

2023-2032 Comprehensive Reliability Plan

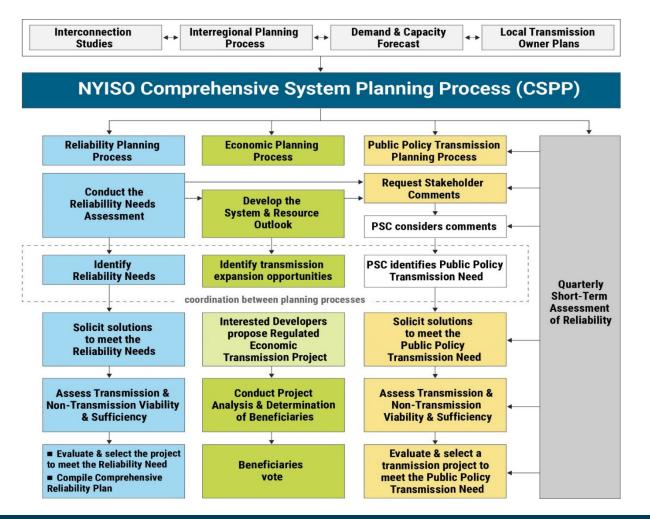
Ross Altman - Sr. Manager, Reliability Planning

Laura Popa - Manager, Resource Planning

Keith Burrell - Manager, Reliability Studies

Operating Committee

October 11, 2023


Agenda

- 2022-2023 Reliability Planning Process Findings
- Reliability Risks
- Road to 2040
- Next Steps

Reliability Planning Process Findings

2022-2023 Reliability Planning Process

- The 2022-2023 cycle of the Reliability Planning Process started in January 2022, with the 2022 Reliability Needs Assessment (2022 RNA)
- The 2022 RNA evaluated the reliability of the Bulk Power Transmission Facilities using transmission security and resource adequacy analysis
- The 2022 RNA did not identify any Reliability Needs; however, it noted the reliability margins are narrow
 - Final November 2022 RNA Report here: [link] [link]

Reliability Metrics

Resource Adequacy

 The ability of the electric systems to supply the aggregate electrical demand and energy requirements of their customers at all times, taking into account scheduled and reasonably expected unscheduled outages of system elements.

Transmission Security

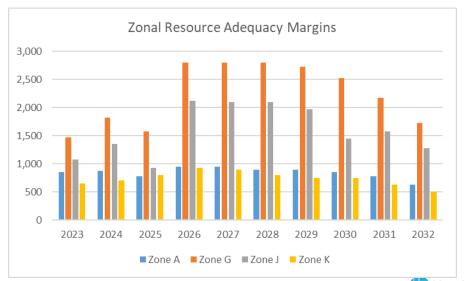
- The ability of the electric system to withstand disturbances such as electric short circuits or unanticipated loss of system elements. The ability of the power system to withstand the loss of one or more elements without involuntarily disconnecting firm load.
- Transmission security analysis includes transmission security margin calculations which are performed to using a deterministic approach through powerflow simulations combined with post-processing spreadsheet-based calculations. This assessment identifies plausible changes in conditions or assumptions that might adversely impact the reliability of the system.

2023-2032 CRP

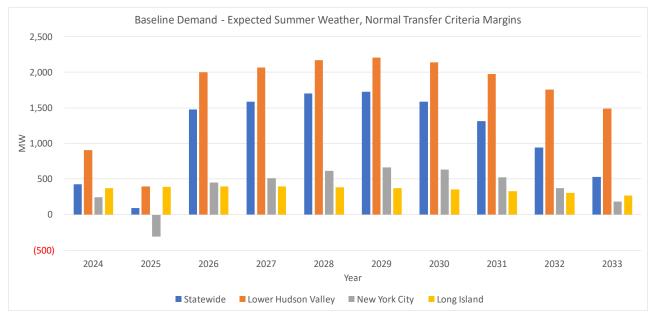
The Comprehensive Reliability Plan (CRP) found the following:

- There are no actionable, long-term Reliability Needs.
- There is a Short-Term Reliability Process Need, which was identified in the 2023 Quarter 2 STAR.
 The need occurs in New York City in the summer of 2025 and is driven primarily by forecasted
 increases in peak demand and generation unavailability due to the Peaker Rule. Solutions are
 being determined through the Short-Term Reliability Process.
- While no long-term Reliability Needs were identified in this CRP, the margin to maintain reliability
 over the next ten years will narrow or could be eliminated based upon a variety of potential
 changes in forecasted system conditions.

The CRP built on the results from the 2022 RNA to evaluate potential risks to reliability including:


 Generation availability, delays to transmission projects, demand uncertainties, proposed large loads, winter peak and gas shortage, emergency assistance from neighboring areas, and extreme weather.

Resource Adequacy Results


 The 2022 RNA and subsequent STARs found the NYCA LOLE is within 0.1 eventdays/year criteria

Church Van	LOLE	LOLH	LOEE	
Study Year	event- days/year	event- hours/year	MWh/year	
2023	0.025	0.061	23.860	
2024	0.018	0.035	11.538	
2025	0.023	0.048	18.399	
2026	0.004	0.008	1.734	
2027	0.005	0.010	2.529	
2028	0.004	0.008	1.626	
2029	0.005	0.009	1.799	
2030	0.006	0.013	3.051	
2031	0.010	0.020	5.095	
2032	0.022	0.045	11.382	

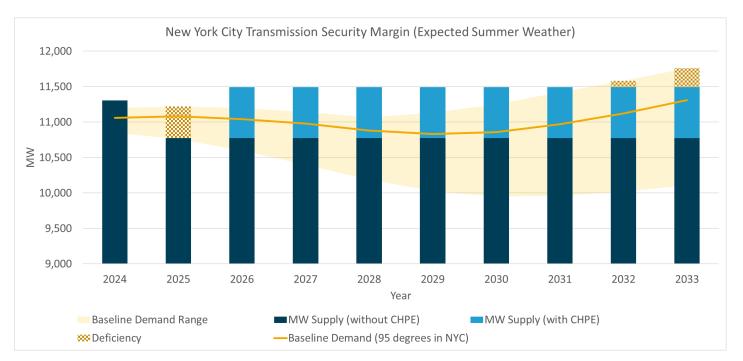
Transmission Security Results

 Statewide and local transmission security margins are sufficient for the 2026-2032 period

Reliability Risks

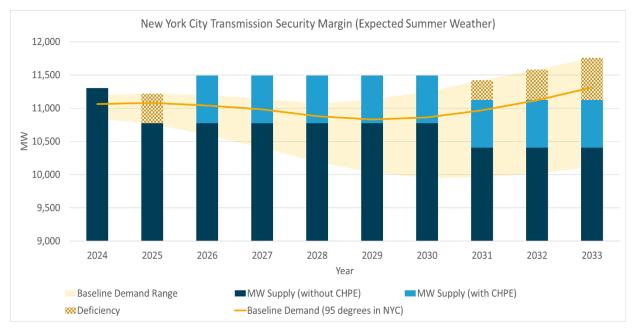
Key Risk Factors to CRP

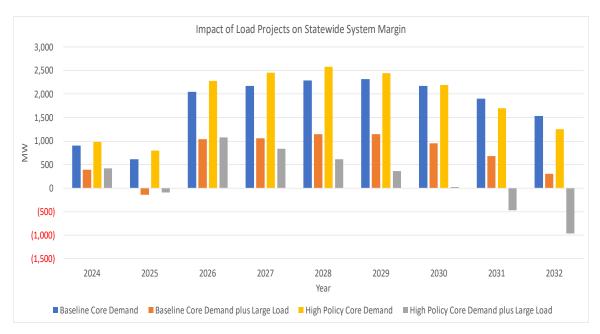
- The pace of generation retirements has exceeded the pace of resource additions to date.
 Should this trend continue, reliability needs will be identified both locationally and statewide.
- The reliability of the grid is heavily reliant on the timely completion of planned transmission projects, chiefly the CHPE project. Without the CHPE project in service or other offsetting changes or solutions, the reliability margins would be deficient for the ten-year planning horizon.
- There is a clear upward trend forecasted in peak demand over the next ten years, with significant uncertainty driven by electrification of heating and transportation coupled with the development of multiple high-electric demand facilities (e.g., microchip fabrication and data centers). As the demand on the grid grows at a rate greater than the build out of generation and transmission, deficiencies could arise within the ten-year planning horizon.



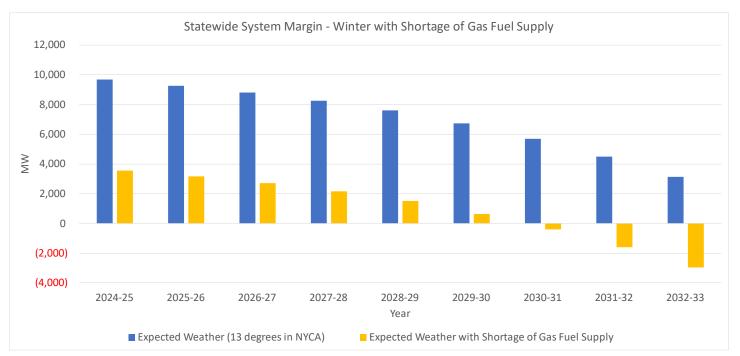
Key Risk Factors to CRP, cnt.

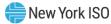
- New York's current reliance on neighboring systems is expected to continue through the next ten years. Without emergency assistance from neighboring regions, New York would not have adequate resources throughout the next ten years.
- Extreme events, such as heatwaves or storms, pose a threat to grid reliability throughout the
 planning horizon and could result in deficiencies to serve demand statewide, especially in
 New York City. This outlook could improve as more resources and transmission are added to
 New York City.
- The New York statewide grid is projected to become a winter-peaking system in the mid-2030s, primarily driven by electrification of space heating and transportation. The New York statewide grid is reliable for normal weather in the winter for the next ten years, but deficiencies would arise as early as winter 2027-2028 for an extreme 1-in-100-year winter cold snap coupled with a shortage of gas fuel supply. This deficiency would grow to a 6,000 MW shortfall by winter 2032-2033.


Impact of a Potential Delay of CHPE

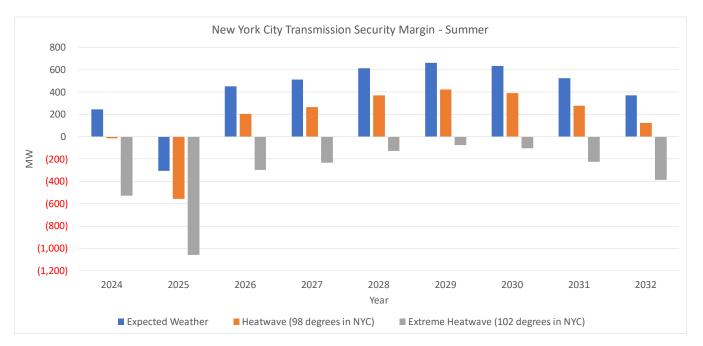

Impact of NYPA Simple-Cycle Phase-Out

 New York City will have a transmission security deficiency starting in 2031 should NYPA's simple-cycle plants retire without replacement


Impact of Large Loads

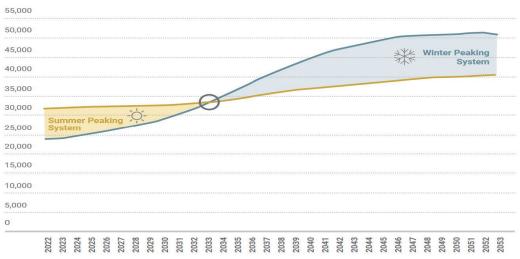


 High forecast of core load plus future large loads results in a statewide deficiency in 2031



Impact of a Potential Gas Fuel Shortage

Impact of Extreme Weather



Road to 2040

Road to 2040: Demand

Key Takeaways

- Electrification of transportation and building heating and cooking will cause the NYCA to go from summer peaking to winter peaking in the mid-2030s
- The NYISO develops 90/10 and 99/1 forecasts and is engaged in several efforts at the state, regional, and national level to model and plan for extreme weather
- Potential load growth from low carbon fuel production (e.g., hydrogen production via electrolysis) could be significant and is captured in the high policy demand forecast

Road to 2040: Generation

Key takeaways

- High penetration of inverter-based resources presents reliability risks due to weak-grid interconnection, common mode failures, and modeling accuracy.
- NYCA will need significant amounts of dispatchable emission-free resources (DEFRs) that can run for multiple day periods.
- DEFRs will be required to provide both energy and capacity over long durations, as well as the reliability attributes of retiring synchronous generation. The attributes do not need to be encapsulated in a singular technology, but in aggregate the system needs a sufficient collection of these services to be reliable.

Attributes of Sample Generation Technologies

		2023	Energy Attributes					Other Reliability Attributes				
	NYCA Summer Capacity (MW)		Carbon Free*	Dependable Fuel Source	Energy Limited	Dispatchable	Quick start	Flexible	Multi start	Inertial Response	Dynamic Reactive control	High Short Circuit current
Sample Technology	Fossil	25,667	No	Yes*	No	Yes	Yes*	Yes	Yes	Yes	Yes	Yes
	Hydro	4,265	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	Pumped Hydro	1,407	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	Hydrogen Fuel Cell	0	Yes	Yes*	No	Yes	Yes	Yes	Yes	No	Yes	No
	Hydrogen Combustion	0	Yes	Yes*	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	Nuclear	3,305	Yes	Yes	No	No	No	No	No	Yes	Yes	Yes
	Modular Nuclear	0	Yes	Yes	No	No	No	Yes	No	Yes	Yes	Yes
Sam	Battery	0	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No
	Solar	154	Yes	No	Yes	No*	Yes	Yes	Yes	No	Yes	No
	Wind	2,051	Yes	No	Yes	No*	Yes	Yes	Yes	No	Yes	No
	Demand Response*	1,234	Yes*	Yes	Yes	No	No	Yes	No	No	No	No
	Synchronous Condenser*	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Yes	Yes	Yes	Yes

^{*} See Figure 39 of the CRP Report for more detail.

Road to 2040: Transmission

Key takeaways

- Transmission expansion is critical to facilitating efficient CLCPA energy target achievement. The current New York transmission system, at both local and bulk levels, is inadequate to achieve current policy objectives.
- Major transmission development efforts are underway: NYC PPTN, three selected PPTN projects, Smart Path Connect, CHPE, Clean Path NY, and "Phase 2" local transmission projects.
- Further transmission development will be necessary to address several renewable generation pockets across the state.

CRP Report Next Steps

Stakeholder and Board Review

October:

Operating Committee and Management Committee review and vote

November:

Board of Directors action on final CRP report

Our Mission & Vision

Mission

Ensure power system reliability and competitive markets for New York in a clean energy future

Vision

Working together with stakeholders to build the cleanest, most reliable electric system in the nation

Questions?

