

# 2023-2042 System & Resource Outlook Update

#### Sarah Carkner

Manager, Long Term Assessments

**Electric System Planning Working Group (ESPWG)** 

March 1, 2024, NYISO

Reposted March 4, 2024

## Agenda

- Scope & Schedule Review
- Reference Case Updates
  - Contract Case
  - Policy Case
- Next Steps
- Outlook Data Catalog
- Appendix



## Supplemental Material Posted

- In addition to today's presentation, an excel spreadsheet with final Base Case results has been posted with today's meeting materials
- This spreadsheet will be updated accordingly to include final Contract and Policy Case results throughout the System & Resource Outlook process



# Scope & Schedule Review



## System & Resource Outlook Scope

#### Model **Development**

Congestion Assessment

#### **Analyses**

Benchmark

Assumptions

Historic & Future **Transmission** Congestion

> Renewable Generation

Resources to

Meet Policy

**Objectives** 

Renewable Pockets & Energy Deliverability

Future

Resource

Attributes

Appendix, Data Catalog, & **Fact Sheet** 

Report,

Reference Cases

Sensitivities


Congestion Relief Analysis Profiles

New York ISO

## **Preliminary Targeted Study Schedule**

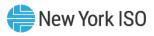
|     | Month                                 |   |   | January | ′ |   |   | Febr | ruary |   |   | Ma | irch |   |
|-----|---------------------------------------|---|---|---------|---|---|---|------|-------|---|---|----|------|---|
|     | Week                                  | 1 | 2 | 3       | 4 | 5 | 1 | 2    | 3     | 4 | 1 | 2  | 3    | 4 |
| 01  | <del>Benchmarkin</del> g              |   |   |         |   |   |   |      |       |   |   |    |      |   |
| _   | Assumptions Development               |   |   |         |   |   |   |      |       |   |   |    |      |   |
| 024 | Capacity Expansion Model Development  | X | Χ | Χ       | Χ | Χ | X | Χ    | Χ     | X |   |    |      |   |
| 20  | Capacity Expansion Results & Analyses |   |   |         |   |   | X | Χ    | Χ     | X | X | Χ  | Χ    | X |
|     | Production Cost Model Development     | X | Χ | Χ       | Χ | Χ | X | Χ    | Χ     | X | X | Χ  | Χ    | X |
|     | Production Cost Results & Analyses    | X | Χ | Χ       | Χ | Χ | X | Χ    | Χ     | Χ | X | Χ  | X    | Χ |

|         | Month                                                                                                        |   |   | April |   |   |   | Ma | ay |   |   | Ju | ne |   |
|---------|--------------------------------------------------------------------------------------------------------------|---|---|-------|---|---|---|----|----|---|---|----|----|---|
|         | Week                                                                                                         | 1 | 2 | 3     | 4 | 5 | 1 | 2  | 3  | 4 | 1 | 2  | 3  | 4 |
| 2024 Q2 | Capacity Expansion Model Development Capacity Expansion Results & Analyses Production Cost Model Development |   |   |       |   |   |   |    |    |   |   |    |    |   |
| Ň       | Production Cost Results & Analyses                                                                           | X | Χ | X     | Χ | Χ |   |    |    |   |   |    |    |   |
|         | Sensitivities                                                                                                | X | Χ | X     | Χ | Χ |   |    |    |   |   |    |    |   |
|         | Report                                                                                                       | Χ | Χ | Χ     | Χ | Χ | X | Χ  | Χ  | Χ | X | Χ  | Χ  | X |

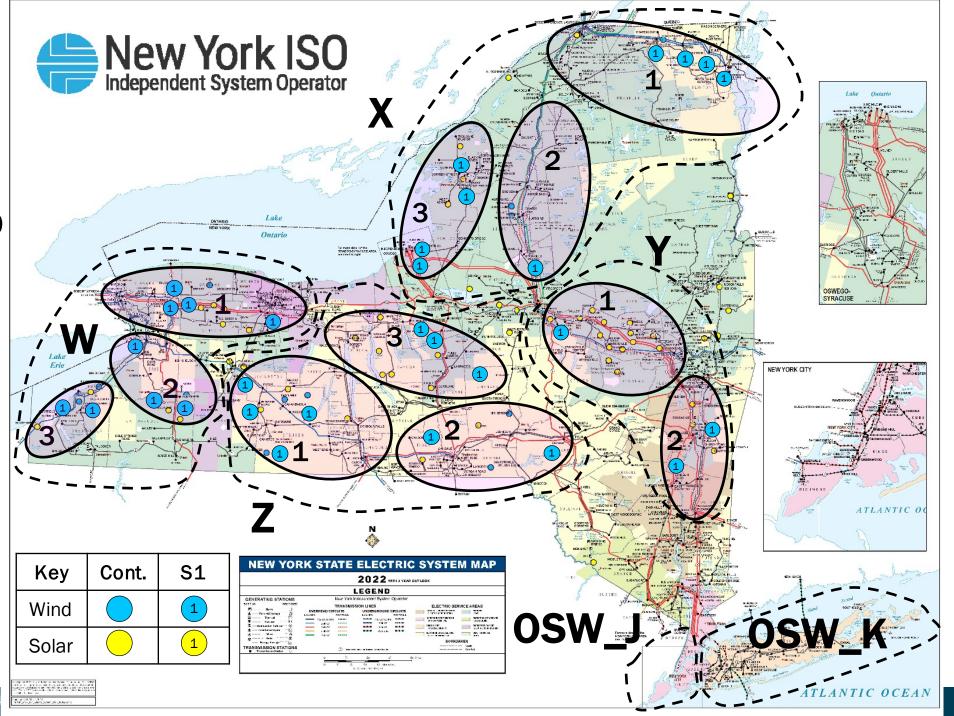


## Contract Case



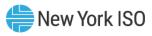

## **Contract Case: Updates**

- Continue to evaluate renewable pocket analyses
- See here for 2021-2040 renewable pocket analysis: <u>link</u>

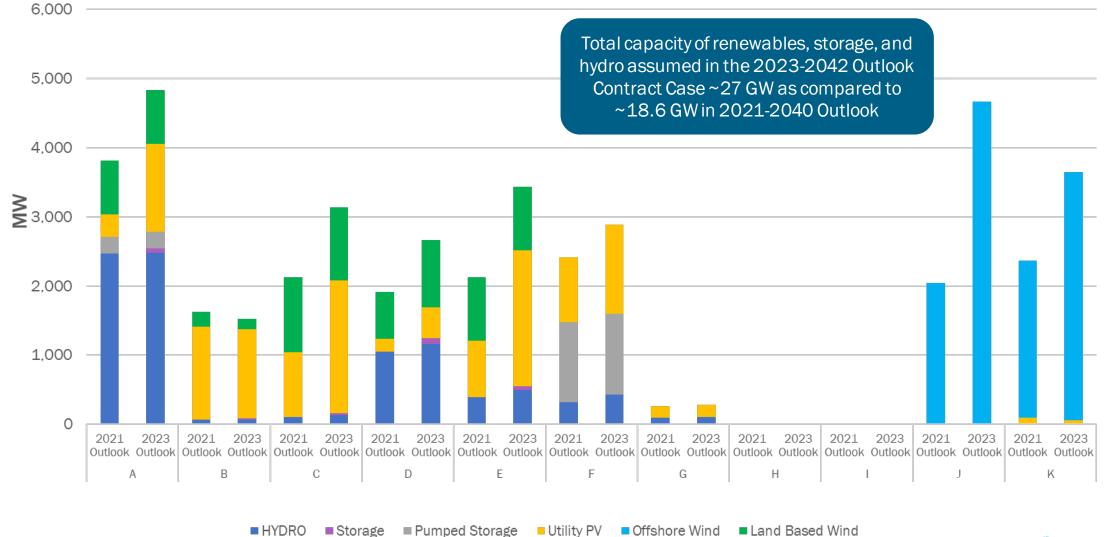



# The Outlook Renewable Generation Pocket Process

- Pocket definitions kept consistent with those identified in 2021-2040
   System and Resource Outlook study
- Renewable generation pockets are presented for year 2030 for the Contract Case and will also be evaluated for Policy cases
- A pocket is formed by local transmission congestion (if transmission lines are congested for more than 100 hours) causing bottlenecks for renewable generation
- Pocket metrics (e.g., curtailment, number of congested hours, energy deliverability, etc.) will be reported




2021-2040
System &
Resource
Outlook
Pocket
Map

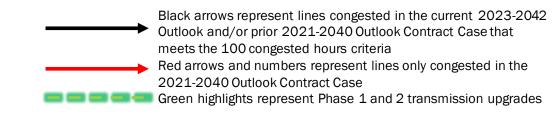


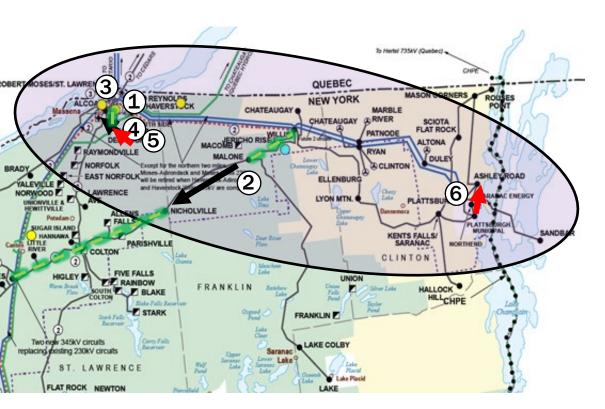

## **Key Considerations**

- Contract Case includes the approved Phase 1 and 2 transmission upgrades and NYPA's Smart Path Project
- Hydro resource model changes reflect limited pondage capability of most hydro units in New York, except Niagara units
- The scale of renewable resource capacity has increased (45%) as compared to the prior Contract Case in the 2021-2040 System and Resource Outlook



## **Contract Case Installed Capacity (2030)**




\*HYDRO capacity difference due to update in DMNC for existing hydro units consistent with 2023 Gold Book.

### Pocket X1

#### **North Country: Northern Area**

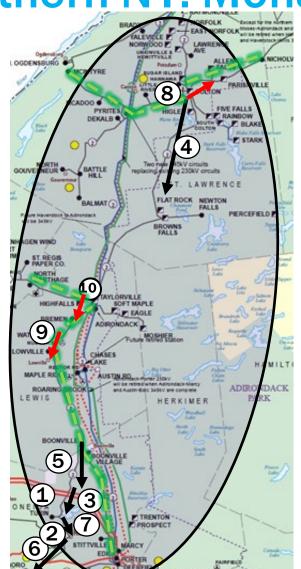




|    |                                | Number of Limiting Hours      |                               |  |  |
|----|--------------------------------|-------------------------------|-------------------------------|--|--|
| ID | Constraint                     | 2023 Outlook<br>Contract Case | 2021 Outlook<br>Contract Case |  |  |
| 1  | North Tie OH-NY                | 6,602                         | 7,678                         |  |  |
| 2  | MALONE 115.00-NICHOLVL 115.00  | 2,399                         | -                             |  |  |
| 3  | MOSES W 230.00-MNH3230 230.00  | 1,854                         | -                             |  |  |
| 4  | ALCOA-NM 115.00-ALCOA N 115.00 | 182                           | 926                           |  |  |
| 5  | ALCOA-NM 115-DENNISON 115      | 22                            | 782                           |  |  |
| 6  | NOEND115 115-PLAT 115 115      | -                             | 128                           |  |  |

|       | Capaci                        | ty (MW)                       | Energy Deliv                  | verability (%)                |
|-------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| Туре  | 2023 Outlook<br>Contract Case | 2021 Outlook<br>Contract Case | 2023 Outlook<br>Contract Case | 2021 Outlook<br>Contract Case |
| Hydro | 1155                          | 1049                          | 98%                           | 100%                          |
| Wind  | 977                           | 876                           | 94%                           | 100%                          |
| Solar | 690                           | 180                           | 91%                           | 100%                          |




### Pocket X2

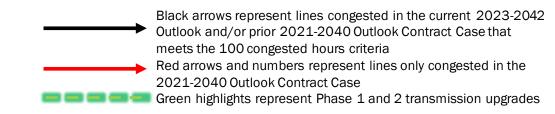
Black arrows represent lines congested in the current 2023-2042
Outlook and/or prior 2021-2040 Outlook Contract Case that meets the 100 congested hours criteria

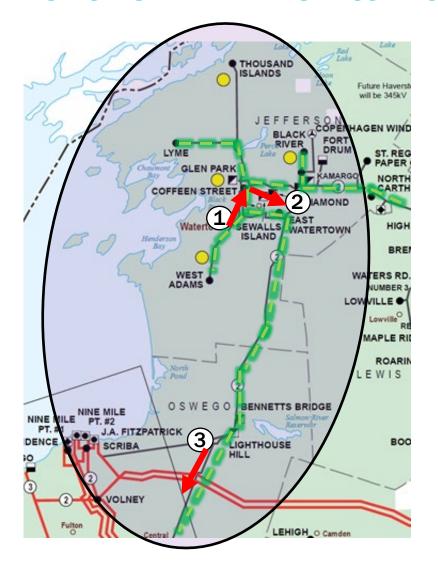
Red arrows and numbers represent lines only congested in the 2021-2040 Outlook Contract Case  $\,$ 

Green highlights represent Phase 1 and 2 transmission upgrades

Northern NY: Mohawk Valley Area




|    |                                 | Number of L                   | imiting Hours                 |
|----|---------------------------------|-------------------------------|-------------------------------|
| ID | Constraint                      | 2023 Outlook<br>Contract Case | 2021 Outlook<br>Contract Case |
| 1  | AVA-USAF 115.00-TURIN 115.00    | 6,275                         | -                             |
| 2  | TRNG STN 115.00-ROME 115.00     | 6,091                         | -                             |
| 3  | BVPAR-4 115.00-GRIFFISS 115.00  | 1,010                         | -                             |
| 4  | COLTON 115.00-FLAT RCK 115.00   | 962                           | -                             |
| 5  | AVA-USAF 115.00-BVPAR-3 115.00  | 917                           | -                             |
| 6  | TRNG STN 115.00-STERLING 115.00 | 349                           | -                             |
| 7  | MADISON 115.00-ROME 115.00      | 278                           | -                             |
| 8  | NICHOLVL 115-PARISHVL 115       | -                             | 515                           |
| 9  | LOWVILLE 115-Q531_P0I 115       | -                             | 434                           |
| 10 | BREMEN 115-Q531_P0I 115         | -                             | 182                           |
|    |                                 |                               |                               |


|       | Ca paci                       | ty (MW)                       | Energy Deliv                  | verability (%)                |
|-------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| Туре  | 2023 Outlook<br>Contract Case | 2021 Outlook<br>Contract Case | 2023 Outlook<br>Contract Case | 2021 Outlook<br>Contract Case |
| Hydro | 252                           | 250                           | 97%                           | 100%                          |
| Wind  | 505                           | 505                           | 96%                           | 100%                          |
| Solar | 80                            | 35                            | 94%                           | 96%                           |

New York ISO

### Pocket X3

#### **Northern NY: Ontario Area**

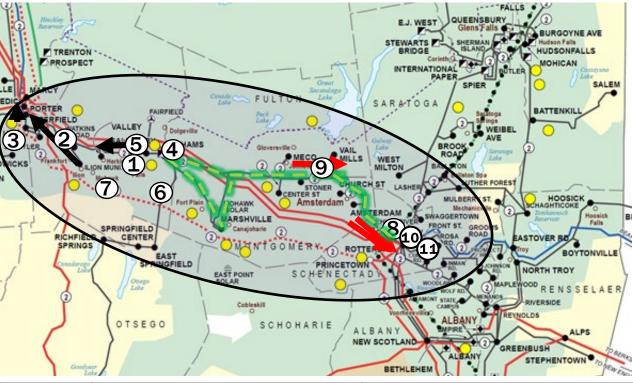




|    |                          | Number of L                   | imiting Hours                 |
|----|--------------------------|-------------------------------|-------------------------------|
| ID | Constraint               | 2023 Outlook<br>Contract Case | 2021 Outlook<br>Contract Case |
| 1  | COFFEEN 115-GLEN PRK 115 | -                             | 1,119                         |
| 2  | COFFEEN 115-E WTRTWN 115 | -                             | 748                           |
| 3  | HTHSE HL 115-MALLORY 115 | -                             | 591                           |

|       | Capaci                        | ty (MW)                       | Energy Deliverability (%)     |                               |  |
|-------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|--|
| Type  | 2023 Outlook<br>Contract Case | 2021 Outlook<br>Contract Case | 2023 Outlook<br>Contract Case | 2021 Outlook<br>Contract Case |  |
| Hydro | 224                           | 155                           | 98%                           | 99%                           |  |
| Wind  | 80                            | 80                            | 98%                           | 100%                          |  |
| Solar | 469                           | 369                           | 99%                           | 90%                           |  |




### Pocket Y1

Black arrows represent lines congested in the current 2023-2042 Outlook and/or prior 2021-2040 Outlook Contract Case that meets the 100 congested hours criteria

Red arrows and numbers represent lines only congested in the 2021-2040 Outlook Contract Case

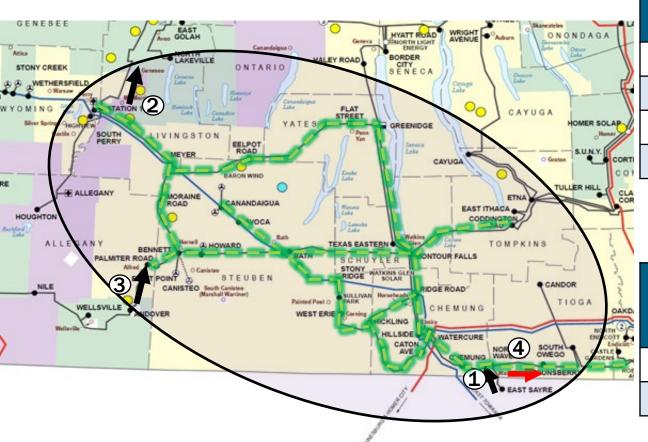
Green highlights represent Phase 1 and 2 transmission upgrades

Capital Region: Mohawk Valley Area



| Туре  | Capaci                        | ty (MW)                       | Energy Deliverability (%)     |                               |  |  |
|-------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|--|--|
|       | 2023 Outlook<br>Contract Case | 2021 Outlook<br>Contract Case | 2023 Outlook<br>Contract Case | 2021 Outlook<br>Contract Case |  |  |
| Hydro | 32                            | 30                            | 94%                           | 100%                          |  |  |
| Wind  | 74                            | 74                            | 90%                           | 97%                           |  |  |
| Solar | 1,700                         | 961                           | 94%                           | 96%                           |  |  |

|    |                                 | Number of L                   | imiting Hours                 |
|----|---------------------------------|-------------------------------|-------------------------------|
| ID | Constraint                      | 2023 Outlook<br>Contract Case | 2021 Outlook<br>Contract Case |
| 1  | FRFLD A 115.00-VALLEY 115.00    | 3,848                         | -                             |
| 2  | PORTER 1 115.00-ILION 115.00    | 1,233                         | -                             |
| 3  | DEERFD-H 115.00-PORTER 1 115.00 | 946                           | -                             |
| 4  | INGMS-CD 115.00-INGHAM-E 115.00 | 589                           | -                             |
| 5  | INGMS-CD 115.00-SALBRY4115.00   | 273                           | -                             |
| 6  | INGMS-CD 115.00-SALBRY3 115.00  | 185                           | -                             |
| 7  | Q581_P0I 115.00-SALBRY4 115.00  | 166                           | -                             |
| 8  | RTRDM1 115-Q638P0I 115          | -                             | 1,200                         |
| 9  | STONER 115-VAIL TAP 115         | -                             | 882                           |
| 10 | AMST 115 115-Q638P0I 115        | -                             | 302                           |
| 11 | Q638POI 115-AMST 115 115        | -                             | 293                           |




#### Pocket Z1

## Black arrows represent lines congested in the current 2023-2042 Outlook and/or prior 2021-2040 Outlook Contract Case that meets the 100 congested hours criteria Red arrows and numbers represent lines only congested in the 2021-2040 Outlook Contract Case

Green highlights represent Phase 1 and 2 transmission upgrades

#### Southern Tier: Finger Lakes Area



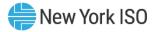
|   |                                 | Number of L | imiting Hours                 |
|---|---------------------------------|-------------|-------------------------------|
| ₽ | ID Constraint                   |             | 2021 Outlook<br>Contract Case |
| 1 | N.WAV115 115.00-26E.SAYR 115.00 | 4,186       | 3,225                         |
| 2 | S.PER115 115.00-STA 158S 115.00 | 1,030       | -                             |
| 3 | PALMT115 115.00-ANDOVER1 115.00 | 252         | -                             |
| 4 | LOUNS115 115-STAGECOA 115       | -           | 170                           |

|       | Capaci                        | ty (MW)                       | Energy Deli                   | verability (%)                |
|-------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| Туре  | 2023 Outlook<br>Contract Case | 2021 Outlook<br>Contract Case | 2023 Outlook<br>Contract Case | 2021 Outlook<br>Contract Case |
| Wind  | 691                           | 720                           | 100%                          | 100%                          |
| Solar | 927                           | 405                           | 99%                           | 100%                          |



#### Pocket Z2

## Black arrows represent lines congested in the current 2023-2042 Outlook and/or prior 2021-2040 Outlook Contract Case that meets the 100 congested hours criteria Red arrows and numbers represent lines only congested in the 2021-2040 Outlook Contract Case


Green highlights represent Phase 1 and 2 transmission upgrades

#### **Southern Tier: Binghamton Area**



|    |                                    | Number of Limiting Hours      |     |  |  |
|----|------------------------------------|-------------------------------|-----|--|--|
| ID | Constraint                         | 2023 Outlook<br>Contract Case |     |  |  |
| 1  | FRASR345 345.00-0AKDL345<br>345.00 | 230                           | -   |  |  |
| 2  | JENN 115 115-SIDNT115 115          | -                             | 542 |  |  |

|   |       | Capaci                        | ty (MW)                       | Energy Deliv                  | verability (%)                |
|---|-------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
|   | Type  | 2023 Outlook<br>Contract Case | 2021 Outlook<br>Contract Case | 2023 Outlook<br>Contract Case | 2021 Outlook<br>Contract Case |
| , | Wind  | 213                           | 213                           | 100%                          | 99%                           |
|   | Solar | 205                           | 60                            | 97%                           | 100%                          |



## **Key Findings**

- Phase 1 and 2 transmission upgrade projects address much of the congestion identified in the previous pocket analysis.
- Some pockets exhibit low to no congestion on the lower kV transmission lines.
- With increased renewable energy capacity and modeling changes to hydro resources in the 2023-2042 Outlook Contract Case, some pockets show increased curtailment of resources due to increased competition and decreased flexibility.
- Congestion downstream of upgraded paths are observed to be the next limiting elements in most pockets.
- Some curtailment can be attributed to congestion on the bulk system, especially the resources directly connected to higher kV buses or that are close to the bulk system.
  - Increase in congestion on the bulk system can be seen on the "Projected NYCA-Wide Demand Congestion by Constraint" charts for the Base and Contract Case results <u>here</u>.



## Policy Case



# Capacity Expansion Model Assumptions: Overview

- The Policy Case for the 2023-2042 Outlook will include three main scenarios
  - Lower Demand Policy Case, Higher Demand Policy Case, State Scenario
- The three scenarios have a similar model framework (e.g., study years, time representation methodology, transmission network, etc.)
- Each scenario has a unique energy forecast to represent a variety of potential future conditions
  - E.g., annual energy, peak demand, large loads, BTM solar forecasts
- Detailed assumptions for these three scenarios are included in the <u>capacity</u> <u>expansion model assumptions matrix</u>



# Capacity Expansion Model Enhancements: Overview

- In addition to many assumptions that have been updated since the 2021-2040
  Outlook, several enhancements have been incorporated into the capacity expansion
  model for each of the three Policy Cases in the 2023-2042 Outlook as presented at
  previous ESPWG meetings
  - Changed methodology for time representation
  - Addition of external pools
  - Addition of generation supply curves for renewable technologies
  - Addition of 8-hour battery storage as candidate for expansion
  - Updated marginal ELCC curves (specific to each scenario)
- Additionally, the following enhancements will be incorporated into the State Scenario:
  - Hydrogen repowered units are candidates for expansion, including electrolysis load
  - Sub-zonal constraints modeled to reflect estimated transmission headroom of local transmission & distribution system and conceptual marginal upgrade costs

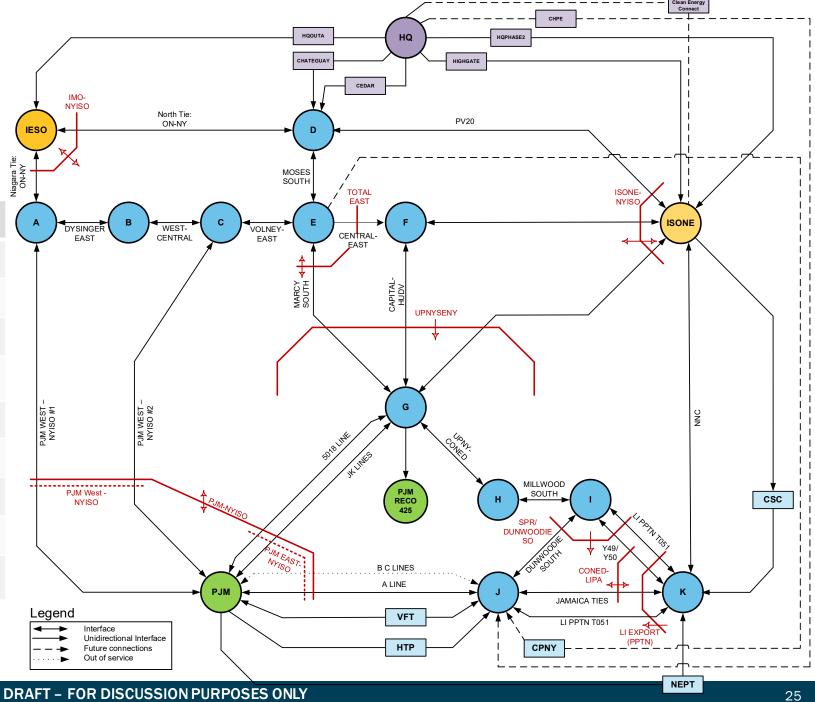


## **Key Considerations**

- Methodology for time representation has a major impact on model results
  - Preserving chronology within each day allows for a more accurate representation of battery storage resources as it tracks state-of-charge and duration limited qualities intraday
  - Preliminary results show a higher need for dispatchable resources to satisfy energy needs as compared to the prior Outlook
- The capacity expansion model has been updated to include neighboring systems (PJM, ISO-NE, and IESO)
  - External load and capacity/generation mix has been informed by public information for each respective neighboring system to reflect "policy futures" in each region
  - Preliminary results show interchange between the regions to optimally dispatch generation
- The marginal ELCC curves for renewable and battery storage resources are unique to each scenario based on the respective resource penetration in each scenario



# Capacity Expansion Model: Time Representation


- For the 2023-2042 Outlook, model each year with 13 representative days to represent a year's variety of conditions
- For each model year, base representative days on load, wind (OSW and LBW), and solar values
- Seek to preserve annual energy total, seasonal peaks, and variable performance of renewable resources
- Each year will include the following representative days (totaling 13 per year) with six 4-hour periods per day:
  - Peak summer day (weighted 1x)
  - Peak winter day (weighted 1x)
  - Near peak summer day (weighted 5x)
  - Near peak winter day (weighted 5x)
  - Moderate day (weighted based on clustering)
  - 8 groups to represent each combination of high/low energy, wind, and solar
- Additional detail on the time representation proposal for the 2023-2042 Outlook is included in the November 2, 2023 ESPWG materials



### **Capacity Expansion** Model: Pipe & Bubble Representation

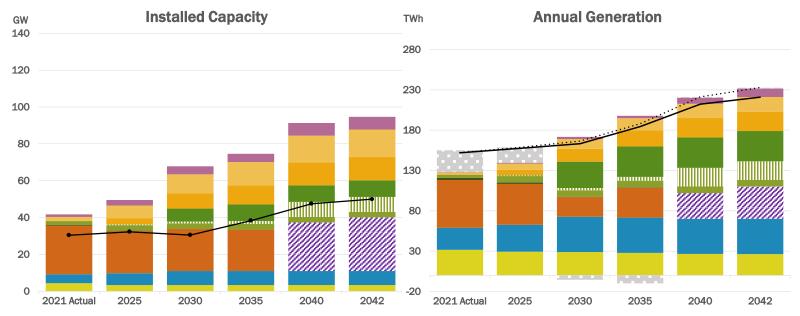
| Interface                         | 2023 Limits (MW) | Source                                   |
|-----------------------------------|------------------|------------------------------------------|
| Dysinger East                     | 1700             | 2020 ATR                                 |
| West Central                      | 575              | 2020 ATR                                 |
| Moses South*                      | 2325             | 2020 ATR                                 |
| Central East                      | 3785             | 2023 Central East<br>Voltage Limit Study |
| Total East                        | 6175             | 2020 ATR                                 |
| UPNY-SENY                         | 6325             | 2020 ATR                                 |
| UPNY-ConEd*                       | 7500             | 2020 ATR                                 |
| Clean Path New York               | 1300             | NYSERDA Contract                         |
| Champlain Hudson<br>Power Express | 1250             | NYSERDA Contract                         |

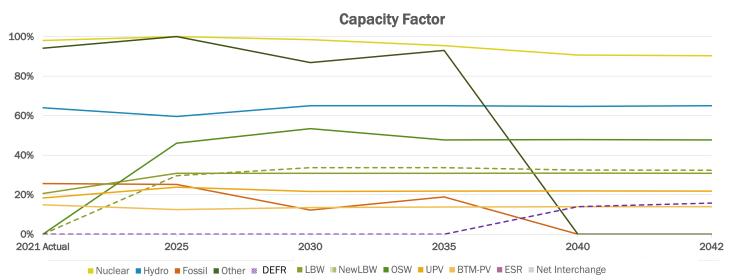
<sup>\*</sup>Interface limits are assumed to increase through study period consistent with proposed project upgrades



# Capacity Expansion Enhancements: Marginal ELCC Curves

- For all Policy Case scenarios in the 2023-2042 Outlook, marginal ELCC curves will be assumed for LBW, OSW, UPV, and ESR resources
  - Updated regional ELCC curves for LBW, OSW, UPV, and storage would be based on hourly input load forecast and resource contribution (by technology type) to quantify the capacity value for that resource type at varying levels of installed capacity
  - This method will base the marginal ELCC values on the load levels and capacity mix specific to each scenario for 2030 model year
- Marginal ELCC curves will be applied on a NYCA wide and Locality specific basis, as applicable to the resource
  - "Lower Demand Policy" and "Higher Demand Policy" Scenarios will assume unique curves for summer/winter seasons
  - "State Scenario" will assume annual curves consistent with the Integration Analysis
- Additional detail on the marginal ELCC value representation proposal for the 2023-2042 Outlook is included in the <u>October 24, 2023 ESPWG</u> materials





## Preliminary Results & Key Findings

- Preliminary results for the Lower Demand Policy Case and Higher Demand Policy Case scenarios are included on the following slides
  - Preliminary results for the State Scenario will be presented at an upcoming ESPWG following completion of the model development for this scenario to include all proposed enhancements
- The primary drivers of the resource mix for each scenario are:
  - Load forecast (i.e., total energy & peak forecasts)
  - Time representation (e.g., chronology preserved)
  - Assumed policy mandates
- Preliminary findings indicate that a minimum of 65 GW of new resources would be required by 2040 to achieve policy mandates
  - This includes firm builds (i.e., awarded resources) and generators selected by capacity expansion model throughout the study period
- Dispatchable emission free resources generate in model years 2040 and beyond to support energy needs

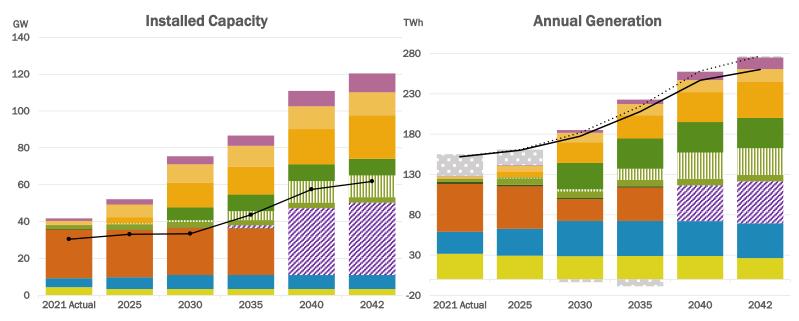


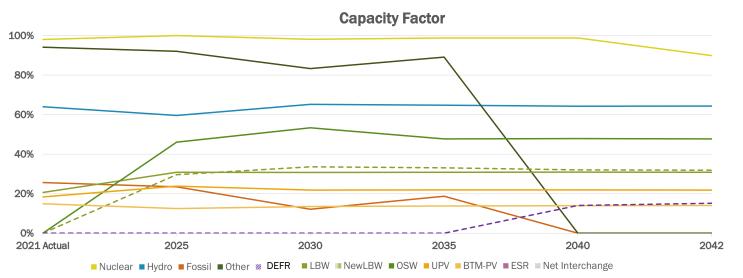
#### **Preliminary Results: Lower Demand Policy Case**





| Capacity (Summer MW) |        |        |        |        |        |        |  |  |
|----------------------|--------|--------|--------|--------|--------|--------|--|--|
|                      | 2021   | 2025   | 2030   | 2035   | 2040   | 2042   |  |  |
| Nuclear              | 4,378  | 3,342  | 3,342  | 3,342  | 3,342  | 3,342  |  |  |
| Fossil               | 26,345 | 23,007 | 22,867 | 22,461 | -      | -      |  |  |
| DEFR - HcLo          | -      | 1      | -      | -      | 4,114  | 4,331  |  |  |
| DEFR - McMo          | -      | =      | -      | -      | -      | -      |  |  |
| DEFR - LcHo          | -      | -      | -      |        | 22,239 | 24,792 |  |  |
| Hydro                | 4,868  | 6,381  | 7,665  | 7,665  | 7,665  | 7,665  |  |  |
| LBW                  | 2,227  | 3,291  | 3,881  | 4,570  | 11,095 | 11,095 |  |  |
| osw                  | -      | 136    | 6,990  | 9,000  | 9,000  | 9,000  |  |  |
| UPV                  | 32     | 3,135  | 8,422  | 10,381 | 12,499 | 12,572 |  |  |
| BTM-PV               | 2,116  | 7,097  | 10,153 | 12,644 | 14,444 | 14,988 |  |  |
| Storage              | 1,405  | 2,905  | 4,405  | 4,405  | 6,892  | 6,892  |  |  |
| Total                | 41,686 | 49,490 | 67,805 | 74,548 | 91,290 | 94,677 |  |  |


| Generation (GWh)        |  |         |         |         |         |         |         |  |  |
|-------------------------|--|---------|---------|---------|---------|---------|---------|--|--|
|                         |  | 2021    | 2025    | 2030    | 2035    | 2040    | 2042    |  |  |
| Nuclear                 |  | 31,609  | 29,276  | 28,831  | 27,940  | 26,552  | 26,438  |  |  |
| Fossil                  |  | 59,154  | 50,788  | 24,400  | 37,089  | -       | -       |  |  |
| DEFR - HcLo             |  | -       | -       | -       | -       | 29,034  | 35,114  |  |  |
| DEFR - McMo             |  | -       | -       | -       | -       | -       | -       |  |  |
| DEFR - LcHo             |  | -       | -       | -       | -       | 3,117   | 5,012   |  |  |
| Hydro                   |  | 27,379  | 33,281  | 43,688  | 43,687  | 43,455  | 43,686  |  |  |
| LBW                     |  | 4,024   | 8,841   | 10,700  | 12,738  | 31,162  | 31,048  |  |  |
| osw                     |  | -       | 549     | 32,708  | 37,607  | 37,758  | 37,601  |  |  |
| UPV                     |  | 51      | 6,528   | 15,991  | 19,843  | 23,942  | 24,016  |  |  |
| BTM-PV                  |  | 2,761   | 7,718   | 12,024  | 15,232  | 17,582  | 18,311  |  |  |
| Storage                 |  | 355     | 1,009   | 2,722   | 2,963   | 7,782   | 10,317  |  |  |
| Total Generation        |  | 127,930 | 139,712 | 171,669 | 197,750 | 220,383 | 231,543 |  |  |
| RE Generation           |  | 34,215  | 56,917  | 115,110 | 129,107 | 153,898 | 154,662 |  |  |
| ZE Generation           |  | 65,824  | 86,192  | 143,941 | 157,047 | 212,602 | 221,226 |  |  |
| Load                    |  | 151,979 | 157,528 | 163,222 | 184,439 | 212,121 | 220,946 |  |  |
| Load+Charge             |  | 152,334 | 158,684 | 166,426 | 188,001 | 221,339 | 232,956 |  |  |
| % RE [RE/Load]          |  | 23%     | 36%     | 71%     | 70%     | 73%     | 70%     |  |  |
| % ZE [ZE/(Load+Charge)] |  | 43%     | 55%     | 88%     | 85%     | 100%    | 100%    |  |  |


| Emissions (million tons)      |       |       |       |       |   |   |  |  |
|-------------------------------|-------|-------|-------|-------|---|---|--|--|
| 2021 2025 2030 2035 2040 2042 |       |       |       |       |   |   |  |  |
| CO <sub>2</sub> Emissions     | 22.24 | 21.47 | 10.21 | 15.72 | - | - |  |  |

- \* Storage includes Pumped Storage Hydro and Batteries
- \* Utility solar (UPV) includes existing and new UPV
- \* Hydro includes hydro imports from Hydro Quebec
- \* Land-Based Wind (LBW), Offshore Wind (OSW), Renewable (RE), Zero Emissions (ZE)
- \* Dispachable Emission Free Resource (DEFR), High Capital Low Operating (HcLo), Medium Capital Medium Operating (McMo), Low Capital High Operating (LcHo)

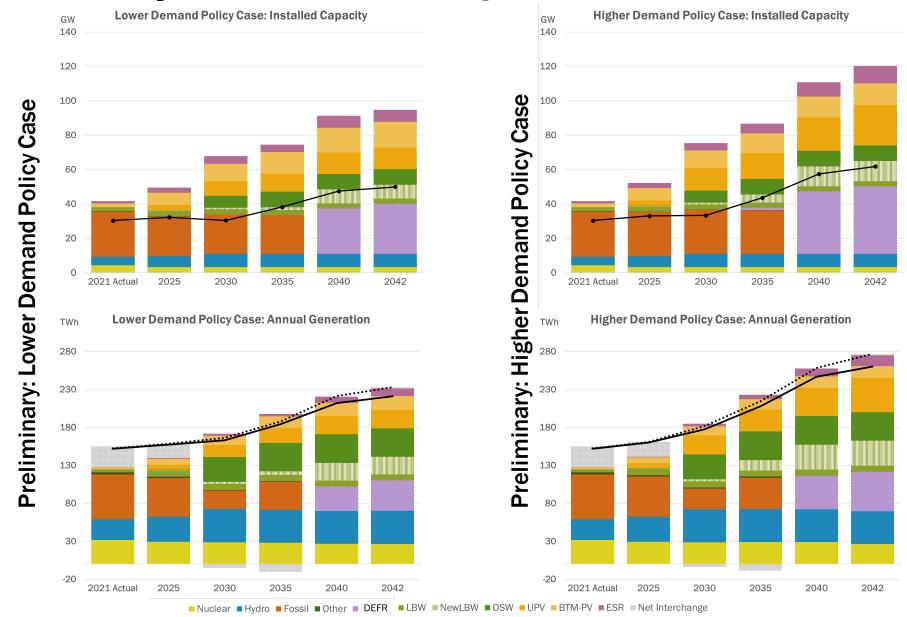


#### **Preliminary Results: Higher Demand Policy Case**





| Capacity (Summer MW) |                               |        |        |        |        |         |         |  |  |
|----------------------|-------------------------------|--------|--------|--------|--------|---------|---------|--|--|
|                      | 2021 2025 2030 2035 2040 2042 |        |        |        |        |         |         |  |  |
| Nuclear              |                               | 4,378  | 3,342  | 3,342  | 3,342  | 3,342   | 3,342   |  |  |
| Fossil               |                               | 26,345 | 25,639 | 25,639 | 25,233 | -       | -       |  |  |
| DEFR - HcLo          |                               | -      | -      | -      | -      | 6,495   | 7,133   |  |  |
| DEFR - McMo          |                               | -      | -      | -      | -      | -       | -       |  |  |
| DEFR - LcHo          |                               | -      | -      | -      | 1,421  | 29,771  | 32,123  |  |  |
| Hydro                |                               | 4,868  | 6,381  | 7,631  | 7,665  | 7,665   | 7,665   |  |  |
| LBW                  |                               | 2,227  | 3,291  | 3,881  | 7,712  | 14,653  | 14,750  |  |  |
| osw                  |                               | -      | 136    | 6,990  | 9,000  | 9,000   | 9,000   |  |  |
| UPV                  |                               | 32     | 3,135  | 13,313 | 15,089 | 19,289  | 23,575  |  |  |
| BTM-PV               |                               | 2,116  | 7,097  | 10,032 | 11,420 | 12,308  | 12,567  |  |  |
| Storage              |                               | 1,405  | 2,905  | 4,405  | 5,598  | 8,341   | 10,211  |  |  |
| Total                |                               | 41,686 | 52,155 | 75,437 | 86,685 | 110,863 | 120,366 |  |  |


| Generation (GWh)        |  |         |         |         |         |         |         |  |  |
|-------------------------|--|---------|---------|---------|---------|---------|---------|--|--|
|                         |  | 2021    | 2025    | 2030    | 2035    | 2040    | 2042    |  |  |
| Nuclear                 |  | 31,609  | 29,276  | 28,723  | 28,938  | 28,931  | 26,326  |  |  |
| Fossil                  |  | 59,154  | 52,701  | 27,101  | 41,297  | -       | -       |  |  |
| DEFR - HcLo             |  | -       |         |         | -       | 40,206  | 46,297  |  |  |
| DEFR - McMo             |  | -       | -       | -       | -       | -       | -       |  |  |
| DEFR - LcHo             |  | -       | -       | -       | =       | 4,242   | 5,779   |  |  |
| Hydro                   |  | 27,379  | 33,282  | 43,606  | 43,514  | 43,161  | 43,189  |  |  |
| LBW                     |  | 4,024   | 8,837   | 10,694  | 21,737  | 40,824  | 40,913  |  |  |
| osw                     |  | -       | 548     | 32,661  | 37,608  | 37,752  | 37,602  |  |  |
| UPV                     |  | 51      | 6,529   | 25,422  | 28,908  | 36,981  | 45,060  |  |  |
| BTM-PV                  |  | 2,761   | 7,720   | 11,880  | 13,774  | 15,022  | 15,399  |  |  |
| Storage                 |  | 355     | 746     | 3,425   | 5,516   | 10,082  | 14,453  |  |  |
| Total Generation        |  | 127,930 | 141,496 | 185,003 | 222,888 | 257,202 | 275,018 |  |  |
| RE Generation           |  | 34,215  | 56,916  | 124,264 | 145,541 | 173,741 | 182,163 |  |  |
| ZE Generation           |  | 65,824  | 86,192  | 152,987 | 174,479 | 247,120 | 260,565 |  |  |
| Load                    |  | 151,979 | 159,991 | 177,520 | 207,916 | 246,751 | 260,233 |  |  |
| Load+Charge             |  | 152,334 | 160,842 | 181,704 | 214,449 | 258,444 | 276,767 |  |  |
| % RE [RE/Load]          |  | 23%     | 36%     | 70%     | 70%     | 70%     | 70%     |  |  |
| % ZE [ZE/(Load+Charge)] |  | 43%     | 54%     | 86%     | 84%     | 100%    | 100%    |  |  |

| Emissions (million tons)      |       |       |       |       |   |   |  |  |
|-------------------------------|-------|-------|-------|-------|---|---|--|--|
| 2021 2025 2030 2035 2040 2042 |       |       |       |       |   |   |  |  |
| CO <sub>2</sub> Emissions     | 22.24 | 22.38 | 11.41 | 17.68 | - | - |  |  |

- \* Storage includes Pumped Storage Hydro and Batteries
- \* Utility solar (UPV) includes existing and new UPV
- \* Hydro includes hydro imports from Hydro Quebec
- \* Land-Based Wind (LBW), Offshore Wind (OSW), Renewable (RE), Zero Emissions (ZE)
- \* Dispachable Emission Free Resource (DEFR), High Capital Low Operating (HcLo), Medium Capital Medium Operating (McMo), Low Capital High Operating (LcHo)



#### **Preliminary Results Comparison**





## **Policy Case: Next Steps**

- Seek stakeholder feedback on preliminary results for capacity expansion scenarios
- Finalize model development of the State Scenario
- Continue production cost model development for Policy Case scenarios
- Return to ESPWG with results for all three capacity expansion scenarios



## Next Steps



### **Next Steps**

- Seek stakeholder feedback
- Continue to evaluate renewable pockets analyses
- Finalize model development of the State Scenario in the capacity expansion model
- Continue model development of Policy Case scenarios in the production cost model
- Continue stakeholder engagement
  - Next presentation: March 21, 2024 ESPWG



## Questions, Comments, & Feedback?

Email additional feedback to: SCarkner@nyiso.com one week prior the next ESPWG



#### 2023-2042 System & Resource Outlook Data Catalog

**≷eport** 

- Keport Placeholder Study Summary

Summary Placeholder

#### **Report Appendices**

Production Cost Model Benchmark DRAFT
Production Cost Assumptions Matrix DRAFT
Capacity Expansion Assumptions Matrix DRAFT

#### **Data Documents**

#### **Stakeholder Presentations**

#### November 18, 2022

2021 Outlook Lessons Learned NYSERDA Outlook Suggestions

#### June 16, 2023

2023-2042 Outlook Kickoff

#### July 17, 2023

2023-2042 Outlook Benchmark 2023-2042 Outlook Update

#### August 22, 2023

2023-2042 Outlook Preliminary Reference Case Assumptions

#### September 21, 2023

2023-2042 Outlook Reference
Case Assumptions Update

#### October 24, 2023

2023-2042 Outlook Reference Case Assumptions Update

#### November 2, 2023

2023-2042 Outlook Reference Case Assumptions Update & Preliminary Base Case Results

#### November 21, 2023

2023-2042 Outlook Reference Case Updates

#### December 19, 2023

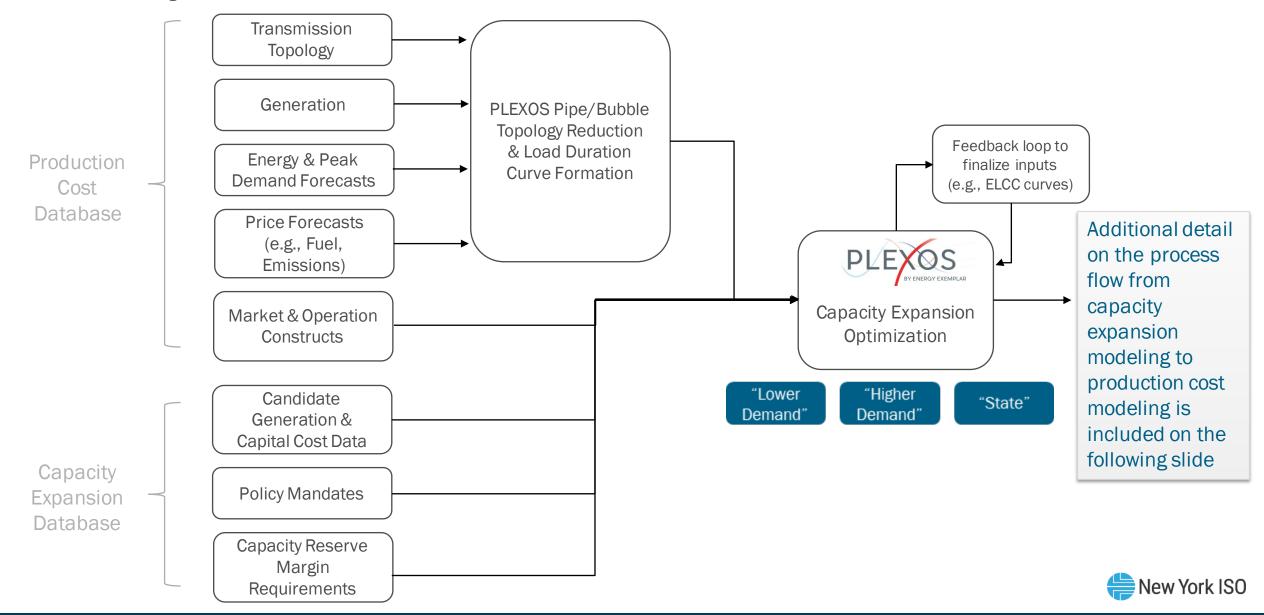
2023-2042 Outlook Reference Case Updates & Preliminary Contract Case Results

#### January 23, 2024

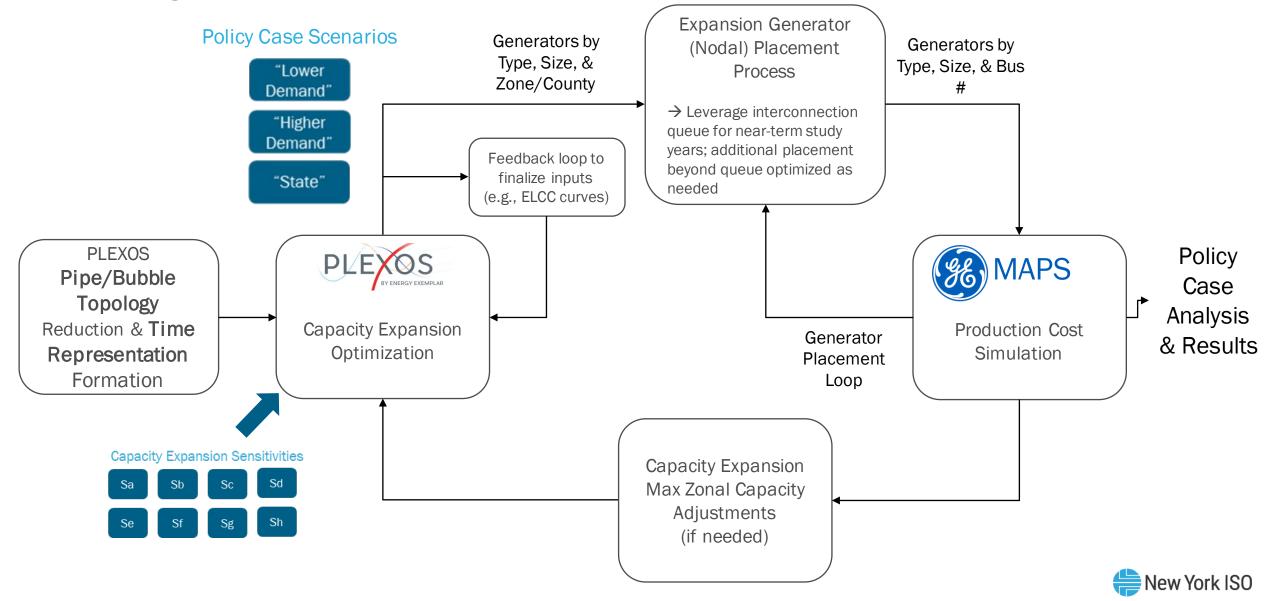
2023-2042 Outlook Reference Case Updates

#### February 22, 2024

2023-2042 Outlook Reference Case Updates & Final Base & Contract Case Results


2021-2040 System & Resource Outlook Data Catalog




## Appendix



### **Policy Case Process Flow**



**Policy Case Simulation Framework** 



#### **Our Mission & Vision**



#### **Mission**

Ensure power system reliability and competitive markets for New York in a clean energy future



#### Vision

Working together with stakeholders to build the cleanest, most reliable electric system in the nation

