Emissions Tracking and Load Response Gavin McCormick | WattTime

WattTime

3 simple fixes could save 9+ gigatons of CO2 annually.

We're a nonprofit raising awareness about these solutions and providing data & technical assistance to anyone trying to implement them.

Like marginal prices, marginal emissions vary by time and place

When we use electricity

Emissions-based load shifting is growing fast

Number of devices using emissions to optimize load

Most is continuous "Automated Emissions Reduction"

On average, AER shifts ~80x more KWh per user than traditional DR

Electricity consumption (typical fridge)

On average, AER shifts ~80x more KWh per user than traditional DR

Unlike DR, primary driver is consumer demand

Though C&I and policy use growing too

Live today

Soon to be announced

Exploring

Data centers Energy storage Al compute jobs Factories Trucking Carbon removal Blockchain

Hydrogen

C&I's main question: what's the emissions *impact* of shifting load?

C&I's main question: what's the emissions *impact* of shifting load?

C&I's main question: what's the emissions *impact* of shifting load?

Validating Emissions Rates for Accurate Consequential Impact Taskforce

Even larger potential to reduce emissions by optimizing siting

The exact same solar panel reduces global carbon dioxide emissions by about...

500 Ibs/hour if it's in San Francisco, CA **1,400** Ibs/hour if it's in Charleston, WV **2,600** Ibs/hour if it's in New Delhi, India

Unsurprisingly, it's growing even faster

Comparing optimization strategies

1. No optimization

2. Optimizing to "three pillars" (deliverable and hourly-matched)

3. Optimizing timing to minimize emissions

4. Optimizing place to minimize emissions

	Load Emissions	Generation Emissions	Net Emissions
1	187 tons	-106 tons	81 tons
2	187 tons	-187 tons	0 tons
3	86 tons	-292 tons	-206 tons
4	187 tons	-609 tons	-422 tons

Thank you!

Gavin McCormick Executive Director gavin@WattTime.org

