Valuing Capacity for Resources with Energy Limitations – Independent Assessment

Kevin Carden 2-15-2019

Executive Summary

- Capacity value of 4-hour+ resources is high in the planning window
- To accurately capture capacity value, accurate load and resource representation critical in study framework
 - Wide range of weather years
 - Economic commitment and dispatch
 - Realistic diversity between regions
- Capacity value changes as penetration and composition of energy limited resources change, and as renewable resources are added

Overview

Base Case Results Update

- Astrapé Neighbor Modeling Review
- Results
- High Renewable Scenarios
 - 2025 with 37% Renewable
 - 2030 with 50% Renewable

GE Input and Framework Simulation Comparison

- Load Shapes
- Commitment Methodology
- Transmission Limitations
 - Single Zone Scenario

Conclusions

- Study Framework Requirements
- Study Update Frequency

Base Case Results Update

Astrapé Neighbor Modeling Review

Neighbor Modeling in SERVM

- Neighbors are modeled at target reliability (0.1 LOLE)
- Neighbors are modeled with existing energy limited and emergency resources
 - Neighbors are not allowed to sell from emergency resources
- Load data was further reviewed for historical correlation
 - An error was corrected in PJM load data

	Peak Load (MW)	Load Diversity (% below non-coincident 50/50 peak)				
	Non-Coincident Peak Load	At System Coincident Peak		At NYISO Coincident Peak		
		New	Old	New	Old	
NYISO	36,427	-5.9%	-10.7%	0.0%	0.0%	
PJM	163,597	-0.9%	-4.1%	-3.8%	-16.9%	
ISONE	26,762	-7.9%	-12.9%	-3.3%	-3.2%	
IESO	24,404	-9.1%	-10.2%	-14.2%	-14.5%	
System	291,297	0.0%	0.0%	-2.3%	-6.6%	

Astrapé Load Summary

4 Hour Duration Results

2019 Resource Mix: 1-8 Hour Duration Results

*All SERVM energy-limited resource portfolios include 1408 MW of 8-hour PSH *All results from 2019 resource mix

*Potomac results converted to represent average capacity value

7

Renewable Shapes and Capacity Amounts

Astrapé constructed a renewable portfolio that reached 50% penetration by 2030.

Study Year	2019	2025	2030
Hydro Energy (GWh)	27,721	27,721	27,721
Solar Energy (GWh)	42	13,234	24,245
Wind Energy (GWh)	4,384	16,297	26,436
Total Renewable (GWh)	32,147	57,252	78,402
Total Renewable (% of Load)	21%	37%	50%

Net Load Shape Comparison

*Net Load = Gross Load – Solar Energy – Wind Energy – Hydro Energy

 Addition of renewable energy steepens daily net load shape, shortening the need for duration.

Penetration (MW)	4 Hour Fractional Capacity Value for 2019 Resources (%)	4 Hour Fractional Capacity Value for 2025 Resources (%)
PSH + 2000 MW	86.1%	100.0%
PSH + 3000 MW	Not Studied	94.8%

2030 Renewables

 Further additions continue to steepen the daily net load shape, further reducing the need for duration.

Penetration	Capacity Value (%)		
(MW)	4 Hour Duration	6 Hour Duration	
PSH + 2000 MW	100.0%	100.0%	
PSH + 3000 MW	100.0%	100.0%	

GE Input and Framework Simulation Comparison

GE MARS Comparison – Load Shapes

- SERVM simulations were performed with IRM Load Shapes
- IRM load shapes show lower value for all durations simulated

Penetration	Capacity Value (%)			
(MW)	4 Hour Duration		6 Hour Duration	
	Astrapé Load Shapes	IRM Load Shapes	Astrapé Load Shapes	IRM Load Shapes
PSH + 1000 MW	97.8%	87.7%	100.0%	96.6%
PSH + 2000 MW	86.1%	80.6%	97.6%	94.5%

GE MARS Comparison – Commitment Method

- SERVM simulations were performed using must-run commitment to mimic GE MARS
- Must run commitment does not capture correct shape of generator outages

Penetration	Capacity Value (%)			
(MW)	4 Hour Du	uration	6 Hour Duration	
	Economic Commitment	Must Run Commitment	Economic Commitment	Must Run Commitment
PSH + 1000 MW	97.8%	TBD	100.0%	TBD
PSH + 2000 MW	86.1%	TBD	97.6%	TBD

Transmission Limit Scenario

- The IRM process requires artificial movement of generators across zones
 - This surfaces unrealistic reliability events, but still uses the original transmission constraints
- Astrapé relaxed constraints slightly instead of moving generators

	Capacity Value (%)			
Penetration	4 Hour Duration		6 Hour Duration	
(MVV)	Relaxed Constraints	Transmission Limited	Relaxed Constraints	Transmission Limited
PSH + 1000 MW	97.8%	95.4%	100.0%	99.3%
PSH + 2000 MW	86.1%	85.8%	97.6%	92.7%

Results were still very similar

Zone J modeled with all energy-limited capacity

 Little difference between single zone analysis and control area results

Penetration		Capaci	y Value (%)			
(MW)	4 Hour	Duration	6 Hour I	Duration		
	Zone J	NYISO	Zone J	NYISO		
PSH + 1000 MW	97.4%	97.8%	97.5%	100.0%		
PSH + 2000 MW	TBD	86.1%	TBD	97.6%		

Drivers of Differences from GE Study

Driver	Astrapé Approach	GE Approach
Treatment of Load Uncertainties	Use 38 Years of Historical Weather Patterns; 5 Economic Load Forecast Uncertainties	Scale Weather Shapes Using the Same Multiplier Every Hour; 3 Weather Shapes; 7 Load Forecast Uncertainties
Diversity with Neighbors	38 Years of Historical Diversity	Artificial Diversity for Top 3 Load Days
Treatment of Resource Interactions	Endogenous Treatment of all Interactions	Post-Processing of Energy Limited Dispatch
Commitment Method	Economic Commitment and Dispatch	Must-Run Commitment
Internal Transmission Constraints	IRM Base Case with Slight Relaxation	IRM Base Case with Generator Relocation

Conclusions

Conclusions

- Capacity value of 4-hour+ resources is high in the planning window
- To accurately capture capacity value, accurate load and resource representation critical in study framework
 - Wide range of weather years
 - Economic commitment and dispatch
 - Realistic diversity between regions
- Capacity value changes as penetration and composition of energy limited resources change, and as renewable resources are added

Appendix

	NYCA
SERVM EFOR	12.9%
SERVM EFORd	7.2%

FOHd = Hours forced out AND unit would have been operated

innovation in electric system planning

21

Astrapé Resource Adequacy Clients

SERVM Framework

Capture Uncertainty in the Following Variables

- Weather (38 years of weather history)
 - Impact on Load and Resources (hydro, wind, PV, temp derates on thermal resources)
- Economic Load Forecast Error (distribution of 5 points)
- Unit Outage Modeling (100s of iterations)
- Multi-Area Modeling Pipe and Bubble Representation
- Total Base Case Scenario Breakdown

innovation in electric system planning

Incorporating Weather Uncertainty for Load

Peak Load Variability by Weather Year

Effect of Load Scaling for Uncertainty

Load Forecast Uncertainty and Forward Period

- Non-weather load forecast error increases with forward period
- Each weather shape simulated with each LFE and associated probabilities

A TRAPÉ CONSULTING

Unit Outage Modeling

Full Outages

- Time to Repair
- Time to Failure

Partial Outages

- Time to Repair
- Time to Failure
- Derate Percentage
- Startup Failures
- Maintenance Outages
- Planned Outages
- Created Based on Historical GADS Data

Multi State Frequency and Duration Modeling vs Convolution

Multi-Area Modeling

- Pipe and Bubble Representation with import and export constraints
- Constraints can be constants, distributions, tied to load level, or input by month
- Ties can be modeled with random outages
- Areas will share resources based on economic pricing and physical constraints
- Load/Wind/Hydro diversity is embedded in each region's input data

Energy Limited Duration Approach

Study Steps

- Model all loads and resources in NYCA, ISO-NE, PJM, IESO, HQ
 - Include existing PSH with constraints in NYCA
 - Include energy limited resources (DR and PSH) in neighboring regions
- Calibrate reliability in NYCA and neighboring regions to 0.1 LOLE
- Add energy limited capacity
- Remove perfect (no duration limit and no forced outage rate) conventional capacity until NYCA reliability again meets 0.1 LOLE
- Fractional capacity value = Perfect capacity removed / energy limited capacity added

Key Assumptions

- Simulated at criterion for NYCA and neighbors
- Reserves fully exhausted before shedding firm load
- Capacity value instead of ELCC
- Energy limited resources compared to perfect capacity
- Endogenous simulations
- 2019 resource mix
- Existing pumped storage hydro always modeled with 8-hour duration
- Magnitude of each portfolio directly comparable to GE portfolios, although composition is different due to PSH treatment.

Forced Outage Rate Discussion

 Astrapé modified transmission constraints rather than shifting generators because of the forced-outage rate effect asymmetry present in the GE MARS simulations.

Figure Source: "Valuing Capacity for Resources with Energy Limitations" Slide 43 https://www.nyiso.com/documents/20142/3698135/09242018%20Capacity%20Value%20of%20Resources%20with%20Energy%20Limitations.pdf/c271ef4f-6378-72ac-203e-c59ff3884ef8

4 Hour Duration Results

Additional ELR Above Existing PSH (MW)	Capacity Value (%)
100	100.0%
250	100.0%
500	100.0%
1000	97.8%
2000 MW with 2025 Renewable	100.0%
3000 MW with 2030 Renewable	100.0%

	Capacity Value (%)			
Duration (Hours)	PSH + 1000 MW	PSH + 2000 MW	Potomac PSH + SCR + 1000 MW	
1	54.1	38.4		
2	75.4	60.7	67.3	
4	97.8	86.1	97.1	
6	100.0	97.6		
8	100.0	100.0		

*All SERVM energy-limited resource portfolios include 1408 MW of 8-hour PSH

*All results from 2019 resource mix

*Potomac results converted to represent average capacity value

