

Presented by:

Pallas LeeVanSchaick, Ph.D. NYISO Market Monitoring Unit Potomac Economics

> ICAP Working Group May 30, 2024

Introduction

- As the Market Monitoring Unit for NYISO, we produce an annual State of the Market (SOM) Report to:
 - ✓ Evaluate the performance of the markets;
 - ✓ Identify market flaws or market power concerns; and
 - ✓ Recommend improvements in the market design.
- Given the breadth of the report, this presentation covers:
 - ✓ Highlights from our 2023 SOM Report related to capacity market performance and State policy
 - Recommended enhancements to improve capacity market performance

Schedule

- The 2023 SOM Report was posted <u>here</u> on May 15.
- The report is being presented at several meetings:
 - ✓ May 29: Management Committee
 - Overview 60 minutes
 - ✓ May 30: ICAPWG
 - Capacity Market & Policy focus 90 minutes
 - ✓ June 4: MIWG
 - Energy and Ancillary Services focus 90 minutes
 - \checkmark Additional slots can be scheduled if there is interest.

Net Revenues and Costs

Section II.B and Appendix VII.A

Net Revenues and GFCs for Existing Generation

- Capacity revenues increased in NYC in 2023
- Steam turbines appear:
 - ✓ Economic in NYC
 - ✓ Challenged elsewhere
- GTs are more economic:
 - Even in NYC without operating during the ozone season (May to September)
- Incentives for fuel-secure generation important for winter reliability **POTOMAC**

Levelized Cost Implied by Index REC Strike Prices

- Index REC strike prices
 suggest OSW/LBW may:
 - Be curtailed more frequently,
 - ✓ Receive lower-thanaverage LBMPs, or
 - ✓ Experience risk of higher costs.
- Index REC strike prices
 suggest Solar PV may
 experience lower-thanestimated costs

Sections III.C & VIII.G and Appendix VI.E

Capacity Accreditation Factors of Battery Storage

- 4-hour battery storage projects likely to face:
 - ✓ Falling CAFs in the summer as penetration increases
 - Dramatically reduced
 CAFs under some
 winter risk scenarios
 - Winter reliability risks
 involve longer periods
 that stretch on-site fuel
 inventories, limiting
 opportunities for charging

•

Recommended Capacity Market Enhancements

Section XII

Prioritizing Market Enhancements

- Unprecedented levels of policy-driven investment are expected over the coming decade
- The NYISO should focus on enhancements that:
 - ✓ Guide renewable investment to where it is most deliverable
 - Provide incentives for investment in resources that facilitate integration of intermittent renewables
 - ✓ Encourage retirement of existing generators that have:
 - Inflexible characteristics, and/or
 - Limited availability during gas supply constraints
- These enhancements will facilitate state policy goals at the lowest cost and minimize market harm

Granular Capacity Zones (Rec 2022-4)

Section VIII.C and Appendix VI.G

Granular Capacity Zones would Alleviate Barriers from the Deliverability Test

- Deliverability Testing:
 - ✓ Slows interconnection
 - Inflates ICAP prices in export areas
 - Protects existing units from competition
 - Over-allocates cost of upgrades to IPRs and battery storage
 - Granular Capacity Zones:
 - Mitigate or eliminate
 Deliverability Test
 - ✓ Set efficient locational prices POTOMAC

- Renewables and battery storage complement one another
- Probabilistic RA models
 better able to capture
 synergy between batteries
 and intermittent
- Difficult to capture in a deterministic test
 - Deliverability overestimates impact of wind, solar, batteries

Section VIII.C and Appendix VI.G

Granular Capacity Zones – Proposed Process Steps 1 to 3

Illustration of Import and Export Zones After Long Island PPTN Projects In Service

- 1. Represent "as-found" bottlenecks in RA model
 - Existing ICS process
 - Designate each zone as import/export based on upstream zone's:
 - ✓ Reliability risk
 - \checkmark Relative size
- Use LCR Optimizer to set ICAP reqs using ~5% cost discount in export zones

Section VIII.C and Appendix VI.G

Granular Capacity Zones – Proposed Process Steps 4 & 5

- 4. Set demand curves
 - ✓ Import DCs as today
 - Temporary DCs for unanticipated importconstrained zones
 - Export zone price set as a % of parent
- 5. Adjust payments to units when RA topology does not accurately characterize their impact on transmission bottlenecks.

Capacity Compensation for Requirements Driven by Transmission Security (Recs 2022-1 & 2023-4)

Differences between Transmission Security and Resource Adequacy-Based Requirements

- Market design considerations:
 - ✓ Requirements based on RA and TS
 - ✓ Currently, CAFs based on RA <u>only</u>

- Key differences:
 - Transfer limits
 - Extreme loads
 - ✓ EOPs (e.g., SCRs)
 - Large units
 - Intermittent units
- Differences will rise because of:
 - ✓ Entry of HVDCs, wind, solar, ESRs
- Assumptions should be justified.

Increasing Role of Transmission Security-Based Requirements in Capacity Market

- TSL floors raise NYC LCR starting in 2023
- TSL raised by:
 - ✓ SCRs
 - ✓ Very large units
 - Offshore wind
- Estimated overpayment:
 - ✓ ~\$50-60M/year from 2023 to 2025
 - ✓ ~\$130M in 2026

See Rec 2022-1 & NYISO project

Appendix VI.J

Illustration of Rec 2022-1

en fitter i terraine

Appendix VI.J

Illustration of Rec 2022-1

- SCRs Would receive \$11.50/kW-mo of UCAP based on the RA value of Zone J resources.
- 1000 MW generator Assuming third-largest contingency is 720 MW and EFORd is 5 percent, this resource would be paid:
 - ✓ 720 MW of UCAP at Zone J price of \$19/kW-mo; and
 - ✓ 230 MW of UCAP at \$11.50/kW-mo, the Zone J price for resources that do not contribute to transmission security.
- 800 MW offshore wind Assuming an MRI of 25% under soon-to-be implemented accreditation rules, it would be paid:
 - ✓ 200 MW of UCAP (based on 25% MRI for 800 MW ICAP) at \$11.50/kW-mo price for resource adequacy in Zone J; and
 - ✓ 80 MW of UCAP (based on 10% contribution) at \$7.50/kWmo component for transmission security in Zone J.

Capacity Demand Curves for Transmission Security-Based Requirements (Rec 2023-4)

- Surplus capacity provides increased reliability
 - Prices should reflect value of additional MWs
- TS criteria based on annual peak load forecast
 - Value of additional MWs depends on load forecast uncertainty
 - Rec 2023-4: Use load forecast uncertainty to set demand curve slope

Section VIII.E

Capacity Demand Curves for Transmission Security-Based Requirements: Illustration of Rec 2023-4

Seasonal Capacity Market & the Winter-Summer Ratio (Recs 2022-2 & 2023-5)

Section VIII.G

Rec 2022-2: Seasonal Capacity Market Rec 2023-5: Short-Term Need to Address Risk of Extreme Winter Pricing

