

2023-2042 System & Resource Outlook Update

Sarah Carkner & Nischal Rajbhandari

Long Term Assessments

Electric System Planning Working Group (ESPWG)

Thursday, November 2, 2023

Agenda

- Scope & Schedule Review
- Assumptions Matrices
- Preliminary Base Case Results
- Contract Case Update
- Policy Case Update
- Next Steps
- Outlook Data Catalog

Scope & Schedule Review

System & Resource Outlook Scope

Model **Development**

Congestion Assessment Analyses

Benchmark

Assumptions

Transmission

Congestion

Relief

Analysis

Historic & Future

Profiles

Renewable Pockets & Energy Deliverability

Future

Attributes

Report, Appendix, Data Catalog, & **Fact Sheet**

Reference Cases

Sensitivities

Renewable Generation

Resources to

Meet Policy

Objectives

New York ISO

Preliminary Targeted Study Schedule

	Month	July						Aug	gust		September			
	Week	1	2	3	4	5	1	2	3	4	1	2	3	4
2023 Q3	Benchmarking	Х	Х	Χ										
	Assumptions Development	Х	Х	Χ	Χ	Х	X	Χ	Χ	Х	Х	Х	Х	Х
	CapEx Model Development	Х	Х	Х	Х	Х	X	Χ	Х	Х	X	Х	Х	Х
	Production Cost Model Development	Х	Х	Χ	Χ	X	X	Χ	Χ	Х	X	Х	Х	Χ
	CapEx Results													
	Production Cost Results													
	Analyses													
	Report													

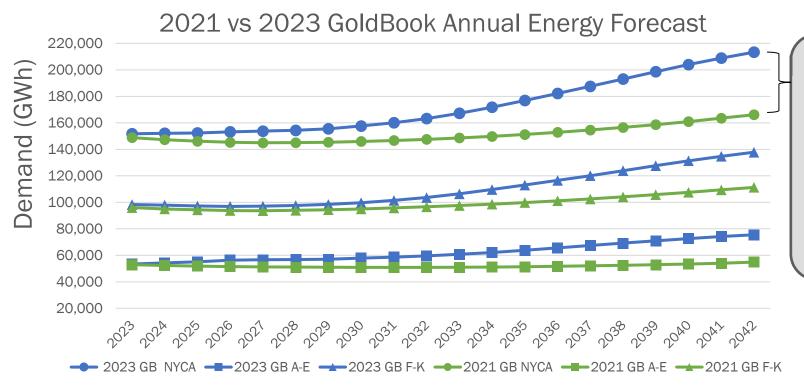
	Month			October	,			Nove	mber		December				
2023 Q4	Week	1	2	3	4	5	1	2	3	4	1	2	3	4	
	Benchmarking														
	Assumptions Development	Χ	Χ	Х	Χ	Х	X	Х	Χ	Χ					
	CapEx Model Development	Х	Χ	Х	Χ	Х	Х	Х	Χ	Χ					
	Production Cost Model Development	Х	Х	Х	Χ	Х	Х	Х	Χ	Χ	Х	Χ	Χ	Х	
	CapEx Results										Х	Χ	Χ	Х	
	Production Cost Results														
	Analyses														
	Report														

Assumptions Matrices

Assumptions Matrices

- Also posted with this ESPWG meeting material are the following documents:
 - Production Cost Assumptions Matrix (11/02/2023)
 - Capacity Expansion Assumptions Matrix (11/02/2023)
- Base Case assumptions locked down: 10/15/2023
- Contract Case assumptions locked down: 10/30/2023
- Policy Case assumptions lock down date (revised): 11/15/2023

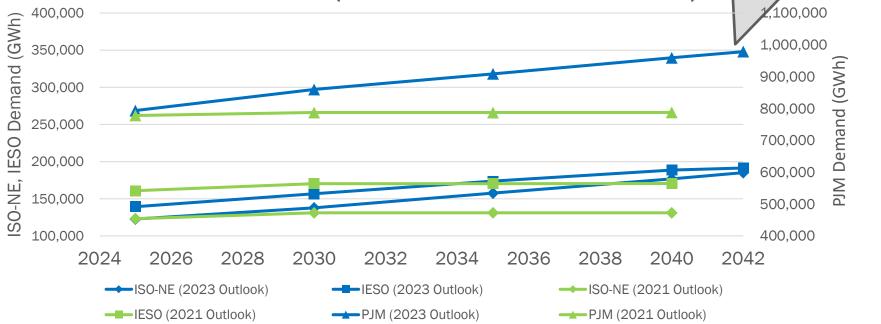
Preliminary Base Case Results



Base Case Results Drivers

- Base Case results primarily driven by load forecast assumptions for four-pool system
- Neighboring pool forecasts extended to align with study period.
 Linear growth model used to extend forecasts through 2042
- Compared to previous study cycles, load demand in New York and in neighboring pools over the study period (2023-2042) increases significantly

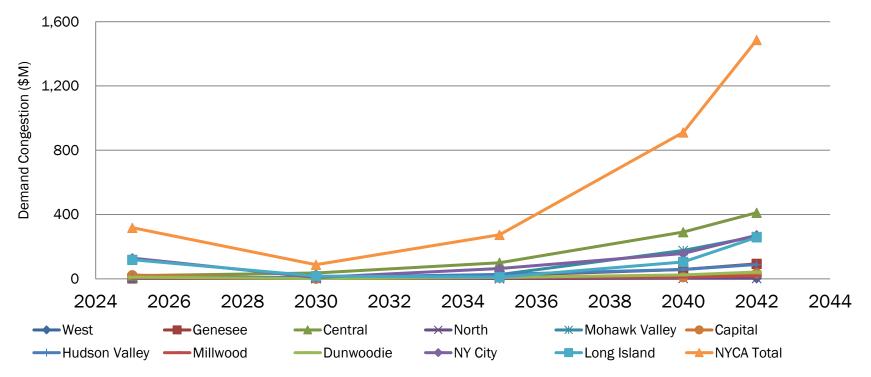
Baseline Load Forecast Comparison



Higher overall
Energy
Demand (47
TWh higher by
2042)
primarily
driven by
building electri
fication and EV
charging loads

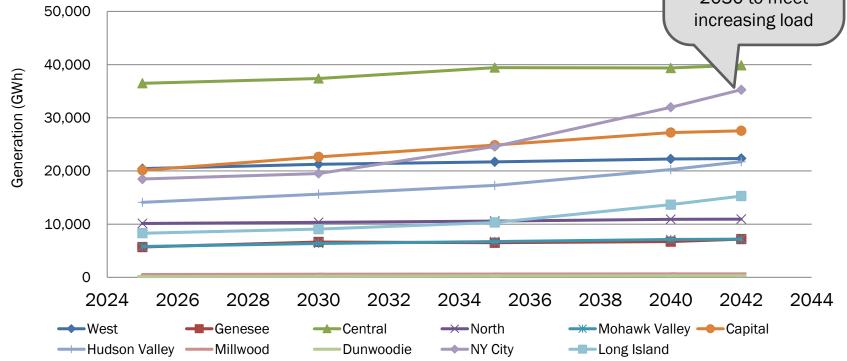
External Forecasts Comparison

External Pool Forecast (2021 Outlook vs 2023 Outlook)

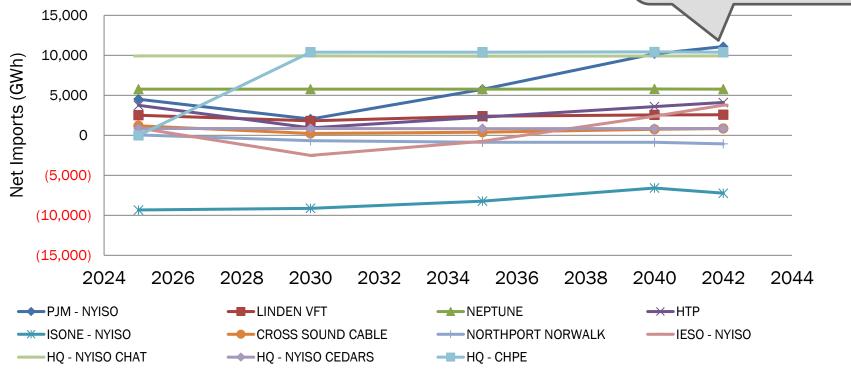


Significant Increase in PJM load forecast mostly due to

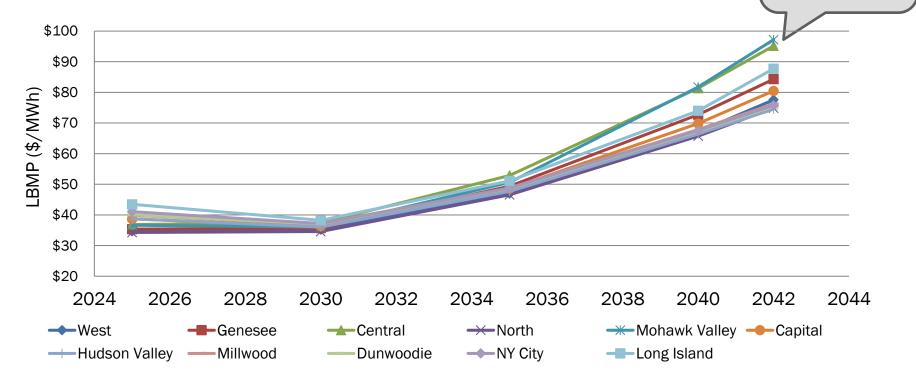
increased data center loads in Dominion

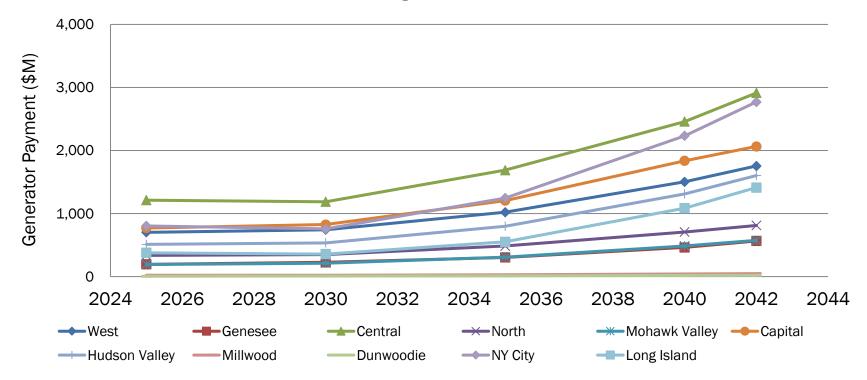

Zonal Demand Congestion (nominal \$M)

Zonal NYCA Generation (GWh)

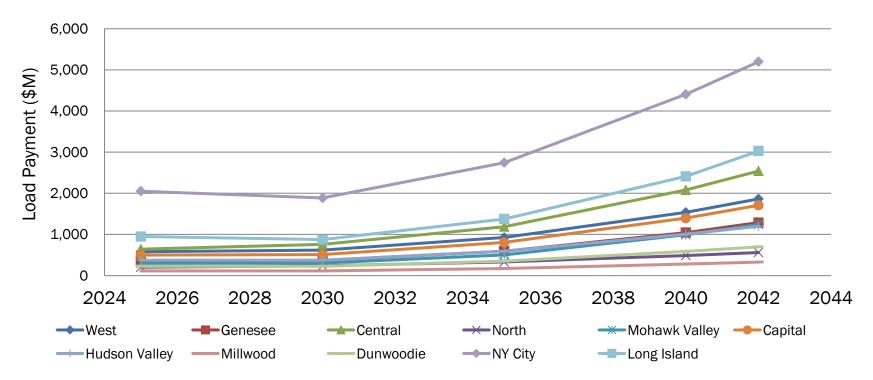

New York City and downstate generation starts to pick up after 2030 to meet increasing load

Projected Net Imports (GWh)

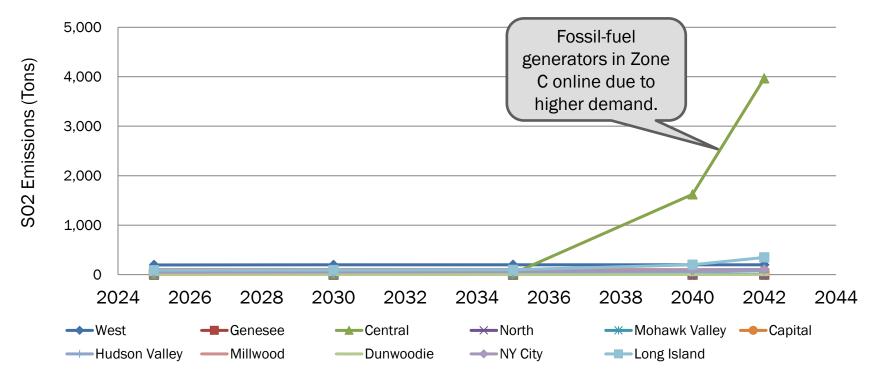

Lower PJM Net Imports compared to 2021-2040 Outlook Base Case results due to increased load demand in PJM


Zonal NYCA LBMP (\$/MWh)

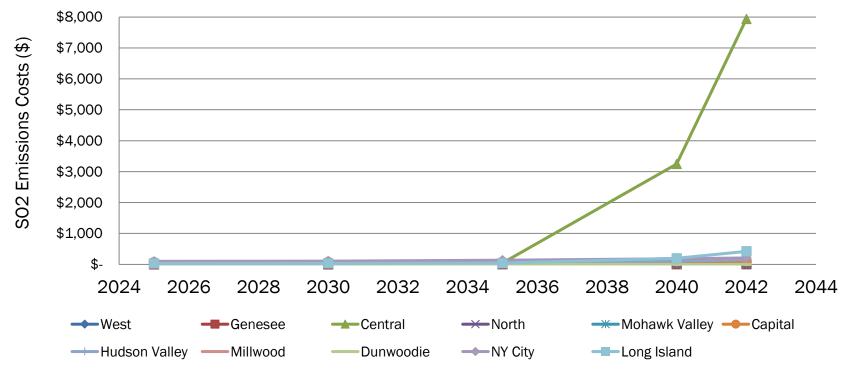
Higher upstate LBMP due to congestion and large loads

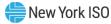


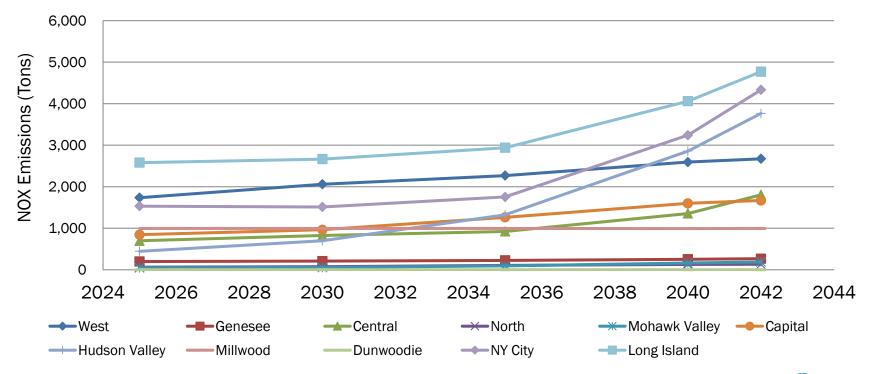
Zonal Generator Payments (nominal \$M)



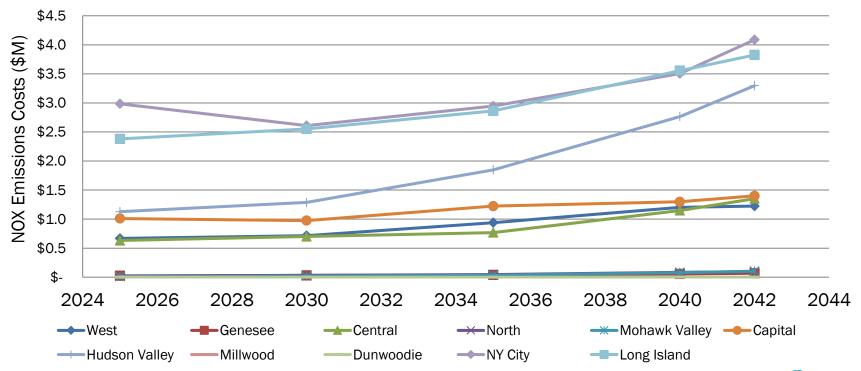
Zonal Load Payments (nominal \$M)



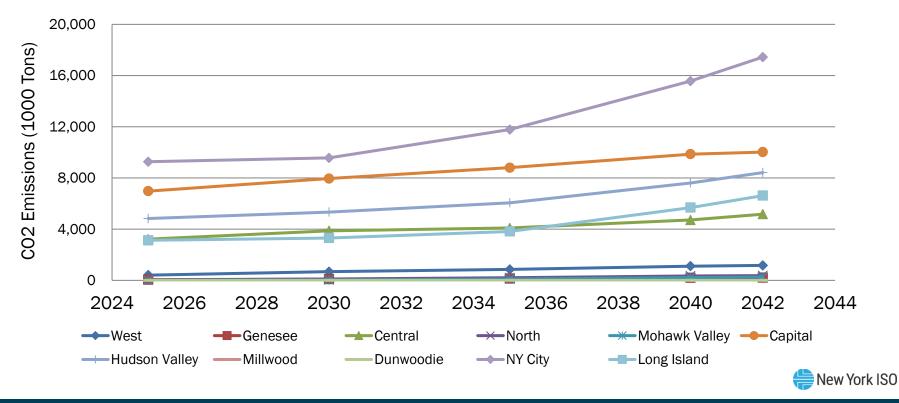

Zonal SO₂ Emissions (Tons)

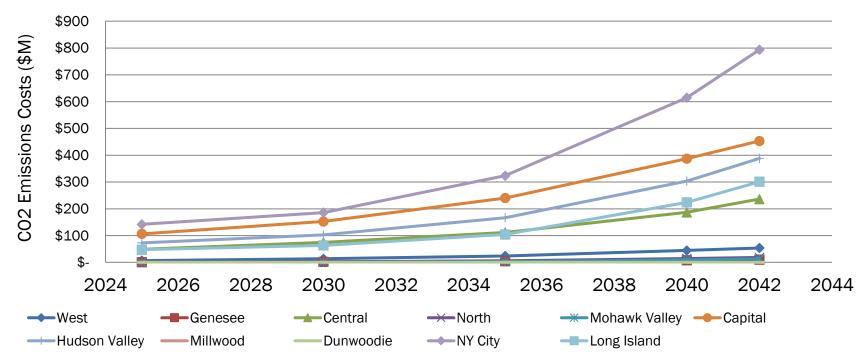


Zonal SO₂ Emissions Costs (nominal \$)

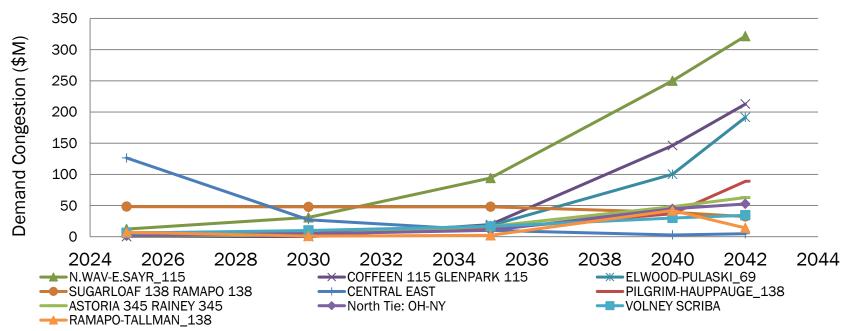


Zonal NO_X Emissions (Tons)




Zonal NO_X Emissions Costs (nominal \$M)

Zonal CO₂ Emissions (1000 Tons)



Zonal CO₂ Emissions Costs (nominal \$M)

Projected NYCA-Wide Demand Congestion by Constraint (nominal \$M)

Key Takeaways

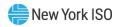
- Higher overall load forecasts for New York and surrounding regions contribute to higher levels of internal New York generation and lower imports
- Lower kV overloads are more prominent in later years compared to bulk power system congestion
- Higher LBMP prices in upstate zones driven by combination of large loads, local congestion, and higher cost generation dispatched to serve energy

Contract Case Update

Contract Case Assumptions

- Load, fuel price, and emission allowance price assumptions will be the same as the Base Case forecasts
- Renewable generation resource additions will be based on the current NYSERDA Renewable Energy Certificate (REC) contracts database and announced awards as of 10/30/2023
 - In addition to details presented at <u>10/24/23 ESPWG</u>, the <u>REC</u> and <u>OREC</u> awards announced on <u>10/24/2023</u> will be included in the Contract (and Policy) Case
 - Incremental additions will consider resources already included in the Base Case due to the inclusion rules
- Inclusion of approved Phase 1 and 2 transmission projects approved in February 2023 PSC Order, including the Brooklyn Clean Energy Hub

Policy Case Update: Capacity Expansion Model Assumptions


Policy Case Assumptions Update

- In consideration of stakeholder feedback, the Policy Case lockdown date has been revised to <u>11/15/2023</u>
- Capacity expansion model enhancements to be included in the Policy Case for the 2023-2042 Outlook include:
 - Updated marginal ELCC curves (proposal presented at <u>10/24/23 ESPWG</u>)
 - Time representation methodology (proposal presented at <u>10/24/23 ESPWG</u>)
 - Addition of external pools
 - Addition of generation supply curves for renewable technologies
- Additional detail on the proposed assumptions for the Policy Case are included in the assumptions matrices posted with today's meeting materials

Capacity Expansion Model Study Years

 The capacity expansion model will evaluate the 2023-2042 horizon, and results will be reported for model years 2025, 2030, 2035, 2040, and 2042

Transmission Representation in Capacity Expansion Model

- The capacity expansion model assumes a nodal to zonal reduction of transmission network topology performed by PLEXOS to create a pipe-andbubble equivalent model, where intra-zonal lines are collapsed
- Transmission upgrades beyond the existing system topology included in the capacity expansion model for the Policy Case are as follows:
 - NYPA Northern New York Priority Transmission Project
 - Champlain Hudson Power Express
 - Clean Path New York
 - Joint Utilities Phase 1 & Phase 2 Projects, including the Brooklyn Clean Energy Hub
 - Long Island OSW Public Policy Project

Transmission Representation in Capacity Expansion Model: External Pools

- In addition to the modeling the NYCA system, the capacity expansion model for the 2023-2042 Outlook will include a simplified representation of transmission and generation in the external pools
 - Each neighboring region will be modeled as a connection in the pipe-and-bubble equivalent model of the system
 - Generation mix will be assumed to change through the study horizon consistent with "policy futures" for neighboring regions and will be aggregated by technology type
 - Assumptions will leverage public information from respective ISO/RTO
- Load forecasts for external pools will account for "policy futures" for each respective ISO and leverage public information from respective ISO/RTO

Generation Supply Curves for Renewable Resources

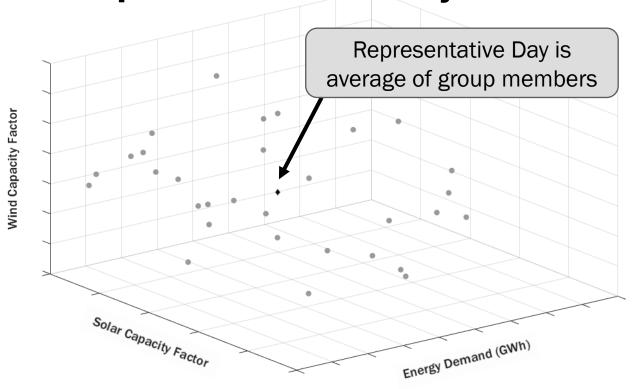
- Information from the <u>NYSERDA Large Scale Renewables Supply Curve</u> effort will be leveraged for candidate generators in the capacity expansion model
 - Maximum resource potential by location will be assumed for applicable candidate generators
 - Generator costs will be assumed accordingly for each Policy Case scenario

Capacity Reserve Margin Requirements

- Capacity reserve margin requirements will be modeled explicitly in the capacity expansion model in the Policy Case
- For the 2023-2042 Outlook, propose to assume UCAP equivalent of capacity reserve margins as the minimum requirement for capacity in respective locations (NYCA and Localities)
- Propose to adjust minimum requirements for Localities (G-J, J, and K) for years 2030 and beyond to address major topology changes in the NYCA system
 - This method would leverage the <u>TSL floor methodology</u> used in the NYISO's LCR optimization process and account for changes to the parameters accordingly

Capacity Expansion Enhancements: Time Representation

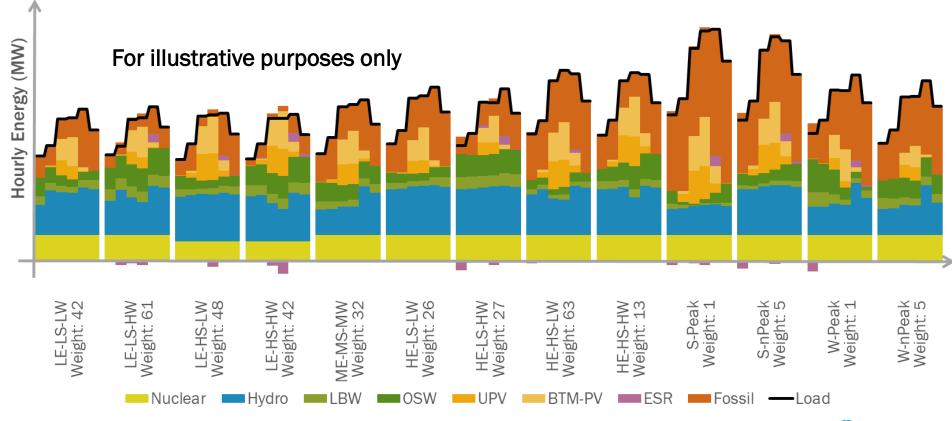
- Time representation methodology framework for the time representation in the capacity expansion model
- Details on the methodologies used in the prior study are included in section
 E.3.1 of 2021-2040 Outlook Appendix E
- For the 2023-2042 Outlook, propose a framework with representative days for each year and preserves chronology within each representative day
 - Representative days will be applied and weighted across each model year to most accurately match the input generation and peak totals for that year
 - This method preserves the chronology, including the state-of-charge (SoC) of energy storage resources, within each day
 - Sources and references for this methodology development are included in the System and Resource Outlook Update slides presented at <u>10/24/23 ESPWG</u>


Capacity Expansion Enhancements: Time Representation Proposal


- For the 2023-2042 Outlook, propose to model each year with 13 representative days to represent a year's variety of conditions
- For each model year, base representative days on load, wind (OSW and LBW), and solar values
- Seek to preserve annual energy total, seasonal peaks, and variable performance of renewable resources
- Each year will include the following representative days (totaling 13 per year):
 - Peak summer day (weighted 1x)
 - Peak winter day (weighted 1x)
 - Near peak summer day (weighted 5x)
 - Near peak winter day (weighted 5x)
 - Moderate day (weighted based on clustering)
 - 8 groups to represent each combination of high/low energy, wind, and solar

Example of a Representative Day

- Each point is a day, placed on the figure according to its total Energy Demand, Average Solar Capacity Factor, and Average Wind Capacity Factor.
- This example shows a small subset of 32 days.
 The representative day for this group is the day formed by the hour-byhour average of all 32 days (as shown in black diamond).


Example of Representative Days (cont.)

- The 13 representative days per year are designed as follows:
 - The first 9 groups describe the combinations of energy, wind, and solar performance
 - For example, "LE-LS-HW" means that days in that group have below average (low) energy demand and below average (low) solar capacity factor but above average (high) wind capacity factor. ME-MS-MW is the moderate day of all three qualities.
 - The other 4 groups are the peaks and near-peaks for the summer and winter seasons
- Each representative day is "weighted" according to the number of days that comprise that group, for a total of 365 day-weights per year
 - For example, the group of 32 days on the previous slide represents the moderate (ME-MS-MW) day. These days are replaced by the group's representative day (average of load, wind, and solar shapes), giving it a weight of 32 (out of 365)
- Each day captures six 4-hour blocks that are solved by the model, totaling 78 blocks per year for all 20 years
 - This is nearly 5x higher resolution than the 17 timeslices in the previous Outlook

- LE-LS-LW
- LE-LS-HW
- LE-HS-LW
- LE-HS-HW
- ME-MS-MW
- HE-LS-LW
- HE-LS-HW
- HE-HS-LW
- HE-HS-HW
- S-Peak
- S-nPeak
- W-Peak
- W-nPeak

Example Representative Days for One Year

Next Steps

Next Steps

- Continue model development of production cost and capacity expansion models
- Policy Case assumptions lock down date: 11/15/2023
- Upcoming stakeholder presentations
 - November 21, 2023 ESPWG
 - December 19, 2023 ESPWG

Questions, Comments, & Feedback?

Email additional feedback to: SCarkner@nyiso.com one week prior the next ESPWG

2023-2042 System & Resource Outlook Data Catalog

Report

Report Placeholder Study Summary

Summary Placeholde

Report Appendices

Production Cost Model Benchmark Draft

Data Documents

Stakeholder Presentations

November 18, 2022

2021 Outlook Lessons Learned
NYSERDA Outlook Suggestions

June 16, 2023

2023-2042 Outlook Kickoff

July 17, 2023

2023-2042 Outlook Benchmark 2023-2042 Outlook Update

August 22, 2023

2023-2042 Outlook Preliminary Reference Case Assumptions

September 21, 2023

2023-2042 Outlook Reference Case Assumptions Update

October 24, 2023

2023-2042 Outlook Reference Case Assumptions Update

2021-2040 System & Resource Outlook Data Catalog

Our Mission & Vision

Mission

Ensure power system reliability and competitive markets for New York in a clean energy future

Vision

Working together with stakeholders to build the cleanest, most reliable electric system in the nation

