River 6                                               | 141.4                                             | (14.00)  | (11)      | (573)   | 165   | 225   | 295   | 235   | 115   | (55)  | (215) | (395)   |
| Arthur Kill Cogen                                          | 11.1                                              | (1.32)   | 107       | (456)   | 282   | 342   | 412   | 352   | 232   | 62    | (98)  | (278)   |
| Linden Cogen                                               | 789.5                                             | (32.05)  | (641)     | (1,203) | (465) | (405) | 1,309 | (395) | (515) | (685) | (845) | (1,025) |
| Ravenswood ST 01, 02, & 03 (2)                             | 1,730.3                                           | (171.30) | (1,040)   | (1,591) | (798) | (738) | (638) | (588) | (618) | (728) | (878) | (1,068) |
| Ravenswood ST 03 (2)                                       | 987.3                                             | (97.74)  | (371)     | (921)   | (128) | (68)  | 32    | 82    | 52    | (58)  | (208) | (398)   |
| Ravenswood ST 02                                           | 374.5                                             | (37.08)  | (221)     | (783)   | (45)  | 15    | 85    | 25    | (95)  | (265) | (425) | (605)   |
| Ravenswood ST 01                                           | (36.48)                                           | (215)    | (778)     | (40)    | 20    | 90    | 30    | (90)  | (260) | (420) | (600) |         |
| Ravenswood CC 04                                           | 223.2                                             | (9.06)   | (97)      | (660)   | 78    | 138   | 208   | 148   | 28    | (142) | (302) | (482)   |
| Astoria CC 1 & 2                                           | 476.0                                             | (19.33)  | (340)     | (903)   | (165) | (105) | (35)  | (95)  | (215) | (385) | (545) | (725)   |
| Astoria CC 1                                               | 238.0                                             | (9.66)   | (112)     | (674)   | 64    | 124   | 194   | 134   | 14    | (156) | (316) | (496)   |
| Astoria CC 2                                               | 238.0                                             | (9.66)   | (112)     | (674)   | 64    | 124   | 194   | 134   | 14    | (156) | (316) | (496)   |
| Gowanus 5 & 6                                              | 79.9                                              | (8.05)   | 45        | (518)   | 220   | 280   | 350   | 290   | 170   | 0     | (160) | (340)   |
| Hellgate 1 & 2                                             | 79.9                                              | (8.05)   | 45        | (518)   | 220   | 280   | 350   | 290   | 170   | 0     | (160) | (340)   |
| Harlem River 1 & 2                                         | 79.9                                              | (8.05)   | 45        | (518)   | 220   | 280   | 350   | 290   | 170   | 0     | (160) | (340)   |
| Vernon Blvd 2 & 3                                          | 79.9                                              | (8.05)   | 45        | (518)   | 220   | 280   | 350   | 290   | 170   | 0     | (160) | (340)   |
| Kent                                                       | 45.8                                              | (4.62)   | 76        | (487)   | 251   | 311   | 381   | 321   | 201   | 31    | (129) | (309)   |
| Pouch                                                      | 45.1                                              | (4.55)   | 76        | (486)   | 252   | 312   | 382   | 322   | 202   | 32    | (128) | (308)   |
| Gowanus 5                                                  | 40.0                                              | (4.03)   | 81        | (482)   | 256   | 316   | 386   | 326   | 206   | 36    | (124) | (304)   |
| Hellgate 2                                                 | 40.0                                              | (4.03)   | 81        | (482)   | 256   | 316   | 386   | 326   | 206   | 36    | (124) | (304)   |
| Harlem River 2                                             | 40.0                                              | (4.03)   | 81        | (482)   | 256   | 316   | 386   | 326   | 206   | 36    | (124) | (304)   |
| Vernon Blvd 2                                              | 40.0                                              | (4.03)   | 81        | (482)   | 256   | 316   | 386   | 326   | 206   | 36    | (124) | (304)   |
| Gowanus 6                                                  | 39.9                                              | (4.02)   | 81        | (482)   | 256   | 316   | 386   | 326   | 206   | 36    | (124) | (304)   |
| Hellgate 1 39.9 (4.02)                                     |                                                   |          | 81        | (482)   | 256   | 316   | 386   | 326   | 206   | 36    | (124) | (304)   |
| Harlem River 1                                             | 39.9                                              | (4.02)   | 81        | (482)   | 256   | 316   | 386   | 326   | 206   | 36    | (124) | (304)   |



|                      | New York City                                                                                                                    |        |       |         |       |       |       |       |       |       |       |         |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------|--------|-------|---------|-------|-------|-------|-------|-------|-------|-------|---------|
|                      | Year                                                                                                                             |        | 2024  | 2025    | 2026  | 2027  | 2028  | 2029  | 2030  | 2031  | 2032  | 2033    |
|                      | New York City Transmission Security Margin, Summer Peak - Baseline Expected<br>Summer Weather, Normal Transfer Criteria (MW) (1) |        |       |         |       | 352   | 422   | 362   | 242   | 72    | (88)  | (268)   |
| Vernon Blvd 3        | 39.9                                                                                                                             | (4.02) | 81    | (482)   | 256   | 316   | 386   | 326   | 206   | 36    | (124) | (304)   |
| Arthur Kill ST 2 & 3 | Arthur Kill ST 2 & 3 865.3 (85.66)                                                                                               |        | (663) | (1,226) | (488) | (428) | (358) | (418) | (538) | (708) | (868) | (1,048) |
| Arthur Kill ST 3     | Arthur Kill ST 3 519.0 (51.38)                                                                                                   |        |       |         | (176) | (116) | (46)  | (106) | (226) | (396) | (556) | (736)   |
| Arthur Kill ST 2     | Arthur Kill ST 2 346.3 (34.28)                                                                                                   |        |       |         | (20)  | 40    | 110   | 50    | (70)  | (240) | (400) | (580)   |

Notes

1. Utilizes the Transmission Security Margin for Summer Peak (High Policy Demand) with Expected Weather.

1. In all years the most limiting contingency includes the loss of Ravenswood 3. For this calculation the margin, the loss of two transmission elements is utilized. Other combinations with loss of generation may be more limiting.



## Figure 40: New York City Transmission Security Margin (Summer Peak - Expected Weather, Normal Transfer Criteria without CHPE)

|      | Summer Peak - Basel                              | ine Expect | ed Weathe | r, Normal i | Transfer Cr | iteria (MW | /)       |          |          |                    |          |
|------|--------------------------------------------------|------------|-----------|-------------|-------------|------------|----------|----------|----------|--------------------|----------|
| Line | Item                                             | 2024       | 2025      | 2026        | 2027        | 2028       | 2029     | 2030     | 2031     | 2032               | 2033     |
| Α    | Zone J Demand Forecast (4)                       | (11,060)   | (11,080)  | (11,040)    | (10,980)    | (10,880)   | (10,830) | (10,860) | (10,970) | (11,120)           | (11,310) |
|      |                                                  |            |           |             |             |            |          |          |          |                    |          |
| В    | I+K to J (3)                                     | 3,904      | 3,904     | 3,904       | 3,904       | 3,904      | 3,904    | 3,904    | 3,904    | 3,904              | 3,904    |
| С    | ABC PARs to J                                    | (11)       | (11)      | (11)        | (11)        | (11)       | (11)     | (11)     | (11)     | (11)               | (11)     |
| D    | Total J AC Import (B+C)                          | 3,893      | 3,893     | 3,893       | 3,893       | 3,893      | 3,893    | 3,893    | 3,893    | 3,893              | 3,893    |
|      |                                                  |            |           |             |             |            |          |          |          |                    |          |
| E    | Loss of Source Contingency                       | (987)      | (987)     | (987)       | (987)       | (987)      | (987)    | (987)    | (987)    | (987)              | (987)    |
| F    | Resource Need (A+D+E)                            | (8,154)    | (8,174)   | (8,134)     | (8,074)     | (7,974)    | (7,924)  | (7,954)  | (8,064)  | (8,214)            | (8,404)  |
|      |                                                  |            |           |             |             |            |          |          |          |                    |          |
| G    | J Generation (1)                                 | 8,749      | 8,159     | 8,159       | 8,159       | 8,159      | 8,159    | 8,159    | 8,159    | 8,159              | 8,159    |
| Н    | J Generation Derates (2)                         | (665)      | (605)     | (605)       | (605)       | (605)      | (605)    | (605)    | (605)    | (605)              | (605)    |
| 1    | Temperature Based Generation Derates             | 0          | 0         | 0           | 0           | 0          | 0        | 0        | 0        | 0                  | 0        |
| J    | Net ICAP External Imports                        | 315        | 315       | 315         | 315         | 315        | 315      | 315      | 315      | 315                | 315      |
| К    | Total Resources Available (G+H+I+J)              | 8,399      | 7,868     | 7,868       | 7,868       | 7,868      | 7,868    | 7,868    | 7,868    | 7,868              | 7,868    |
|      |                                                  |            |           |             |             |            |          |          |          |                    |          |
| L    | Baseline Transmission Security Margin (F+K)      | 244        | (306)     | (266)       | (206)       | (106)      | (56)     | (86)     | (196)    | (346)              | (536)    |
| М    | Higher Policy Demand Impact                      | (140)      | (140)     | (160)       | (160)       | (190)      | (300)    | (390)    | (450)    | <mark>(460)</mark> | (450)    |
| Ν    | Higher Policy Transmission Security Margin (L+M) | 104        | (446)     | (426)       | (366)       | (296)      | (356)    | (476)    | (646)    | (806)              | (986)    |

Notes:

1. Reflects the 2023 Gold Book existing summer capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 10% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022 (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2033 are based on the summer peak 2032 representations evaluated in the 2022 RNA.

4. Reflects the final 10-year peak forecasts presented to stakeholders at the April 5, 2023 LFTF/ESPWG with adjustments for large load queue projects included in this STAR (Q0580 – WNY STAMP, Q0776 – Greenidge, Q0849 – Somerset, Q0580 – Cayuga, Q0979 – North Country Data Center).



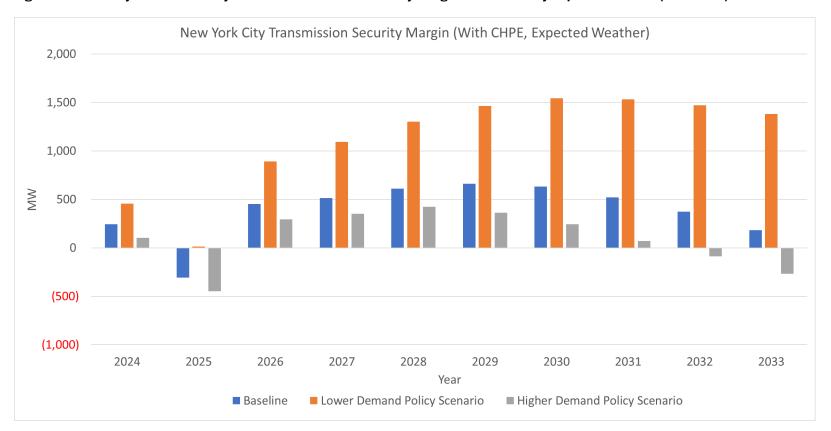



Figure 41: Summary of New York City Summer Transmission Security Margin Demand Policy Impact – Summer (with CHPE)



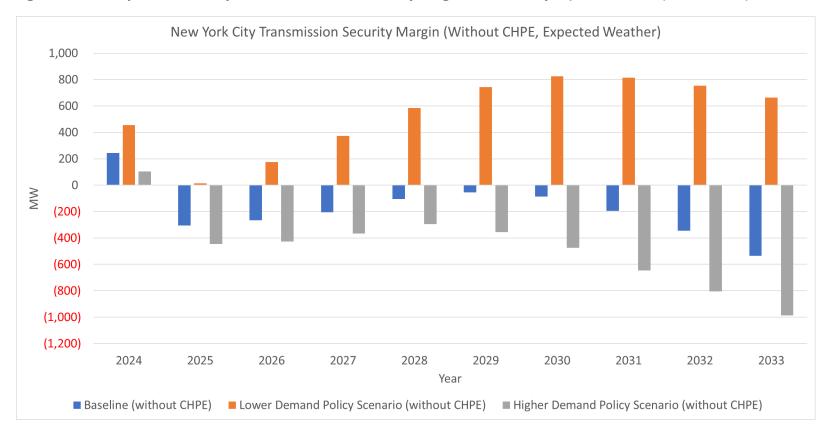


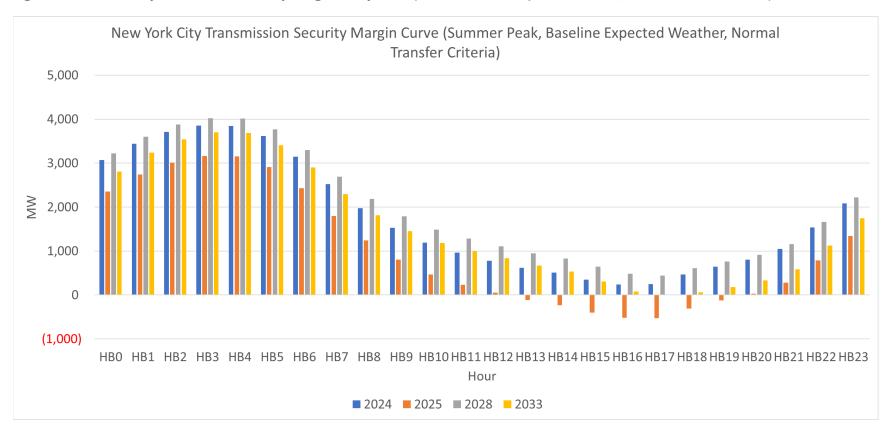

Figure 42: Summary of New York City Summer Transmission Security Margin Demand Policy Impact - Summer (without CHPE)



Figure 43: New York City Transmission Security Margin (Hourly) (Summer Peak – Baseline Demand Expected Weather, Normal Transfer Criteria)

|      | Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW)<br>J Transmission Security Margin |       |       |            |             |          |       |       |       |       |  |  |  |
|------|-----------------------------------------------------------------------------------------------------------------|-------|-------|------------|-------------|----------|-------|-------|-------|-------|--|--|--|
|      |                                                                                                                 |       | ٦.    | Transmissi | on Security | y Margin |       |       |       |       |  |  |  |
| Hour | 2024                                                                                                            | 2025  | 2026  | 2027       | 2028        | 2029     | 2030  | 2031  | 2032  | 2033  |  |  |  |
| HB0  | 3,072                                                                                                           | 2,355 | 3,100 | 3,142      | 3,219       | 3,258    | 3,238 | 3,157 | 2,950 | 2,812 |  |  |  |
| HB1  | 3,444                                                                                                           | 2,738 | 3,482 | 3,528      | 3,603       | 3,644    | 3,628 | 3,555 | 3,363 | 3,237 |  |  |  |
| HB2  | 3,710                                                                                                           | 3,012 | 3,757 | 3,800      | 3,876       | 3,918    | 3,905 | 3,839 | 3,655 | 3,540 |  |  |  |
| HB3  | 3,856                                                                                                           | 3,161 | 3,907 | 3,951      | 4,024       | 4,068    | 4,057 | 3,990 | 3,814 | 3,700 |  |  |  |
| HB4  | 3,847                                                                                                           | 3,151 | 3,896 | 3,940      | 4,013       | 4,056    | 4,044 | 3,978 | 3,801 | 3,687 |  |  |  |
| HB5  | 3,615                                                                                                           | 2,912 | 3,655 | 3,696      | 3,768       | 3,809    | 3,793 | 3,722 | 3,532 | 3,410 |  |  |  |
| HB6  | 3,143                                                                                                           | 2,428 | 3,174 | 3,218      | 3,294       | 3,335    | 3,317 | 3,239 | 3,035 | 2,902 |  |  |  |
| HB7  | 2,520                                                                                                           | 1,796 | 2,550 | 2,606      | 2,694       | 2,744    | 2,729 | 2,649 | 2,437 | 2,298 |  |  |  |
| HB8  | 1,972                                                                                                           | 1,244 | 2,010 | 2,081      | 2,185       | 2,245    | 2,240 | 2,165 | 1,951 | 1,815 |  |  |  |
| HB9  | 1,528                                                                                                           | 800   | 1,580 | 1,669      | 1,788       | 1,860    | 1,863 | 1,796 | 1,585 | 1,453 |  |  |  |
| HB10 | 1,194                                                                                                           | 463   | 1,254 | 1,356      | 1,486       | 1,569    | 1,577 | 1,516 | 1,306 | 1,181 |  |  |  |
| HB11 | 967                                                                                                             | 235   | 1,032 | 1,142      | 1,283       | 1,372    | 1,388 | 1,329 | 1,123 | 1,000 |  |  |  |
| HB12 | 782                                                                                                             | 51    | 850   | 965        | 1,110       | 1,203    | 1,222 | 1,164 | 956   | 837   |  |  |  |
| HB13 | 620                                                                                                             | (116) | 685   | 800        | 946         | 1,039    | 1,058 | 1,001 | 789   | 667   |  |  |  |
| HB14 | 511                                                                                                             | (230) | 573   | 685        | 830         | 923      | 939   | 878   | 663   | 538   |  |  |  |
| HB15 | 352                                                                                                             | (398) | 399   | 505        | 644         | 731      | 740   | 672   | 444   | 310   |  |  |  |
| HB16 | 237                                                                                                             | (522) | 264   | 357        | 486         | 563      | 560   | 478   | 231   | 81    |  |  |  |
| HB17 | 244                                                                                                             | (524) | 247   | 325        | 440         | 504      | 488   | 391   | 177   | 9     |  |  |  |
| HB18 | 466                                                                                                             | (306) | 452   | 512        | 612         | 662      | 632   | 522   | 246   | 62    |  |  |  |
| HB19 | 647                                                                                                             | (126) | 624   | 675        | 765         | 808      | 769   | 653   | 372   | 182   |  |  |  |
| HB20 | 803                                                                                                             | 32    | 779   | 828        | 915         | 955      | 917   | 801   | 524   | 335   |  |  |  |
| HB21 | 1,044                                                                                                           | 278   | 1,024 | 1,070      | 1,157       | 1,197    | 1,160 | 1,047 | 776   | 589   |  |  |  |
| HB22 | 1,540                                                                                                           | 786   | 1,531 | 1,576      | 1,660       | 1,698    | 1,665 | 1,559 | 1,303 | 1,128 |  |  |  |
| HB23 | 2,086                                                                                                           | 1,347 | 2,092 | 2,138      | 2,219       | 2,260    | 2,234 | 2,140 | 1,902 | 1,744 |  |  |  |

New York ISO



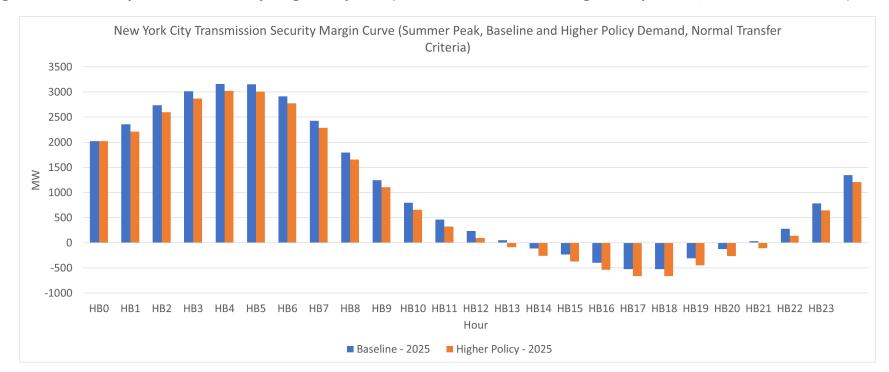


Figure 44: New York City Transmission Security Margin Hourly Curve (Summer Peak – Expected Weather, Normal Transfer Criteria)



Figure 45: New York City Transmission Security Margin (Hourly) (Summer Peak – Higher Policy with Expected Weather, Normal Transfer Criteria)

|      | Sum   | mer Peak - H | ligher Policy | with Expect | ed Summer     | Weather, No | ormal Transfe | er Criteria (N | /W)   |       |
|------|-------|--------------|---------------|-------------|---------------|-------------|---------------|----------------|-------|-------|
|      |       |              |               | J Transmis  | ssion Securit | y Margin    |               |                |       |       |
| Hour | 2024  | 2025         | 2026          | 2027        | 2028          | 2029        | 2030          | 2031           | 2032  | 2033  |
| HB0  | 2,932 | 2,215        | 2,940         | 2,982       | 3,029         | 2,958       | 2,848         | 2,707          | 2,490 | 2,362 |
| HB1  | 3,304 | 2,598        | 3,322         | 3,368       | 3,413         | 3,344       | 3,238         | 3,105          | 2,903 | 2,787 |
| HB2  | 3,570 | 2,872        | 3,597         | 3,640       | 3,686         | 3,618       | 3,515         | 3,389          | 3,195 | 3,090 |
| HB3  | 3,716 | 3,021        | 3,747         | 3,791       | 3,834         | 3,768       | 3,667         | 3,540          | 3,354 | 3,250 |
| HB4  | 3,707 | 3,011        | 3,736         | 3,780       | 3,823         | 3,756       | 3,654         | 3,528          | 3,341 | 3,237 |
| HB5  | 3,475 | 2,772        | 3,495         | 3,536       | 3,578         | 3,509       | 3,403         | 3,272          | 3,072 | 2,960 |
| HB6  | 3,003 | 2,288        | 3,014         | 3,058       | 3,104         | 3,035       | 2,927         | 2,789          | 2,575 | 2,452 |
| HB7  | 2,380 | 1,656        | 2,390         | 2,446       | 2,504         | 2,444       | 2,339         | 2,199          | 1,977 | 1,848 |
| HB8  | 1,832 | 1,104        | 1,850         | 1,921       | 1,995         | 1,945       | 1,850         | 1,715          | 1,491 | 1,365 |
| HB9  | 1,388 | 660          | 1,420         | 1,509       | 1,598         | 1,560       | 1,473         | 1,346          | 1,125 | 1,003 |
| HB10 | 1,054 | 323          | 1,094         | 1,196       | 1,296         | 1,269       | 1,187         | 1,066          | 846   | 731   |
| HB11 | 827   | 95           | 872           | 982         | 1,093         | 1,072       | 998           | 879            | 663   | 550   |
| HB12 | 642   | (89)         | 690           | 805         | 920           | 903         | 832           | 714            | 496   | 387   |
| HB13 | 480   | (256)        | 525           | 640         | 756           | 739         | 668           | 551            | 329   | 217   |
| HB14 | 371   | (370)        | 413           | 525         | 640           | 623         | 549           | 428            | 203   | 88    |
| HB15 | 212   | (538)        | 239           | 345         | 454           | 431         | 350           | 222            | (16)  | (140) |
| HB16 | 97    | (662)        | 104           | 197         | 296           | 263         | 170           | 28             | (229) | (369) |
| HB17 | 104   | (664)        | 87            | 165         | 250           | 204         | 98            | (59)           | (283) | (441) |
| HB18 | 326   | (446)        | 292           | 352         | 422           | 362         | 242           | 72             | (214) | (388) |
| HB19 | 507   | (266)        | 464           | 515         | 575           | 508         | 379           | 203            | (88)  | (268) |
| HB20 | 663   | (108)        | 619           | 668         | 725           | 655         | 527           | 351            | 64    | (115) |
| HB21 | 904   | 138          | 864           | 910         | 967           | 897         | 770           | 597            | 316   | 139   |
| HB22 | 1,400 | 646          | 1,371         | 1,416       | 1,470         | 1,398       | 1,275         | 1,109          | 843   | 678   |
| HB23 | 1,946 | 1,207        | 1,932         | 1,978       | 2,029         | 1,960       | 1,844         | 1,690          | 1,442 | 1,294 |





## Figure 46: New York City Transmission Security Margin Hourly Curve (Summer Peak – Baseline and Higher Policy Demand, Normal Transfer Criteria)



|      | Summer Peak - 1-in-                   | 10-Year He | atwave, En | nergency T | ransfer Cri | teria (MW) | )        |          |          |          |          |
|------|---------------------------------------|------------|------------|------------|-------------|------------|----------|----------|----------|----------|----------|
| Line | Item                                  | 2024       | 2025       | 2026       | 2027        | 2028       | 2029     | 2030     | 2031     | 2032     | 2033     |
| Α    | Zone J Demand Forecast (6)            | (11,473)   | (11,494)   | (11,452)   | (11,390)    | (11,286)   | (11,234) | (11,265) | (11,379) | (11,535) | (11,732) |
|      |                                       |            |            |            |             |            |          |          |          |          |          |
| В    | I+K to J (5)                          | 3,904      | 3,904      | 4,622      | 4,622       | 4,622      | 4,622    | 4,622    | 4,622    | 4,622    | 4,622    |
| С    | ABC PARs to J                         | (11)       | (11)       | (11)       | (11)        | (11)       | (11)     | (11)     | (11)     | (11)     | (11)     |
| D    | Total J Import (B+C)                  | 3,893      | 3,893      | 4,611      | 4,611       | 4,611      | 4,611    | 4,611    | 4,611    | 4,611    | 4,611    |
|      |                                       |            |            |            |             |            |          |          |          |          |          |
| E    | Loss of Source Contingency            | (987)      | (987)      | (2,237)    | (2,237)     | (2,237)    | (2,237)  | (2,237)  | (2,237)  | (2,237)  | (2,237)  |
| F    | Resource Need (A+D+E)                 | (8,567)    | (8,588)    | (9,078)    | (9,016)     | (8,912)    | (8,860)  | (8,891)  | (9,005)  | (9,161)  | (9,358)  |
|      |                                       |            |            |            |             |            |          |          |          |          |          |
| G    | J Generation (1)                      | 8,749      | 8,159      | 8,159      | 8,159       | 8,159      | 8,159    | 8,159    | 8,159    | 8,159    | 8,159    |
| Н    | J Generation Derates (2)              | (665)      | (605)      | (605)      | (605)       | (605)      | (605)    | (605)    | (605)    | (605)    | (605)    |
| I.   | Temperature Based Generation Derates  | (64)       | (55)       | (55)       | (55)        | (55)       | (55)     | (55)     | (55)     | (55)     | (55)     |
| J    | Net ICAP External Imports             | 315        | 315        | 1,565      | 1,565       | 1,565      | 1,565    | 1,565    | 1,565    | 1,565    | 1,565    |
| K    | SCRs (3), (4)                         | 219        | 219        | 219        | 219         | 219        | 219      | 219      | 219      | 219      | 219      |
| L    | Total Resources Available (G+H+I+J+K) | 8,554      | 8,033      | 9,283      | 9,283       | 9,283      | 9,283    | 9,283    | 9,283    | 9,283    | 9,283    |
|      |                                       |            |            |            |             |            |          |          |          |          |          |
| М    | Transmission Security Margin (F+L)    | (13)       | (555)      | 205        | 267         | 371        | 423      | 392      | 278      | 122      | (75)     |
| Mada |                                       |            |            |            |             |            |          |          |          |          |          |

#### Figure 47: New York City Transmission Security Margin (1-in-10-Year Heatwave, Emergency Transfer Criteria)

Notes:

1. Reflects the 2023 Gold Book existing summer capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 10% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022 (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.

4. Includes a derate of 198 MW for SCRs.


5. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2033 are based on the summer peak 2032 representations evaluated in the 2022 RNA.

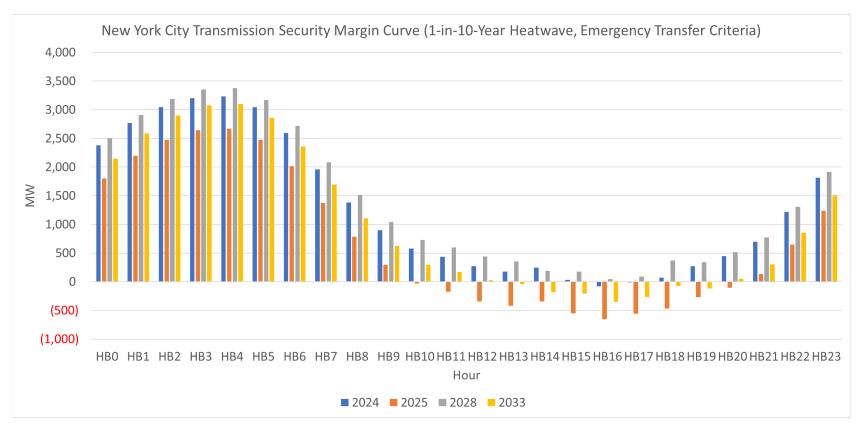



Figure 48: New York City Transmission Security Margin (Hourly) (1-in-10-Year Heatwave, Emergency Transfer Criteria)

|      |       | Summ  | er Peak - H | leatwave,  | Emergency   | y Transfer ( | Criteria (M | W)    |       |       |
|------|-------|-------|-------------|------------|-------------|--------------|-------------|-------|-------|-------|
|      |       |       | ٦           | Transmissi | on Security | y Margin     |             |       |       |       |
| Hour | 2024  | 2025  | 2026        | 2027       | 2028        | 2029         | 2030        | 2031  | 2032  | 2033  |
| HB0  | 2,382 | 1,801 | 2,553       | 2,441      | 2,506       | 2,535        | 2,515       | 2,432 | 2,285 | 2,146 |
| HB1  | 2,770 | 2,198 | 2,947       | 2,840      | 2,906       | 2,939        | 2,924       | 2,849 | 2,716 | 2,588 |
| HB2  | 3,042 | 2,476 | 3,226       | 3,117      | 3,186       | 3,221        | 3,209       | 3,141 | 3,016 | 2,897 |
| HB3  | 3,204 | 2,640 | 3,390       | 3,283      | 3,349       | 3,387        | 3,377       | 3,308 | 3,190 | 3,073 |
| HB4  | 3,234 | 2,670 | 3,419       | 3,311      | 3,377       | 3,414        | 3,402       | 3,334 | 3,216 | 3,098 |
| HB5  | 3,042 | 2,472 | 3,219       | 3,107      | 3,170       | 3,202        | 3,186       | 3,113 | 2,982 | 2,856 |
| HB6  | 2,596 | 2,016 | 2,765       | 2,652      | 2,715       | 2,743        | 2,722       | 2,640 | 2,495 | 2,357 |
| HB7  | 1,961 | 1,373 | 2,125       | 2,017      | 2,082       | 2,113        | 2,090       | 2,001 | 1,842 | 1,694 |
| HB8  | 1,384 | 786   | 1,543       | 1,441      | 1,512       | 1,542        | 1,523       | 1,431 | 1,260 | 1,106 |
| HB9  | 902   | 298   | 1,061       | 966        | 1,042       | 1,075        | 1,054       | 961   | 783   | 622   |
| HB10 | 578   | (31)  | 737         | 648        | 726         | 761          | 738         | 644   | 460   | 298   |
| HB11 | 436   | (174) | 598         | 513        | 597         | 633          | 615         | 520   | 337   | 173   |
| HB12 | 272   | (344) | 424         | 345        | 439         | 486          | 471         | 376   | 188   | 24    |
| HB13 | 180   | (421) | 348         | 245        | 350         | 403          | 392         | 301   | 124   | (44)  |
| HB14 | 247   | (342) | 429         | 79         | 192         | 255          | 243         | 151   | (16)  | (186) |
| HB15 | 30    | (550) | 219         | 60         | 179         | 244          | 232         | 137   | (27)  | (203) |
| HB16 | (83)  | (649) | 114         | (77)       | 46          | 114          | 97          | (4)   | (166) | (352) |
| HB17 | (13)  | (555) | 205         | (21)       | 92          | 153          | 130         | 72    | (78)  | (269) |
| HB18 | 69    | (471) | 284         | 267        | 371         | 423          | 392         | 278   | 122   | (75)  |
| HB19 | 269   | (269) | 481         | 239        | 337         | 387          | 350         | 234   | 78    | (121) |
| HB20 | 445   | (106) | 643         | 426        | 515         | 556          | 521         | 405   | 243   | 48    |
| HB21 | 699   | 134   | 884         | 690        | 773         | 809          | 773         | 660   | 491   | 302   |
| HB22 | 1,220 | 648   | 1,396       | 1,229      | 1,304       | 1,335        | 1,302       | 1,196 | 1,031 | 854   |
| HB23 | 1,812 | 1,236 | 1,984       | 1,845      | 1,913       | 1,943        | 1,917       | 1,822 | 1,663 | 1,504 |









| Figure 50: New York City | v Transmission Security | Margin ( | 1-in-100-Year Extreme Heatwa | ve. Emergenc | v Transfer Criteria) |
|--------------------------|-------------------------|----------|------------------------------|--------------|----------------------|
|                          | ,                       |          |                              | ,            | ,                    |

|        | Summer Peak - 1-in-100-1              | ear Extren | ne Heatway | /e, Emerge | ency Transf | er Criteria | (MW)     |          |          |          |          |
|--------|---------------------------------------|------------|------------|------------|-------------|-------------|----------|----------|----------|----------|----------|
| Line   | Item                                  | 2024       | 2025       | 2026       | 2027        | 2028        | 2029     | 2030     | 2031     | 2032     | 2033     |
| Α      | Zone J Demand Forecast (6)            | (11,916)   | (11,937)   | (11,894)   | (11,829)    | (11,722)    | (11,668) | (11,700) | (11,819) | (11,980) | (12,185) |
|        |                                       |            |            |            |             |             |          |          |          |          |          |
| В      | I+K to J (5)                          | 3,904      | 3,904      | 4,622      | 4,622       | 4,622       | 4,622    | 4,622    | 4,622    | 4,622    | 4,622    |
| С      | ABC PARs to J                         | (11)       | (11)       | (11)       | (11)        | (11)        | (11)     | (11)     | (11)     | (11)     | (11)     |
| D      | Total J Import (B+C)                  | 3,893      | 3,893      | 4,611      | 4,611       | 4,611       | 4,611    | 4,611    | 4,611    | 4,611    | 4,611    |
|        |                                       |            |            |            |             |             |          |          |          |          |          |
| E      | Loss of Source Contingency            | (987)      | (987)      | (2,237)    | (2,237)     | (2,237)     | (2,237)  | (2,237)  | (2,237)  | (2,237)  | (2,237)  |
| F      | Resource Need (A+D+E)                 | (9,010)    | (9,031)    | (9,520)    | (9,455)     | (9,348)     | (9,294)  | (9,326)  | (9,445)  | (9,606)  | (9,811)  |
|        |                                       |            |            |            |             |             |          |          |          |          |          |
| G      | J Generation (1)                      | 8,749      | 8,159      | 8,159      | 8,159       | 8,159       | 8,159    | 8,159    | 8,159    | 8,159    | 8,159    |
| Н      | J Generation Derates (2)              | (665)      | (605)      | (605)      | (605)       | (605)       | (605)    | (605)    | (605)    | (605)    | (605)    |
| -      | Temperature Based Generation Derates  | (135)      | (116)      | (116)      | (116)       | (116)       | (116)    | (116)    | (116)    | (116)    | (116)    |
| J      | Net ICAP External Imports             | 315        | 315        | 1,565      | 1,565       | 1,565       | 1,565    | 1,565    | 1,565    | 1,565    | 1,565    |
| К      | SCRs (3), (4)                         | 219        | 219        | 219        | 219         | 219         | 219      | 219      | 219      | 219      | 219      |
| L      | Total Resources Available (G+H+I+J+K) | 8,483      | 7,971      | 9,221      | 9,221       | 9,221       | 9,221    | 9,221    | 9,221    | 9,221    | 9,221    |
|        |                                       |            |            |            |             |             |          |          |          |          |          |
| М      | Transmission Security Margin (F+L)    | (527)      | (1,060)    | (299)      | (234)       | (127)       | (73)     | (105)    | (224)    | (385)    | (590)    |
| Notes: |                                       |            |            |            |             |             |          |          |          |          |          |

Notes:

1. Reflects the 2023 Gold Book existing summer capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 10% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022 (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.

4. Includes a derate of 198 MW for SCRs.


5. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2033 are based on the summer peak 2032 representations evaluated in the 2022 RNA.

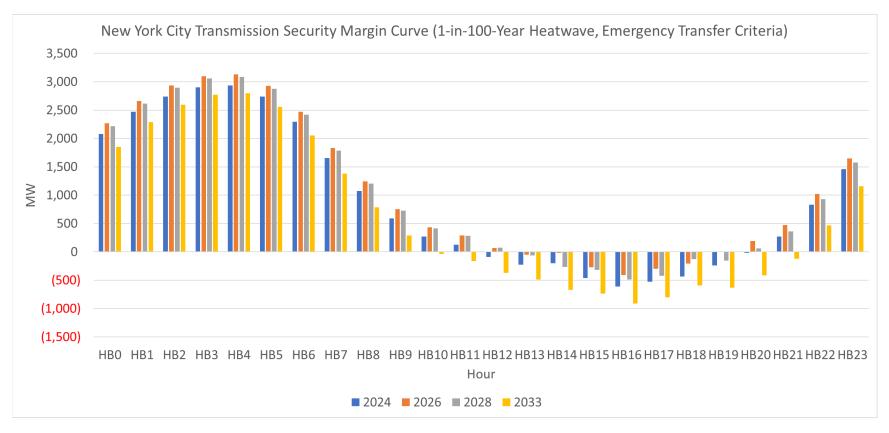



Figure 51: New York City Transmission Security Margin (Hourly) (1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria)

|      | Summer Peak - 1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria (MW)<br>J Transmission Security Margin |         |       |            |             |          |       |       |       |       |  |  |  |  |
|------|------------------------------------------------------------------------------------------------------------------|---------|-------|------------|-------------|----------|-------|-------|-------|-------|--|--|--|--|
|      |                                                                                                                  |         | l.    | Transmissi | on Security | y Margin |       |       |       |       |  |  |  |  |
| Hour | 2024                                                                                                             | 2025    | 2026  | 2027       | 2028        | 2029     | 2030  | 2031  | 2032  | 2033  |  |  |  |  |
| HBO  | 2,081                                                                                                            | 1,512   | 2,267 | 2,151      | 2,218       | 2,248    | 2,226 | 2,142 | 1,992 | 1,849 |  |  |  |  |
| HB1  | 2,468                                                                                                            | 1,907   | 2,659 | 2,548      | 2,617       | 2,650    | 2,633 | 2,557 | 2,421 | 2,289 |  |  |  |  |
| HB2  | 2,739                                                                                                            | 2,185   | 2,937 | 2,824      | 2,895       | 2,931    | 2,917 | 2,848 | 2,719 | 2,597 |  |  |  |  |
| HB3  | 2,900                                                                                                            | 2,348   | 3,101 | 2,990      | 3,058       | 3,097    | 3,085 | 3,014 | 2,893 | 2,771 |  |  |  |  |
| HB4  | 2,931                                                                                                            | 2,378   | 3,130 | 3,018      | 3,086       | 3,123    | 3,110 | 3,040 | 2,918 | 2,796 |  |  |  |  |
| HB5  | 2,738                                                                                                            | 2,181   | 2,930 | 2,813      | 2,878       | 2,911    | 2,893 | 2,818 | 2,683 | 2,554 |  |  |  |  |
| HB6  | 2,291                                                                                                            | 1,723   | 2,474 | 2,357      | 2,421       | 2,450    | 2,427 | 2,343 | 2,193 | 2,051 |  |  |  |  |
| HB7  | 1,654                                                                                                            | 1,076   | 1,830 | 1,716      | 1,783       | 1,814    | 1,788 | 1,697 | 1,534 | 1,381 |  |  |  |  |
| HB8  | 1,074                                                                                                            | 485     | 1,242 | 1,134      | 1,206       | 1,236    | 1,213 | 1,119 | 944   | 784   |  |  |  |  |
| HB9  | 590                                                                                                              | (6)     | 756   | 654        | 730         | 761      | 737   | 641   | 458   | 292   |  |  |  |  |
| HB10 | 267                                                                                                              | (335)   | 431   | 334        | 412         | 445      | 418   | 321   | 132   | (37)  |  |  |  |  |
| HB11 | 127                                                                                                              | (476)   | 293   | 201        | 284         | 318      | 296   | 197   | 8     | (162) |  |  |  |  |
| HB12 | (89)                                                                                                             | (700)   | 65    | (22)       | 71          | 115      | 96    | (4)   | (199) | (371) |  |  |  |  |
| HB13 | (224)                                                                                                            | (820)   | (53)  | (167)      | (63)        | (11)     | (27)  | (124) | (308) | (485) |  |  |  |  |
| HB14 | (199)                                                                                                            | (786)   | (17)  | (376)      | (264)       | (204)    | (219) | (319) | (493) | (673) |  |  |  |  |
| HB15 | (460)                                                                                                            | (1,035) | (269) | (439)      | (320)       | (256)    | (274) | (375) | (547) | (733) |  |  |  |  |
| HB16 | (611)                                                                                                            | (1,172) | (409) | (611)      | (488)       | (420)    | (441) | (549) | (718) | (914) |  |  |  |  |
| HB17 | (527)                                                                                                            | (1,060) | (299) | (535)      | (420)       | (358)    | (384) | (447) | (601) | (801) |  |  |  |  |
| HB18 | (438)                                                                                                            | (964)   | (206) | (234)      | (127)       | (73)     | (105) | (224) | (385) | (590) |  |  |  |  |
| HB19 | (237)                                                                                                            | (761)   | (7)   | (257)      | (155)       | (103)    | (141) | (261) | (422) | (628) |  |  |  |  |
| HB20 | (20)                                                                                                             | (558)   | 195   | (29)       | 63          | 107      | 70    | (50)  | (216) | (417) |  |  |  |  |
| HB21 | 271                                                                                                              | (280)   | 473   | 272        | 359         | 397      | 360   | 244   | 71    | (124) |  |  |  |  |
| HB22 | 830                                                                                                              | 271     | 1,022 | 849        | 928         | 961      | 927   | 818   | 649   | 467   |  |  |  |  |
| HB23 | 1,461                                                                                                            | 898     | 1,649 | 1,505      | 1,576       | 1,608    | 1,581 | 1,484 | 1,321 | 1,158 |  |  |  |  |









### Figure 53: New York City Transmission Security Margin (Winter Peak – Expected Weather, Normal Transfer Criteria)

|        | Winter Peak - Baseline Expected Weather, Normal Transfer Criteria (MW) |         |         |         |         |         |         |         |                    |         |         |  |  |  |
|--------|------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|--------------------|---------|---------|--|--|--|
| Line   | Item                                                                   | 2024-25 | 2025-26 | 2026-27 | 2027-28 | 2028-29 | 2029-30 | 2030-31 | 2031-32            | 2032-33 | 2033-34 |  |  |  |
| Α      | Zone J Demand Forecast (5)                                             | (7,580) | (7,670) | (7,790) | (7,920) | (8,080) | (8,310) | (8,590) | (8,930)            | (9,320) | (9,730) |  |  |  |
|        |                                                                        |         |         |         |         |         |         |         |                    |         |         |  |  |  |
| В      | I+K to J (3), (4)                                                      | 3,904   | 3,904   | 3,904   | 3,904   | 3,904   | 3,904   | 3,904   | 3,904              | 3,904   | 3,904   |  |  |  |
| С      | ABC PARs to J                                                          | (11)    | (11)    | (11)    | (11)    | (11)    | (11)    | (11)    | (11)               | (11)    | (11)    |  |  |  |
| D      | Total J AC Import (B+C)                                                | 3,893   | 3,893   | 3,893   | 3,893   | 3,893   | 3,893   | 3,893   | 3,893              | 3,893   | 3,893   |  |  |  |
|        |                                                                        |         |         |         |         |         |         |         |                    |         |         |  |  |  |
| E      | Loss of Source Contingency                                             | (968)   | (968)   | (968)   | (968)   | (968)   | (968)   | (968)   | <mark>(968)</mark> | (968)   | (968)   |  |  |  |
| F      | Resource Need (A+D+E)                                                  | (4,655) | (4,745) | (4,865) | (4,995) | (5,155) | (5,385) | (5,665) | (6,005)            | (6,395) | (6,805) |  |  |  |
|        |                                                                        |         |         |         |         |         |         |         |                    |         |         |  |  |  |
| G      | J Generation (1)                                                       | 9,414   | 9,379   | 9,379   | 9,379   | 9,379   | 9,379   | 9,379   | 9,379              | 9,379   | 9,379   |  |  |  |
| н      | J Generation Derates (2)                                               | (710)   | (706)   | (706)   | (706)   | (706)   | (706)   | (706)   | (706)              | (706)   | (706)   |  |  |  |
| 1      | Temperature Based Generation Derates                                   | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0                  | 0       | 0       |  |  |  |
| J      | Net ICAP External Imports                                              | 315     | 315     | 315     | 315     | 315     | 315     | 315     | 315                | 315     | 315     |  |  |  |
| K      | Total Resources Available (G+H+I+J)                                    | 9,019   | 8,988   | 8,988   | 8,988   | 8,988   | 8,988   | 8,988   | 8,988              | 8,988   | 8,988   |  |  |  |
|        |                                                                        |         |         |         |         |         |         |         |                    |         |         |  |  |  |
| L      | Transmission Security Margin (F+K)                                     | 4,363   | 4,243   | 4,123   | 3,993   | 3,833   | 3,603   | 3,323   | 2,983              | 2,593   | 2,183   |  |  |  |
| Notoci |                                                                        |         |         |         |         |         |         |         |                    |         |         |  |  |  |

Notes:

1. Reflects the 2023 Gold Book existing winter capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022 (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2033 are based also based on the summer peak 2025 representations evaluated in the post-2020 RNA analysis which does not include the impact of CHPE.

4. As a conservative winter peak assumption these limits utilize the summer values.



### Figure 54: New York City Transmission Security Margin (1-in-10-Year Cold Snap, Emergency Transfer Criteria)

|        | Winter Peak - 1-in-10-Year Cold Snap, Emergency Transfer Criteria (MW) |         |         |         |         |         |         |         |         |         |          |  |  |  |
|--------|------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|--|--|--|
| Line   | Item                                                                   | 2024-25 | 2025-26 | 2026-27 | 2027-28 | 2028-29 | 2029-30 | 2030-31 | 2031-32 | 2032-33 | 2033-34  |  |  |  |
| Α      | Zone J Demand Forecast (7)                                             | (7,898) | (7,992) | (8,117) | (8,252) | (8,419) | (8,659) | (8,950) | (9,305) | (9,711) | (10,138) |  |  |  |
|        |                                                                        |         |         |         |         |         |         |         |         |         |          |  |  |  |
| В      | I+K to J (5), (6)                                                      | 3,904   | 3,904   | 3,904   | 3,904   | 3,904   | 3,904   | 3,904   | 3,904   | 3,904   | 3,904    |  |  |  |
| С      | ABC PARs to J                                                          | (11)    | (11)    | (11)    | (11)    | (11)    | (11)    | (11)    | (11)    | (11)    | (11)     |  |  |  |
| D      | Total J Import (B+C)                                                   | 3,893   | 3,893   | 3,893   | 3,893   | 3,893   | 3,893   | 3,893   | 3,893   | 3,893   | 3,893    |  |  |  |
|        |                                                                        |         |         |         |         |         |         |         |         |         |          |  |  |  |
| E      | Loss of Source Contingency                                             | (968)   | (968)   | (968)   | (968)   | (968)   | (968)   | (968)   | (968)   | (968)   | (968)    |  |  |  |
| F      | Resource Need (A+D+E)                                                  | (4,973) | (5,067) | (5,192) | (5,327) | (5,494) | (5,734) | (6,025) | (6,380) | (6,786) | (7,213)  |  |  |  |
|        |                                                                        |         |         |         |         |         |         |         |         |         |          |  |  |  |
| G      | J Generation (1)                                                       | 9,414   | 9,379   | 9,379   | 9,379   | 9,379   | 9,379   | 9,379   | 9,379   | 9,379   | 9,379    |  |  |  |
| Н      | J Generation Derates (2)                                               | (710)   | (706)   | (706)   | (706)   | (706)   | (706)   | (706)   | (706)   | (706)   | (706)    |  |  |  |
| 1      | Temperature Based Generation Derates                                   | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0        |  |  |  |
| J      | Net ICAP External Imports                                              | 315     | 315     | 315     | 315     | 315     | 315     | 315     | 315     | 315     | 315      |  |  |  |
| К      | SCRs (3), (4)                                                          | 128     | 128     | 128     | 128     | 128     | 128     | 128     | 128     | 128     | 128      |  |  |  |
| L      | Total Resources Available (G+H+I+J+K)                                  | 9,147   | 9,116   | 9,116   | 9,116   | 9,116   | 9,116   | 9,116   | 9,116   | 9,116   | 9,116    |  |  |  |
|        |                                                                        |         |         |         |         |         |         |         |         |         |          |  |  |  |
| М      | Transmission Security Margin (F+L)                                     | 4,174   | 4,049   | 3,924   | 3,789   | 3,622   | 3,382   | 3,091   | 2,736   | 2,330   | 1,903    |  |  |  |
| Notoci |                                                                        |         |         |         |         |         |         |         |         |         |          |  |  |  |

#### Notes:

1. Reflects the 2023 Gold Book existing winter capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022 (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.

4. Includes a derate of 116 MW for SCRs.

5. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2033 are based also based on the summer peak 2025 representations evaluated in the post-2020 RNA analysis which does not include the impact of CHPE.

6. As a conservative winter peak assumption these limits utilize the summer values.



### Figure 55: New York City Transmission Security Margin (1-in-100-year Extreme Cold Snap, Emergency Transfer Criteria)

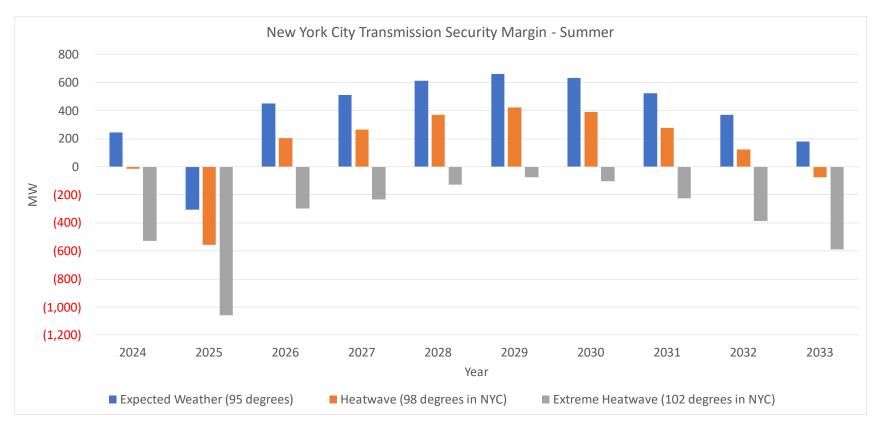
|        | Winter Peak - 1-in-100-Year Extreme Cold Snap, Emergency Transfer Criteria (MW) |         |         |         |         |         |         |         |         |          |          |  |  |  |
|--------|---------------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|--|--|--|
| Line   | Item                                                                            | 2024-25 | 2025-26 | 2026-27 | 2027-28 | 2028-29 | 2029-30 | 2030-31 | 2031-32 | 2032-33  | 2033-34  |  |  |  |
| Α      | Zone J Demand Forecast (7)                                                      | (8,457) | (8,558) | (8,692) | (8,837) | (9,015) | (9,272) | (9,584) | (9,964) | (10,399) | (10,856) |  |  |  |
|        |                                                                                 |         |         |         |         |         |         |         |         |          |          |  |  |  |
| В      | I+K to J (5), (6)                                                               | 3,904   | 3,904   | 3,904   | 3,904   | 3,904   | 3,904   | 3,904   | 3,904   | 3,904    | 3,904    |  |  |  |
| С      | ABC PARs to J                                                                   | (11)    | (11)    | (11)    | (11)    | (11)    | (11)    | (11)    | (11)    | (11)     | (11)     |  |  |  |
| D      | Total J Import (B+C)                                                            | 3,893   | 3,893   | 3,893   | 3,893   | 3,893   | 3,893   | 3,893   | 3,893   | 3,893    | 3,893    |  |  |  |
|        |                                                                                 |         |         |         |         |         |         |         |         |          |          |  |  |  |
| E      | Loss of Source Contingency                                                      | (968)   | (968)   | (968)   | (968)   | (968)   | (968)   | (968)   | (968)   | (968)    | (968)    |  |  |  |
| F      | Resource Need (A+D+E)                                                           | (5,532) | (5,633) | (5,767) | (5,912) | (6,090) | (6,347) | (6,659) | (7,039) | (7,474)  | (7,931)  |  |  |  |
|        |                                                                                 |         |         |         |         |         |         |         |         |          |          |  |  |  |
| G      | J Generation (1)                                                                | 9,414   | 9,379   | 9,379   | 9,379   | 9,379   | 9,379   | 9,379   | 9,379   | 9,379    | 9,379    |  |  |  |
| н      | J Generation Derates (2)                                                        | (710)   | (706)   | (706)   | (706)   | (706)   | (706)   | (706)   | (706)   | (706)    | (706)    |  |  |  |
| L I    | Temperature Based Generation Derates                                            | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0        | 0        |  |  |  |
| J      | Net ICAP External Imports                                                       | 315     | 315     | 315     | 315     | 315     | 315     | 315     | 315     | 315      | 315      |  |  |  |
| K      | SCRs (3), (4)                                                                   | 128     | 128     | 128     | 128     | 128     | 128     | 128     | 128     | 128      | 128      |  |  |  |
| L      | Total Resources Available (G+H+I+J+K)                                           | 9,147   | 9,116   | 9,116   | 9,116   | 9,116   | 9,116   | 9,116   | 9,116   | 9,116    | 9,116    |  |  |  |
|        |                                                                                 |         |         |         |         |         |         |         |         |          |          |  |  |  |
| М      | Transmission Security Margin (F+L)                                              | 3,615   | 3,483   | 3,349   | 3,204   | 3,026   | 2,769   | 2,457   | 2,077   | 1,642    | 1,185    |  |  |  |
| Notoci |                                                                                 |         |         |         |         |         |         |         |         |          |          |  |  |  |

Notes:

1. Reflects the 2023 Gold Book existing winter capacity plus projected additions and deactivations.

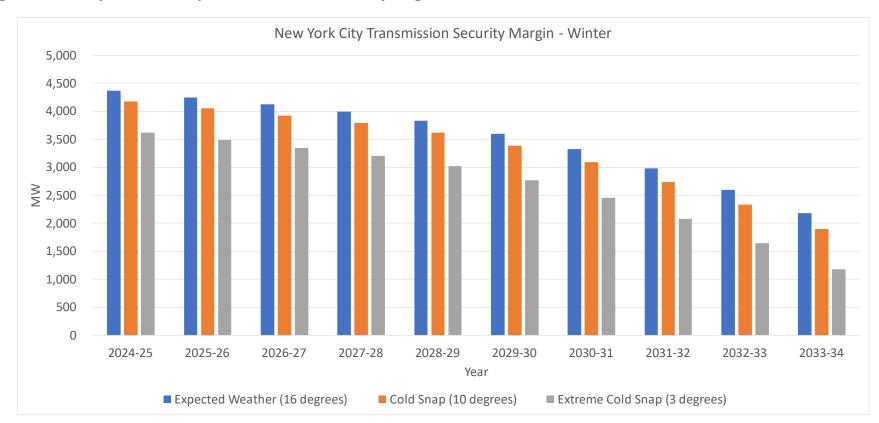
2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022 (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.


4. Includes a derate of 116 MW for SCRs.

5. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2033 are based also based on the summer peak 2025 representations evaluated in the post-2020 RNA analysis which does not include the impact of CHPE.

6. As a conservative winter peak assumption these limits utilize the summer values.










# Figure 57: Summary of New York City Summer Transmission Security Margin - Winter





# Long Island (Zone K) Transmission Security Margins

Within the Long Island Power Authority service territory, the BPTF system (primarily comprised of 138 kV transmission) is designed for N-1-1. As shown in **Figure 58**, the most limiting N-1-1 combination for the transmission security margin under normal conditions is the outage of Neptune HVDC (660 MW) followed by securing for the loss of Dunwoodie – Shore Road 345 kV (Y50) for all evaluated years.



Figure 58: Impact of Contingency Combination on Zone K Transmission Security Margin

As transmission security analysis represents discrete snapshots in time of various credible combinations of system conditions, only the magnitude of a reliability need can be identified under those system conditions. Additional details are required to fully describe the nature of the need, such as evaluating the hourly demand shape and its impact on the need. To describe the nature of the Long Island transmission security margin, demand shapes are developed for the Zone K component of the statewide demand shape. Details of the demand shapes are provided later in this appendix. For this assessment, demand shapes were not developed past 2033 and have only been developed for the summer conditions.

**Figure 59** shows the calculation of the Long Island transmission security margin for the statewide coincident summer peak demand hour with expected weather and with normal transfer criteria. The Long Island transmission security margin ranges from 372 MW in summer 2024 to 270 MW in summer 2033 (see line-item L). The demand shapes for Long Island show the contribution of Zone K (Figure 97) towards the statewide shape (which represents the statewide coincident peak) for each hour of the day. Utilizing the demand shape for the expected weather summer peak day, the Long Island transmission security

margin for each hour is shown in **Figure 60**. The hourly margin is created by using the demand forecast for each hour in the margin calculation (*i.e.*, placing each hour into **Figure 59** line-item A) with additional adjustments to account for the appropriate derate for solar generation and energy limited resources in each hour (*i.e.*, **Figure 59** line-item H). All other values in the margin calculations are held constant. For all years in the 10-year study horizon, **Figure 60** shows that there are no observed deficiencies considering the demand shapes under expected demand and normal transfer criteria for Long Island. A graphical representation of the Long Island transmission security margin cure for summer peak expected weather, normal transfer criteria for the peak day in years 2024, 2025, 2028 and 2033 is shown in **Figure 61**.

It is possible for other combinations of events, such as 1-in-10-year heatwaves and 1-in-100-year extreme heatwaves, to have a deficient transmission security margin. Figure 62 shows the Long Island transmission security margin for the statewide coincident peak hour under the 1-in-10-year heatwave condition with the assumption that the system is using emergency transfer criteria. As seen in Figure 62, the system is sufficient under these conditions within the 10-year study horizon and ranges from 574 MW in summer 2024 to 464 MW in summer 2033 (*see* line-item M). The demand shapes for Zone K under heatwave conditions is provided in Figure 102. Additionally, **Figure 63** shows that for each hour of the heatwave day the margin is sufficient. A graphical representation of the Long Island transmission security margins for the 1-in-10-year heatwave day with emergency transfer criteria for the peak day in years 2024, 2025, 2028 and 2033 is shown in **Figure 64**.

The 1-in-100-year extreme heatwave transmission security margin is shown in Figure 65. These margins assume that the system is using emergency transfer criteria. Under this condition, the margin is sufficient for all years in the 10-year study horizon and ranges from 211 MW in summer 2024 to 94 MW in summer 2033 (*see* line-item M). Additionally, the hourly margin in **Figure 66** shows that for each hour the margin is sufficient for the extreme heatwave day. The demand shapes for Zone K under an extreme heatwave is provided in Figure 107. A graphical representation of the Long Island transmission security margins for the 1-in-100-year extreme heatwave day with emergency transfer criteria for the peak day in years 2024, 2025, 2028, and 2033 is shown in **Figure 67**.

**Figure 68** shows the Long Island transmission security margin under winter peak demand and expected weather conditions. For winter peak, the margin ranges from 2,489 MW in winter 2024-25 to 1,006 MW in winter 2033-34. Considering the winter baseline peak demand transmission security margin, multiple outages in Long Island would be required to have a deficient margin.

Figure 69 shows Long Island transmission security margin in a 1-in-10-year cold snap. Under this system condition the transmission security margins for all years are sufficient and range from 2,980 MW in

winter 2024-25 to 1,435 MW in winter 2033-34. Similarly, Figure 70 shows the transmission security margins for Long Island with a 1-in-100-year extreme cold snap (with emergency transfer criteria) is sufficient with the margin ranging from 2,736 MW in winter 2024-25 to 1,082 MW in winter 2033-34.

Figure 71 provides a summary of the summer peak Long Island transmission security margins under expected summer weather, heatwave, and extreme heatwave conditions. Figure 72 provides a summary of the winter peak Long Island transmission security margins under expected winter weather, cold snap, and extreme cold snap conditions. Figure 73 provides a summary of the Long Island transmission security margin with the summer peak baseline demand range from the lower and higher policy demand forecasts.



|      | Summer Peak - Baseline Expected Weather, Normal Transfer Criteria (MW) |         |         |         |         |         |         |         |         |         |         |  |  |
|------|------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--|--|
| Line | Item                                                                   | 2024    | 2025    | 2026    | 2027    | 2028    | 2029    | 2030    | 2031    | 2032    | 2033    |  |  |
| Α    | Zone K Demand Forecast (3)                                             | (4,967) | (4,950) | (4,942) | (4,938) | (4,950) | (4,961) | (4,982) | (5,002) | (5,028) | (5,063) |  |  |
|      |                                                                        |         |         |         |         |         |         |         |         |         |         |  |  |
| В    | I+J to K (4)                                                           | 929     | 929     | 929     | 929     | 929     | 929     | 929     | 929     | 929     | 929     |  |  |
| С    | New England Import (NNC)                                               | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |  |  |
| D    | Total K AC Import (B+C)                                                | 929     | 929     | 929     | 929     | 929     | 929     | 929     | 929     | 929     | 929     |  |  |
|      |                                                                        |         |         |         |         |         |         |         |         |         |         |  |  |
| Е    | Loss of Source Contingency                                             | (660)   | (660)   | (660)   | (660)   | (660)   | (660)   | (660)   | (660)   | (660)   | (660)   |  |  |
| F    | Resource Need (A+D+E)                                                  | (4,698) | (4,681) | (4,673) | (4,669) | (4,681) | (4,692) | (4,713) | (4,733) | (4,759) | (4,794) |  |  |
|      |                                                                        |         |         |         |         |         |         |         |         |         |         |  |  |
| G    | K Generation (1)                                                       | 5,013   | 5,013   | 5,013   | 5,013   | 5,013   | 5,013   | 5,013   | 5,013   | 5,013   | 5,013   |  |  |
| Н    | K Generation Derates (2)                                               | (603)   | (604)   | (605)   | (606)   | (606)   | (607)   | (607)   | (607)   | (608)   | (608)   |  |  |
| 1    | Temperature Based Generation Derates                                   | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |  |  |
| J    | Net ICAP External Imports                                              | 660     | 660     | 660     | 660     | 660     | 660     | 660     | 660     | 660     | 660     |  |  |
| K    | Total Resources Available (G+H+I+J)                                    | 5,070   | 5,069   | 5,068   | 5,067   | 5,066   | 5,066   | 5,065   | 5,065   | 5,065   | 5,064   |  |  |
|      |                                                                        |         |         |         |         |         |         |         |         |         |         |  |  |
| L    | Transmission Security Margin (F+K)                                     | 372     | 388     | 395     | 398     | 385     | 374     | 352     | 332     | 306     | 270     |  |  |

# Figure 59: Long Island Transmission Security Margin (Summer Peak – Expected Weather, Normal Transfer Criteria)

Notes:

1. Reflects the 2023 Gold Book existing summer capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 10% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022 (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. Reflects the final 10-year peak forecasts presented to stakeholders at the April 5, 2023 LFTF/ESPWG (No large load projects included in this assessment are within this locality).

4. These limits do not reflect the selected Long Island Public Policy Transmission project planned to come into service in 2030.



|                                                                                                                                | Long Island                                                      |          |       |          |           |           |           |            |             |               |              |         |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------|-------|----------|-----------|-----------|-----------|------------|-------------|---------------|--------------|---------|--|--|
|                                                                                                                                | 2024                                                             | 2025     | 2026  | 2027     | 2028      | 2029      | 2030      | 2031       | 2032        | 2033          |              |         |  |  |
| Long Island Transmission Security Margin, Summer Peak - Baseline Expected<br>Summer Weather, Normal Transfer Criteria (MW) (1) |                                                                  |          | 372   | 388      | 395       | 398       | 385       | 374        | 352         | 332           | 306          | 270     |  |  |
| Unit Name                                                                                                                      | Summer DMNC<br>(MW) NERC 5-Year Class<br>Average De-Rate<br>(MW) |          |       | ransmiss | ion Secur | rity Marg | in Impact | t of Gener | rator Outag | ge (Retire, I | Mothball, Il | FO)     |  |  |
| Bethpage GT4                                                                                                                   | 44.4                                                             | (4.48)   | 332   | 348      | 355       | 358       | 346       | 334        | 312         | 292           | 266          | 230     |  |  |
| Bethpage                                                                                                                       | 23.2                                                             | (0.94)   | 349   | 366      | 373       | 376       | 363       | 352        | 330         | 310           | 284          | 248     |  |  |
| Stony Brook (BTM:NG)                                                                                                           | 0.0                                                              | 0.00     | 372   | 388      | 395       | 398       | 385       | 374        | 352         | 332           | 306          | 270     |  |  |
| Freeport CT 2                                                                                                                  | 40.0                                                             | (4.03)   | 336   | 352      | 359       | 362       | 349       | 338        | 316         | 296           | 270          | 234     |  |  |
| Freeport 1-2, 1-3, & 2-3                                                                                                       | 16.8                                                             | (1.80)   | 357   | 373      | 380       | 383       | 370       | 359        | 337         | 317           | 291          | 255     |  |  |
| Freeport 2-3                                                                                                                   | 12.5                                                             | (1.26)   | 360   | 377      | 384       | 387       | 374       | 363        | 341         | 321           | 295          | 259     |  |  |
| Freeport 1-3                                                                                                                   | 2.3                                                              | (0.29)   | 370   | 386      | 393       | 396       | 383       | 372        | 350         | 330           | 304          | 268     |  |  |
| Freeport 1-2                                                                                                                   | 2.0                                                              | (0.25)   | 370   | 386      | 393       | 396       | 384       | 372        | 351         | 331           | 304          | 269     |  |  |
| Northport 1, 2, 3, and 4                                                                                                       | 1,518.6                                                          | (150.34) | (997) | (980)    | (973)     | (970)     | (983)     | (994)      | (1,016)     | (1,036)       | (1,062)      | (1,098) |  |  |
| Holtsville 01 through 10                                                                                                       | 525.9                                                            | (47.12)  | (107) | (91)     | (84)      | (81)      | (93)      | (105)      | (126)       | (146)         | (173)        | (209)   |  |  |
| Northport 2                                                                                                                    | 397.5                                                            | (39.35)  | 14    | 30       | 37        | 40        | 27        | 16         | (6)         | (26)          | (52)         | (88)    |  |  |
| Northport 3                                                                                                                    | 396.5                                                            | (39.25)  | 14    | 31       | 38        | 41        | 28        | 17         | (5)         | (25)          | (51)         | (87)    |  |  |
| Northport 1                                                                                                                    | 396.2                                                            | (39.22)  | 15    | 31       | 38        | 41        | 28        | 17         | (5)         | (25)          | (51)         | (87)    |  |  |
| Port Jefferson 3 & 4                                                                                                           | 383.5                                                            | (37.97)  | 26    | 43       | 50        | 52        | 40        | 28         | 7           | (13)          | (40)         | (75)    |  |  |
| Barrett ST 01 & 02                                                                                                             | 372.0                                                            | (36.83)  | 37    | 53       | 60        | 63        | 50        | 39         | 17          | (3)           | (29)         | (65)    |  |  |
| Northport 4                                                                                                                    | 328.4                                                            | (32.51)  | 76    | 92       | 99        | 102       | 90        | 78         | 56          | 36            | 10           | (26)    |  |  |
| Caithness_CC_1                                                                                                                 | 302.4                                                            | (12.28)  | 82    | 98       | 105       | 108       | 95        | 84         | 62          | 42            | 16           | (20)    |  |  |
| Barrett GT 01 through 12                                                                                                       | 256.5                                                            | (24.12)  | 139   | 156      | 163       | 166       | 153       | 142        | 120         | 100           | 73           | 38      |  |  |
| Wading River 1, 2, & 3                                                                                                         | 227.0                                                            | (22.88)  | 168   | 184      | 191       | 194       | 181       | 170        | 148         | 128           | 102          | 66      |  |  |
| Barrett ST 01                                                                                                                  | 193.7                                                            | (19.18)  | 197   | 214      | 221       | 223       | 211       | 199        | 178         | 158           | 131          | 96      |  |  |
| Port Jefferson 3                                                                                                               | 192.0                                                            | (19.01)  | 199   | 215      | 222       | 225       | 212       | 201        | 179         | 159           | 133          | 97      |  |  |
| Port Jefferson 4                                                                                                               | 191.5                                                            | (18.96)  | 199   | 216      | 223       | 225       | 213       | 201        | 180         | 160           | 133          | 98      |  |  |



| Long Island               |                                                                                                                                |         |      |          |          |           |          |            |             |               |              |     |  |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------|------|----------|----------|-----------|----------|------------|-------------|---------------|--------------|-----|--|
|                           | 2024                                                                                                                           | 2025    | 2026 | 2027     | 2028     | 2029      | 2030     | 2031       | 2032        | 2033          |              |     |  |
|                           | Long Island Transmission Security Margin, Summer Peak - Baseline Expected<br>Summer Weather, Normal Transfer Criteria (MW) (1) |         |      |          | 395      | 398       | 385      | 374        | 352         | 332           | 306          | 270 |  |
| Unit Name                 | Summer DMNC<br>(MW) NERC 5-Year Class<br>Average De-Rate<br>(MW)                                                               |         |      | ransmiss | ion Secu | rity Marg | in Impac | t of Gener | rator Outag | ge (Retire, I | Mothball, Il | FO) |  |
| Barrett ST 02             | 178.3                                                                                                                          | (17.65) | 211  | 227      | 234      | 237       | 225      | 213        | 192         | 172           | 145          | 110 |  |
| Glenwood GT 02, 04, & 05  | 132.4                                                                                                                          | (13.35) | 253  | 269      | 276      | 279       | 266      | 255        | 233         | 213           | 187          | 151 |  |
| Far Rockaway GT1 & GT2    | 108.6                                                                                                                          | (9.73)  | 273  | 289      | 296      | 299       | 287      | 275        | 253         | 233           | 207          | 171 |  |
| Shoreham GT 3 & 4         | 85.9                                                                                                                           | (8.66)  | 294  | 311      | 318      | 321       | 308      | 297        | 275         | 255           | 229          | 193 |  |
| Pilgrim GT1 & GT2         | 83.2                                                                                                                           | (8.39)  | 297  | 313      | 320      | 323       | 311      | 299        | 278         | 258           | 231          | 195 |  |
| Port Jefferson GT 02 & 03 | 82.2                                                                                                                           | (8.29)  | 298  | 314      | 321      | 324       | 312      | 300        | 278         | 258           | 232          | 196 |  |
| Wading River 1            | 76.8                                                                                                                           | (7.74)  | 303  | 319      | 326      | 329       | 316      | 305        | 283         | 263           | 237          | 201 |  |
| Wading River 2            | 75.7                                                                                                                           | (7.63)  | 304  | 320      | 327      | 330       | 317      | 306        | 284         | 264           | 238          | 202 |  |
| Bethpage 3                | 74.8                                                                                                                           | (3.04)  | 300  | 316      | 323      | 326       | 314      | 302        | 281         | 261           | 234          | 198 |  |
| Wading River 3            | 74.5                                                                                                                           | (7.51)  | 305  | 321      | 328      | 331       | 318      | 307        | 285         | 265           | 239          | 203 |  |
| Hempstead (RR)            | 73.0                                                                                                                           | (7.23)  | 306  | 322      | 329      | 332       | 320      | 308        | 287         | 267           | 240          | 204 |  |
| Pinelawn Power 1          | 73.0                                                                                                                           | (2.96)  | 302  | 318      | 325      | 328       | 315      | 304        | 282         | 262           | 236          | 200 |  |
| Holtsville 09             | 57.2                                                                                                                           | (5.13)  | 320  | 336      | 343      | 346       | 333      | 322        | 300         | 280           | 254          | 218 |  |
| Holtsville 01             | 56.3                                                                                                                           | (5.04)  | 320  | 337      | 344      | 347       | 334      | 323        | 301         | 281           | 255          | 219 |  |
| Far Rockaway GT2          | 55.8                                                                                                                           | (5.00)  | 321  | 337      | 344      | 347       | 335      | 323        | 302         | 282           | 255          | 219 |  |
| Holtsville 02             | 55.0                                                                                                                           | (4.93)  | 322  | 338      | 345      | 348       | 335      | 324        | 302         | 282           | 256          | 220 |  |
| Holtsville 04             | 54.1                                                                                                                           | (4.85)  | 322  | 339      | 346      | 349       | 336      | 325        | 303         | 283           | 257          | 221 |  |
| Holtsville 05             | 52.8                                                                                                                           | (4.73)  | 324  | 340      | 347      | 350       | 337      | 326        | 304         | 284           | 258          | 222 |  |
| Far Rockaway GT1          | 52.8                                                                                                                           | (4.73)  | 324  | 340      | 347      | 350       | 337      | 326        | 304         | 284           | 258          | 222 |  |
| Greenport GT1             | 52.6                                                                                                                           | (4.71)  | 324  | 340      | 347      | 350       | 338      | 326        | 304         | 284           | 258          | 222 |  |
| Holtsville 07             | 51.6                                                                                                                           | (4.62)  | 325  | 341      | 348      | 351       | 338      | 327        | 305         | 285           | 259          | 223 |  |
| Holtsville 10             | 50.3                                                                                                                           | (4.51)  | 326  | 342      | 349      | 352       | 340      | 328        | 307         | 287           | 260          | 224 |  |



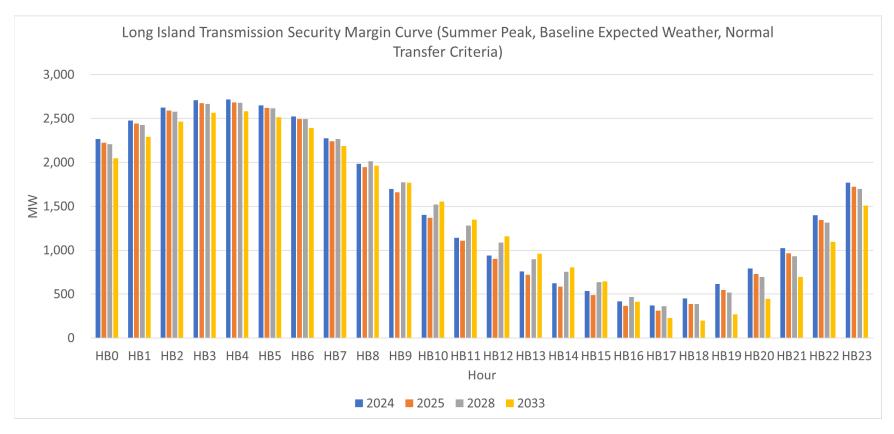
|                                                              |           | Long   | Island |          |          |           |          |            |             |               |              |      |
|--------------------------------------------------------------|-----------|--------|--------|----------|----------|-----------|----------|------------|-------------|---------------|--------------|------|
|                                                              | Year      |        | 2024   | 2025     | 2026     | 2027      | 2028     | 2029       | 2030        | 2031          | 2032         | 2033 |
| Long Island Transmission Security M<br>Summer Weather, Norma |           |        | 372    | 388      | 395      | 398       | 385      | 374        | 352         | 332           | 306          | 270  |
| Unit Name                                                    | (MW) (MW) |        | Т      | ransmiss | ion Secu | rity Marg | in Impac | t of Gener | rator Outag | ge (Retire, I | Mothball, Il | FO)  |
| Holtsville 03                                                | 50.2      | (4.50) | 326    | 342      | 349      | 352       | 340      | 328        | 307         | 287           | 260          | 225  |
| Glenwood GT 02                                               | 49.9      | (5.03) | 327    | 343      | 350      | 353       | 341      | 329        | 307         | 287           | 261          | 225  |
| Holtsville 06                                                | 49.8      | (4.46) | 326    | 343      | 350      | 353       | 340      | 329        | 307         | 287           | 260          | 225  |
| Holtsville 08                                                | 48.6      | (4.35) | 327    | 344      | 351      | 354       | 341      | 330        | 308         | 288           | 262          | 226  |
| Shoreham GT4                                                 | 43.1      | (4.34) | 333    | 349      | 356      | 359       | 347      | 335        | 314         | 294           | 267          | 231  |
| Shoreham GT3                                                 | 42.8      | (4.31) | 333    | 350      | 357      | 359       | 347      | 335        | 314         | 294           | 267          | 232  |
| Glenwood GT 05                                               | 42.7      | (4.30) | 333    | 350      | 357      | 360       | 347      | 335        | 314         | 294           | 267          | 232  |
| Pilgrim GT2                                                  | 41.7      | (4.20) | 334    | 351      | 358      | 360       | 348      | 336        | 315         | 295           | 268          | 233  |
| Port Jefferson GT 02                                         | 41.5      | (4.18) | 334    | 351      | 358      | 361       | 348      | 337        | 315         | 295           | 268          | 233  |
| Pilgrim GT1                                                  | 41.5      | (4.18) | 334    | 351      | 358      | 361       | 348      | 337        | 315         | 295           | 268          | 233  |
| Port Jefferson GT 03                                         | 40.7      | (4.10) | 335    | 352      | 358      | 361       | 349      | 337        | 316         | 296           | 269          | 234  |
| Glenwood GT 04                                               | 39.8      | (4.01) | 336    | 352      | 359      | 362       | 350      | 338        | 317         | 297           | 270          | 234  |
| Barrett 12                                                   | 39.7      | (3.56) | 336    | 352      | 359      | 362       | 349      | 338        | 316         | 296           | 270          | 234  |
| Barrett 09                                                   | 38.5      | (3.45) | 337    | 353      | 360      | 363       | 350      | 339        | 317         | 297           | 271          | 235  |
| Barrett 10                                                   | 38.5      | (3.45) | 337    | 353      | 360      | 363       | 350      | 339        | 317         | 297           | 271          | 235  |
| Barrett 11                                                   | 38.5      | (3.45) | 337    | 353      | 360      | 363       | 350      | 339        | 317         | 297           | 271          | 235  |
| Huntington (RR)                                              | 24.5      | (2.43) | 350    | 366      | 373      | 376       | 363      | 352        | 330         | 310           | 284          | 248  |
| East Hampton GT 01, 2, 3, & 4                                | 24.2      | (2.38) | 350    | 366      | 373      | 376       | 364      | 352        | 331         | 311           | 284          | 248  |
| East Hampton GT 01                                           | 18.5      | (1.66) | 355    | 371      | 378      | 381       | 369      | 357        | 335         | 315           | 289          | 253  |
| Babylon (RR)                                                 | 16.0      | (1.58) | 357    | 374      | 381      | 384       | 371      | 359        | 338         | 318           | 291          | 256  |
| Barrett GT 02                                                | 15.6      | (1.57) | 358    | 374      | 381      | 384       | 371      | 360        | 338         | 318           | 292          | 256  |
| Barrett 03                                                   | 15.0      | (1.51) | 358    | 375      | 382      | 384       | 372      | 360        | 339         | 319           | 292          | 257  |



|                                                             |           | Long   | Island |          |          |          |          |            |             |               |              |      |
|-------------------------------------------------------------|-----------|--------|--------|----------|----------|----------|----------|------------|-------------|---------------|--------------|------|
|                                                             | Year      |        | 2024   | 2025     | 2026     | 2027     | 2028     | 2029       | 2030        | 2031          | 2032         | 2033 |
| Long Island Transmission Security M<br>Summer Weather, Norm |           |        | 372    | 388      | 395      | 398      | 385      | 374        | 352         | 332           | 306          | 270  |
| Unit Name                                                   | (MW) (MW) |        | Т      | ransmiss | ion Secu | ity Marg | in Impac | t of Gener | rator Outag | ge (Retire, I | Mothball, Il | FO)  |
| Barrett 06                                                  | 15.0      | (1.51) | 358    | 375      | 382      | 384      | 372      | 360        | 339         | 319           | 292          | 257  |
| Barrett GT 01                                               | 14.9      | (1.50) | 358    | 375      | 382      | 385      | 372      | 360        | 339         | 319           | 292          | 257  |
| Barrett 08                                                  | 14.4      | (1.45) | 359    | 375      | 382      | 385      | 372      | 361        | 339         | 319           | 293          | 257  |
| Barrett 04                                                  | 13.3      | (1.34) | 360    | 376      | 383      | 386      | 373      | 362        | 340         | 320           | 294          | 258  |
| Barrett 05                                                  | 13.1      | (1.32) | 360    | 376      | 383      | 386      | 374      | 362        | 341         | 321           | 294          | 258  |
| Southold 1                                                  | 9.4       | (0.95) | 363    | 380      | 387      | 390      | 377      | 365        | 344         | 324           | 297          | 262  |
| S Hampton 1                                                 | 8.6       | (0.87) | 364    | 380      | 387      | 390      | 378      | 366        | 345         | 325           | 298          | 263  |
| Islip (RR)                                                  | 8.0       | (0.79) | 364    | 381      | 388      | 391      | 378      | 367        | 345         | 325           | 299          | 263  |
| East Hampton 2                                              | 1.9       | (0.24) | 370    | 386      | 393      | 396      | 384      | 372        | 351         | 331           | 304          | 269  |
| East Hampton 3                                              | 1.9       | (0.24) | 370    | 386      | 393      | 396      | 384      | 372        | 351         | 331           | 304          | 269  |
| East Hampton 4                                              | 1.9       | (0.24) | 370    | 386      | 393      | 396      | 384      | 372        | 351         | 331           | 304          | 269  |
| Flynn                                                       | 139.0     | (5.64) | 238    | 255      | 262      | 265      | 252      | 241        | 219         | 199           | 172          | 137  |
| Brentwood                                                   | 45.5      | (4.59) | 331    | 347      | 354      | 357      | 345      | 333        | 311         | 291           | 265          | 229  |
| Greenport IC 4, 5, & 6                                      | 5.6       | (0.71) | 367    | 383      | 390      | 393      | 381      | 369        | 347         | 327           | 301          | 265  |
| Greenport IC 6                                              | 3.1       | (0.39) | 369    | 385      | 392      | 395      | 383      | 371        | 350         | 330           | 303          | 268  |
| Greenport IC 5                                              | 1.5       | (0.19) | 370    | 387      | 394      | 397      | 384      | 373        | 351         | 331           | 304          | 269  |
| Greenport IC 4                                              | 1.0       | (0.13) | 371    | 387      | 394      | 397      | 385      | 373        | 351         | 331           | 305          | 269  |
| Charles P Killer 09 through 14                              | 15.1      | (1.79) | 358    | 375      | 382      | 385      | 372      | 361        | 339         | 319           | 292          | 257  |
| Charles P Keller 14                                         | 3.2       | (0.38) | 369    | 385      | 392      | 395      | 383      | 371        | 350         | 330           | 303          | 267  |
| Charles P Keller 12                                         | 2.8       | (0.33) | 369    | 386      | 393      | 396      | 383      | 371        | 350         | 330           | 303          | 268  |
| Charles P Keller 13                                         | 2.8       | (0.33) | 369    | 386      | 393      | 396      | 383      | 371        | 350         | 330           | 303          | 268  |
| Charles P Keller 11                                         | 2.7       | (0.32) | 369    | 386      | 393      | 396      | 383      | 372        | 350         | 330           | 303          | 268  |



| Long Island         |                                                                                                                                |        |     |     |           |          |           |            |             |               |              |      |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------|--------|-----|-----|-----------|----------|-----------|------------|-------------|---------------|--------------|------|
|                     | Year                                                                                                                           |        |     |     |           | 2027     | 2028      | 2029       | 2030        | 2031          | 2032         | 2033 |
|                     | Long Island Transmission Security Margin, Summer Peak - Baseline Expected<br>Summer Weather, Normal Transfer Criteria (MW) (1) |        |     |     | 395       | 398      | 385       | 374        | 352         | 332           | 306          | 270  |
| Unit Name           | Unit Name Summer DMNC (MW) NERC 5-Year Cl<br>(MW) (MW)                                                                         |        |     |     | ion Secur | ity Marg | in Impact | t of Gener | rator Outag | ge (Retire, I | Mothball, Il | F0)  |
| Charles P Keller 09 | 1.8                                                                                                                            | (0.21) | 370 | 387 | 393       | 396      | 384       | 372        | 351         | 331           | 304          | 269  |
| Charles P Keller 10 | 1.8                                                                                                                            | (0.21) | 370 | 387 | 393       | 396      | 384       | 372        | 351         | 331           | 304          | 269  |
| Freeport CT 1 & 2   | 85.4                                                                                                                           | (8.61) | 295 | 311 | 318       | 321      | 309       | 297        | 276         | 256           | 229          | 193  |
| Freeport CT 1       | 45.4                                                                                                                           | (4.58) | 331 | 347 | 354       | 357      | 345       | 333        | 312         | 292           | 265          | 229  |


Notes

1. Utilizes the Transmission Security Margin for Summer Peak (Baseline Demand) with Expected Weather.

Figure 60: Long Island Transmission Security Margin (Hourly) (Summer Peak – Expected Weather, Normal Transfer Criteria)

|      | Summer Peak - Baseline Expected Summer Weather, Normal Transfer Criteria (MW)<br>K Transmission Security Margin |       |       |            |            |          |       |       |       |       |  |  |  |  |
|------|-----------------------------------------------------------------------------------------------------------------|-------|-------|------------|------------|----------|-------|-------|-------|-------|--|--|--|--|
|      |                                                                                                                 |       | K     | Transmissi | on Securit | y Margin |       |       |       |       |  |  |  |  |
| Hour | 2024                                                                                                            | 2025  | 2026  | 2027       | 2028       | 2029     | 2030  | 2031  | 2032  | 2033  |  |  |  |  |
| HBO  | 2,267                                                                                                           | 2,225 | 2,225 | 2,219      | 2,206      | 2,193    | 2,176 | 2,159 | 2,070 | 2,049 |  |  |  |  |
| HB1  | 2,477                                                                                                           | 2,441 | 2,440 | 2,437      | 2,426      | 2,417    | 2,403 | 2,389 | 2,308 | 2,292 |  |  |  |  |
| HB2  | 2,625                                                                                                           | 2,590 | 2,591 | 2,589      | 2,579      | 2,572    | 2,561 | 2,549 | 2,477 | 2,463 |  |  |  |  |
| HB3  | 2,708                                                                                                           | 2,674 | 2,675 | 2,674      | 2,666      | 2,662    | 2,653 | 2,643 | 2,574 | 2,563 |  |  |  |  |
| HB4  | 2,715                                                                                                           | 2,684 | 2,685 | 2,685      | 2,678      | 2,673    | 2,666 | 2,658 | 2,590 | 2,581 |  |  |  |  |
| HB5  | 2,651                                                                                                           | 2,619 | 2,621 | 2,620      | 2,614      | 2,609    | 2,601 | 2,594 | 2,524 | 2,515 |  |  |  |  |
| HB6  | 2,525                                                                                                           | 2,493 | 2,496 | 2,497      | 2,493      | 2,489    | 2,481 | 2,475 | 2,402 | 2,393 |  |  |  |  |
| HB7  | 2,274                                                                                                           | 2,239 | 2,250 | 2,263      | 2,265      | 2,268    | 2,267 | 2,265 | 2,190 | 2,185 |  |  |  |  |
| HB8  | 1,982                                                                                                           | 1,945 | 1,966 | 1,996      | 2,012      | 2,027    | 2,031 | 2,035 | 1,962 | 1,961 |  |  |  |  |
| HB9  | 1,695                                                                                                           | 1,660 | 1,694 | 1,743      | 1,772      | 1,799    | 1,816 | 1,828 | 1,761 | 1,767 |  |  |  |  |
| HB10 | 1,404                                                                                                           | 1,369 | 1,414 | 1,476      | 1,519      | 1,558    | 1,581 | 1,602 | 1,539 | 1,555 |  |  |  |  |
| HB11 | 1,142                                                                                                           | 1,107 | 1,160 | 1,231      | 1,282      | 1,328    | 1,359 | 1,387 | 1,324 | 1,346 |  |  |  |  |
| HB12 | 938                                                                                                             | 902   | 957   | 1,032      | 1,086      | 1,134    | 1,166 | 1,196 | 1,131 | 1,156 |  |  |  |  |
| HB13 | 758                                                                                                             | 719   | 774   | 847        | 899        | 946      | 978   | 1,007 | 937   | 962   |  |  |  |  |
| HB14 | 623                                                                                                             | 583   | 635   | 705        | 754        | 798      | 827   | 854   | 780   | 802   |  |  |  |  |
| HB15 | 535                                                                                                             | 489   | 535   | 596        | 637        | 671      | 692   | 712   | 626   | 643   |  |  |  |  |
| HB16 | 417                                                                                                             | 367   | 402   | 445        | 469        | 492      | 501   | 509   | 407   | 411   |  |  |  |  |
| HB17 | 372                                                                                                             | 313   | 334   | 357        | 363        | 370      | 364   | 358   | 240   | 229   |  |  |  |  |
| HB18 | 451                                                                                                             | 388   | 395   | 398        | 385        | 374      | 352   | 332   | 226   | 197   |  |  |  |  |
| HB19 | 613                                                                                                             | 548   | 549   | 541        | 519        | 499      | 471   | 442   | 306   | 270   |  |  |  |  |
| HB20 | 792                                                                                                             | 730   | 727   | 717        | 695        | 674      | 643   | 616   | 479   | 445   |  |  |  |  |
| HB21 | 1,024                                                                                                           | 966   | 962   | 952        | 931        | 912      | 884   | 858   | 728   | 696   |  |  |  |  |
| HB22 | 1,398                                                                                                           | 1,345 | 1,342 | 1,333      | 1,312      | 1,295    | 1,269 | 1,246 | 1,126 | 1,095 |  |  |  |  |
| HB23 | 1,770                                                                                                           | 1,723 | 1,721 | 1,713      | 1,696      | 1,681    | 1,658 | 1,638 | 1,532 | 1,506 |  |  |  |  |





### Figure 61: Long Island Transmission Security Margin Hourly Curve (Summer Peak – Expected Weather, Normal Transfer Criteria)

|      | Summer Peak - 1-in-10-Year Heatwave, Emergency Transfer Criteria (MW) |         |         |         |         |         |         |         |         |         |         |  |  |  |
|------|-----------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--|--|--|
| Line | Item                                                                  | 2024    | 2025    | 2026    | 2027    | 2028    | 2029    | 2030    | 2031    | 2032    | 2033    |  |  |  |
| Α    | Zone K Demand Forecast (5)                                            | (5,369) | (5,350) | (5,342) | (5,338) | (5,350) | (5,362) | (5,385) | (5,407) | (5,435) | (5,473) |  |  |  |
|      |                                                                       |         |         |         |         |         |         |         |         |         |         |  |  |  |
| В    | I+J to K (6)                                                          | 887     | 887     | 887     | 887     | 887     | 887     | 887     | 887     | 887     | 887     |  |  |  |
| С    | New England Import (NNC)                                              | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |  |  |  |
| D    | Total K AC Import (B+C)                                               | 887     | 887     | 887     | 887     | 887     | 887     | 887     | 887     | 887     | 887     |  |  |  |
|      |                                                                       |         |         |         |         |         |         |         |         |         |         |  |  |  |
| Е    | Loss of Source Contingency                                            | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |  |  |  |
| F    | Resource Need (A+D+E)                                                 | (4,482) | (4,463) | (4,455) | (4,451) | (4,463) | (4,475) | (4,498) | (4,520) | (4,548) | (4,586) |  |  |  |
|      |                                                                       |         |         |         |         |         |         |         |         |         |         |  |  |  |
| G    | K Generation (1)                                                      | 5,013   | 5,013   | 5,013   | 5,013   | 5,013   | 5,013   | 5,013   | 5,013   | 5,013   | 5,013   |  |  |  |
| н    | K Generation Derates (2)                                              | (603)   | (604)   | (605)   | (606)   | (606)   | (607)   | (607)   | (607)   | (608)   | (608)   |  |  |  |
| 1    | Temperature Based Generation Derates                                  | (32)    | (32)    | (32)    | (32)    | (32)    | (32)    | (32)    | (32)    | (32)    | (32)    |  |  |  |
| J    | Net ICAP External Imports                                             | 660     | 660     | 660     | 660     | 660     | 660     | 660     | 660     | 660     | 660     |  |  |  |
| К    | SCRs (3), (4)                                                         | 18      | 18      | 18      | 18      | 18      | 18      | 18      | 18      | 18      | 18      |  |  |  |
| L    | Total Resources Available (G+H+I+J+K)                                 | 5,056   | 5,055   | 5,054   | 5,053   | 5,053   | 5,052   | 5,052   | 5,052   | 5,051   | 5,050   |  |  |  |
|      |                                                                       |         |         |         |         |         |         |         |         |         |         |  |  |  |
| М    | Transmission Security Margin (F+L)                                    | 574     | 592     | 599     | 602     | 590     | 577     | 554     | 532     | 503     | 464     |  |  |  |

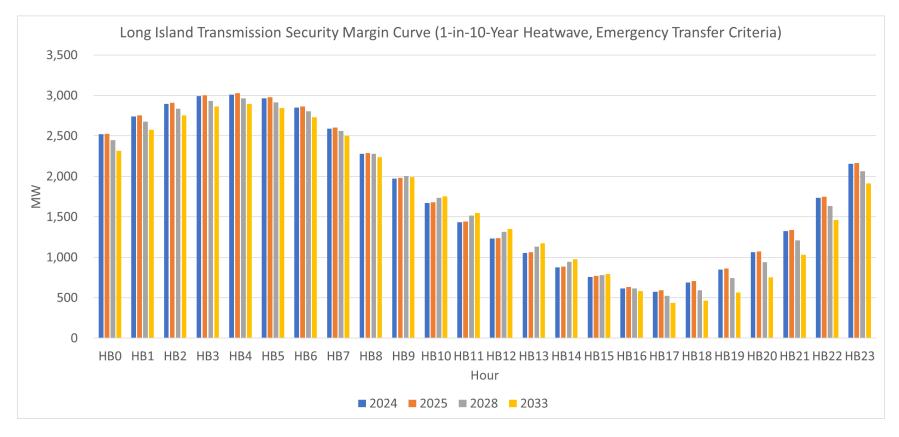
### Figure 62: Long Island Transmission Security Margin (1-in-10-Year Heatwave, Emergency Transfer Criteria)

Notes:

1. Reflects the 2023 Gold Book existing summer capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 10% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022 (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.


4. Includes a derate of 16 MW for SCRs.

5. Reflects the final 10-year peak forecasts presented to stakeholders at the April 5, 2023 LFTF/ESPWG (No large load projects included in this assessment are within this locality).

Summer Peak - Heatwave, Emergency Transfer Criteria (MW) K Transmission Security Margin Hour 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 HB0 2,520 2,526 2,524 2,465 2,445 2,425 2,407 2,389 2,338 2,316 HB1 2,753 2,695 2,678 2,649 2,591 2,574 2,742 2,751 2,663 2,634 2,802 HB2 2,897 2,908 2,908 2,854 2,838 2,815 2,768 2,753 2,827 2,947 2,989 3,000 3,000 2,934 2,926 2,917 2,875 2,862 HB3 2,906 HB4 3,011 3,026 3,025 2,974 2,962 2,952 2,945 2,936 2,907 2,896 2,976 2,977 2,924 2,913 2,903 2,845 HB5 2,962 2,894 2,887 2,856 HB6 2,848 2,863 2,864 2,812 2,802 2,792 2,783 2,776 2,741 2,731 HB7 2,590 2,602 2,610 2,568 2,561 2,556 2,552 2,547 2,509 2,502 HB8 2,280 2,289 2,304 2,277 2,280 2,284 2,282 2,282 2,242 2,236 HB9 1,970 1,979 2,004 1,993 2,005 2,017 2,027 2,031 1,995 1,992 HB10 1,672 1,679 1,713 1,712 1,735 1,756 1,768 1,780 1,745 1,750 1,548 **HB11** 1,433 1,441 1,481 1,486 1,514 1,540 1,559 1,576 1,539 1,231 1,234 1,274 1,282 1,345 1,342 1,352 **HB12** 1,315 1,365 1,382 1,170 HB13 1,054 1,061 1,098 1,096 1,130 1,162 1,182 1,199 1,162 HB14 875 886 920 907 942 973 992 1,007 974 978 HB15 757 768 795 766 781 806 818 828 792 792 615 630 647 594 613 635 635 593 580 HB16 631 519 HB17 574 592 599 522 527 516 506 460 436 704 554 503 464 HB18 688 700 602 590 577 532 **HB19** 845 860 852 745 742 723 695 664 607 562 HB20 1,060 1,073 1,063 963 939 917 886 858 792 752 HB21 1,323 1,336 1,326 1,234 1,209 1,188 1,158 1,132 1,066 1,030 1,461 HB22 1,736 1,746 1,739 1,658 1,632 1,610 1,583 1,559 1,496 HB23 2,153 2,162 2,156 2,086 2,062 2,043 2,018 1,997 1,940 1,911

Figure 63: Long Island Transmission Security Margin (Hourly) (1-in-10-Year Heatwave, Emergency Transfer Criteria)





# Figure 64: Long Island Transmission Security Margin Hourly Curve (1-in-10-Year Heatwave, Emergency Transfer Criteria)



|      | Summer Peak - 1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria (MW) |         |         |         |         |         |         |         |         |         |         |  |  |  |
|------|--------------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--|--|--|
| Line | Item                                                                           | 2024    | 2025    | 2026    | 2027    | 2028    | 2029    | 2030    | 2031    | 2032    | 2033    |  |  |  |
| Α    | Zone K Demand Forecast (5)                                                     | (5,696) | (5,677) | (5,668) | (5,663) | (5,677) | (5,690) | (5,714) | (5,737) | (5,766) | (5,807) |  |  |  |
|      |                                                                                |         |         |         |         |         |         |         |         |         |         |  |  |  |
| В    | I+J to K (6)                                                                   | 887     | 887     | 887     | 887     | 887     | 887     | 887     | 887     | 887     | 887     |  |  |  |
| С    | New England Import (NNC)                                                       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |  |  |  |
| D    | Total K AC Import (B+C)                                                        | 887     | 887     | 887     | 887     | 887     | 887     | 887     | 887     | 887     | 887     |  |  |  |
|      |                                                                                |         |         |         |         |         |         |         |         |         |         |  |  |  |
| E    | Loss of Source Contingency                                                     | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |  |  |  |
| F    | Resource Need (A+D+E)                                                          | (4,809) | (4,790) | (4,781) | (4,776) | (4,790) | (4,803) | (4,827) | (4,850) | (4,879) | (4,920) |  |  |  |
|      |                                                                                |         |         |         |         |         |         |         |         |         |         |  |  |  |
| G    | K Generation (1)                                                               | 5,013   | 5,013   | 5,013   | 5,013   | 5,013   | 5,013   | 5,013   | 5,013   | 5,013   | 5,013   |  |  |  |
| н    | K Generation Derates (2)                                                       | (603)   | (604)   | (605)   | (606)   | (606)   | (607)   | (607)   | (607)   | (608)   | (608)   |  |  |  |
| 1    | Temperature Based Generation Derates                                           | (68)    | (68)    | (68)    | (68)    | (68)    | (68)    | (68)    | (68)    | (68)    | (68)    |  |  |  |
| J    | Net ICAP External Imports                                                      | 660     | 660     | 660     | 660     | 660     | 660     | 660     | 660     | 660     | 660     |  |  |  |
| К    | SCRs (3), (4)                                                                  | 18      | 18      | 18      | 18      | 18      | 18      | 18      | 18      | 18      | 18      |  |  |  |
| L    | Total Resources Available (G+H+I+J+K)                                          | 5,020   | 5,019   | 5,018   | 5,017   | 5,017   | 5,016   | 5,016   | 5,016   | 5,015   | 5,014   |  |  |  |
|      |                                                                                |         |         |         |         |         |         |         |         |         |         |  |  |  |
| М    | Transmission Security Margin (F+L)                                             | 211     | 229     | 237     | 241     | 227     | 213     | 189     | 166     | 136     | 94      |  |  |  |

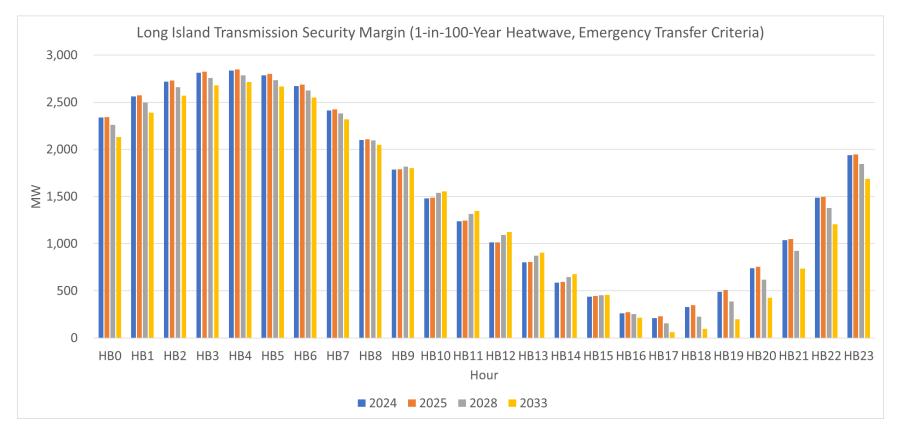
### Figure 65: Long Island Transmission Security Margin (1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria)

Notes:

1. Reflects the 2023 Gold Book existing summer capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 5% of the total nameplate, off-shore wind at 10% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022 (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.


4. Includes a derate of 16 MW for SCRs.

5. Reflects the final 10-year peak forecasts presented to stakeholders at the April 5, 2023 LFTF/ESPWG (No large load projects included in this assessment are within this locality).

|      | Summer Peak - 1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria (MW)<br>K Transmission Security Margin |       |       |            |            |          |       |       |       |       |  |  |  |  |
|------|------------------------------------------------------------------------------------------------------------------|-------|-------|------------|------------|----------|-------|-------|-------|-------|--|--|--|--|
|      |                                                                                                                  |       | К     | Transmissi | on Securit | y Margin |       |       |       |       |  |  |  |  |
| Hour | 2024                                                                                                             | 2025  | 2026  | 2027       | 2028       | 2029     | 2030  | 2031  | 2032  | 2033  |  |  |  |  |
| HB0  | 2,338                                                                                                            | 2,343 | 2,343 | 2,282      | 2,261      | 2,241    | 2,222 | 2,204 | 2,152 | 2,130 |  |  |  |  |
| HB1  | 2,562                                                                                                            | 2,573 | 2,571 | 2,514      | 2,496      | 2,481    | 2,466 | 2,450 | 2,407 | 2,389 |  |  |  |  |
| HB2  | 2,719                                                                                                            | 2,729 | 2,730 | 2,674      | 2,658      | 2,646    | 2,634 | 2,620 | 2,586 | 2,570 |  |  |  |  |
| HB3  | 2,812                                                                                                            | 2,822 | 2,823 | 2,769      | 2,755      | 2,746    | 2,736 | 2,725 | 2,694 | 2,680 |  |  |  |  |
| HB4  | 2,834                                                                                                            | 2,848 | 2,848 | 2,795      | 2,783      | 2,773    | 2,765 | 2,756 | 2,726 | 2,715 |  |  |  |  |
| HB5  | 2,785                                                                                                            | 2,800 | 2,801 | 2,746      | 2,735      | 2,725    | 2,715 | 2,707 | 2,676 | 2,665 |  |  |  |  |
| HB6  | 2,672                                                                                                            | 2,687 | 2,689 | 2,635      | 2,624      | 2,614    | 2,604 | 2,597 | 2,562 | 2,551 |  |  |  |  |
| HB7  | 2,412                                                                                                            | 2,423 | 2,432 | 2,389      | 2,381      | 2,375    | 2,371 | 2,366 | 2,328 | 2,319 |  |  |  |  |
| HB8  | 2,098                                                                                                            | 2,105 | 2,121 | 2,092      | 2,095      | 2,098    | 2,097 | 2,096 | 2,056 | 2,048 |  |  |  |  |
| HB9  | 1,784                                                                                                            | 1,790 | 1,816 | 1,803      | 1,815      | 1,827    | 1,835 | 1,840 | 1,803 | 1,799 |  |  |  |  |
| HB10 | 1,481                                                                                                            | 1,486 | 1,521 | 1,517      | 1,539      | 1,560    | 1,572 | 1,583 | 1,547 | 1,552 |  |  |  |  |
| HB11 | 1,238                                                                                                            | 1,243 | 1,284 | 1,287      | 1,315      | 1,340    | 1,358 | 1,375 | 1,337 | 1,345 |  |  |  |  |
| HB12 | 1,011                                                                                                            | 1,011 | 1,051 | 1,057      | 1,090      | 1,119    | 1,138 | 1,155 | 1,113 | 1,122 |  |  |  |  |
| HB13 | 800                                                                                                              | 804   | 842   | 836        | 870        | 900      | 920   | 936   | 897   | 903   |  |  |  |  |
| HB14 | 587                                                                                                              | 594   | 628   | 612        | 646        | 677      | 694   | 709   | 673   | 676   |  |  |  |  |
| HB15 | 435                                                                                                              | 443   | 455   | 422        | 453        | 477      | 487   | 498   | 458   | 456   |  |  |  |  |
| HB16 | 260                                                                                                              | 274   | 292   | 235        | 253        | 270      | 271   | 271   | 226   | 213   |  |  |  |  |
| HB17 | 211                                                                                                              | 229   | 237   | 153        | 155        | 159      | 147   | 136   | 88    | 62    |  |  |  |  |
| HB18 | 328                                                                                                              | 345   | 343   | 241        | 227        | 213      | 189   | 166   | 136   | 94    |  |  |  |  |
| HB19 | 489                                                                                                              | 506   | 518   | 406        | 385        | 364      | 335   | 304   | 243   | 197   |  |  |  |  |
| HB20 | 739                                                                                                              | 754   | 746   | 642        | 617        | 594      | 561   | 533   | 465   | 424   |  |  |  |  |
| HB21 | 1,038                                                                                                            | 1,050 | 1,042 | 948        | 922        | 899      | 869   | 843   | 774   | 736   |  |  |  |  |
| HB22 | 1,486                                                                                                            | 1,496 | 1,490 | 1,406      | 1,379      | 1,357    | 1,329 | 1,305 | 1,239 | 1,204 |  |  |  |  |
| HB23 | 1,936                                                                                                            | 1,945 | 1,942 | 1,868      | 1,844      | 1,823    | 1,798 | 1,777 | 1,719 | 1,688 |  |  |  |  |

Figure 66: Long Island Transmission Security Margin (Hourly) (1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria)





# Figure 67: Long Island Transmission Security Margin Hourly Curve (1-in-100-Year Extreme Heatwave, Emergency Transfer Criteria)



|      | Winter Peak - Baseline Expected Weather, Normal Transfer Criteria (MW) |         |         |         |         |         |         |         |         |         |         |  |  |
|------|------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--|--|
| Line | Item                                                                   | 2024-25 | 2025-26 | 2026-27 | 2027-28 | 2028-29 | 2029-30 | 2030-31 | 2031-32 | 2032-33 | 2033-34 |  |  |
| Α    | Zone K Demand Forecast (5)                                             | (3,301) | (3,388) | (3,495) | (3,609) | (3,744) | (3,908) | (4,093) | (4,300) | (4,536) | (4,783) |  |  |
|      |                                                                        |         |         |         |         |         |         |         |         |         |         |  |  |
| В    | I+J to K (3), (4), (6)                                                 | 929     | 929     | 929     | 929     | 929     | 929     | 929     | 929     | 929     | 929     |  |  |
| С    | New England Import (NNC)                                               | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |  |  |
| D    | Total K AC Import (B+C)                                                | 929     | 929     | 929     | 929     | 929     | 929     | 929     | 929     | 929     | 929     |  |  |
|      |                                                                        |         |         |         |         |         |         |         |         |         |         |  |  |
| E    | Loss of Source Contingency                                             | (660)   | (660)   | (660)   | (660)   | (660)   | (660)   | (660)   | (660)   | (660)   | (660)   |  |  |
| F    | Resource Need (A+D+E)                                                  | (3,032) | (3,119) | (3,226) | (3,340) | (3,475) | (3,639) | (3,824) | (4,031) | (4,267) | (4,514) |  |  |
|      |                                                                        |         |         |         |         |         |         |         |         |         |         |  |  |
| G    | K Generation (1)                                                       | 5,509   | 5,509   | 5,509   | 5,509   | 5,509   | 5,509   | 5,509   | 5,509   | 5,509   | 5,509   |  |  |
| н    | K Generation Derates (2)                                               | (648)   | (648)   | (648)   | (648)   | (648)   | (648)   | (648)   | (648)   | (648)   | (648)   |  |  |
| 1    | Temperature Based Generation Derates                                   | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |  |  |
| J    | Net ICAP External Imports                                              | 660     | 660     | 660     | 660     | 660     | 660     | 660     | 660     | 660     | 660     |  |  |
| K    | Total Resources Available (G+H+I+J)                                    | 5,521   | 5,521   | 5,521   | 5,521   | 5,521   | 5,521   | 5,521   | 5,521   | 5,521   | 5,521   |  |  |
|      |                                                                        |         |         |         |         |         |         |         |         |         |         |  |  |
| L    | Transmission Security Margin (F+K)                                     | 2,489   | 2,402   | 2,295   | 2,181   | 2,046   | 1,881   | 1,696   | 1,489   | 1,254   | 1,006   |  |  |

### Figure 68: Long Island Transmission Security Margin (Winter Peak – Expected Weather, Normal Transfer Criteria)

Notes:

1. Reflects the 2023 Gold Book existing winter capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022 (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2032 are based also based on the summer peak 2025 representations evaluated in the post-2020 RNA analysis which does not include the impact of CHPE.

4. As a conservative winter peak assumption these limits utilize the summer values.

5. Reflects the final 10-year peak forecasts presented to stakeholders at the April 5, 2023 LFTF/ESPWG (No large load projects included in this assessment are within this locality).



|      | W                                     | inter Peak - 1- | in-10-Year Col | d Snap, Emer | gency Transfei | r Criteria (MW | )       |         |         |         |         |
|------|---------------------------------------|-----------------|----------------|--------------|----------------|----------------|---------|---------|---------|---------|---------|
| Line | Item                                  | 2024-25         | 2025-26        | 2026-27      | 2027-28        | 2028-29        | 2029-30 | 2030-31 | 2031-32 | 2032-33 | 2033-34 |
| Α    | Zone K Demand Forecast (7)            | (3,439)         | (3,530)        | (3,641)      | (3,760)        | (3,901)        | (4,072) | (4,265) | (4,481) | (4,726) | (4,984) |
|      |                                       |                 |                |              |                |                |         |         |         |         |         |
| В    | I+J to K (5), (6), (8)                | 887             | 887            | 887          | 887            | 887            | 887     | 887     | 887     | 887     | 887     |
| С    | New England Import (NNC)              | 0               | 0              | 0            | 0              | 0              | 0       | 0       | 0       | 0       | 0       |
| D    | Total K AC Import (B+C)               | 887             | 887            | 887          | 887            | 887            | 887     | 887     | 887     | 887     | 887     |
|      |                                       |                 |                |              |                |                |         |         |         |         |         |
| E    | Loss of Source Contingency            | 0               | 0              | 0            | 0              | 0              | 0       | 0       | 0       | 0       | 0       |
| F    | Resource Need (A+D+E)                 | (2,552)         | (2,643)        | (2,754)      | (2,873)        | (3,014)        | (3,185) | (3,378) | (3,594) | (3,839) | (4,097) |
|      |                                       |                 |                |              |                |                |         |         |         |         |         |
| G    | K Generation (1)                      | 5,509           | 5,509          | 5,509        | 5,509          | 5,509          | 5,509   | 5,509   | 5,509   | 5,509   | 5,509   |
| Н    | K Generation Derates (2)              | (648)           | (648)          | (648)        | (648)          | (648)          | (648)   | (648)   | (648)   | (648)   | (648)   |
| I    | Temperature Based Generation Derates  | 0               | 0              | 0            | 0              | 0              | 0       | 0       | 0       | 0       | 0       |
| J    | Net ICAP External Imports             | 660             | 660            | 660          | 660            | 660            | 660     | 660     | 660     | 660     | 660     |
| К    | SCRs (3), (4)                         | 12              | 12             | 12           | 12             | 12             | 12      | 12      | 12      | 12      | 12      |
| L    | Total Resources Available (G+H+I+J+K) | 5,532           | 5,532          | 5,532        | 5,532          | 5,532          | 5,532   | 5,532   | 5,532   | 5,532   | 5,532   |
|      |                                       |                 |                |              |                |                |         |         |         |         |         |
| М    | Transmission Security Margin (F+L)    | 2,980           | 2,889          | 2,778        | 2,659          | 2,518          | 2,347   | 2,154   | 1,938   | 1,693   | 1,435   |

### Figure 69: Long Island Transmission Security Margin (1-in-10-Year Cold Snap, Emergency Transfer Criteria)

Notes:

1. Reflects the 2023 Gold Book existing winter capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022 (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.

4. Includes a derate of 10 MW for SCRs.

5. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2032 are based also based on the summer peak 2025 representations evaluated in the post-2020 RNA analysis which does not include the impact of CHPE.

6. As a conservative winter peak assumption these limits utilize the summer values.

7. Reflects the final 10-year peak forecasts presented to stakeholders at the April 5, 2023 LFTF/ESPWG (No large load projects included in this assessment are within this locality).



| Winter Peak - 1-in-100-Year Extreme Cold Snap, Emergency Transfer Criteria (MW) |                                       |         |         |         |         |         |         |         |         |         |         |  |
|---------------------------------------------------------------------------------|---------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--|
| Line                                                                            | Item                                  | 2024-25 | 2025-26 | 2026-27 | 2027-28 | 2028-29 | 2029-30 | 2030-31 | 2031-32 | 2032-33 | 2033-34 |  |
| Α                                                                               | Zone K Demand Forecast (7)            | (3,683) | (3,780) | (3,899) | (4,027) | (4,177) | (4,361) | (4,567) | (4,798) | (5,061) | (5,337) |  |
|                                                                                 |                                       |         |         |         |         |         |         |         |         |         |         |  |
| В                                                                               | I+J to K (5), (6), (8)                | 887     | 887     | 887     | 887     | 887     | 887     | 887     | 887     | 887     | 887     |  |
| С                                                                               | New England Import (NNC)              | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |  |
| D                                                                               | Total K AC Import (B+C)               | 887     | 887     | 887     | 887     | 887     | 887     | 887     | 887     | 887     | 887     |  |
|                                                                                 |                                       |         |         |         |         |         |         |         |         |         |         |  |
| E                                                                               | Loss of Source Contingency            | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |  |
| F                                                                               | Resource Need (A+D+E)                 | (2,796) | (2,893) | (3,012) | (3,140) | (3,290) | (3,474) | (3,680) | (3,911) | (4,174) | (4,450) |  |
|                                                                                 |                                       |         |         |         |         |         |         |         |         |         |         |  |
| G                                                                               | K Generation (1)                      | 5,509   | 5,509   | 5,509   | 5,509   | 5,509   | 5,509   | 5,509   | 5,509   | 5,509   | 5,509   |  |
| н                                                                               | K Generation Derates (2)              | (648)   | (648)   | (648)   | (648)   | (648)   | (648)   | (648)   | (648)   | (648)   | (648)   |  |
| 1                                                                               | Temperature Based Generation Derates  | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |  |
| J                                                                               | Net ICAP External Imports             | 660     | 660     | 660     | 660     | 660     | 660     | 660     | 660     | 660     | 660     |  |
| K                                                                               | SCRs (3), (4)                         | 12      | 12      | 12      | 12      | 12      | 12      | 12      | 12      | 12      | 12      |  |
| L                                                                               | Total Resources Available (G+H+I+J+K) | 5,532   | 5,532   | 5,532   | 5,532   | 5,532   | 5,532   | 5,532   | 5,532   | 5,532   | 5,532   |  |
|                                                                                 |                                       |         |         |         |         |         |         |         |         |         |         |  |
| М                                                                               | Transmission Security Margin (F+L)    | 2,736   | 2,639   | 2,520   | 2,392   | 2,242   | 2,058   | 1,852   | 1,621   | 1,358   | 1,082   |  |

#### Figure 70: Long Island Transmission Security Margin (1-in-100-year Extreme Cold Snap, Emergency Transfer Criteria)

Notes:

1. Reflects the 2023 Gold Book existing winter capacity plus projected additions and deactivations.

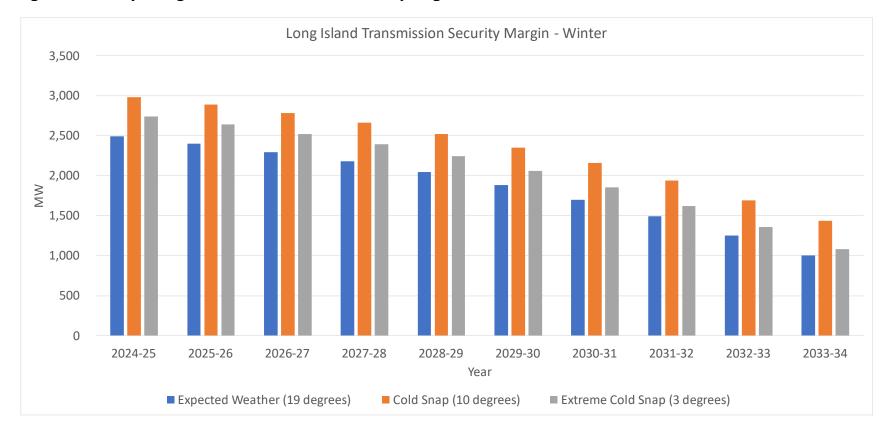
2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022 (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.

4. Includes a derate of 10 MW for SCRs.

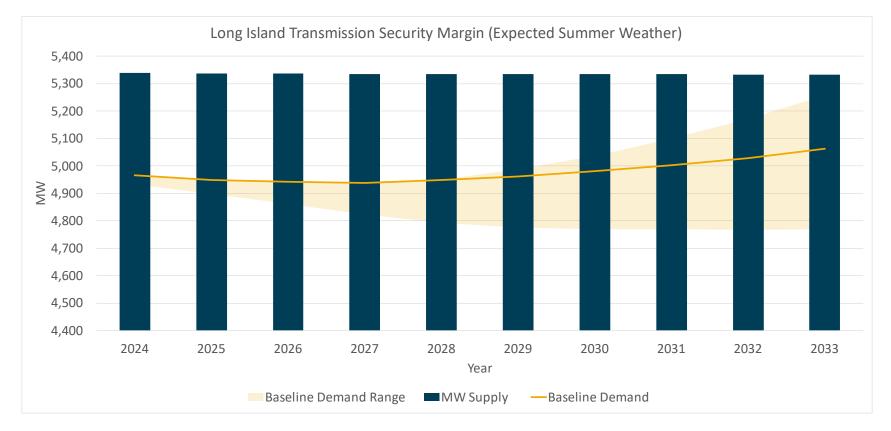
5. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2032 are based also based on the summer peak 2025 representations evaluated in the post-2020 RNA analysis which does not include the impact of CHPE.

6. As a conservative winter peak assumption these limits utilize the summer values.


7. Reflects the final 10-year peak forecasts presented to stakeholders at the April 5, 2023 LFTF/ESPWG (No large load projects included in this assessment are within this locality).






# Figure 71: Summary of Long Island Summer Transmission Security Margin – Summer





# Figure 72: Summary of Long Island Summer Transmission Security Margin – Winter





# Figure 73: Summary of Long Island Summer Transmission Security Margin Demand Policy Impact - Summer



# Loss of Gas Fuel Supply Extreme System Condition Impact to Transmission Security Margins

Natural gas fired generation in the NYCA is supplied by various networks of major gas pipelines. From a statewide perspective, New York has a relatively diverse mix of generation resources. Details of the fuel mix in New York State are provided in the 2023 Gold Book.

The study conditions for evaluating the impact of the loss of gas fuel supply are identified in NPCC Directory #1 and the NYSRC Reliability Rules as an extreme system condition. Extreme system conditions are beyond design criteria conditions and are meant to evaluate the robustness of the system. However, efforts are underway nationally, regionally, and locally to review the established design criteria and conditions in consideration of heatwave, cold snaps, and other system conditions. For instance, FERC issued a Notice of Proposed Rulemaking in 2022 to "address reliability concerns pertaining to transmission system planning for extreme heat or cold weather events that impact the Reliable Operation of the Bulk-Power System."<sup>15</sup> In response to this NOPR, the NYISO supported the Commission's guidance to NERC and the industry at large that will help stakeholders plan for, and develop responses to, extreme heat and cold weather events.<sup>16</sup> Locally, the NYSRC has established goals to identify actions to preserve NYCA reliability for extreme weather events and other extreme system conditions.<sup>17</sup>

The Analysis Group conducted an assessment in 2019 of the fuel and energy security in New York to examine the fuel and energy security of the New York electric grid.<sup>18</sup> Following this report, the NYISO has continued to evaluate and update stakeholders regarding the key factors that could impact fuel and energy security in New York.<sup>19</sup> The NYISO 2023 project, Enhancing Fuel and Energy Security, has been established to refresh the assumptions from the 2019 fuel and energy security report to assess emerging operational and grid reliability concerns.<sup>20</sup> At the nationwide level, NERC identified a project, entitled Project 2022-03 Energy Assurance with Energy-Constrained Resources, that proposes to address several energy assurance concerns related to both the

<sup>&</sup>lt;sup>15</sup> Transmission System Planning Performance Requirements for Extreme Weather, *Notice of Proposed Rulemaking*, Docket No. RM22-10-000 (June 16, 2022).

<sup>&</sup>lt;sup>16</sup> NYISO comments to RM22-10-000 are found <u>here</u>

<sup>&</sup>lt;sup>17</sup> A copy of the NYSRC 2022 goals is available <u>here</u>.

<sup>&</sup>lt;sup>18</sup> Analysis Group, Final Report on Fuel and Energy Security In New York State, An Assessment of Winter Operational Risks for a Power System in Transition (November 2019), which is available <u>here</u>.

<sup>&</sup>lt;sup>19</sup> One example is the 2021-2022 Fuel & Energy Security Update that the NYISO presented at its Installed Capacity Working Group in June of 2022, which is available at <u>here</u>.

<sup>&</sup>lt;sup>20</sup> Additional details on the 2023 Enhancing Fuel and Energy Security project are available <u>here</u>. Preliminary study results were presented to stakeholders at the August 8, 2023 ICAPWG/MIWG/PRLWG meeting (<u>here</u>).



operations and planning time horizons.<sup>21</sup>

For the transmission security margin evaluation of gas shortage conditions, all gas-only units within the NYCA are assumed unavailable with consideration of firm gas fuel contracts. Dual-fuel units with duct-burn capability are also assumed to be unavailable. This assessment assumes the remaining units have available fuel for the peak period. Figure 74 shows a breakdown of the reduction in gas units from units with non-firm gas units with reductions in firm gas (the amount of firm gas does not equal the stated winter capability for this unit), reductions from duct burn limitations, and other dual-fuel unit limitations. This results in a little more than 6,400 MW of winter generation capability. This value is consistent with the 2022-23 Winter Assessment & Winter Preparedness review, which included an extreme scenario showing the impact of a reduction of 6,484 MW for gas units and duct burn capabilities.<sup>22</sup>

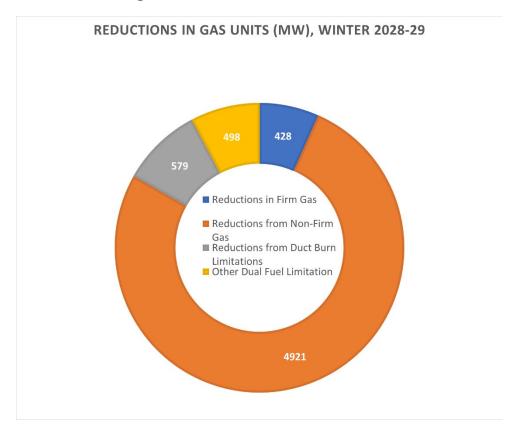



Figure 74: NYCA Reductions in Gas Units

# In the Area Transmission Review (ATR) assessments conducted by the NYISO, an evaluation of

<sup>&</sup>lt;sup>21</sup> Additional details on NERC's Project 2022-03 Energy Assurance with Energy-Constrained Resources are available <u>here</u>.
<sup>22</sup> The 2022-23 Winter Assessment & Winter Preparedness review was presented to stakeholders at the November 17, 2022 Operating Committee meeting (which is available <u>here</u>). The winter capacity assessment extreme scenarios on slide 8 shows a gas and duct burner reduction of -8,968 MW with an add back of units with firm gas contracts of 2,484 MW. This results in a total gas reduction of -6,484 MW.



the loss of gas fuel supply is conducted using the winter peak demand level. In the 2020 Comprehensive ATR, the NYISO evaluated the extreme system condition of a natural gas fuel shortage using the winter baseline expected weather forecast with normal transfer criteria.<sup>23</sup> The 2020 Comprehensive ATR found no thermal or voltage violations. However, there were dynamic stability issues observed around the Oswego area. Due to these dynamic stability issues, the NYISO conducted an evaluation to better understand the nature of the issue and found that reduced clearing times, as well as additional dynamic reactive capability in the local area, address the stability issues.

Utilizing the winter system conditions evaluated for the transmission security margins under winter peak for baseline, cold snap, and extreme cold snaps the statewide system margin as well as the Lower Hudson Valley, New York City, and Long Island localities can be evaluated for the extreme scenario of a shortage of gas fuel supply.

For the statewide system margin Figure 75 shows that the statewide system margin is only sufficient through winter 2029-30. Beginning in winter 2030-31 the statewide system margin is deficient by 405 MW which worsens to a deficiency of 4,415 MW by winter 2033-34 (line-item K). In comparison to the summer peak statewide system margin (shown in **Figure 4**), the winter peak with a shortage of gas fuel supply leads the potential for system deficiencies.

Figure 76 shows that under a cold snap the system is deficient as early as winter 2029-30 by 34 MW which worsens to 5,287 MW winter 2033-34 (line-item L). Figure 77 shows that under an extreme cold snap, the system is deficient starting in winter 2027-28 by 338 MW which worsens to 7,673 MW by winter 2033-34 (line-item L). Figure 78 provides a graphical representation of the statewide system margin under baseline expected load, cold snap, and extreme cold snap conditions with gas units being available (as provided in Figure 13) along with the impact of a shortage of gas fuel supply.

Figure 79 shows the impact of a shortage of gas fuel supply on the Lower Hudson Valley winter peak transmission security margin under baseline expected weather conditions. Figure 80 shows the margins under cold snap conditions with Figure 81 showing the results under an extreme cold snap. Within the Lower Hudson Valley, gas unavailability impacts approximately 2,690 MW of gas generation. Under baseline expected load for winter as well as cold snap and extreme cold snap conditions the margins are sufficient for all years. Figure 82 provides a graphical representation of

<sup>&</sup>lt;sup>23</sup> The 2020 Comprehensive Area Transmission Review of the New York State Bulk Power Transmission System (Study Year 2025) is available <u>here</u>.

the Lower Hudson Valley transmission security margin under baseline expected load, cold snap, and extreme cold snap conditions with gas units being available (as provided in Figure 29) along with the impact of a shortage of gas fuel supply.

Figure 83 shows the impact of a shortage of gas fuel supply on the New York City winter peak transmission security margin under baseline expected weather conditions. Within the New York City locality (Zone J), gas unavailability impacts approximately 2,130 MW of gas generation. Under baseline expected weather, normal transfer criteria conditions the margins are sufficient for all years (see line-item M). Under a 1-in-10-year cold snap, the system is also sufficient for all years until winter 2033-34 (see Figure 84, line-item M). In winter 2033-34 the margin is deficient by 79 MW. As shown in Figure 85, under an extreme cold snap the margins are deficient beginning in winter 2032-33 by 340 which worsen to 797 MW the next winter.

Figure 86 provides a graphical representation of the New York City transmission security margin under baseline expected load, cold snap, and extreme cold snap conditions with gas units being available (as provided in **Figure 53**) along with the impact of a shortage of gas fuel supply.

Figure 87 shows the impact of a shortage of gas fuel supply on the Long Island winter peak transmission security margin under baseline expected weather conditions. Figure 88 shows the margins under cold snap conditions with Figure 89 showing the results under an extreme cold snap. Within the Long Island locality (Zone K), gas unavailability impacts 394 MW of gas generation. Under baseline expected load for winter as well as cold snap and extreme cold snap conditions, the margins are sufficient for all years.

Figure 90 provides a graphical representation of the Long Island transmission security margin under baseline expected load, cold snap, and extreme cold snap conditions with gas units being available (as provided in **Figure 68**) along with the impact of the shortage of gas fuel supply.



|      |                                                               | Winter Peak - Baseline Expected Winter Weather, Gas Fuel Shortage, Normal Transfer Criteria (MW) |          |          |          |          |          |          |          |          |          |  |
|------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|
| Line | Item                                                          | 2024-25                                                                                          | 2025-26  | 2026-27  | 2027-28  | 2028-29  | 2029-30  | 2030-31  | 2031-32  | 2032-33  | 2033-34  |  |
| Α    | NYCA Generation (1)                                           | 40,941                                                                                           | 41,226   | 41,226   | 41,226   | 41,226   | 41,226   | 41,226   | 41,226   | 41,226   | 41,226   |  |
| В    | NYCA Generation Derates (2)                                   | (6,510)                                                                                          | (6,829)  | (6,829)  | (6,829)  | (6,829)  | (6,829)  | (6,829)  | (6,829)  | (6,829)  | (6,829)  |  |
| С    | Shortage of Gas Fuel Supply (6)                               | (6,441)                                                                                          | (6,426)  | (6,426)  | (6,426)  | (6,426)  | (6,426)  | (6,426)  | (6,426)  | (6,426)  | (6,426)  |  |
| D    | Temperature Based Generation Derates                          | 0                                                                                                | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |  |
| E    | External Area Interchanges (3)                                | 1,268                                                                                            | 1,268    | 1,268    | 1,268    | 1,268    | 1,268    | 1,268    | 1,268    | 1,268    | 1,268    |  |
| F    | Total Resources (A+B+C+D+E)                                   | 29,257                                                                                           | 29,240   | 29,240   | 29,240   | 29,240   | 29,240   | 29,240   | 29,240   | 29,240   | 29,240   |  |
|      |                                                               |                                                                                                  |          |          |          |          |          |          |          |          |          |  |
| G    | Demand Forecast (5)                                           | (23,895)                                                                                         | (24,196) | (24,656) | (25,182) | (25,844) | (26,716) | (27,746) | (28,936) | (30,306) | (31,756) |  |
| Н    | Large Load Forecast (7)                                       | (490)                                                                                            | (559)    | (579)    | (589)    | (589)    | (589)    | (589)    | (589)    | (589)    | (589)    |  |
| 1    | Largest Loss-of-Source Contingency                            | (1,310)                                                                                          | (1,310)  | (1,310)  | (1,310)  | (1,310)  | (1,310)  | (1,310)  | (1,310)  | (1,310)  | (1,310)  |  |
| J    | Total Capability Requirement (G+H+I)                          | (25,695)                                                                                         | (26,065) | (26,545) | (27,081) | (27,743) | (28,615) | (29,645) | (30,835) | (32,205) | (33,655) |  |
|      |                                                               |                                                                                                  |          |          |          |          |          |          |          |          |          |  |
| K    | Statewide System Margin (F+J)                                 | 3,562                                                                                            | 3,175    | 2,695    | 2,159    | 1,497    | 625      | (405)    | (1,595)  | (2,965)  | (4,415)  |  |
| L    | SCRs (8)(9)                                                   | 486                                                                                              | 486      | 486      | 486      | 486      | 486      | 486      | 486      | 486      | 486      |  |
| М    | Statewide System Margin with SCR (K+L)                        | 4,048                                                                                            | 3,661    | 3,181    | 2,645    | 1,983    | 1,111    | 81       | (1,109)  | (2,479)  | (3,929)  |  |
| N    | Operating Reserve                                             | (1,310)                                                                                          | (1,310)  | (1,310)  | (1,310)  | (1,310)  | (1,310)  | (1,310)  | (1,310)  | (1,310)  | (1,310)  |  |
| 0    | Statewide System Margin with Full Operating Reserve (M+N) (4) | 2,738                                                                                            | 2,351    | 1,871    | 1,335    | 673      | (199)    | (1,229)  | (2,419)  | (3,789)  | (5,239)  |  |

### Figure 75: Statewide System Margin with a Shortage of Gas Fuel Supply (Winter Peak - Expected Weather, Normal Transfer Criteria)

Notes:

1. Reflects the 2023 Gold Book existing winter capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022 (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. Interchanges are based on ERAG MMWG values.

4. For informational purposes.

5. Reflects the final 10-year peak forecasts presented to stakeholders at the April 5, 2023 LFTF/ESPWG without the inclusion of the large load queue projects.

6. Includes all gas only units that do not have a firm gas contract. Also includes reductions in units with duct burner capabilities. Duct burner derates on dual fual combined cycle units with non-firm gas account for approximately 500 MW of derated capacity.

7. Forecast of large load queue projects included in this assessment (Q0580 - WNY STAMP, Q0776 - Greenidge, Q0849 - Somerset, Q0580 - Cayuga, Q0979 - North Country Data Center).

9. Includes a derate of 211 MW for SCRs



# Figure 76: Extreme System Condition – Winter Peak Statewide System Margin (1-in-10-Year Cold Snap, Emergency Transfer Criteria) with A Shortage of Gas Fuel Supply

|      |                                                           | Winter Peak - 1-in-10-Year Cold Snap, Gas Fuel Shortage, Emergency Transfer Criteria (MW) |          |          |          |          |          |          |          |          |          |  |  |
|------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|
| Line | Item                                                      | 2024-25                                                                                   | 2025-26  | 2026-27  | 2027-28  | 2028-29  | 2029-30  | 2030-31  | 2031-32  | 2032-33  | 2033-34  |  |  |
| Α    | NYCA Generation (1)                                       | 40,941                                                                                    | 41,226   | 41,226   | 41,226   | 41,226   | 41,226   | 41,226   | 41,226   | 41,226   | 41,226   |  |  |
| В    | Shortage of Gas Fuel Supply (7)                           | (6,510)                                                                                   | (6,829)  | (6,829)  | (6,829)  | (6,829)  | (6,829)  | (6,829)  | (6,829)  | (6,829)  | (6,829)  |  |  |
| С    | NYCA Generation Derates (2)                               | (6,441)                                                                                   | (6,426)  | (6,426)  | (6,426)  | (6,426)  | (6,426)  | (6,426)  | (6,426)  | (6,426)  | (6,426)  |  |  |
| D    | Temperature Based Generation Derates                      | 0                                                                                         | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |  |  |
| E    | External Area Interchanges (3)                            | 1,268                                                                                     | 1,268    | 1,268    | 1,268    | 1,268    | 1,268    | 1,268    | 1,268    | 1,268    | 1,268    |  |  |
| F    | SCRs (4), (5)                                             | 486                                                                                       | 486      | 486      | 486      | 486      | 486      | 486      | 486      | 486      | 486      |  |  |
| G    | Total Resources (A+B+C+D+E+F)                             | 29,743                                                                                    | 29,726   | 29,726   | 29,726   | 29,726   | 29,726   | 29,726   | 29,726   | 29,726   | 29,726   |  |  |
|      |                                                           |                                                                                           |          |          |          |          |          |          |          |          |          |  |  |
| Н    | Demand Forecast (6)                                       | (24,896)                                                                                  | (25,211) | (25,690) | (26,239) | (26,928) | (27,836) | (28,910) | (30,151) | (31,579) | (33,089) |  |  |
| 1    | Large Load Forecast (8)                                   | (510)                                                                                     | (582)    | (603)    | (614)    | (614)    | (614)    | (614)    | (614)    | (614)    | (614)    |  |  |
| J    | Largest Loss-of-Source Contingency                        | (1,310)                                                                                   | (1,310)  | (1,310)  | (1,310)  | (1,310)  | (1,310)  | (1,310)  | (1,310)  | (1,310)  | (1,310)  |  |  |
| К    | Total Capability Requirement (H+I+J)                      | (26,717)                                                                                  | (27,104) | (27,604) | (28,163) | (28,852) | (29,760) | (30,833) | (32,074) | (33,502) | (35,012) |  |  |
|      |                                                           |                                                                                           |          |          |          |          |          |          |          |          |          |  |  |
| L    | Statewide System Margin (G+K)                             | 3,026                                                                                     | 2,622    | 2,122    | 1,563    | 874      | (34)     | (1,108)  | (2,349)  | (3,777)  | (5,287)  |  |  |
| М    | Operating Reserve                                         | (1,310)                                                                                   | (1,310)  | (1,310)  | (1,310)  | (1,310)  | (1,310)  | (1,310)  | (1,310)  | (1,310)  | (1,310)  |  |  |
| N    | Statewide System Margin with Full Operating Reserve (L+M) | 1,716                                                                                     | 1,312    | 812      | 253      | (436)    | (1,344)  | (2,418)  | (3,659)  | (5,087)  | (6,597)  |  |  |

Notes:

1. Reflects the 2023 Gold Book existing winter capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022 (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. Interchanges are based on ERAG MMWG values.

4. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.

5. Includes a derate of 211 MW for SCRs.

6. Reflects the Reflects the final 10-year peak forecasts presented to stakeholders at the April 5, 2023 LFTF/ESPWG without the inclusion of the large load queue projects.

7. Includes all gas only units that do not have a firm gas contract. Also includes reductions in units with duct burner capabilities. Duct burner derates on dual fual combined cycle units with non-firm gas account for approximately 500 MW of derated capacity.

8. Forecast of large load queue projects included in this assessment (Q0580 - WNY STAMP, Q0776 - Greenidge, Q0849 - Somerset, Q0580 - Cayuga, Q0979 - North Country Data Center).



# Figure 77: Extreme System Condition – Winter Peak Statewide System Margin (1-in-100-Year Extreme Cold Snap, Emergency Transfer Criteria)

### with A Shortage of Gas Fuel Supply

|        |                                                           |          | Winter P | eak - 1-in-100-1 | Year Extreme | Cold Snap, Ga | s Fuel Shortag | e, Emergency | Transfer Crite | ria (MW) |          |
|--------|-----------------------------------------------------------|----------|----------|------------------|--------------|---------------|----------------|--------------|----------------|----------|----------|
| Line   | Item                                                      | 2024-25  | 2025-26  | 2026-27          | 2027-28      | 2028-29       | 2029-30        | 2030-31      | 2031-32        | 2032-33  | 2033-34  |
| Α      | NYCA Generation (1)                                       | 40,941   | 41,226   | 41,226           | 41,226       | 41,226        | 41,226         | 41,226       | 41,226         | 41,226   | 41,226   |
| В      | Shortage of Gas Fuel Supply (7)                           | (6,510)  | (6,829)  | (6,829)          | (6,829)      | (6,829)       | (6,829)        | (6,829)      | (6,829)        | (6,829)  | (6,829)  |
| С      | NYCA Generation Derates (2)                               | (6,441)  | (6,426)  | (6,426)          | (6,426)      | (6,426)       | (6,426)        | (6,426)      | (6,426)        | (6,426)  | (6,426)  |
| D      | Temperature Based Generation Derates                      | 0        | 0        | 0                | 0            | 0             | 0              | 0            | 0              | 0        | 0        |
| E      | External Area Interchanges (3)                            | 1,268    | 1,268    | 1,268            | 1,268        | 1,268         | 1,268          | 1,268        | 1,268          | 1,268    | 1,268    |
| F      | SCRs (4), (5)                                             | 486      | 486      | 486              | 486          | 486           | 486            | 486          | 486            | 486      | 486      |
| G      | Total Resources (A+B+C+D+E+F)                             | 29,743   | 29,726   | 29,726           | 29,726       | 29,726        | 29,726         | 29,726       | 29,726         | 29,726   | 29,726   |
|        |                                                           |          |          |                  |              |               |                |              |                |          |          |
| Н      | Demand Forecast (6)                                       | (26,662) | (26,995) | (27,510)         | (28,097)     | (28,835)      | (29,810)       | (30,957)     | (32,287)       | (33,815) | (35,431) |
| 1      | Large Load Forecast (7)                                   | (547)    | (624)    | (646)            | (657)        | (657)         | (657)          | (657)        | (657)          | (657)    | (657)    |
| J      | Largest Loss-of-Source Contingency                        | (1,310)  | (1,310)  | (1,310)          | (1,310)      | (1,310)       | (1,310)        | (1,310)      | (1,310)        | (1,310)  | (1,310)  |
| K      | Total Capability Requirement (H+I+J)                      | (28,518) | (28,929) | (29,466)         | (30,064)     | (30,803)      | (31,777)       | (32,925)     | (34,255)       | (35,783) | (37,398) |
|        |                                                           |          |          |                  |              |               |                |              |                |          |          |
| L      | Statewide System Margin (G+K)                             | 1,225    | 797      | 260              | (338)        | (1,077)       | (2,051)        | (3,199)      | (4,529)        | (6,057)  | (7,673)  |
| М      | Operating Reserve                                         | (1,310)  | (1,310)  | (1,310)          | (1,310)      | (1,310)       | (1,310)        | (1,310)      | (1,310)        | (1,310)  | (1,310)  |
| Notes: | Statewide System Margin with Full Operating Reserve (L+M) | (85)     | (513)    | (1,050)          | (1,648)      | (2,387)       | (3,361)        | (4,509)      | (5,839)        | (7,367)  | (8,983)  |

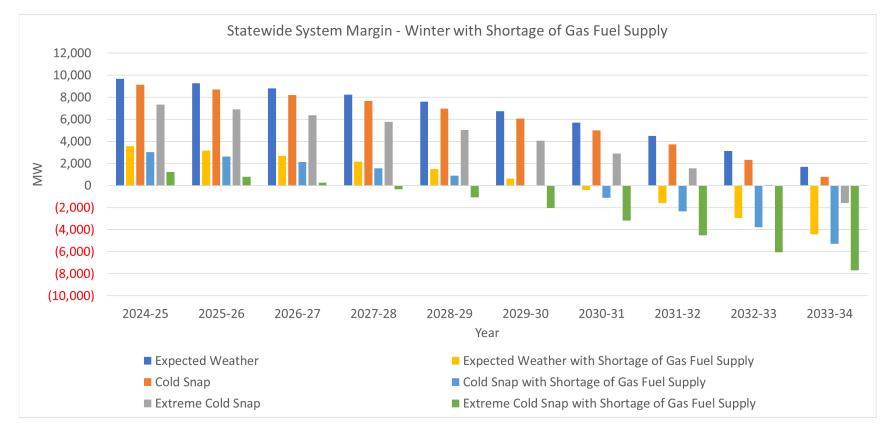
Notes:

1. Reflects the 2023 Gold Book existing winter capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022 (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. Interchanges are based on ERAG MMWG values.

4. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.


5. Includes a derate of 211 MW for SCRs.

6. Reflects the final 10-year peak forecasts presented to stakeholders at the April 5, 2023 LFTF/ESPWG without the inclusion of the large load queue projects.

7. Includes all gas only units that do not have a firm gas contract. Also includes reductions in units with duct burner capabilities. Duct burner derates on dual fual combined cycle units with non-firm gas account for approximately 500 MW of derated capacity.

8. Forecast of large load queue projects included in this assessment (Q0580 - WNY STAMP, Q0776 - Greenidge, Q0849 - Somerset, Q0580 - Cayuga, Q0979 - North Country Data Center).





### Figure 78: Extreme System Condition – Summary of Winter Peak Statewide System Margin with A Shortage of Gas Fuel Supply



| Winter Peak - Baseline Expected Weather, Normal Transfer Criteria (MW) |                                       |          |          |          |          |          |          |          |          |          |          |  |
|------------------------------------------------------------------------|---------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|
| Line                                                                   | Item                                  | 2024-25  | 2025-26  | 2026-27  | 2027-28  | 2028-29  | 2029-30  | 2030-31  | 2031-32  | 2032-33  | 2033-34  |  |
| Α                                                                      | G-J Demand Forecast (5)               | (10,500) | (10,596) | (10,779) | (10,969) | (11,220) | (11,568) | (11,986) | (12,483) | (13,055) | (13,659) |  |
| В                                                                      | RECO Demand                           | (229)    | (229)    | (229)    | (234)    | (234)    | (234)    | (234)    | (234)    | (240)    | (240)    |  |
| С                                                                      | Total Demand (A+B)                    | (10,729) | (10,825) | (11,008) | (11,203) | (11,454) | (11,802) | (12,220) | (12,717) | (13,295) | (13,899) |  |
|                                                                        |                                       |          |          |          |          |          |          |          |          |          |          |  |
| D                                                                      | UPNY-SENY Limit (3), (4)              | 5,725    | 5,725    | 5,725    | 5,725    | 5,725    | 5,725    | 5,725    | 5,725    | 5,725    | 5,725    |  |
| E                                                                      | ABC PARs to J                         | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     |  |
| F                                                                      | K - SENY (4)                          | (83)     | (83)     | (83)     | (83)     | (83)     | (83)     | (83)     | (83)     | (83)     | (83)     |  |
| G                                                                      | Total SENY AC Import (D+E+F)          | 5,631    | 5,631    | 5,631    | 5,631    | 5,631    | 5,631    | 5,631    | 5,631    | 5,631    | 5,631    |  |
|                                                                        |                                       |          |          |          |          |          |          |          |          |          |          |  |
| н                                                                      | Loss of Source Contingency            | (968)    | (968)    | (968)    | (968)    | (968)    | (968)    | (968)    | (968)    | (968)    | (968)    |  |
| I                                                                      | Resource Need (C+G+H)                 | (6,066)  | (6,162)  | (6,345)  | (6,540)  | (6,791)  | (7,139)  | (7,557)  | (8,054)  | (8,632)  | (9,236)  |  |
|                                                                        |                                       |          |          |          |          |          |          |          |          |          |          |  |
| J                                                                      | G-J Generation (1)                    | 14,510   | 14,475   | 14,475   | 14,475   | 14,475   | 14,475   | 14,475   | 14,475   | 14,475   | 14,475   |  |
| K                                                                      | G-J Generation Derates (2)            | (1,069)  | (1,067)  | (1,067)  | (1,067)  | (1,067)  | (1,067)  | (1,067)  | (1,067)  | (1,067)  | (1,067)  |  |
| L                                                                      | Shortage of Gas Fuel Supply (6)       | (2,705)  | (2,689)  | (2,689)  | (2,689)  | (2,689)  | (2,689)  | (2,689)  | (2,689)  | (2,689)  | (2,689)  |  |
| М                                                                      | Temperature Based Generation Derates  | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |  |
| Ν                                                                      | Net ICAP External Imports             | 315      | 315      | 315      | 315      | 315      | 315      | 315      | 315      | 315      | 315      |  |
| 0                                                                      | Total Resources Available (J+K+L+M+N) | 11,051   | 11,034   | 11,034   | 11,034   | 11,034   | 11,034   | 11,034   | 11,034   | 11,034   | 11,034   |  |
|                                                                        |                                       |          |          |          |          |          |          |          |          |          |          |  |
| Р                                                                      | Transmission Security Margin (I+O)    | 4,985    | 4,872    | 4,689    | 4,494    | 4,243    | 3,895    | 3,477    | 2,980    | 2,402    | 1,798    |  |
| NI-t                                                                   |                                       |          |          |          |          |          |          |          |          |          |          |  |

### Figure 79: Extreme System Condition – Winter Peak Lower Hudson Valley Transmission Security Margin with A Shortage of Gas Fuel Supply

Notes:

1. Reflects the 2023 Gold Book existing winter capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022 (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2033 are based also based on the summer peak 2025 representations evaluated in the post-2020 RNA analysis which does not include the impact of CHPE.

4. As a conservative winter peak assumption these limits utilize the summer values.

5. Reflects the final 10-year peak forecasts presented to stakeholders at the April 5, 2023 LFTF/ESPWG (No large load projects included in this assessment are within this locality).



# Figure 80: Extreme System Condition – Winter Peak Lower Hudson Valley Transmission Security Margin (1-in-10-Year Cold Snap, Emergency

### Transfer Criteria) with A Shortage of Gas Fuel Supply

| Winter Peak - 1-in-10-Year Cold Snap, Emergency Transfer Criteria (MW) |                                         |          |          |          |          |          |          |          |          |          |          |  |
|------------------------------------------------------------------------|-----------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|
| Line                                                                   | Item                                    | 2024-25  | 2025-26  | 2026-27  | 2027-28  | 2028-29  | 2029-30  | 2030-31  | 2031-32  | 2032-33  | 2033-34  |  |
| Α                                                                      | G-J Demand Forecast (7)                 | (10,940) | (11,041) | (11,231) | (11,430) | (11,691) | (12,054) | (12,489) | (13,008) | (13,603) | (14,232) |  |
| В                                                                      | RECO Demand                             | (243)    | (243)    | (243)    | (248)    | (248)    | (248)    | (248)    | (248)    | (254)    | (254)    |  |
| С                                                                      | Total Demand (A+B)                      | (11,183) | (11,284) | (11,474) | (11,678) | (11,939) | (12,302) | (12,737) | (13,256) | (13,857) | (14,486) |  |
|                                                                        |                                         |          |          |          |          |          |          |          |          |          |          |  |
| D                                                                      | UPNY-SENY Limit (5), (6)                | 5,450    | 5,450    | 5,450    | 5,450    | 5,450    | 5,450    | 5,450    | 5,450    | 5,450    | 5,450    |  |
| E                                                                      | ABC PARs to J                           | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     |  |
| F                                                                      | K - SENY (6)                            | (82)     | (82)     | (82)     | (82)     | (82)     | (82)     | (82)     | (82)     | (82)     | (82)     |  |
| G                                                                      | Total SENY AC Import (D+E+F)            | 5,357    | 5,357    | 5,357    | 5,357    | 5,357    | 5,357    | 5,357    | 5,357    | 5,357    | 5,357    |  |
|                                                                        |                                         |          |          |          |          |          |          |          |          |          |          |  |
| Н                                                                      | Loss of Source Contingency              | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |  |
| 1                                                                      | Resource Need (C+G+H)                   | (5,826)  | (5,927)  | (6,117)  | (6,321)  | (6,582)  | (6,945)  | (7,380)  | (7,899)  | (8,500)  | (9,129)  |  |
|                                                                        |                                         |          |          |          |          |          |          |          |          |          |          |  |
| J                                                                      | G-J Generation (1)                      | 14,510   | 14,475   | 14,475   | 14,475   | 14,475   | 14,475   | 14,475   | 14,475   | 14,475   | 14,475   |  |
| К                                                                      | G-J Generation Derates (2)              | (1,069)  | (1,067)  | (1,067)  | (1,067)  | (1,067)  | (1,067)  | (1,067)  | (1,067)  | (1,067)  | (1,067)  |  |
| L                                                                      | Shortage of Gas Fuel Supply (8)         | (2,705)  | (2,689)  | (2,689)  | (2,689)  | (2,689)  | (2,689)  | (2,689)  | (2,689)  | (2,689)  | (2,689)  |  |
| М                                                                      | Temperature Based Generation Derates    | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |  |
| N                                                                      | Net ICAP External Imports               | 315      | 315      | 315      | 315      | 315      | 315      | 315      | 315      | 315      | 315      |  |
| 0                                                                      | SCRs (3), (4)                           | 160      | 160      | 160      | 160      | 160      | 160      | 160      | 160      | 160      | 160      |  |
| Р                                                                      | Total Resources Available (J+K+L+M+N+O) | 11,211   | 11,194   | 11,194   | 11,194   | 11,194   | 11,194   | 11,194   | 11,194   | 11,194   | 11,194   |  |
|                                                                        |                                         |          |          |          |          |          |          |          |          |          |          |  |
| Q                                                                      | Transmission Security Margin (I+P)      | 5,386    | 5,267    | 5,077    | 4,873    | 4,612    | 4,249    | 3,814    | 3,295    | 2,694    | 2,065    |  |
| Notes:                                                                 |                                         |          |          |          |          |          |          |          |          |          |          |  |

Notes:

1. Reflects the 2023 Gold Book existing winter capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022 (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.

4. Includes a derate of 133 MW for SCRs.

5. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2033 are based also based on the summer peak 2025 representations evaluated in the post-2020 RNA analysis which does not include the impact of CHPE.

6. As a conservative winter peak assumption these limits utilize the summer values.

7. Reflects the final 10-year peak forecasts presented to stakeholders at the April 5, 2023 LFTF/ESPWG (No large load projects included in this assessment are within this locality).



#### Figure 81: Extreme System Condition – Winter Peak Lower Hudson Valley Transmission Security Margin (1-in-100-Year Extreme Cold Snap,

### **Emergency Transfer Criteria) with A Shortage of Gas Fuel Supply**

| Winter Peak - 1-in-100-Year Extreme Cold Snap, Emergency Transfer Criteria (MW) |                                       |          |          |          |          |          |          |          |          |          |          |  |
|---------------------------------------------------------------------------------|---------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|
| Line                                                                            | Item                                  | 2024-25  | 2025-26  | 2026-27  | 2027-28  | 2028-29  | 2029-30  | 2030-31  | 2031-32  | 2032-33  | 2033-34  |  |
| Α                                                                               | G-J Demand Forecast (7)               | (11,716) | (11,822) | (12,027) | (12,239) | (12,519) | (12,907) | (13,373) | (13,929) | (14,567) | (15,240) |  |
| В                                                                               | RECO Demand                           | (252)    | (252)    | (252)    | (258)    | (258)    | (258)    | (258)    | (258)    | (264)    | (264)    |  |
| С                                                                               | Total Demand (A+B)                    | (11,968) | (12,074) | (12,279) | (12,497) | (12,777) | (13,165) | (13,631) | (14,187) | (14,831) | (15,504) |  |
|                                                                                 |                                       |          |          |          |          |          |          |          |          |          |          |  |
| D                                                                               | UPNY-SENY Limit (5), (6)              | 5,450    | 5,450    | 5,450    | 5,450    | 5,450    | 5,450    | 5,450    | 5,450    | 5,450    | 5,450    |  |
| E                                                                               | ABC PARs to J                         | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     | (11)     |  |
| F                                                                               | K - SENY (6)                          | (82)     | (82)     | (82)     | (82)     | (82)     | (82)     | (82)     | (82)     | (82)     | (82)     |  |
| G                                                                               | Total SENY AC Import (D+E+F)          | 5,357    | 5,357    | 5,357    | 5,357    | 5,357    | 5,357    | 5,357    | 5,357    | 5,357    | 5,357    |  |
|                                                                                 |                                       |          |          |          |          |          |          |          |          |          |          |  |
| Η                                                                               | Loss of Source Contingency            | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |  |
| -                                                                               | Resource Need (C+G+H)                 | (6,611)  | (6,717)  | (6,922)  | (7,140)  | (7,420)  | (7,808)  | (8,274)  | (8,830)  | (9,474)  | (10,147) |  |
|                                                                                 |                                       |          |          |          |          |          |          |          |          |          |          |  |
| J                                                                               | G-J Generation (1)                    | 14,510   | 14,475   | 14,475   | 14,475   | 14,475   | 14,475   | 14,475   | 14,475   | 14,475   | 14,475   |  |
| К                                                                               | G-J Generation Derates (2)            | (1,069)  | (1,067)  | (1,067)  | (1,067)  | (1,067)  | (1,067)  | (1,067)  | (1,067)  | (1,067)  | (1,067)  |  |
|                                                                                 | Shortage of Gas Fuel Supply (8)       | (2,705)  | (2,689)  | (2,689)  | (2,689)  | (2,689)  | (2,689)  | (2,689)  | (2,689)  | (2,689)  | (2,689)  |  |
| L                                                                               | Temperature Based Generation Derates  | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |  |
| Ν                                                                               | Net ICAP External Imports             | 315      | 315      | 315      | 315      | 315      | 315      | 315      | 315      | 315      | 315      |  |
| Ν                                                                               | SCRs (3), (4)                         | 160      | 160      | 160      | 160      | 160      | 160      | 160      | 160      | 160      | 160      |  |
| 0                                                                               | Total Resources Available (J+K+L+M+N) | 11,211   | 11,194   | 11,194   | 11,194   | 11,194   | 11,194   | 11,194   | 11,194   | 11,194   | 11,194   |  |
|                                                                                 |                                       |          |          |          |          |          |          |          |          |          |          |  |
| Ρ                                                                               | Transmission Security Margin (I+O)    | 4,600    | 4,477    | 4,272    | 4,054    | 3,774    | 3,386    | 2,920    | 2,364    | 1,720    | 1,047    |  |
| Notos                                                                           |                                       |          |          |          |          |          |          |          |          |          |          |  |

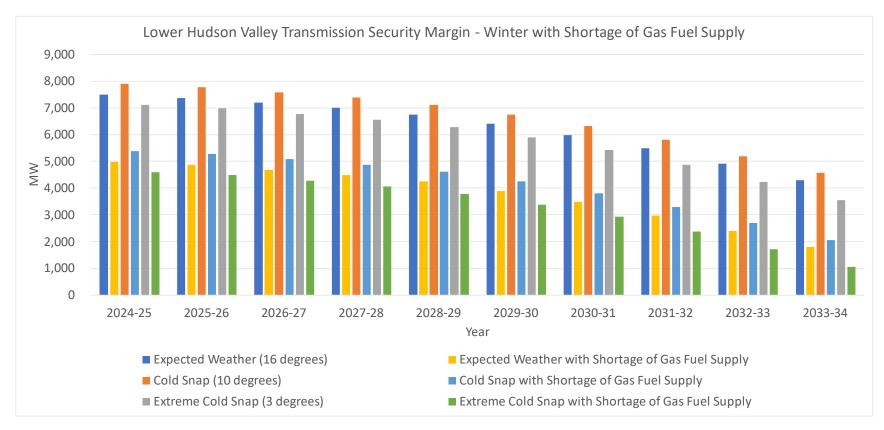
Notes:

1. Reflects the 2023 Gold Book existing winter capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022 (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.

4. Includes a derate of 133 MW for SCRs.


5. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2033 are based also based on the summer peak 2025 representations evaluated in the post-2020 RNA analysis which does not include the impact of CHPE.

6. As a conservative winter peak assumption these limits utilize the summer values.

7. Reflects the final 10-year peak forecasts presented to stakeholders at the April 5, 2023 LFTF/ESPWG (No large load projects included in this assessment are within this locality).



# Figure 82: Extreme System Condition – Summary of Winter Peak Lower Hudson Valley Transmission Security Margin with A Shortage of Gas Fuel Supply





|      | Winter Peak - Baseline Expected Weather, Normal Transfer Criteria (MW) |         |         |         |         |         |         |         |         |         |         |  |  |
|------|------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--|--|
| Line | Item                                                                   | 2024-25 | 2025-26 | 2026-27 | 2027-28 | 2028-29 | 2029-30 | 2030-31 | 2031-32 | 2032-33 | 2033-34 |  |  |
| Α    | Zone J Demand Forecast (5)                                             | (7,580) | (7,670) | (7,790) | (7,920) | (8,080) | (8,310) | (8,590) | (8,930) | (9,320) | (9,730) |  |  |
|      |                                                                        |         |         |         |         |         |         |         |         |         |         |  |  |
| В    | I+K to J (3), (4)                                                      | 3,904   | 3,904   | 3,904   | 3,904   | 3,904   | 3,904   | 3,904   | 3,904   | 3,904   | 3,904   |  |  |
| С    | ABC PARs to J                                                          | (11)    | (11)    | (11)    | (11)    | (11)    | (11)    | (11)    | (11)    | (11)    | (11)    |  |  |
| D    | Total J AC Import (B+C)                                                | 3,893   | 3,893   | 3,893   | 3,893   | 3,893   | 3,893   | 3,893   | 3,893   | 3,893   | 3,893   |  |  |
|      |                                                                        |         |         |         |         |         |         |         |         |         |         |  |  |
| E    | Loss of Source Contingency                                             | (968)   | (968)   | (968)   | (968)   | (968)   | (968)   | (968)   | (968)   | (968)   | (968)   |  |  |
| F    | Resource Need (A+D+E)                                                  | (4,655) | (4,745) | (4,865) | (4,995) | (5,155) | (5,385) | (5,665) | (6,005) | (6,395) | (6,805) |  |  |
|      |                                                                        |         |         |         |         |         |         |         |         |         |         |  |  |
| G    | J Generation (1)                                                       | 9,414   | 9,379   | 9,379   | 9,379   | 9,379   | 9,379   | 9,379   | 9,379   | 9,379   | 9,379   |  |  |
| Н    | J Generation Derates (2)                                               | (561)   | (559)   | (559)   | (559)   | (559)   | (559)   | (559)   | (559)   | (559)   | (559)   |  |  |
| 1    | Shortage of Gas Fuel Supply (6)                                        | (2,145) | (2,129) | (2,129) | (2,129) | (2,129) | (2,129) | (2,129) | (2,129) | (2,129) | (2,129) |  |  |
| J    | Temperature Based Generation Derates                                   | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |  |  |
| К    | Net ICAP External Imports                                              | 315     | 315     | 315     | 315     | 315     | 315     | 315     | 315     | 315     | 315     |  |  |
| L    | Total Resources Available (G+H+I+J+K)                                  | 7,022   | 7,006   | 7,006   | 7,006   | 7,006   | 7,006   | 7,006   | 7,006   | 7,006   | 7,006   |  |  |
|      |                                                                        |         |         |         |         |         |         |         |         |         |         |  |  |
| М    | Transmission Security Margin (F+L)                                     | 2,367   | 2,261   | 2,141   | 2,011   | 1,851   | 1,621   | 1,341   | 1,001   | 611     | 201     |  |  |

### Figure 83: Extreme System Condition – Winter Peak New York City Transmission Security Margin with A Shortage of Gas Fuel Supply

Notes:

1. Reflects the 2023 Gold Book existing winter capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022 (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2033 are based also based on the summer peak 2025 representations evaluated in the post-2020 RNA analysis which does not include the impact of CHPE.

4. As a conservative winter peak assumption these limits utilize the summer values.

5. Reflects the final 10-year peak forecasts presented to stakeholders at the April 5, 2023 LFTF/ESPWG (No large load projects included in this assessment are within this locality).



Figure 84: Extreme System Condition – Winter Peak New York City Transmission Security Margin (1-in-10-Year Cold Snap, Emergency Transfer Criteria) with A Shortage of Gas Fuel Supply

|      | Winter Peak - 1-in-10-Year Cold Snap, Emergency Transfer Criteria (MW) |         |         |         |         |         |         |         |         |         |          |  |  |
|------|------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|--|--|
| Line | Item                                                                   | 2024-25 | 2025-26 | 2026-27 | 2027-28 | 2028-29 | 2029-30 | 2030-31 | 2031-32 | 2032-33 | 2033-34  |  |  |
| Α    | Zone J Demand Forecast (7)                                             | (7,898) | (7,992) | (8,117) | (8,252) | (8,419) | (8,659) | (8,950) | (9,305) | (9,711) | (10,138) |  |  |
|      |                                                                        |         |         |         |         |         |         |         |         |         |          |  |  |
| В    | I+K to J (5), (6)                                                      | 3,904   | 3,904   | 3,904   | 3,904   | 3,904   | 3,904   | 3,904   | 3,904   | 3,904   | 3,904    |  |  |
| С    | ABC PARs to J                                                          | (11)    | (11)    | (11)    | (11)    | (11)    | (11)    | (11)    | (11)    | (11)    | (11)     |  |  |
| D    | Total J Import (B+C)                                                   | 3,893   | 3,893   | 3,893   | 3,893   | 3,893   | 3,893   | 3,893   | 3,893   | 3,893   | 3,893    |  |  |
|      |                                                                        |         |         |         |         |         |         |         |         |         |          |  |  |
| E    | Loss of Source Contingency                                             | (968)   | (968)   | (968)   | (968)   | (968)   | (968)   | (968)   | (968)   | (968)   | (968)    |  |  |
| F    | Resource Need (A+D+E)                                                  | (4,973) | (5,067) | (5,192) | (5,327) | (5,494) | (5,734) | (6,025) | (6,380) | (6,786) | (7,213)  |  |  |
|      |                                                                        |         |         |         |         |         |         |         |         |         |          |  |  |
| G    | J Generation (1)                                                       | 9,414   | 9,379   | 9,379   | 9,379   | 9,379   | 9,379   | 9,379   | 9,379   | 9,379   | 9,379    |  |  |
| Н    | J Generation Derates (2)                                               | (561)   | (559)   | (559)   | (559)   | (559)   | (559)   | (559)   | (559)   | (559)   | (559)    |  |  |
| 1    | Shortage of Gas Fuel Supply (8)                                        | (2,145) | (2,129) | (2,129) | (2,129) | (2,129) | (2,129) | (2,129) | (2,129) | (2,129) | (2,129)  |  |  |
| J    | Temperature Based Generation Derates                                   | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0        |  |  |
| К    | Net ICAP External Imports                                              | 315     | 315     | 315     | 315     | 315     | 315     | 315     | 315     | 315     | 315      |  |  |
| L    | SCRs (3), (4)                                                          | 128     | 128     | 128     | 128     | 128     | 128     | 128     | 128     | 128     | 128      |  |  |
| М    | Total Resources Available (G+H+I+J+K)                                  | 7,151   | 7,134   | 7,134   | 7,134   | 7,134   | 7,134   | 7,134   | 7,134   | 7,134   | 7,134    |  |  |
|      |                                                                        |         |         |         |         |         |         |         |         |         |          |  |  |
| Ν    | Transmission Security Margin (F+L)                                     | 2,177   | 2,067   | 1,942   | 1,807   | 1,640   | 1,400   | 1,109   | 754     | 348     | (79)     |  |  |

Notes:

1. Reflects the 2023 Gold Book existing winter capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022 (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.

4. Includes a derate of 116 MW for SCRs.

5. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2033 are based also based on the summer peak 2025 representations evaluated in the post-2020 RNA analysis which does not include the impact of CHPE.

6. As a conservative winter peak assumption these limits utilize the summer values.

7. Reflects the final 10-year peak forecasts presented to stakeholders at the April 5, 2023 LFTF/ESPWG (No large load projects included in this assessment are within this locality).



Figure 85: Extreme System Condition – Winter Peak New York City Transmission Security Margin (1-in-100-Year Extreme Cold Snap, Emergency Transfer Criteria) with A Shortage of Gas Fuel Supply

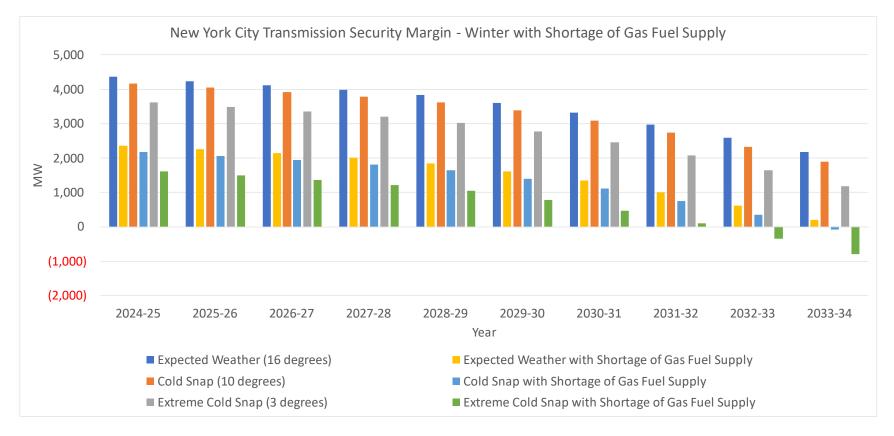
|      | Winter Peak - 1-in-100-Year Extreme Cold Snap, Emergency Transfer Criteria (MW) |         |         |         |         |         |         |         |                    |          |          |  |  |
|------|---------------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|--------------------|----------|----------|--|--|
| Line | Item                                                                            | 2024-25 | 2025-26 | 2026-27 | 2027-28 | 2028-29 | 2029-30 | 2030-31 | 2031-32            | 2032-33  | 2033-34  |  |  |
| Α    | Zone J Demand Forecast (7)                                                      | (8,457) | (8,558) | (8,692) | (8,837) | (9,015) | (9,272) | (9,584) | (9,964)            | (10,399) | (10,856) |  |  |
|      |                                                                                 |         |         |         |         |         |         |         |                    |          |          |  |  |
| В    | I+K to J (5), (6)                                                               | 3,904   | 3,904   | 3,904   | 3,904   | 3,904   | 3,904   | 3,904   | 3,904              | 3,904    | 3,904    |  |  |
| С    | ABC PARs to J                                                                   | (11)    | (11)    | (11)    | (11)    | (11)    | (11)    | (11)    | (11)               | (11)     | (11)     |  |  |
| D    | Total J Import (B+C)                                                            | 3,893   | 3,893   | 3,893   | 3,893   | 3,893   | 3,893   | 3,893   | 3,893              | 3,893    | 3,893    |  |  |
|      |                                                                                 |         |         |         |         |         |         |         |                    |          |          |  |  |
| E    | Loss of Source Contingency                                                      | (968)   | (968)   | (968)   | (968)   | (968)   | (968)   | (968)   | <mark>(968)</mark> | (968)    | (968)    |  |  |
| F    | Resource Need (A+D+E)                                                           | (5,532) | (5,633) | (5,767) | (5,912) | (6,090) | (6,347) | (6,659) | (7,039)            | (7,474)  | (7,931)  |  |  |
|      |                                                                                 |         |         |         |         |         |         |         |                    |          |          |  |  |
| G    | J Generation (1)                                                                | 9,414   | 9,379   | 9,379   | 9,379   | 9,379   | 9,379   | 9,379   | 9,379              | 9,379    | 9,379    |  |  |
| н    | J Generation Derates (2)                                                        | (561)   | (559)   | (559)   | (559)   | (559)   | (559)   | (559)   | (559)              | (559)    | (559)    |  |  |
| 1    | Shortage of Gas Fuel Supply (8)                                                 | (2,145) | (2,129) | (2,129) | (2,129) | (2,129) | (2,129) | (2,129) | (2,129)            | (2,129)  | (2,129)  |  |  |
| 1    | Temperature Based Generation Derates                                            | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0                  | 0        | 0        |  |  |
| J    | Net ICAP External Imports                                                       | 315     | 315     | 315     | 315     | 315     | 315     | 315     | 315                | 315      | 315      |  |  |
| К    | SCRs (3), (4)                                                                   | 128     | 128     | 128     | 128     | 128     | 128     | 128     | 128                | 128      | 128      |  |  |
| L    | Total Resources Available (G+H+I+J+K)                                           | 7,151   | 7,134   | 7,134   | 7,134   | 7,134   | 7,134   | 7,134   | 7,134              | 7,134    | 7,134    |  |  |
|      |                                                                                 |         |         |         |         |         |         |         |                    |          |          |  |  |
| М    | Transmission Security Margin (F+L)                                              | 1,618   | 1,501   | 1,367   | 1,222   | 1,044   | 787     | 475     | 95                 | (340)    | (797)    |  |  |

Notes:

1. Reflects the 2023 Gold Book existing winter capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022 (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.


4. Includes a derate of 116 MW for SCRs.

5. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2033 are based also based on the summer peak 2025 representations evaluated in the post-2020 RNA analysis which does not include the impact of CHPE.

6. As a conservative winter peak assumption these limits utilize the summer values.

7. Reflects the final 10-year peak forecasts presented to stakeholders at the April 5, 2023 LFTF/ESPWG (No large load projects included in this assessment are within this locality).





### Figure 86: Extreme System Condition – Summary of Winter Peak New York City Transmission Security Margin with A Shortage of Gas Fuel Supply



|      | Winter Peak - Baseline Expected Weather, Normal Transfer Criteria (MW) |         |         |         |         |         |         |         |         |         |         |  |  |
|------|------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--|--|
| Line | Item                                                                   | 2024-25 | 2025-26 | 2026-27 | 2027-28 | 2028-29 | 2029-30 | 2030-31 | 2031-32 | 2032-33 | 2033-34 |  |  |
| Α    | Zone K Demand Forecast (5)                                             | (3,301) | (3,388) | (3,495) | (3,609) | (3,744) | (3,908) | (4,093) | (4,300) | (4,536) | (4,783) |  |  |
|      |                                                                        |         |         |         |         |         |         |         |         |         |         |  |  |
| В    | I+J to K (3), (4), (7)                                                 | 929     | 929     | 929     | 929     | 929     | 929     | 929     | 929     | 929     | 929     |  |  |
| С    | New England Import (NNC)                                               | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |  |  |
| D    | Total K AC Import (B+C)                                                | 929     | 929     | 929     | 929     | 929     | 929     | 929     | 929     | 929     | 929     |  |  |
|      |                                                                        |         |         |         |         |         |         |         |         |         |         |  |  |
| E    | Loss of Source Contingency                                             | (660)   | (660)   | (660)   | (660)   | (660)   | (660)   | (660)   | (660)   | (660)   | (660)   |  |  |
| F    | Resource Need (A+D+E)                                                  | (3,032) | (3,119) | (3,226) | (3,340) | (3,475) | (3,639) | (3,824) | (4,031) | (4,267) | (4,514) |  |  |
|      |                                                                        |         |         |         |         |         |         |         |         |         |         |  |  |
| G    | K Generation (1)                                                       | 5,509   | 5,509   | 5,509   | 5,509   | 5,509   | 5,509   | 5,509   | 5,509   | 5,509   | 5,509   |  |  |
| Н    | K Generation Derates (2)                                               | (621)   | (621)   | (621)   | (621)   | (621)   | (621)   | (621)   | (621)   | (621)   | (621)   |  |  |
| 1    | Shortage of Gas Fuel Supply (6)                                        | (394)   | (394)   | (394)   | (394)   | (394)   | (394)   | (394)   | (394)   | (394)   | (394)   |  |  |
| J    | Temperature Based Generation Derates                                   | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |  |  |
| К    | Net ICAP External Imports                                              | 660     | 660     | 660     | 660     | 660     | 660     | 660     | 660     | 660     | 660     |  |  |
| L    | Total Resources Available (G+H+I+J+K)                                  | 5,153   | 5,153   | 5,153   | 5,153   | 5,153   | 5,153   | 5,153   | 5,153   | 5,153   | 5,153   |  |  |
|      |                                                                        |         |         |         |         |         |         |         |         |         |         |  |  |
| М    | Transmission Security Margin (F+L)                                     | 2,121   | 2,034   | 1,928   | 1,813   | 1,678   | 1,514   | 1,329   | 1,122   | 887     | 639     |  |  |

#### Figure 87: Extreme System Condition – Winter Peak Long Island Transmission Security Margin with A Shortage of Gas Fuel Supply

Notes:

1. Reflects the 2023 Gold Book existing winter capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022 (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2032 are based also based on the summer peak 2025 representations evaluated in the post-2020 RNA analysis which does not include the impact of CHPE.

4. As a conservative winter peak assumption these limits utilize the summer values.

5. Reflects the final 10-year peak forecasts presented to stakeholders at the April 5, 2023 LFTF/ESPWG (No large load projects included in this assessment are within this locality).

6. Includes all gas only units that do not have a firm gas contract.



Figure 88: Extreme System Condition – Winter Peak Long Island Transmission Security Margin (1-in-10-Year Cold Snap, Emergency Transfer Criteria) with A Shortage of Gas Fuel Supply

|      | Winter Peak - 1-in-10-Year Cold Snap, Emergency Transfer Criteria (MW) |         |         |         |         |         |         |         |         |         |         |  |  |
|------|------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--|--|
| Line | Item                                                                   | 2024-25 | 2025-26 | 2026-27 | 2027-28 | 2028-29 | 2029-30 | 2030-31 | 2031-32 | 2032-33 | 2033-34 |  |  |
| Α    | Zone K Demand Forecast (7)                                             | (3,439) | (3,530) | (3,641) | (3,760) | (3,901) | (4,072) | (4,265) | (4,481) | (4,726) | (4,984) |  |  |
|      |                                                                        |         |         |         |         |         |         |         |         |         |         |  |  |
| В    | I+J to K (5), (6), (9)                                                 | 887     | 887     | 887     | 887     | 887     | 887     | 887     | 887     | 887     | 887     |  |  |
| С    | New England Import (NNC)                                               | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |  |  |
| D    | Total K AC Import (B+C)                                                | 887     | 887     | 887     | 887     | 887     | 887     | 887     | 887     | 887     | 887     |  |  |
|      |                                                                        |         |         |         |         |         |         |         |         |         |         |  |  |
| E    | Loss of Source Contingency                                             | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |  |  |
| F    | Resource Need (A+D+E)                                                  | (2,552) | (2,643) | (2,754) | (2,873) | (3,014) | (3,185) | (3,378) | (3,594) | (3,839) | (4,097) |  |  |
|      |                                                                        |         |         |         |         |         |         |         |         |         |         |  |  |
| G    | K Generation (1)                                                       | 5,509   | 5,509   | 5,509   | 5,509   | 5,509   | 5,509   | 5,509   | 5,509   | 5,509   | 5,509   |  |  |
| н    | K Generation Derates (2)                                               | (621)   | (621)   | (621)   | (621)   | (621)   | (621)   | (621)   | (621)   | (621)   | (621)   |  |  |
| 1    | Shortage of Gas Fuel Supply (8)                                        | (394)   | (394)   | (394)   | (394)   | (394)   | (394)   | (394)   | (394)   | (394)   | (394)   |  |  |
| J    | Temperature Based Generation Derates                                   | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |  |  |
| К    | Net ICAP External Imports                                              | 660     | 660     | 660     | 660     | 660     | 660     | 660     | 660     | 660     | 660     |  |  |
| L    | SCRs (3), (4)                                                          | 12      | 12      | 12      | 12      | 12      | 12      | 12      | 12      | 12      | 12      |  |  |
| М    | Total Resources Available (G+H+I+J+K+L)                                | 5,165   | 5,165   | 5,165   | 5,165   | 5,165   | 5,165   | 5,165   | 5,165   | 5,165   | 5,165   |  |  |
|      |                                                                        |         |         |         |         |         |         |         |         |         |         |  |  |
| Ν    | Transmission Security Margin (F+M)                                     | 2,613   | 2,522   | 2,411   | 2,292   | 2,151   | 1,980   | 1,787   | 1,571   | 1,326   | 1,068   |  |  |

Notes:

1. Reflects the 2023 Gold Book existing winter capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022 (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.

4. Includes a derate of 10 MW for SCRs.

5. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2032 are based also based on the summer peak 2025 representations evaluated in the post-2020 RNA analysis which does not include the impact of CHPE.

6. As a conservative winter peak assumption these limits utilize the summer values.

7. Reflects the final 10-year peak forecasts presented to stakeholders at the April 5, 2023 LFTF/ESPWG (No large load projects included in this assessment are within this locality).

8. Includes all gas only units that do not have a firm gas contract.



# Figure 89: Extreme System Condition – Winter Peak Long Island Transmission Security Margin (1-in-100-Year Extreme Cold Snap, Emergency

# Transfer Criteria) with A Shortage of Gas Fuel Supply

|      | Winter Peak - 1-in-100-Year Extreme Cold Snap, Emergency Transfer Criteria (MW) |         |         |         |         |         |           |         |         |         |         |  |  |
|------|---------------------------------------------------------------------------------|---------|---------|---------|---------|---------|-----------|---------|---------|---------|---------|--|--|
| Line | Item                                                                            | 2024-25 | 2025-26 | 2026-27 | 2027-28 | 2028-29 | 2029-30   | 2030-31 | 2031-32 | 2032-33 | 2033-34 |  |  |
| Α    | Zone K Demand Forecast (7)                                                      | (3,683) | (3,780) | (3,899) | (4,027) | (4,177) | (4,361)   | (4,567) | (4,798) | (5,061) | (5,337) |  |  |
|      |                                                                                 |         |         |         |         |         |           |         |         |         |         |  |  |
| В    | I+J to K (5), (6), (9)                                                          | 887     | 887     | 887     | 887     | 887     | 887       | 887     | 887     | 887     | 887     |  |  |
| С    | New England Import (NNC)                                                        | 0       | 0       | 0       | 0       | 0       | 0         | 0       | 0       | 0       | 0       |  |  |
| D    | Total K AC Import (B+C)                                                         | 887     | 887     | 887     | 887     | 887     | 887       | 887     | 887     | 887     | 887     |  |  |
|      |                                                                                 |         |         |         |         |         |           |         |         |         |         |  |  |
| E    | Loss of Source Contingency                                                      | 0       | 0       | 0       | 0       | 0       | 0         | 0       | 0       | 0       | 0       |  |  |
| F    | Resource Need (A+D+E)                                                           | (2,796) | (2,893) | (3,012) | (3,140) | (3,290) | (3,474)   | (3,680) | (3,911) | (4,174) | (4,450) |  |  |
|      |                                                                                 |         |         |         |         |         |           |         |         |         |         |  |  |
| G    | K Generation (1)                                                                | 5,509   | 5,509   | 5,509   | 5,509   | 5,509   | 5,509     | 5,509   | 5,509   | 5,509   | 5,509   |  |  |
| н    | K Generation Derates (2)                                                        | (621)   | (621)   | (621)   | (621)   | (621)   | (621)     | (621)   | (621)   | (621)   | (621)   |  |  |
| 1    | Shortage of Gas Fuel Supply (8)                                                 | (394)   | (394)   | (394)   | (394)   | (394)   | (394)     | (394)   | (394)   | (394)   | (394)   |  |  |
| J    | Temperature Based Generation Derates                                            | 0       | 0       | 0       | 0       | 0       | 0         | 0       | 0       | 0       | 0       |  |  |
| К    | Net ICAP External Imports                                                       | 660     | 660     | 660     | 660     | 660     | 660       | 660     | 660     | 660     | 660     |  |  |
| L    | SCRs (3), (4)                                                                   | 12      | 12      | 12      | 12      | 12      | 12        | 12      | 12      | 12      | 12      |  |  |
| М    | Total Resources Available (G+H+I+J+K+L)                                         | 5,165   | 5,165   | 5,165   | 5,165   | 5,165   | 5,165     | 5,165   | 5,165   | 5,165   | 5,165   |  |  |
|      |                                                                                 |         |         |         |         |         | · · · · · |         |         |         |         |  |  |
| N    | Transmission Security Margin (F+M)                                              | 2,369   | 2,272   | 2,153   | 2,025   | 1,875   | 1,691     | 1,485   | 1,254   | 991     | 715     |  |  |
| Mada |                                                                                 |         |         |         |         |         |           |         |         |         |         |  |  |

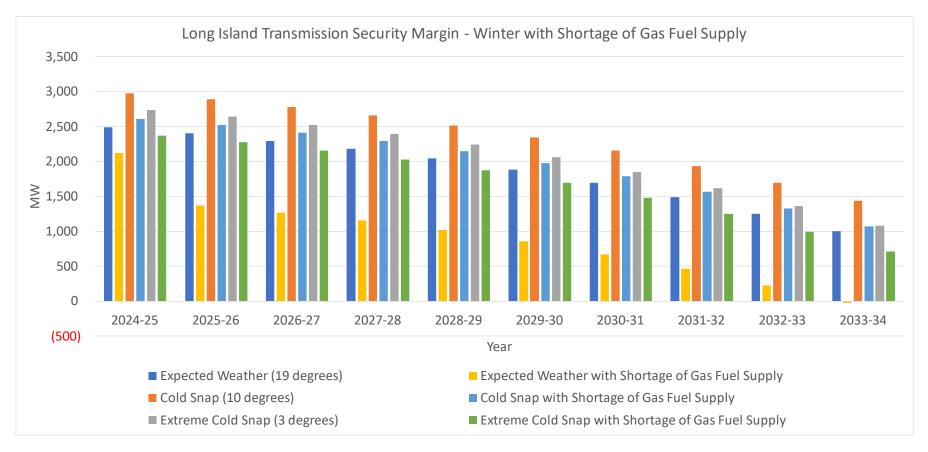
Notes:

1. Reflects the 2023 Gold Book existing winter capacity plus projected additions and deactivations.

2. Reflects the derates for generating resources. For this evaluation land-based wind generation is assumed to have a capability of 10% of the total nameplate, off-shore wind at 15% of the total nameplate, solar generation is based on the ratio of solar PV nameplate capacity (2023 Gold Book Table I-9a) and solar PV peak reductions (2023 Gold Book Table I-9c). For winter the expected solar PV output at peak is 0 MW. Derates for run-of-river hydro are included as well as the Oswego Export limit for all lines in-service. Includes derates for thermal resources based on NERC five-year class average EFORd data published August 2022 (https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx).

3. SCRs are not applied for transmission security analysis of normal operations, but are included for emergency operations.

4. Includes a derate of 10 MW for SCRs.


5. Limits for 2024 and 2025 are based on the summer peak 2025 representations evaluated in the post-2020 RNA updates. Limits for 2026 through 2032 are based also based on the summer peak 2025 representations evaluated in the post-2020 RNA analysis which does not include the impact of CHPE.

6. As a conservative winter peak assumption these limits utilize the summer values.

7. Reflects the final 10-year peak forecasts presented to stakeholders at the April 5, 2023 LFTF/ESPWG (No large load projects included in this assessment are within this locality).

8. Includes all gas only units that do not have a firm gas contract.





## Figure 90: Extreme System Condition – Summary of Winter Peak Long Island Transmission Security Margin with A Shortage of Gas Fuel Supply




## **Demand Shape Details for Transmission Security Margins**

As part of the 2023 Gold Book, representative demand shapes for the NYCA summer high demand day were produced.<sup>24</sup> For the transmission security margin analysis, the shapes are adjusted to match the Gold Book coincident peak forecasts. These shapes reflect the current observed base demand shape, using the average demand shape of high demand days from recent summers. The shapes also incorporate the evolving and increasing impacts of BtM-PV, electric vehicle charging, and building electrification on summer hourly loads. For the statewide coincident summer peak, the system peaks later in the day over the ten-year horizon.

The contribution of the hourly shapes from Zones A-F, GHI, J, and K as a fraction of the overall NYCA shape are calculated from the same sample of historical summer high demand days used to calculate the NYCA shape. For the localities, the BtM-PV, electric vehicle, and electrification shape impacts for each locality are based on their share of the expected penetration for each technology. Similar processes were utilized to create the 1-in-10-year heatwave and 1-in-100-year extreme heatwave shapes.

As seen in Figure 91, the demand shapes show a changing peak hour in Zones A-F, GHI, J, and K from 2024 through the 10-year horizon in 2033. For instance, the peak hour in A-F changes from HB18 in 2024 to HB 19 in 2033. In reality, zones will often peak on different hours during the same high summer demand day and will not be fully coincident with the NYCA peak hour itself.

<sup>&</sup>lt;sup>24</sup>The 2023 Long-Term Forecast Load Shape Projections are available <u>here</u>.



|      | A      | -F     | G     | HI    |        | J      |       | <     | NY     | ′CA    |
|------|--------|--------|-------|-------|--------|--------|-------|-------|--------|--------|
| Hour | 2024   | 2033   | 2024  | 2033  | 2024   | 2033   | 2024  | 2033  | 2024   | 2033   |
| HB0  | 9,247  | 8,987  | 2,740 | 2,916 | 8,232  | 8,680  | 3,062 | 3,280 | 23,281 | 23,863 |
| HB1  | 8,831  | 8,496  | 2,566 | 2,713 | 7,860  | 8,255  | 2,852 | 3,037 | 22,109 | 22,501 |
| HB2  | 8,550  | 8,155  | 2,443 | 2,566 | 7,594  | 7,952  | 2,704 | 2,866 | 21,291 | 21,539 |
| HB3  | 8,419  | 7,976  | 2,360 | 2,470 | 7,448  | 7,792  | 2,621 | 2,766 | 20,848 | 21,004 |
| HB4  | 8,477  | 8,010  | 2,336 | 2,438 | 7,457  | 7,805  | 2,614 | 2,748 | 20,884 | 21,001 |
| HB5  | 8,788  | 8,320  | 2,396 | 2,498 | 7,689  | 8,082  | 2,678 | 2,814 | 21,551 | 21,714 |
| HB6  | 9,260  | 8,715  | 2,525 | 2,617 | 8,161  | 8,590  | 2,806 | 2,938 | 22,752 | 22,860 |
| HB7  | 9,698  | 8,845  | 2,716 | 2,746 | 8,784  | 9,194  | 3,062 | 3,151 | 24,260 | 23,936 |
| HB8  | 9,946  | 8,615  | 2,845 | 2,778 | 9,332  | 9,677  | 3,362 | 3,383 | 25,485 | 24,453 |
| HB9  | 10,084 | 8,231  | 2,987 | 2,801 | 9,776  | 10,039 | 3,657 | 3,585 | 26,504 | 24,656 |
| HB10 | 10,286 | 8,010  | 3,168 | 2,884 | 10,110 | 10,311 | 3,954 | 3,803 | 27,518 | 25,008 |
| HB11 | 10,474 | 7,931  | 3,345 | 2,997 | 10,337 | 10,492 | 4,220 | 4,016 | 28,376 | 25,436 |
| HB12 | 10,694 | 8,072  | 3,508 | 3,140 | 10,522 | 10,655 | 4,425 | 4,207 | 29,149 | 26,074 |
| HB13 | 10,983 | 8,423  | 3,683 | 3,327 | 10,684 | 10,825 | 4,604 | 4,400 | 29,954 | 26,975 |
| HB14 | 11,167 | 8,739  | 3,806 | 3,478 | 10,793 | 10,954 | 4,737 | 4,558 | 30,503 | 27,729 |
| HB15 | 11,387 | 9,279  | 3,939 | 3,693 | 10,952 | 11,182 | 4,821 | 4,713 | 31,099 | 28,867 |
| HB16 | 11,741 | 10,155 | 4,068 | 3,953 | 11,067 | 11,411 | 4,932 | 4,938 | 31,808 | 30,457 |
| HB17 | 12,062 | 11,142 | 4,154 | 4,193 | 11,060 | 11,483 | 4,967 | 5,108 | 32,243 | 31,926 |
| HB18 | 12,237 | 11,913 | 4,153 | 4,349 | 10,838 | 11,430 | 4,888 | 5,136 | 32,116 | 32,828 |
| HB19 | 12,199 | 12,180 | 4,054 | 4,332 | 10,657 | 11,310 | 4,717 | 5,063 | 31,627 | 32,885 |
| HB20 | 11,947 | 11,978 | 3,936 | 4,221 | 10,501 | 11,157 | 4,537 | 4,884 | 30,921 | 32,240 |
| HB21 | 11,501 | 11,491 | 3,735 | 4,004 | 10,260 | 10,903 | 4,305 | 4,633 | 29,801 | 31,031 |
| HB22 | 10,744 | 10,678 | 3,439 | 3,689 | 9,764  | 10,364 | 3,931 | 4,234 | 27,878 | 28,965 |
| HB23 | 9,945  | 9,791  | 3,135 | 3,351 | 9,218  | 9,748  | 3,559 | 3,823 | 25,857 | 26,713 |

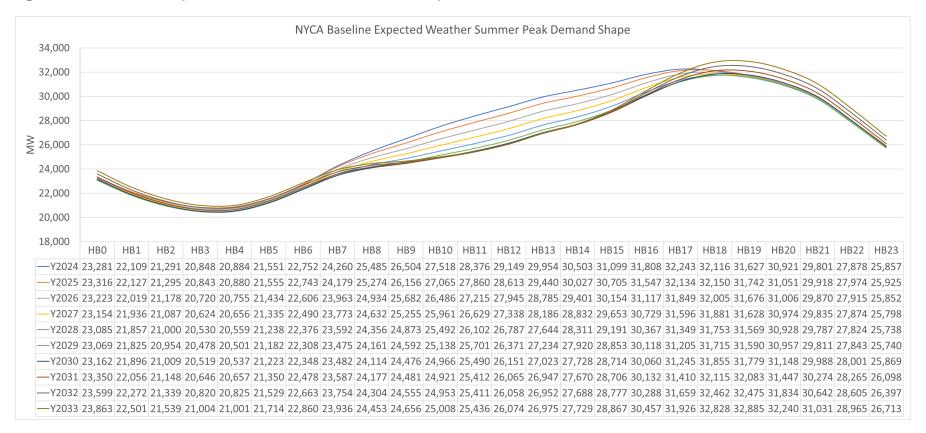
## Figure 91: NYCA Expected Weather Summer Peak Demand Shape

**Figure 92** shows the demand shapes for the expected weather summer peak conditions. The statewide behavior can be broken down further into groups of zones. Figure 93 shows the Zones A-F component of the NYCA expected weather forecast for the summer peak day. As seen in Figure 93, the demand continues to flatten in the zones in the early morning hours and shifts the peak to later in the day over each year with increased penetrations of BtM-PV.<sup>25</sup> Figure 94shows the Zones G-I component of the NYCA expected weather forecast for the summer peak day. As seen in **Figure 94**, the increased BtM-PV results in a slight flattening of the demand and a shifting of the peak hour.<sup>26</sup> **Figure 95** shows the Zone J component of the NYCA expected weather forecast for the summer forecast for the summer

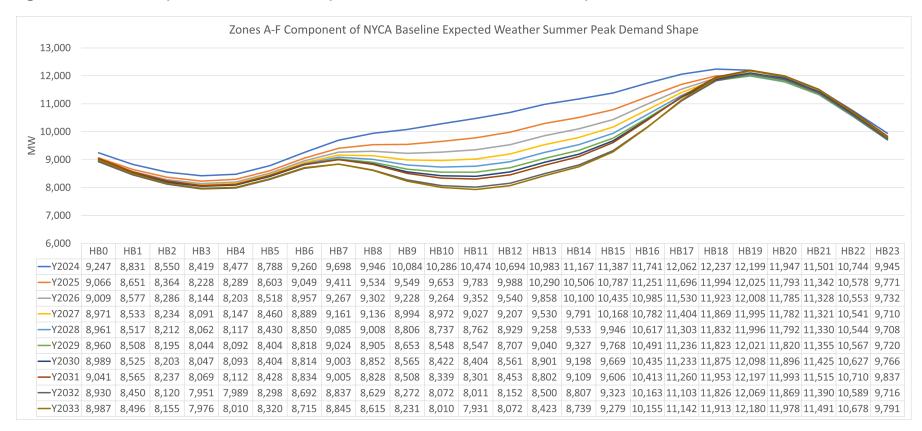
<sup>&</sup>lt;sup>25</sup>From Table I-9a in the 2023 Load and Capacity Data report, in 2024 Zones A-F has 3,830 MW (nameplate) of the 6,186 MW of BtM-PV (nameplate) statewide (approximately 62% of the statewide BtM-PV). In 2033, the forecast for BtM-PV in Zones A-F increases to 6,781 MW (nameplate) of the 10,936 MW (nameplate) of the BtM-PV statewide (approximately 62% of the statewide BtM-PV).

<sup>&</sup>lt;sup>26</sup>In 2024, Zones G-I has 955 MW (nameplate) of the 6,186 MW (nameplate) of BtM-PV statewide (approximately 15% of the statewide BtM-PV). In 2033, the forecast for BtM-PV in Zones G-I increases to 1,745 MW (nameplate) (approximately 16% of the statewide BtM-PV).



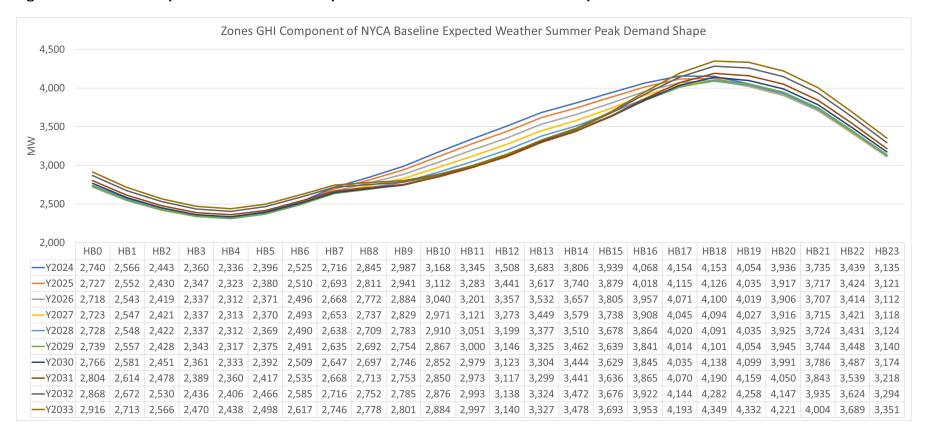

peak day. As seen in **Figure 95**, the BtM-PV primarily reduces the demand from year to year but has negligible impact on the shifting of the peak hour.<sup>27</sup> Figure 97 shows the Zone K component of the NYCA expected weather forecast for the summer peak day. As seen in Figure 97, BtM-PV has some impact on the Zone K shape over time.<sup>28</sup> Similar shapes were developed for the heatwave (Figure 98 through Figure 102) and extreme heatwave conditions (Figure 103 through Figure 107).

<sup>&</sup>lt;sup>27</sup>In 2024, Zone J has 476 MW (nameplate) of the 6,186 MW of BtM-PV (nameplate) statewide (approximately 8% of the statewide BtM-PV). In 2033, the forecast for BtM-PV in Zone J increases to 858 MW (nameplate) (approximately 8% of the statewide BtM-PV in Zone J).


<sup>&</sup>lt;sup>28</sup> In 2024, Zone K has 925 MW (nameplate) of the 6,186 MW of BtM-PV (nameplate) statewide (approximately 15% of the statewide BtM-PV). In 2033, the forecast for BtM-PV in Zone K increases to 1,552 MW (nameplate) (approximately 14% of the statewide BtM-PV in Zone K).

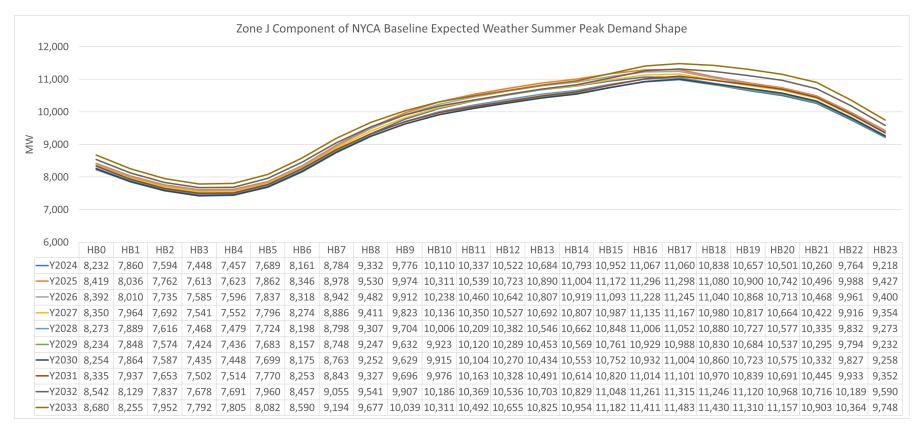


#### Figure 92: NYCA Baseline Expected Weather Summer Peak Demand Shape



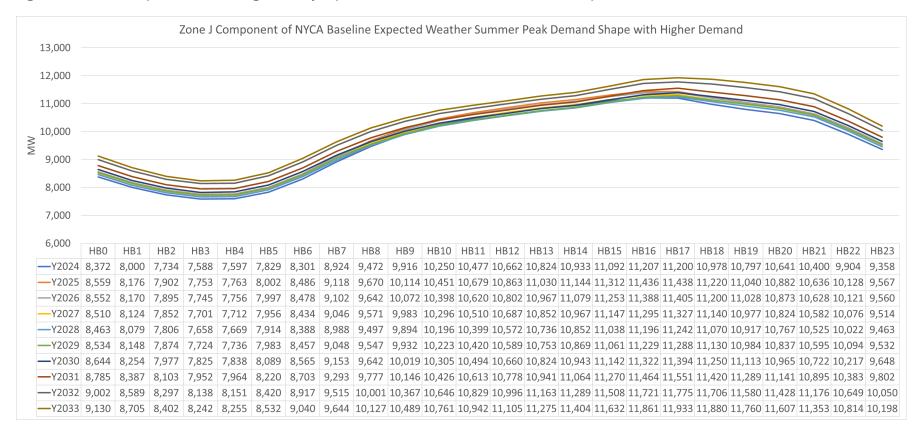






#### Figure 93: Zones A-F Component of NYCA Baseline Expected Weather Summer Peak Demand Shape

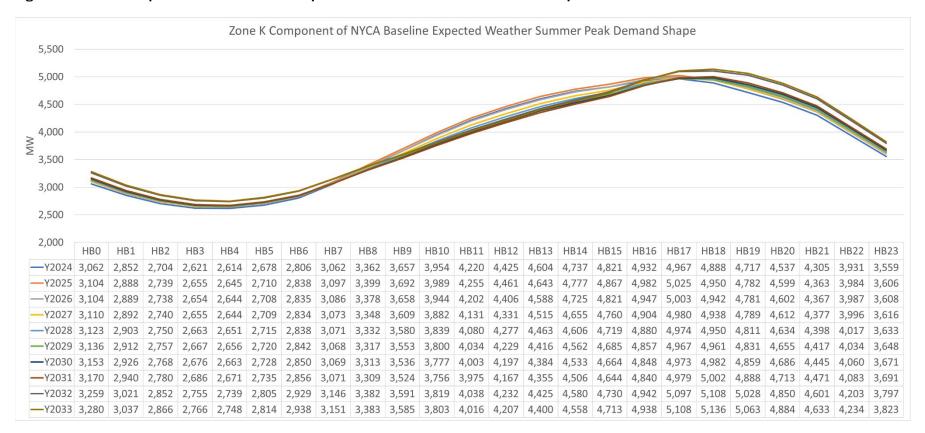





#### Figure 94: Zones GHI Component of NYCA Baseline Expected Weather Summer Peak Demand Shape



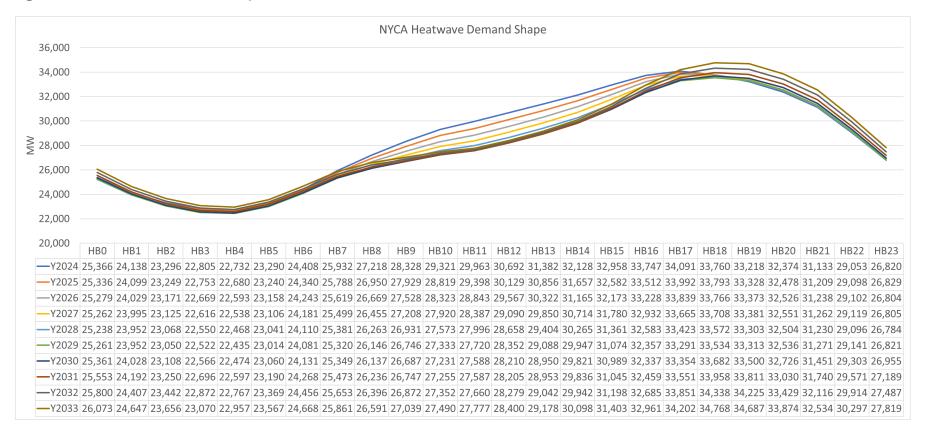



## Figure 95: Zone J Component of NYCA Baseline Expected Weather Summer Peak Demand Shape





#### Figure 96: Zone J Component of NYCA Higher Policy Expected Weather Summer Peak Demand Shape



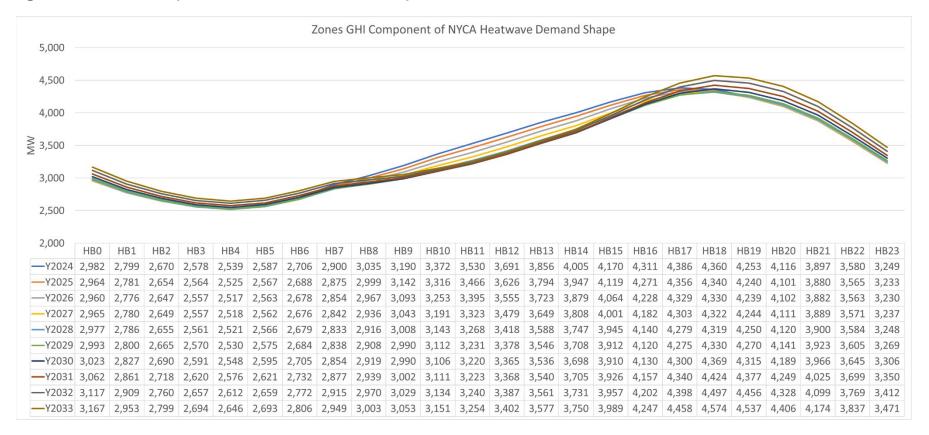



#### Figure 97: Zone K Component of NYCA Baseline Expected Weather Summer Peak Demand Shape



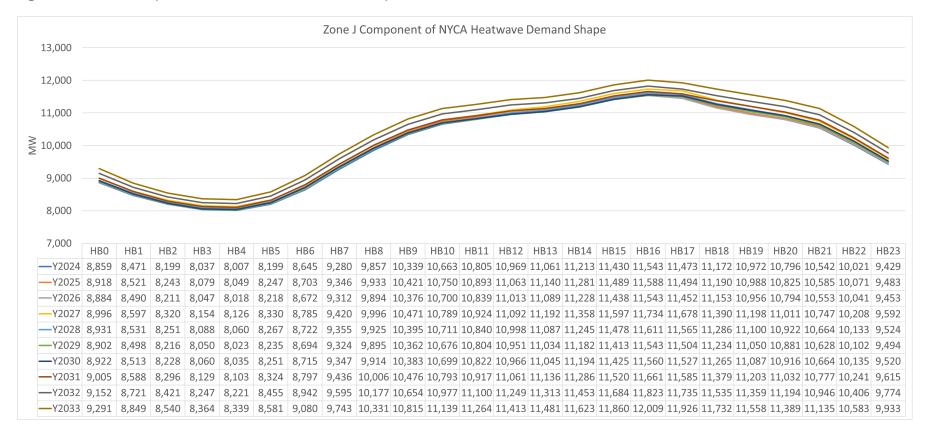
#### Figure 98: NYCA Heatwave Demand Shape





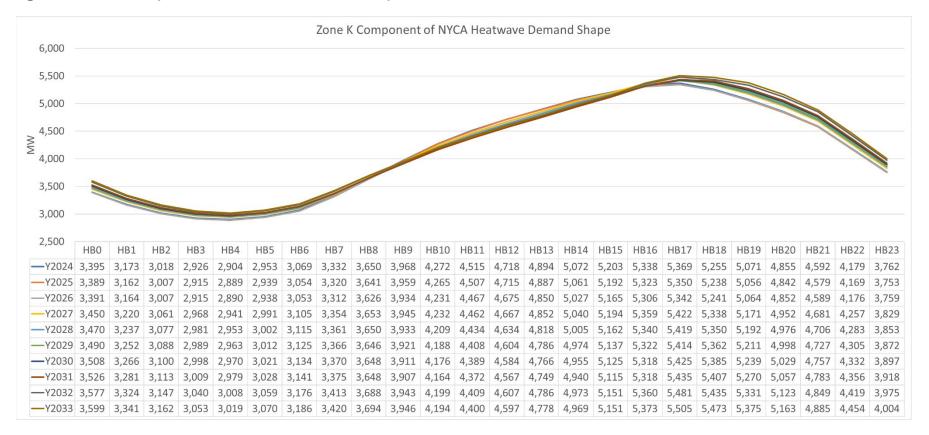

#### Figure 99: Zones A-F Component of NYCA Heatwave Demand Shape





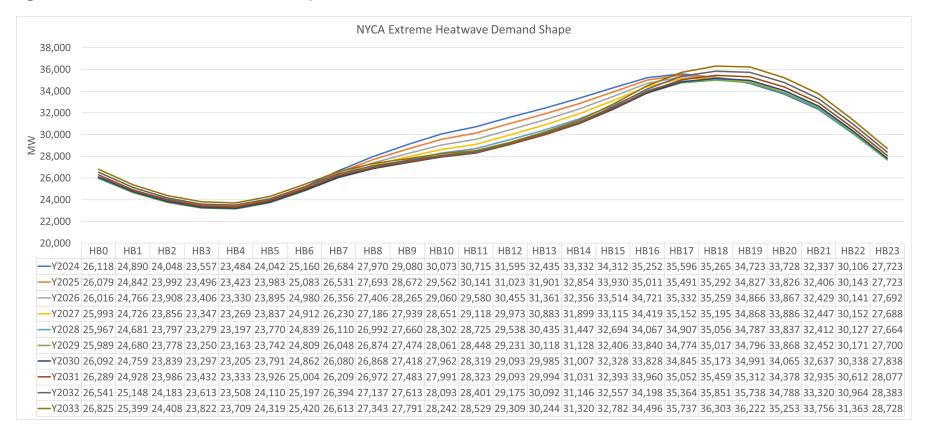

#### Figure 100: Zones GHI Component of NYCA Heatwave Demand Shape





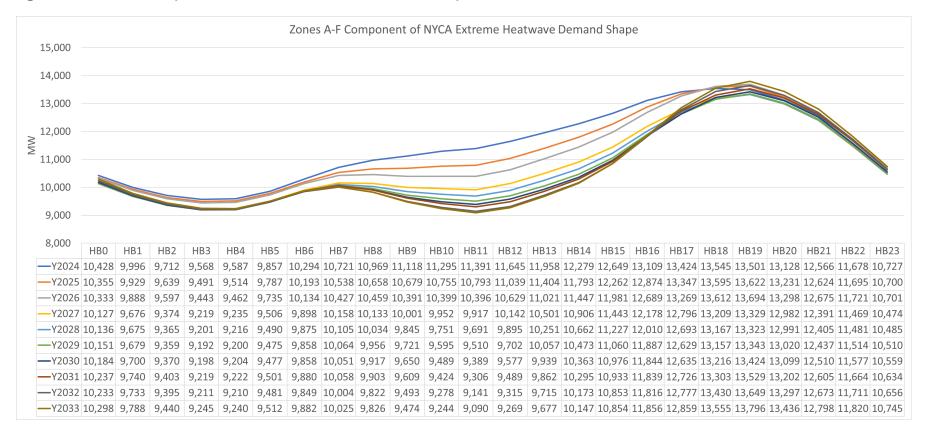

#### Figure 101: Zone J Component of NYCA Heatwave Demand Shape





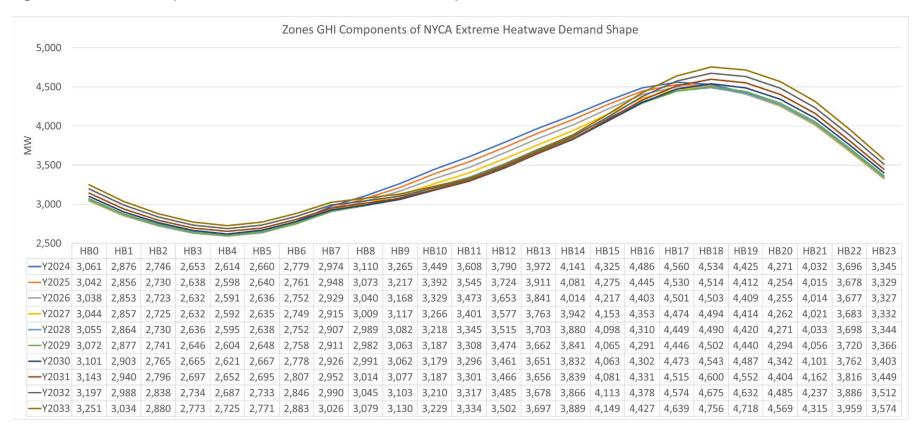

#### Figure 102: Zone K Component of NYCA Heatwave Demand Shape





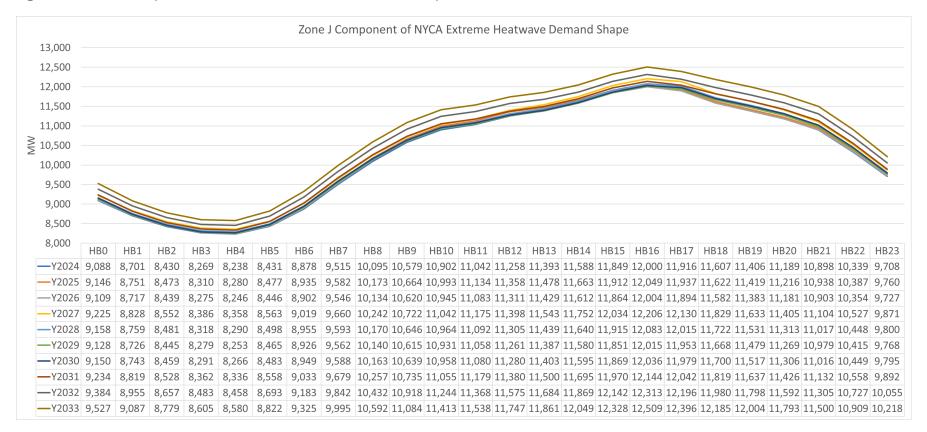

#### Figure 103: NYCA Extreme Heatwave Demand Shape





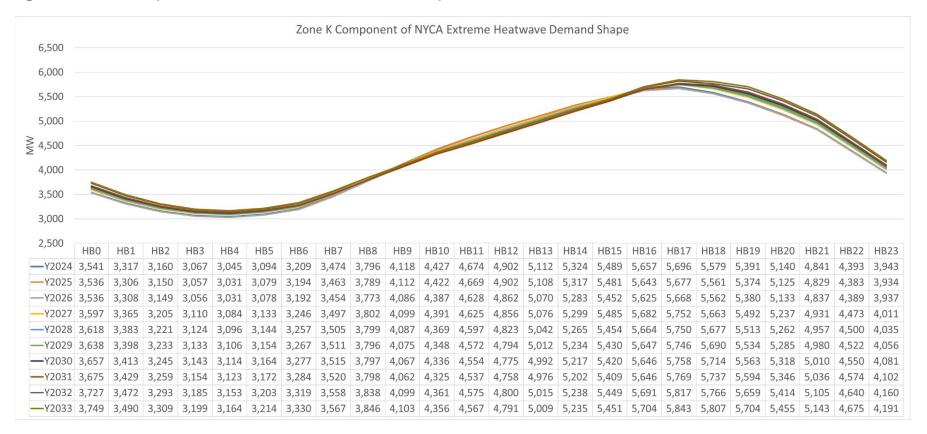

#### Figure 104: Zones A-F Component of NYCA Extreme Heatwave Demand Shape






#### Figure 105: Zones GHI Component of NYCA Extreme Heatwave Demand Shape






#### Figure 106: Zone J Component of NYCA Extreme Heatwave Demand Shape





#### Figure 107: Zone K Component of NYCA Extreme Heatwave Demand Shape





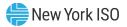
# **Appendix D - Reliability Compliance Obligations and Activities**

The Reliability Needs Assessment and the Comprehensive Reliability Plan are not the only NYISO work product or activity related to reliability planning. The purpose of this section is to discuss the NERC Planning Coordinator and Transmission Planner obligations fulfilled by the NYISO, as well as the other NPCC and NYSRC planning compliance obligations. The NYISO has various compliance obligations under NERC, NPCC, and the NYSRC. The periodicity of these requirements varies amongst the standards and requirements. While achieving compliance with all NERC, NPCC, and NYSRC obligations is critical to ensuring the continued reliability of the transmission system, this section primarily discusses in some detail the planning compliance requirements that closely align with this Reliability Needs Assessment. The full details of the compliance obligations are found within the reliability standards and requirements themselves. Publicly available results for the compliance activities listed below are found on the NYISO website under Planning – Reliability Compliance<sup>29</sup>.

The purpose of the NERC Reliability Standards is to "define the reliability requirements for planning and operating the North American bulk power system and are developed using a results-based approach that focuses on performance, risk management, and entity capabilities." The objective of NPCC Directory #1 and the NYSRC Reliability Rules and Compliance Manual are to provide a "design-based approach" to design and operate the bulk power system to a level of reliability that will not result in the loss or unintentional separation of a major portion of the system from any of the planning and operations contingencies with the intent of avoiding instability, voltage collapse and widespread cascading outages. Figure 108 shows the various NERC Standards with requirements applicable to the NYISO as a NERC registered Planning Coordinator and/or Transmission Planner. The NPCC planning compliance obligations are primarily located in NPCC Regional Reliability Reference Directory #1 Design and Operation of the Bulk Power System. The NYSRC planning compliance obligations are located in the Reliability Rules and Compliance Manual.

Fundamental to any reliability study is the accuracy modeling data provided by the entities responsible for providing the data. The data requirements for the development of the steady state, dynamics, and short circuit models are provided in the NYISO Reliability Analysis Data Manual (RAD Manual).<sup>30</sup> This data primarily comes from compliance with NERC MOD standards. Much of this data is collected through the annual database update process outlined in the RAD Manual and the annual FERC

<sup>&</sup>lt;sup>29</sup> <u>https://www.nyiso.com/planning-reliability-compliance</u>


<sup>&</sup>lt;sup>30</sup> https://www.nyiso.com/documents/20142/2924447/rel-anl-data-mnl.pdf

Form 715 filing to which the transmitting utilities certify, to the best of their knowledge, the accuracy of the data. Additional compliance obligations provide for the accuracy of the modeling data through comparison to actual system events (*e.g.*, MOD-026, MOD-026, and MOD-033).

Following the completion of the annual database update, these databases are used for study work such as the Reliability Planning Process and for many other compliance obligations, such as those listed in Figure 108. Planning studies similar to the Reliability Planning Process include the NPCC/NYSRC Area Transmission Reviews (ATRs) and the NERC TPL-001 assessments.

| Standard<br>Name | Title                                                                                                                         | Purpose                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FAC-002          | Facility Interconnection Studies                                                                                              | To study the impact of interconnecting new or materially modified Facilities to the Bulk Electric System.                                                                                                                                                                                                                                                                                                                |
| FAC-010          | System Operating Limits<br>Methodology for the Planning<br>Horizon                                                            | To ensure that System Operating Limits (SOLs) used in the reliable planning of the Bulk Electric System (BES) are determined based on an established methodology or methodologies.                                                                                                                                                                                                                                       |
| FAC-014          | Establish and Communicate<br>System Operating Limits                                                                          | To ensure that System Operating Limits (SOLs) used in the reliable planning and operation of the Bulk Electric System (BES) are determined based on an established methodology or methodologies.                                                                                                                                                                                                                         |
| IRO-017          | Outage Coordination                                                                                                           | To ensure that outages are properly coordinated in the<br>Operations Planning time horizon and Near-Term<br>Transmission Planning Horizon.                                                                                                                                                                                                                                                                               |
| MOD-026          | Verification of Models and Data<br>for Generator Excitation Control<br>System or Plant Volt/VAR Control<br>Functions          | To verify that the generator excitation control system or plant<br>volt/var control function model (including the power system<br>stabilizer model and the impedance compensator model) and<br>the model parameters used in dynamic simulations accurately<br>represent the generator excitation control system or plant<br>volt/var control function behavior when assessing Bulk<br>Electric System (BES) reliability. |
| MOD-027          | Verification of Models and Data<br>for Turbine/Governor and Load<br>Control or Active<br>Power/Frequency Control<br>Functions | To verify that the turbine/governor and load control or active<br>power/frequency control model and the model parameters,<br>used in dynamic simulations that assess Bulk Electric System<br>(BES) reliability, accurately represent generator unit real<br>power response to system frequency variations.                                                                                                               |
| MOD-031          | Demand and Energy Data                                                                                                        | To provide authority for applicable entities to collect Data,<br>energy and related data to support reliability studies and<br>assessments to enumerate the responsibilities and<br>obligations of requestors and respondents of that data.                                                                                                                                                                              |
| MOD-032          | Data for Power System Modeling<br>and Analysis                                                                                | To establish consistent modeling data requirements and<br>reporting procedures for development of planning horizon<br>cases necessary to support analysis of the reliability of the<br>interconnected transmission system.                                                                                                                                                                                               |
| MOD-033          | Steady State and Dynamic<br>System Model Validation                                                                           | To establish consistent validation requirements to facilitate<br>the collection of accurate data and building of planning<br>models to analyze the reliability of the interconnected<br>transmission system.                                                                                                                                                                                                             |

| Figure 108: List of NERC Standards for Plannin | g Coordinators and Transmission Planners |
|------------------------------------------------|------------------------------------------|
|                                                |                                          |



| Standard<br>Name | Title                                                                            | Purpose                                                                                                                                                                                                                                                                                                                                                                              |
|------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PRC-002          | Disturbance Monitoring and<br>Reporting Requirements                             | To have adequate data available to facilitate analysis of Bulk<br>Electric System (BES) Disturbances                                                                                                                                                                                                                                                                                 |
| PRC-006          | Automatic Underfrequency Load<br>Shedding                                        | To establish design and documentation requirements for<br>automatic underfrequency load shedding (UFLS) programs to<br>arrest declining frequency, assist recovery of frequency<br>following underfrequency events and provide last resort<br>system preservation measures.                                                                                                          |
| PRC-006-<br>NPCC | Automatic Underfrequency Load<br>Shedding                                        | The NPCC Automatic Underfrequency Load Shedding (UFLS) regional Reliability Standard establishes more stringent and specific NPCC UFLS program requirements than the NERC continent-wide PRC-006 standard. The program is designed such that declining frequency is arrested and recovered in accordance with established NPCC performance requirements stipulated in this document. |
| PRC-010          | Undervoltage Load Shedding                                                       | To establish an integrated and coordinated approach to the design, evaluation, and reliable operation of Undervoltage Load Shedding Programs (UVLS Programs).                                                                                                                                                                                                                        |
| PRC-012          | Remedial Action Schemes                                                          | To ensure that Remedial Action Schemes (RAS) do not<br>introduce unintentional or unacceptable reliability risks to the<br>Bulk Electric System (BES).                                                                                                                                                                                                                               |
| PRC-023          | Transmission Relay Loadability                                                   | Protective relay settings shall not limit transmission<br>loadability; not interfere with system operators' ability to take<br>remedial action to protect system reliability and be set to<br>reliably detect all fault conditions and protect the electrical<br>network from these faults.                                                                                          |
| PRC-026          | Relay Performance During Stable<br>Power Swings                                  | To ensure that load-responsible protective relays are expected<br>to not trip in response to stable power swings during non-Fault<br>conditions.                                                                                                                                                                                                                                     |
| TPL-001          | Transmission System Planning<br>Performance Requirements                         | Establish Transmission system planning performance<br>requirements within the planning horizon to develop a Bulk<br>Electric System (BES) that will operate reliably over a broad<br>spectrum of System conditions and following a wide range of<br>probable Contingencies.                                                                                                          |
| TPL-007          | Transmission System Planned<br>Performance for Geomagnetic<br>Disturbance Events | Establish requirements for Transmission system planned performance during geomagnetic disturbance (GMD) events.                                                                                                                                                                                                                                                                      |

## **NPCC/NYSRC** Area Transmission Reviews

The NPCC/NYSRC Area Transmission Reviews (ATRs) are performed on an annual basis to demonstrate that conformance with the performance criteria specified in NPCC Directory #1 and the NYSRC Reliability Rules. The ATR is prepared in accordance with NPCC and NYSRC procedures that require the assessment to be performed annually, with a Comprehensive Area Transmission Review performed at least every five years. Either an Interim or an Intermediate review can be conducted between Comprehensive reviews, as appropriate. In an Interim review, the planning coordinator summarizes the changes in planned facilities and forecasted system conditions since the last Comprehensive review and assesses the impact of those changes. No new analysis is required for an Interim review. An Intermediate review covers all of the elements of a Comprehensive review, but the analysis may be limited to addressing only significant issues, considering the extent of the system changes. In the ATRs, the NYISO assesses the BPTF for a period four to six years in the future (the NYISO evaluates year five of the Study Period). The 2022 ATR,<sup>31</sup> which is the most recently completed ATR, evaluated study year 2026 and found that the planned system through year 2027 conforms to the reliability criteria described in the NYSRC Reliability Rules and NPCC Directory #1. The next ATR is planned to be completed in the latter part of 2023or early 2024. Seven assessments are required as part of each ATR.

Seven assessments are required in each ATR.

The first assessment evaluates the steady state and dynamics transmission security. For instances where the transmission security assessment results indicate that the planned system does not meet the specified criteria, a corrective action plan is incorporated. The most resent ATR found that with the identified corrective action plans identified in the Reliability Planning Process, the system meets the applicable performance criteria.

For the second assessment, steady state and dynamics analyses are conducted to evaluate the performance of the system for low probability extreme contingencies. The purpose of the extreme contingency analysis is to examine the post-contingency steady state conditions, as well as stability, overload, cascading outages, and voltage collapse, to obtain an indication of system robustness and to determine the extent of any potential widespread system disturbance. In instances where the extreme contingency assessment concludes that there are serious consequences, the NYISO evaluates implementing a change to design or operating practices to address the issues.

The extreme contingency analysis included in the most recent ATR concluded that most events are stable and showed no thermal overloads over Short-Term Emergency (STE) ratings or significant voltage violations on the BPTF. For the events that did show voltage, thermal, or dynamics issues, these events were local in nature (*i.e.*, loss of local load or reduction of location generation) and do not result in a widespread system disturbance.

The third assessment evaluates extreme system conditions that have a low probability of occurrence, such as high peak load conditions (*e.g.*, 90<sup>th</sup> percentile load) resulting from extreme weather or the loss of fuel supply from a given resource (*e.g.*, loss of all gas units under winter peak load). The extreme system conditions evaluate various design criteria contingencies to evaluate the post contingency steady state conditions, as well as stability, overload, cascading outages, and voltage collapse. The evaluation of extreme

<sup>&</sup>lt;sup>31</sup> 2022 Interim Area Transmission Review of the New York State Bulk Power Transmission System

contingencies indicates system robustness and determine the extent of any potential widespread system disturbance. In instances where the extreme contingency assessment concludes that there are serious consequences, the NYISO evaluates implementing a change to design or operating practices to address the issues. For the extreme system conditions evaluated in the most recent ATR, the assessment found no steady state or dynamics transmission security criteria violations.

The fourth assessment evaluates the breaker fault duty at BPTF buses. The most recent ATR found no over-dutied breakers on BPTF buses.

The fifth assessment evaluates other requirements specific to the NYSRC Reliability Rules, including an evaluation of the impacts of planned system expansion or configuration facilities on the NYCA System Restoration Plan and Local Area Operation Rules for New York City Operations, loss of gas supply — New York City, and loss of gas supply — Long Island.

The sixth assessment is a review of Special Protection Systems (SPSs). This review evaluates the designed operation and possible consequences of failure to operate or mis-operation of the SPS within the NYCA.

The seventh assessment is a review of requested exclusions to the NPCC Directory #1 criteria.

# **NERC Planning Assessments (TPL-001)**

The NERC TPL-001 assessment (Planning Assessment) is performed annually. The purpose of the Planning Assessment is to demonstrate conformance with the applicable NERC transmission system planning performance requirements for the NYCA Bulk Electric System (BES). The Planning Assessment is a coordinated study between the NYISO and New York Transmission Owners.

The required system conditions to evaluate for this assessment include planned system representations over a 10-year study period for a variety of system conditions. **Figure 109** below, provides a description of the steady state, dynamics, and short circuit cases required to be evaluated in the Planning Assessment.



| Case Description                                      | Steady State | Dynamics | Short Circuit |
|-------------------------------------------------------|--------------|----------|---------------|
| System Peak Load (Year 1 or 2)                        | х            |          |               |
| System Peak Load (Year 5)                             | х            | х        | x             |
| System Peak Load (Year 10)                            | х            | x1       |               |
| System Off-Peak Load (One of the 5 years)             | х            | х        |               |
| System Peak Load (Year 1 or 2) Sensitivity            | х            |          |               |
| System Peak Load (Year 5) Sensitivity                 | х            | x        |               |
| System Off-Peak Load (One of the 5 years) Sensitivity | x            | х        |               |

## Figure 109: Description of NERC TPL-001 Planning Assessment Study Cases

Notes:

Only required to be assessed to address the impact of proposed material generation additions or changes in that timeframe.

The steady state and dynamics transmission security analyses evaluate the New York State Bulk Electric System (BES) to meet the applicable criteria. As part of this assessment, the unavailability of major transmission equipment with a lead time of more than a year is also assessed. The fault duty at BES buses is evaluated in the short circuit representation. When the steady state, dynamics, or short circuit analysis indicates an inability of the system to meet the performance requirements in the standard, a corrective action plan is developed addressing how the performance requirements will be met. Corrective action plans are reviewed in subsequent Planning Assessments for continued validity and implementation status.

For each steady state and dynamics case, the Planning Assessment evaluates the system response to extreme contingencies. Similar to the ATR, when the Planning Assessment extreme contingency analysis concludes that there is cascading caused by an extreme contingency, the NYISO evaluates possible actions designed to reduce the likelihood or mitigate the consequences and adverse impacts.

The most recent NERC Planning Assessment for compliance with TPL-001 was completed in June 2022. As this study contains Critical Energy Infrastructure Information (CEII), it is not posted on the NYISO website. Generally, the results of this study are consistent with the ATR studies. The study scope of this assessment is different from the ATR because the ATR evaluates the BPTF, while the TPL evaluates the Bulk Electric System (BES). Accordingly, criteria violations were observed on the BES. The corrective action plans for criteria violations are generally addressed in the affected Transmission Owner's Local Transmission Plan (LTP) and/or the proposed transmission facilities listed in Section 7 of the Load and Capacity Data Report.



## **Resource Adequacy Compliance Efforts**

NPCC's <u>Directory 1</u> defines a compliance obligation for the NYISO, as Resource Planner and Planning Coordinator, to perform a resource adequacy study evaluating a five-year planning horizon. The NYISO delivers a report every year under this study process to verify the system against the one-day-in-ten-years loss of load expectation (LOLE) criterion, usually based on the latest available RNA/CRP results and assumptions. The New York Area Review of Resource Adequacy completed reports are available <u>here</u>.

NYSRC <u>Reliability Rules</u> added a requirement<sup>32</sup> that the NYISO deliver a Long Term Resource Adequacy Assessment report every RNA year, and an annual update in the non-RNA years. The NYISO first implemented this requirement after finalizing the 2020 RNA.

The NYISO is also actively involved in other activities such as the NERC's annual Long Term Reliability Assessment (LTRA), along with its biennial Probabilistic Assessment (ProbA), performed by NERC with the input from all the NERC Regions and Areas, as well as NPCC's Long Range Adequacy Overview (LROA).

<sup>&</sup>lt;sup>32</sup> NYSRC Reliability Rule A.3, R.3.

# **Appendix E - Bulk Power Transmission Facilities**

# Existing New York State Bulk Power Transmission Facilities

| Facility Identifier | Terminal A       | Nominal Voltage | Terminal B         | Nominal Voltage |
|---------------------|------------------|-----------------|--------------------|-----------------|
| MSC-7040            | Chateauguay (HQ) | 765             | Massena            | 765             |
| BK 1                | Marcy            | 765             | Marcy              | 345             |
| BK 2                | Marcy            | 765             | Marcy              | 345             |
| BK 1                | Massena          | 765             | Massena (MMS1)     | 230             |
| BK 2                | Massena          | 765             | Massena (MMS2)     | 230             |
| MSU1                | Massena          | 765             | Marcy              | 765             |
| 5018                | Branchburg       | 500             | Ramapo             | 500             |
| BK 1500             | Ramapo           | 500             | Ramapo             | 345             |
| M29                 | Academy          | 345             | Sprain Brook       | 345             |
| 2                   | Alps             | 345             | New Scotland       | 345             |
| 393                 | Alps             | 345             | Berkshire (ISO-NE) | 345             |
| 1-AR                | Alps             | 345             | Reynolds Road      | 345             |
| Q35L                | Astoria          | 345             | E. 13th St C       | 345             |
| Q35M                | Astoria          | 345             | E. 13th St D       | 345             |
| G13                 | Astoria Annex    | 345             | Astoria Energy     | 345             |
| PAR-1               | Astoria Annex    | 345             | Astoria Annex      | 345             |
| TR-1                | Astoria Annex    | 345             | Astoria Annex      | 138             |
| 91                  | Athens           | 345             | Pleasant Valley    | 345             |
| 95                  | Athens           | 345             | Leeds              | 345             |
| CC1                 | Athens           | 345             | Athens CC/ST #1    | 18              |
| CC2                 | Athens           | 345             | Athens CC/ST #2    | 18              |
| CC3                 | Athens           | 345             | Athens CC/ST #3    | 18              |
| G27                 | Bayonne          | 345             | Gowanus            | 345             |
| PA301               | Beck (IESO) A    | 345             | Niagara            | 345             |
| PA302               | Beck (IESO) B    | 345             | Niagara            | 345             |
| 68                  | Bowline          | 345             | Ladentown          | 345             |
| 1                   | Bowline Point    | 345             | Bowline Point #1   | 20              |
| 2                   | Bowline Point    | 345             | Bowline Point #2   | 20              |
| 67-1                | Bowline Point    | 345             | W. Haverstraw      | 345             |
| BK TA5              | Buchanan N.      | 345             | Buchanan TA5       | 138             |
| W93                 | Buchanan N.      | 345             | Eastview 2N        | 345             |
| W95                 | Buchanan N.      | 345             | Indian Point #2    | 22              |
| W95                 | Buchanan N.      | 345             | Indian Point #2    | 345             |
| Y94                 | Buchanan N.      | 345             | Ramapo             | 345             |
| W96                 | Buchanan S.      | 345             | Indian Point #3    | 22              |
| W96                 | Buchanan S.      | 345             | Indian Point #3    | 345             |
| W97                 | Buchanan S.      | 345             | Millwood           | 345             |



| Facility Identifier | Terminal A      | Nominal Voltage | Terminal B             | Nominal Voltage |
|---------------------|-----------------|-----------------|------------------------|-----------------|
| W98                 | Buchanan S.     | 345             | Millwood               | 345             |
| Y88                 | Buchanan S.     | 345             | Ladentown              | 345             |
| 36                  | Clarks Corners  | 345             | Oakdale                | 345             |
| 16893               | Clarks Corners  | 345             | Lafayette              | 345             |
| BK 1                | Clarks Corners  | 345             | Clarks Corners         | 115             |
| BK 2                | Clarks Corners  | 345             | Clarks Corners         | 115             |
| 6                   | Clay            | 345             | Volney                 | 345             |
| 8                   | Clay            | 345             | Nine Mile Point #1     | 345             |
| 13                  | Clay            | 345             | Dewitt                 | 345             |
| 26                  | Clay            | 345             | Independence           | 345             |
| 1-16                | Clay            | 345             | Edic                   | 345             |
| 2-15                | Clay            | 345             | Edic                   | 345             |
| BK 1                | Clay            | 345             | Clay                   | 115             |
| BK 2                | Clay            | 345             | Clay                   | 115             |
| PC1                 | Clay            | 345             | Pannell Rd             | 345             |
| PC2                 | Clay            | 345             | Pannell Rd             | 345             |
| 33                  | Coopers Corners | 345             | Fraser                 | 345             |
| BK 2                | Coopers Corners | 345             | Coopers Corners        | 115             |
| ВК 3                | Coopers Corners | 345             | Coopers Corners        | 115             |
| CCDA42              | Coopers Corners | 345             | Dolson Ave             | 345             |
| CCRT-34             | Coopers Corners | 345             | Rock Tavern/Middletown | 345             |
| UCC2-41             | Coopers Corners | 345             | Marcy                  | 345             |
| F83                 | Cricket Valley  | 345             | Pleasant Valley        | 345             |
| F84                 | Cricket Valley  | 345             | Pleasant Valley        | 345             |
| 398                 | Cricket Valley  | 345             | Long Mountain (NE)     | 345             |
| MSUT-1              | Cricket Valley  | 345             | Cricket Valley         | 18              |
| MSUT-2              | Cricket Valley  | 345             | Cricket Valley         | 18              |
| MSUT-3              | Cricket Valley  | 345             | Cricket Valley         | 18              |
| 22                  | Dewitt          | 345             | Lafayette              | 345             |
| BK 2                | Dewitt          | 345             | Dewitt                 | 115             |
| DART44              | Dolson Ave      | 345             | Rock Tavern            | 345             |
| 501                 | Duffy Ave       | 345             | Newbridge Road         | 345             |
| 71                  | Dunwoodie       | 345             | Mott Haven             | 345             |
| 72                  | Dunwoodie       | 345             | Mott Haven             | 345             |
| W73/BK S1           | Dunwoodie       | 345             | Dunwoodie South        | 138             |
| W74/BK N1           | Dunwoodie       | 345             | Dunwoodie North        | 138             |
| W75                 | Dunwoodie       | 345             | Sprain Brook           | 345             |
| W89                 | Dunwoodie       | 345             | Pleasantville          | 345             |
| W90                 | Dunwoodie       | 345             | Pleasantville          | 345             |
| Y50                 | Dunwoodie       | 345             | Shore Road             | 345             |

| Facility Identifier | Terminal A     | Nominal Voltage | Terminal B            | Nominal Voltage |
|---------------------|----------------|-----------------|-----------------------|-----------------|
| BK 17               | E. 13th St     | 345             | E. 13th St            | 69              |
| 45                  | E. 13th St A   | 345             | Farragut              | 345             |
| BK 14               | E. 13th St A   | 345             | E. 13th St            | 138             |
| BK 15               | E. 13th St A   | 345             | E. 13th St            | 138             |
| M54                 | E. 13th St A   | 345             | W. 49th St.           | 345             |
| 46                  | E. 13th St B   | 345             | Farragut              | 345             |
| BK 12               | E. 13th St B   | 345             | E. 13th St            | 138             |
| BK 13               | E. 13th St B   | 345             | E. 13th St            | 138             |
| M55                 | E. 13th St B   | 345             | W. 49th St.           | 345             |
| B47                 | E. 13th St C   | 345             | Farragut              | 345             |
| BK 16               | E. 13th St C   | 345             | E. 13th St            | 138             |
| 48                  | E. 13th St D   | 345             | Farragut              | 345             |
| BK 10               | E. 13th St D   | 345             | E. 13th St            | 138             |
| BK 11               | E. 13th St D   | 345             | E. 13th St            | 138             |
| 305                 | E. Fishkill    | 345             | Roseton               | 345             |
| BK 1                | E. Fishkill    | 345             | E. Fishkill           | 115             |
| BK 2                | E. Fishkill    | 345             | E. Fishkill           | 115             |
| F36                 | E. Fishkill    | 345             | Pleasant Valley       | 345             |
| F37                 | E. Fishkill    | 345             | Pleasant Valley       | 345             |
| F38/Y86             | E. Fishkill    | 345             | Wood St/Pleasantville | 345             |
| F39/Y87             | E. Fishkill    | 345             | Wood St/Pleasantville | 345             |
| BK 1                | E. Garden City | 345             | E. Garden City        | 138             |
| BK 2                | E. Garden City | 345             | E. Garden City        | 138             |
| PAR1                | E. Garden City | 345             | E. Garden City        | 345             |
| PAR2                | E. Garden City | 345             | E. Garden City        | 345             |
| Y49                 | E. Garden City | 345             | Sprain Brook          | 345             |
| 1N*                 | Eastview       | 345             | Eastview              | 138             |
| 1S*                 | Eastview       | 345             | Eastview              | 138             |
| 2N*                 | Eastview       | 345             | Eastview              | 138             |
| 2S*                 | Eastview       | 345             | Eastview              | 138             |
| W64                 | Eastview 1N    | 345             | Sprain Brook          | 345             |
| W99                 | Eastview 1N    | 345             | Millwood              | 345             |
| W78                 | Eastview 1S    | 345             | Sprain Brook          | 345             |
| W85                 | Eastview 1S    | 345             | Millwood              | 345             |
| W79                 | Eastview 2N    | 345             | Sprain Brook          | 345             |
| W65                 | Eastview 2S    | 345             | Sprain Brook          | 345             |
| W82                 | Eastview 2S    | 345             | Millwood              | 345             |
| 14                  | Edic           | 345             | New Scotland          | 345             |
| 17/BK 2             | Edic           | 345             | Porter                | 230             |
| BK 3                | Edic           | 345             | Porter                | 115             |



| Facility Identifier | Terminal A     | Nominal Voltage | Terminal B           | Nominal Voltage |
|---------------------|----------------|-----------------|----------------------|-----------------|
| BK 4                | Edic           | 345             | Porter               | 115             |
| BK 5                | Edic           | 345             | Edic                 | 115             |
| BK 6                | Edic           | 345             | Edic                 | 115             |
| EF24-40             | Edic           | 345             | Fraser               | 345             |
| FE-1                | Edic           | 345             | Fitzpatrick          | 345             |
| UE1-7               | Edic           | 345             | Marcy                | 345             |
| 17-EO               | Elbridge       | 345             | Oswego               | 345             |
| 17-LE               | Elbridge       | 345             | Lafayette            | 345             |
| BK 1                | Elbridge       | 345             | Elbridge             | 115             |
| 41                  | Farragut       | 345             | Gowanus              | 345             |
| 42                  | Farragut       | 345             | Gowanus              | 345             |
| 61                  | Farragut       | 345             | Rainey               | 345             |
| 62                  | Farragut       | 345             | Rainey               | 345             |
| 63                  | Farragut       | 345             | Rainey               | 345             |
| B3402               | Farragut       | 345             | Hudson A             | 345             |
| BK 1*               | Farragut       | 345             | Farragut             | 138             |
| BK 10               | Farragut       | 345             | Farragut             | 138             |
| BK 2*               | Farragut       | 345             | Farragut             | 138             |
| BK 3*               | Farragut       | 345             | Farragut             | 138             |
| BK 4*               | Farragut       | 345             | Farragut             | 138             |
| BK 5*               | Farragut       | 345             | Farragut             | 138             |
| BK 6*               | Farragut       | 345             | Farragut             | 138             |
| BK 7*               | Farragut       | 345             | Farragut             | 138             |
| BK 8                | Farragut       | 345             | Farragut             | 138             |
| ВК 9                | Farragut       | 345             | Farragut             | 138             |
| C3403               | Farragut       | 345             | Hudson B             | 345             |
| TR11                | Farragut       | 345             | Farragut PAR (B3402) | 345             |
| TR12                | Farragut       | 345             | Farragut PAR (C3403) | 345             |
| 1                   | Fitzpatrick    | 345             | Fitzpatrick          | 24              |
| FS-10               | Fitzpatrick    | 345             | Scriba               | 345             |
| BK1                 | Five Mile Rd   | 345             | Five Mile Rd         | 115             |
| 29                  | Five Mile Road | 345             | Stolle Road          | 345             |
| 37                  | Five Mile Road | 345             | Piercebrook          | 345             |
| 32                  | Fraser         | 345             | Oakdale              | 345             |
| ВК 2                | Fraser         | 345             | Fraser               | 115             |
| GF5-35              | Fraser         | 345             | Gilboa               | 345             |
| 20                  | Arthur Kill #3 | 345             | Fresh Kills          | 345             |
| 20/TR3              | Fresh Kills    | 345             | Arthur Kill #3       | 22              |
| 21                  | Fresh Kills    | 345             | Goethals             | 345             |
| 22                  | Fresh Kills    | 345             | Goethals             | 345             |

| Facility Identifier | Terminal A         | Nominal Voltage | Terminal B            | Nominal Voltage |
|---------------------|--------------------|-----------------|-----------------------|-----------------|
| TA 1                | Fresh Kills        | 345             | Fresh Kills R         | 138             |
| TB 1                | Fresh Kills        | 345             | Fresh Kills R         | 138             |
| 1                   | Gilboa             | 345             | Gilboa #1             | 17              |
| 2                   | Gilboa             | 345             | Gilboa #2             | 17              |
| 3                   | Gilboa             | 345             | Gilboa #3             | 17              |
| 4                   | Gilboa             | 345             | Gilboa #4             | 17              |
| GL3                 | Gilboa             | 345             | Leeds                 | 345             |
| GNS-1               | Gilboa             | 345             | New Scotland          | 345             |
| BK 1                | Goethals           | 345             | Goethals              | 230/13          |
| BK 1N               | Goethals           | 345             | Goethals              | 345             |
| G23L                | Goethals           | 345             | Linden Cogen          | 345             |
| G23M                | Goethals           | 345             | Linden Cogen          | 345             |
| 25                  | Goethals           | 345             | Gowanus               | 345             |
| BK 2                | Gowanus            | 345             | Gowanus               | 138             |
| 26                  | Goethals           | 345             | Gowanus               | 345             |
| BK 14               | Gowanus            | 345             | Gowanus               | 138             |
| 37                  | Homer City         | 345             | Stolle Rd             | 345             |
| 47                  | Homer City         | 345             | Mainesburg            | 345             |
| 48                  | Homer City         | 345             | Piercebrook           | 345             |
| Y56                 | Hudson HVdc        | 345             | W. 49th St            | 345             |
| HR1                 | Henrietta (S. 255) | 345             | Rochester Station #80 | 345             |
| HR2                 | Henrietta (S. 255) | 345             | Rochester Station #80 | 345             |
| 40                  | Henrietta (S. 255) | 345             | Rochester Station #80 | 345             |
| BK1                 | Henrietta (S. 255) | 345             | Henrietta (S. 255)    | 115             |
| BK2                 | Henrietta (S. 255) | 345             | Henrietta (S. 255)    | 115             |
| SHI-39              | Henrietta (S. 255) | 345             | Kintigh (Somerset)    | 345             |
| 301                 | Hurley Ave         | 345             | Leeds                 | 345             |
| 303                 | Hurley Ave         | 345             | Roseton               | 345             |
| BK 1                | Hurley Ave         | 345             | Hurley Ave            | 115             |
| 25                  | Independence       | 345             | Scriba                | 345             |
| 27                  | Independence       | 345             | Sithe Independence #1 | 18              |
| 28                  | Independence       | 345             | Sithe Independence #2 | 18              |
| NS1-38              | Kintigh (Somerset) | 345             | Niagara               | 345             |
| 67                  | Ladentown          | 345             | W. Haverstraw         | 345             |
| W72                 | Ladentown          | 345             | Ramapo                | 345             |
| 92                  | Leeds              | 345             | Pleasant Valley       | 345             |
| 93                  | Leeds              | 345             | New Scotland          | 345             |
| 94                  | Leeds              | 345             | New Scotland          | 345             |
| 398                 | Long Mtn. (ISO-NE) | 345             | Pleasant Valley       | 345             |
| 30                  | Mainesburg         | 345             | Watercure             | 345             |



| Facility Identifier | Terminal A         | Nominal Voltage | Terminal B              | Nominal Voltage |
|---------------------|--------------------|-----------------|-------------------------|-----------------|
| 18                  | Marcy              | 345             | New Scotland            | 345             |
| 19                  | Marcy              | 345             | Volney                  | 345             |
| TA 1                | Millwood           | 345             | Millwood                | 138             |
| TA 2                | TA 2 Millwood      |                 | Millwood                | 138             |
| F30/W80             | F30/W80 Millwood   |                 | Wood St/Pleasant Valley | 345             |
| F31/W81             | Millwood           | 345             | Wood St/Pleasant Valley | 345             |
| BK 6*               | Mott Haven         | 345             | Mott Haven              | 138             |
| BK 7*               | Mott Haven         | 345             | Mott Haven              | 138             |
| BK 8*               | Mott Haven         | 345             | Mott Haven              | 138             |
| BK 9*               | Mott Haven         | 345             | Mott Haven              | 138             |
| Q11                 | Mott Haven         | 345             | Rainey                  | 345             |
| Q12                 | Mott Haven         | 345             | Rainey                  | 345             |
| BK 1                | New Scotland       | 345             | New Scotland            | 115             |
| BK 2                | New Scotland       | 345             | New Scotland            | 115             |
| BUS TIE             | New Scotland       | 345             | New Scotland            | 345             |
| BK 3                | Niagara            | 345             | Niagara                 | 230             |
| BK 4                | Niagara            | 345             | Niagara                 | 230             |
| BK 5                | Niagara            | 345             | Niagara                 | 230             |
| NH2                 | Niagara            | 345             | Henrietta (S. 255)      | 345             |
| 2                   | Nine Mile Point    | 345             | Nine Mile Point #1      | 23              |
| 9                   | Nine Mile Point    | 345             | Scriba                  | 345             |
| 23                  | Nine Mile Point #2 | 345             | Scriba                  | 345             |
| 31                  | Oakdale            | 345             | Watercure               | 345             |
| BK 2                | Oakdale            | 345             | Oakdale                 | 115/34.5        |
| ВК 3                | Oakdale            | 345             | Oakdale                 | 115             |
| 5                   | Oswego             | 345             | Oswego #5               | 22              |
| 6                   | Oswego             | 345             | Oswego #6               | 22              |
| 11                  | Oswego             | 345             | Volney                  | 345             |
| 12                  | Oswego             | 345             | Volney                  | 345             |
| BK 7                | Oswego             | 345             | Oswego                  | 115             |
| BK 1                | Pannell Road       | 345             | Pannell Road            | 115             |
| BK 2                | Pannell Road       | 345             | Pannell Road            | 115             |
| BK 3                | Pannell Road       | 345             | Pannell Road            | 115             |
| RP1                 | Pannell Road       | 345             | Rochester Station #80   | 345             |
| RP2                 | Pannell Road       | 345             | Rochester Station #80   | 345             |
| BK S1               | Pleasant Valley    | 345             | Pleasant Valley         | 115             |
| F30                 | Pleasant Valley    | 345             | Wood St.                | 345             |
| F31                 | Pleasant Valley    | 345             | Wood St.                | 345             |
| BK 1                | Pleasantville      | 345             | Pleasantville           | 13              |
| BK 2                | Pleasantville      | 345             | Pleasantville           | 13              |



| Facility Identifier | Terminal A            | Nominal Voltage | Terminal B            | Nominal Voltage |
|---------------------|-----------------------|-----------------|-----------------------|-----------------|
| Y86                 | Pleasantville         | 345             | Wood St.              | 345             |
| Y87                 | Pleasantville         | 345             | Wood St.              | 345             |
| TR5E/PAR5           | Rainey                | 345             | Corona                | 138             |
| 30                  | Rainey                | 345             | Ravenswood #3         | 22              |
| 60L                 | 60L Rainey            |                 | Ravenswood            | 345             |
| 60M                 | Rainey                | 345             | Ravenswood            | 345             |
| BK 2E*              | Rainey                | 345             | Rainey                | 138             |
| BK 3W*              | Rainey                | 345             | Rainey                | 138             |
| BK 7E*              | Rainey                | 345             | Rainey                | 138             |
| BK 7W*              | Rainey                | 345             | Rainey                | 138             |
| BK 8E               | Rainey                | 345             | Rainey                | 138             |
| BK 8W*              | Rainey                | 345             | Rainey                | 138             |
| BK 9E*              | Rainey                | 345             | Rainey                | 138             |
| 69                  | Ramapo                | 345             | S. Mahwah A           | 345             |
| 70                  | Ramapo                | 345             | S. Mahwah B           | 345             |
| 76                  | Ramapo                | 345             | Sugarloaf/Rock Tavern | 345             |
| 77                  | Ramapo                | 345             | Rock Tavern           | 345             |
| PAR3500             | Ramapo                | 345             | Ramapo                | 345             |
| PAR4500             | Ramapo                | 345             | Ramapo                | 345             |
| BK 2                | Reynolds Road         | 345             | Reynolds Road         | 115             |
| BK 1                | Rochester Station #80 | 345             | Rochester Station #80 | 115             |
| BK 2                | Rochester Station #80 | 345             | Rochester Station #80 | 115             |
| ВК З                | Rochester Station #80 | 345             | Rochester Station #80 | 115             |
| BK 5                | Rochester Station #80 | 345             | Rochester Station #80 | 115             |
| 311                 | Rock Tavern           | 345             | Roseton               | 345             |
| BK TR1              | Rock Tavern           | 345             | Rock Tavern           | 115             |
| BK TR3              | Rock Tavern           | 345             | Rock Tavern           | 115             |
| 1                   | Roseton               | 345             | Roseton #1            | 20              |
| 2                   | Roseton               | 345             | Roseton #2            | 20              |
| BK 258              | S. Mahwah             | 345             | S. Mahwah             | 138             |
| J3410               | S. Mahwah A           | 345             | Waldwick              | 345             |
| K3411               | S. Mahwah B           | 345             | Waldwick              | 345             |
| 20                  | Scriba                | 345             | Volney                | 345             |
| 21                  | Scriba                | 345             | Volney                | 345             |
| BK 1                | Scriba                | 345             | Scriba                | 115             |
| BK 2                | Scriba                | 345             | Scriba                | 115             |
| 1                   | Kintigh (Somerset)    | 345             | Somerset              | 24              |
| BK 1                | Shore Road            | 345             | Shore Road            | 138             |
| BK 2                | Shore Road            | 345             | Shore Road            | 138             |
| BK N7               | Sprain Brook          | 345             | Sprain Brook          | 138             |

| Facility Identifier | Terminal A      | Nominal Voltage | Terminal B      | Nominal Voltage |
|---------------------|-----------------|-----------------|-----------------|-----------------|
| BK S6               | Sprain Brook    | 345             | Sprain Brook    | 138             |
| M51                 | Sprain Brook    | 345             | W. 49th St      | 345             |
| M52                 | Sprain Brook    | 345             | W. 49th St      | 345             |
| X28                 | Sprain Brook    | 345             | Tremont         | 345             |
| BK 3                | Stolle Road     | 345             | Stolle Road     | 115             |
| BK 4                | Stolle Road     | 345             | Stolle Road     | 115             |
| 11                  | Tremont         | 345             | Tremont         | 138             |
| 12                  | Tremont         | 345             | Tremont         | 138             |
| BK 1                | W. 49th St      | 345             | W. 49th St      | 138             |
| BK 2*               | W. 49th St      | 345             | W. 49th St      | 138             |
| BK 3*               | W. 49th St      | 345             | W. 49th St      | 138             |
| BK 4*               | W. 49th St      | 345             | W. 49th St      | 138             |
| BK 5*               | W. 49th St      | 345             | W. 49th St      | 138             |
| Y56                 | W. 49th St      | 345             | Hudson HVdc     | 345             |
| BK 194              | West Haverstraw | 345             | West Haverstraw | 138             |
| BK 1                | Watercure       | 345             | Watercure       | 230             |
| BK 2                | Watercure       | 345             | Watercure       | 230             |
| BK 1                | Wood Street     | 345             | Wood Street     | 115             |
| BK 2                | Wood Street     | 345             | Wood Street     | 115             |
| 13                  | Adirondack      | 230             | Chases Lake     | 230             |
| 12-AP               | Adirondack      | 230             | Porter          | 230             |
| MA1                 | Adirondack      | 230             | Moses           | 230             |
| MA2                 | Adirondack      | 230             | Moses           | 230             |
| E205W               | Bear Swamp (NE) | 230             | Eastover Rd.    | 230             |
| BP76                | Beck (IESO)     | 230             | Packard         | 230             |
| PA27                | Beck (IESO)     | 230             | Niagara         | 230             |
| 60                  | Canandaigua     | 230             | Meyer           | 230             |
| 68                  | Canandaigua     | 230             | Stoney Ridge    | 230             |
| 11                  | Chases Lake     | 230             | Porter          | 230             |
| DP1                 | Duley           | 230             | Plattsburgh     | 230             |
| PND-1               | Duley           | 230             | Patnode         | 230             |
| 68                  | Dunkirk         | 230             | S. Ripley       | 230             |
| 73                  | Dunkirk         | 230             | Gardenville     | 230             |
| 74                  | Dunkirk         | 230             | Gardenville     | 230             |
| 70                  | E.Towanda       | 230             | Hillside        | 230             |
| 38                  | Eastover Rd.    | 230             | Rotterdam       | 230             |
| TB 1                | Eastover Rd.    | 230             | Eastover Rd.    | 115             |
| TB 2                | Eastover Rd.    | 230             | Eastover Rd.    | 115             |
| 17                  | Edic            | 230             | Porter          | 230             |
| 70                  | Elm St          | 230             | Huntley         | 230             |

| Facility Identifier | Terminal A          | Nominal Voltage | Terminal B          | Nominal Voltage |
|---------------------|---------------------|-----------------|---------------------|-----------------|
| 71                  | Elm St              | 230             | Gardenville         | 230             |
| 72                  | Elm St              | 230             | Gardenville         | 230             |
| 69                  | Erie East (PJM)     | 230             | S. Ripley           | 230             |
| 66                  | Gardenville         | 230             | Stolle Rd           | 230             |
| 79                  | Gardenville         | 230             | Huntley             | 230             |
| 80                  | Gardenville         | 230             | Huntley             | 230             |
| BK 2                | Gardenville         | 230             | Gardenville         | 115             |
| BK 3                | Gardenville         | 230             | Gardenville         | 115             |
| BK 4                | Gardenville         | 230             | Gardenville         | 115             |
| BK 6                | Gardenville         | 230             | Gardenville         | 115/34.5        |
| BK 7                | Gardenville         | 230             | Gardenville         | 115/34.5        |
| T8-12               | Gardenville (NGrid) | 230             | Gardenville (NYSEG) | 230             |
| A2253               | Goethals            | 230             | Linden (PJM)        | 230             |
| 67                  | High Sheldon        | 230             | Stolle Rd           | 230             |
| 81                  | High Sheldon        | 230             | Stoney Creek        | 230             |
| 69                  | Hillside            | 230             | Watercure           | 230             |
| 72                  | Hillside            | 230             | Stoney Ridge        | 230             |
| ВК 3                | Hillside            | 230             | Hillside            | 115/34.5        |
| ВК 4                | Hillside            | 230             | Hillside            | 115/34.5        |
| 77                  | Huntley             | 230             | Packard             | 230             |
| BK 670              | Huntley             | 230             | Huntley #67         | 13              |
| BK 680              | Huntley             | 230             | Huntley #68         | 13              |
| 78                  | Huntley             | 230             | Packard             | 230             |
| MMS1                | Massena             | 230             | Moses               | 230             |
| MMS2                | Massena             | 230             | Moses               | 230             |
| 85/87               | Meyer               | 230             | Wethersfield        | 230             |
| BK 4                | Meyer               | 230             | Meyer               | 115/34.5        |
| BK 1                | Moses               | 230             | Moses               | 115             |
| BK 2                | Moses               | 230             | Moses               | 115             |
| ВК 3                | Moses               | 230             | Moses               | 115             |
| BK 4                | Moses               | 230             | Moses               | 115             |
| L33P                | Moses               | 230             | St. Lawrence (IESO) | 230             |
| L34P                | Moses               | 230             | St. Lawrence (IESO) | 230             |
| MW1                 | Moses               | 230             | Willis              | 230             |
| MW2                 | Moses               | 230             | Willis              | 230             |
| 61                  | Niagara             | 230             | Packard             | 230             |
| 62                  | Niagara             | 230             | Packard             | 230             |
| 64                  | Niagara             | 230             | Robinson Rd         | 230             |
| 2332                | Niagara             | 230             | Niagara             | 230             |
| 2342                | Niagara             | 230             | Niagara             | 230             |



| Facility Identifier | Terminal A    | Nominal Voltage | Terminal B     | Nominal Voltage |
|---------------------|---------------|-----------------|----------------|-----------------|
| BK T1               | Niagara       | 230             | Niagara        | 115             |
| BK T2               | Niagara       | 230             | Niagara        | 115             |
| N Bus Tie           | Niagara       | 230             | Niagara        | 230             |
| S Bus Tie           | Niagara       | 230             | Niagara        | 230             |
| 71                  | Oakdale       | 230             | Watercure      | 230             |
| BK 1                | Oakdale       | 230             | Oakdale        | 115             |
| 3                   | Packard       | 230             | Packard        | 115             |
| 4                   | Packard       | 230             | Packard        | 115             |
| WPN1                | Patnode       | 230             | Willis         | 230             |
| BK 1                | Plattsburgh   | 230             | Plattsburgh    | 115             |
| BK 4                | Plattsburgh   | 230             | Plattsburgh    | 115             |
| RYP-2               | Plattsburgh   | 230             | Ryan           | 230             |
| 30                  | Porter        | 230             | Rotterdam      | 230             |
| 31                  | Porter        | 230             | Rotterdam      | 230             |
| BK 1                | Porter        | 230             | Porter         | 115             |
| BK 2                | Porter        | 230             | Porter         | 115             |
| 65                  | Robinson Road | 230             | Stolle Road    | 230             |
| BK 1                | Robinson Road | 230             | Robinson Road  | 115/34.5        |
| WRY-2               | Ryan          | 230             | Willis         | 230             |
| 83                  | Stony Creek   | 230             | Wethersfield   | 230             |
| BK 1                | Academy 1     | 138             | Academy 1      | 138             |
| BK 8                | Academy 8     | 138             | Academy 8      | 138             |
| 34124L&M            | Astoria E     | 138             | Astoria #4     | 138             |
| 34125L&M            | Astoria E     | 138             | Astoria #5     | 138             |
| 24121               | Astoria W     | 138             | Astoria #3     | 138             |
| 24122               | Astoria W     | 138             | Astoria #3     | 138             |
| 24124L&M            | Astoria W     | 138             | Astoria #4     | 138             |
| 24125L&M            | Astoria W     | 138             | Astoria #5     | 138             |
| 563                 | Bagatelle Rd. | 138             | Newbridge Road | 138             |
| 564                 | Bagatelle Rd. | 138             | Pilgrim        | 138             |
| 291                 | Barrett       | 138             | Valley Stream  | 138             |
| 292                 | Barrett       | 138             | Valley Stream  | 138             |
| 459                 | Barrett       | 138             | Freeport       | 138             |
| PAR                 | Barrett       | 138             | Barrett PAR    | 138             |
| 861                 | Brookhaven    | 138             | Wildwood       | 138             |
| 864                 | Brookhaven    | 138             | Edward Ave     | 138             |
| 874                 | Brookhaven    | 138             | Sills Road     | 138             |
| 887                 | Brookhaven    | 138             | Sills Road     | 138             |
| 95891               | Buchanan GT   | 138             | Buchanan TA5   | 138             |
| 361                 | Carle Place   | 138             | E. Garden City | 138             |



| Facility Identifier | Terminal A       | Nominal Voltage | Terminal B        | Nominal Voltage |
|---------------------|------------------|-----------------|-------------------|-----------------|
| 363                 | Carle Place      | 138             | Glenwood          | 138             |
| 883                 | Central Islip    | 138             | Ronkonkoma        | 138             |
| 889                 | Central Islip    | 138             | Hauppauge         | 138             |
| BK N1               | Dunwoodie        | 138             | Dunwoodie         | 138             |
| BK N2               | Dunwoodie        | 138             | Dunwoodie         | 138             |
| BK S1               | Dunwoodie        | 138             | Dunwoodie         | 138             |
| BK S2               | Dunwoodie        | 138             | Dunwoodie         | 138             |
| 262                 | E. Garden City   | 138             | Valley Stream     | 138             |
| 261                 | E. Garden City   | 138             | Valley Stream     | 138             |
| 362                 | E. Garden City   | 138             | Roslyn            | 138             |
| 462                 | E. Garden City   | 138             | Newbridge Road    | 138             |
| 463                 | E. Garden City   | 138             | Newbridge Road    | 138             |
| 465                 | E. Garden City   | 138             | Newbridge Road    | 138             |
| 467                 | E. Garden City   | 138             | Newbridge Road    | 138             |
| 893                 | Edward Ave       | 138             | Riverhead         | 138             |
| 673                 | Elwood           | 138             | Greenlawn         | 138             |
| 674                 | Elwood           | 138             | Oakwood           | 138             |
| 678                 | Elwood           | 138             | Northport         | 138             |
| 681                 | Elwood           | 138             | Northport         | 138             |
| 461                 | Freeport         | 138             | Newbridge Road    | 138             |
| PAR1                | Fresh Kills (AK) | 138             | Fresh Kills PAR   | 138             |
| PAR2                | Fresh Kills (AK) | 138             | Fresh Kills PAR   | 138             |
| 365                 | Glenwood         | 138             | Shore Road        | 138             |
| 366-1               | Glenwood         | 138             | Shore Road        | 138             |
| 366-2               | Glenwood         | 138             | Glenwood GT       | 138             |
| 364                 | Glenwood GT      | 138             | Roslyn            | 138             |
| 676                 | Greenlawn        | 138             | Syosset           | 138             |
| 871                 | Hauppauge        | 138             | Pilgrim           | 138             |
| 872                 | Holbrook         | 138             | Sills Road        | 138             |
| 884                 | Holbrook         | 138             | North Shore Beach | 138             |
| 885                 | Holbrook         | 138             | Miller Place      | 138             |
| 888                 | Holbrook         | 138             | West Bus          | 138             |
| 862                 | Holbrook         | 138             | Port Jefferson    | 138             |
| 875                 | Holbrook         | 138             | Ronkonkoma        | 138             |
| 882                 | Holbrook         | 138             | Ruland Road       | 138             |
| 886                 | Holbrook         | 138             | Port Jefferson    | 138             |
| 818                 | Holtsville       | 138             | Union Ave         | 138             |
| 876                 | Holtsville       | 138             | West Bus          | 138             |
| 877                 | Holtsville       | 138             | West Bus          | 138             |
| 903                 | Jamaica          | 138             | Lake Success      | 138             |

| Facility Identifier  | Terminal A        | Nominal Voltage | Terminal B       | Nominal Voltage |  |  |
|----------------------|-------------------|-----------------|------------------|-----------------|--|--|
| 901 L&M              | Jamaica           | 138             | Valley Stream    | 138             |  |  |
| 367                  | Lake Success      | 138             | Shore Road       | 138             |  |  |
| 368                  | Lake Success      | 138             | Shore Road       | 138             |  |  |
| PAR                  | Lake Success      | 138             | Lake Success PAR | 138             |  |  |
| 558                  | Locust Grove      | 138             | Newbridge        | 138             |  |  |
| 559                  | Locust Grove      | 138             | Syosset          | 138             |  |  |
| 879                  | Miller Place      | 138             | Shoreham         | 138             |  |  |
| 561                  | Newbridge Road    | 138             | Ruland Road      | 138             |  |  |
| 562                  | Newbridge Road    | 138             | Ruland Road      | 138             |  |  |
| 567                  | Newbridge Road    | 138             | Ruland Road      | 138             |  |  |
| 878                  | North Shore Beach | 138             | Wading River     | 138             |  |  |
| 1                    | Northport         | 138             | Northport #1     | 22              |  |  |
| 2                    | Northport         | 138             | Northport #2     | 22              |  |  |
| 3                    | Northport         | 138             | Northport #3     | 22              |  |  |
| 4                    | Northport         | 138             | Northport #4     | 22              |  |  |
| 672                  | Northport         | 138             | Pilgrim          | 138             |  |  |
| 677                  | Northport         | 138             | Pilgrim          | 138             |  |  |
| 679                  | Northport         | 138             | Pilgrim          | 138             |  |  |
| 1385 (601, 602, 603) | Northport         | 138             | Norwalk Harbor   | 138             |  |  |
| PAR 1                | Northport         | 138             | Northport        | 138             |  |  |
| PS2                  | Northport         | 138             | Northport        | 138             |  |  |
| 675                  | Oakwood           | 138             | Syosset          | 138             |  |  |
| 661                  | Pilgrim           | 138             | Ruland Road      | 138             |  |  |
| 662                  | Pilgrim           | 138             | Ruland Road      | 138             |  |  |
| 881                  | Pilgrim           | 138             | West Bus         | 138             |  |  |
| PAR                  | Pilgrim           | 138             | Pilgrim PAR      | 138             |  |  |
| 36311                | Rainey            | 138             | Vernon           | 138             |  |  |
| 36312                | Rainey            | 138             | Vernon           | 138             |  |  |
| 890                  | Riverhead         | 138             | Wildwood         | 138             |  |  |
| 863                  | Shoreham          | 138             | Wildwood         | 138             |  |  |
| 867                  | Shoreham          | 138             | Wildwood         | 138             |  |  |
| 891                  | Shoreham          | 138             | Wading River     | 138             |  |  |
| 873                  | Sills Road        | 138             | West Bus         | 138             |  |  |
| PAR11                | Tremont           | 138             | Tremont PAR 11   | 138             |  |  |
| PAR12                | Tremont           | 138             | Tremont PAR 12   | 138             |  |  |
| PAR                  | Valley Stream     | 138             | Valley Stream    | 138             |  |  |
| 10                   | Vernon            | 138             | Ravenswood #1    | 20              |  |  |
| 20                   | Vernon            | 138             | Ravenswood #2    | 20              |  |  |
| 1-BP                 | Boonville         | 115             | Porter           | 115             |  |  |
| 2-BP                 | Boonville         | 115             | Porter           | 115             |  |  |



| Facility Identifier | Terminal A  | Nominal Voltage | Terminal B      | Nominal Voltage |  |
|---------------------|-------------|-----------------|-----------------|-----------------|--|
| 3                   | Clay        | 115             | Dewitt          | 115             |  |
| 4                   | Clay        | 115             | South Oswego    | 115             |  |
| 5                   | Clay        | 115             | Dewitt          | 115             |  |
| 10                  | Clay        | 115             | Teall Ave.      | 115             |  |
| 11                  | Clay        | 115             | Teall Ave.      | 115             |  |
| 14                  | Clay        | 115             | Lockheed (GE)   | 115             |  |
| 17                  | Clay        | 115             | Woodard         | 115             |  |
| 7-CL                | Clay        | 115             | Lighthouse Hill | 115             |  |
| 8                   | Deerfield   | 115             | Porter          | 115             |  |
| 9                   | Deerfield   | 115             | Porter          | 115             |  |
| 20                  | Edic        | 115             | Porter          | 115             |  |
| 1                   | Ginna       | 115             | Ginna           | 16              |  |
| 912                 | Ginna       | 115             | Pannell Rd.     | 115             |  |
| 908-1               | Ginna       | 115             | Pannell Rd.     | 115             |  |
| 7X8272              | Mortimer    | 115             | Sta#82          | 115             |  |
| 7                   | Oneida      | 115             | Porter          | 115             |  |
| PAR3                | Plattsburgh | 115             | Plattsburgh     | 115             |  |
| PV20                | Plattsburgh | 115             | South Hero      | 115             |  |
| 3                   | Porter      | 115             | Yahnundasis     | 115             |  |
| 4                   | Porter      | 115             | Valley          | 115             |  |
| 5                   | Porter      | 115             | Watkins Rd.     | 115             |  |
| 6                   | Porter      | 115             | Terminal        | 115             |  |
| 13                  | Porter      | 115             | Schuyler        | 115             |  |
| 10                  | Edic        | 115             | Porter          | 115             |  |



## New York Control Area Proposed Bulk Power Transmission Facilities List

|                                | Tern                        | Ferminals                 |          | Expected<br>In-Service |           | Nominal Voltage in kV |                  | Thermal Ratings |          |
|--------------------------------|-----------------------------|---------------------------|----------|------------------------|-----------|-----------------------|------------------|-----------------|----------|
| Transmission Owner             | From                        | То                        | Prior To | Year                   | Operating | Design                | # of<br>Circuits | Summer          | Winter   |
| ConEd                          | Rainey                      | Corona                    | S        | 2023                   | 345/138   | 345/138               |                  | N/A             | N/A      |
| ConEd                          | Cricket Valley              | Dover (New Station)       | W        | 2023                   | 345       | 345                   | 1                | 2220            | 2700     |
| ConEd                          | Dover (New Station)         | CT State Line             | W        | 2023                   | 345       | 345                   | 1                | 2220            | 2700     |
| ConEd                          | Gowanus                     | Greenwood                 | S        | 2025                   | 345/138   | 345/138               |                  | N/A             | N/A      |
| ConEd                          | Goethals                    | Fox Hills                 | S        | 2025                   | 345/138   | 345/138               |                  | N/A             | N/A      |
| LIPA                           | Riverhead                   | Wildwood                  | S        | 2021                   | 138       | 138                   | 1                | 1399            | 1709     |
| LSP                            | Gordon Rd (New Station)     | Rotterdam                 | S        | 2022                   | 345/230   | 345/230               | 2                | 478 MVA         | 478 MVA  |
| LSP                            | Gordon Rd (New Station)     | Princetown (New Station)  | S        | 2023                   | 345       | 345                   | 1                | 3410            | 3709     |
| LSP                            | Princetown (New Station)    | New Scotland              | S        | 2023                   | 345       | 345                   | 2                | 3410            | 3709     |
| LSP                            | Gordon Rd (New Station)     | Gordon Rd (New Station)   | S        | 2029                   | 345/230   | 345/230               | 1                | 478 MVA         | 478 MVA  |
| LSP                            | Gordon Rd (New Station)     | Rotterdam                 | S        | 2029                   | 345/115   | 345/115               | 2                | 650 MVA         | 650 MVA  |
| LSP/NGRID                      | Edic                        | Gordon Rd (New Station)   | S        | 2022                   | 345       | 345                   | 1                | 2228            | 2718     |
| LSP/NGRID                      | Gordon Rd (New Station)     | New Scotland              | S        | 2022                   | 345       | 345                   | 1                | 2228            | 2718     |
| LSP/NGRID                      | Princetown (New Station)    | New Scotland              | S        | 2023                   | 345       | 345                   | 1                | 2228            | 2718     |
| LSP/NYPA/NGRID                 | Edic                        | Princetown (New Station)  | w        | 2023                   | 345       | 345                   | 2                | 3410            | 3709     |
| New York Transco               | Knickerbocker (New Station) | Pleasant Valley           | w        | 2023                   | 345       | 345                   | 1                | 3862            | 4103     |
| New York Transco/Con Ed        | Van Wagner (New Station)    | Pleasant Valley           | w        | 2023                   | 345       | 345                   | 1                | 3126            | 3704     |
| New York Transco/Con Ed        | Van Wagner (New Station)    | Pleasant Valley           | w        | 2023                   | 345       | 345                   | 1                | 3126            | 3704     |
| NextEra Energy Transmission NY | Dysinger (New Station)      | East Stolle (New Station) | S        | 2022                   | 345       | 345                   | 1                | 1356 MVA        | 1612 MVA |
| NextEra Energy Transmission NY | Dysinger (New Station)      | Dysinger (New Station)    | S        | 2022                   | 345       | 345                   | 1                | 700 MVA         | 700 MVA  |
| NGRID                          | Knickerbocker (New Station) | New Scotland              | w        | 2023                   | 345       | 345                   | 1                | 2381            | 3099     |
| NGRID                          | Knickerbocker (New Station) | Alps                      | w        | 2023                   | 345       | 345                   | 1                | 2552            | 3134     |
| NGRID                          | Athens                      | Van Wagner (New Station)  | w        | 2023                   | 345       | 345                   | 1                | 2228            | 2718     |
| NGRID                          | Leeds                       | Van Wagner (New Station)  | w        | 2023                   | 345       | 345                   | 1                | 2228            | 2718     |
| NGRID                          | Gordon Rd (New Station)     | Eastover Rd               | S        | 2029                   | 230       | 230                   | 1                | 1114            | 1284     |
| NYSEG                          | Wood Street                 | Wood Street               | w        | 2022                   | 345/115   | 345/115               | 1                | 327 MVA         | 378 MVA  |
| NYSEG                          | Fraser                      | Fraser                    | S        | 2024                   | 345/115   | 345/115               | 1                | 305 MVA         | 364 MVA  |
| NYSEG                          | Gardenville                 | Gardenville               | S        | 2026                   | 230/115   | 230/115               | 1                | 316 MVA         | 370 MVA  |



|                    | Terminals                           |                                     | Expected<br>In-Service |      | Nominal Voltage in kV |              | # of Thermal Rati |         | Ratings |
|--------------------|-------------------------------------|-------------------------------------|------------------------|------|-----------------------|--------------|-------------------|---------|---------|
| Transmission Owner | From                                | То                                  | Prior To               | Year | Operating             | Design       | Circuits          | Summer  | Winter  |
| NYSEG              | South Perry                         | South Perry                         | S                      | 2027 | 230/115               | 230/115      | 1                 | 246 MVA | 291 MVA |
| NYSEG              | Oakdale 345                         | Oakdale 115                         | S                      | 2027 | 345/115               | 345/115/34.5 | 1                 | 494MVA  | 527 MVA |
| NYSEG              | Coopers Corners                     | Coopers Corners                     | S                      | 2031 | 345/115               | 345/115      | 1                 | 232 MVA | 270 MVA |
| O & R              | Lovett 345 kV Station (New Station) | Lovett                              | S                      | 2023 | 345/138               | 345/138      | 1                 | 562 MVA | 562 MVA |
| O & R/ConEd        | Ladentown                           | Lovett 345 kV Station (New Station) | S                      | 2023 | 345                   | 345          | 1                 | 3000    | 3211    |
| O & R/ConEd        | Lovett 345 kV Station (New Station) | Buchanan                            | S                      | 2023 | 345                   | 345          | 1                 | 3000    | 3211    |