CRP: Peaker Scenario Assessing DEC's NOX Limits (Draft) Ruling for Simple Cycle and Regenerative Combustion Turbines LIPA SYSTEM RESULTS

Agenda

Background:

- Impacted Generation in LIPA Service Territory
- LIPA Transmission System/Load Pocket Overview
- Study Assumptions
- LIPA system Impact:
 - Study Year 2023 & 2028
- System Operations Impact

Impacted Generation in LIPA Territory

- The latest draft concept would enforce emission limits in two steps, occurring in 2023 and 2025:
 - Most of the Peaking Units on Long Island will be subjected to the DEC rule and assumed deactivated by 2023
 - Rest of the Peaking units will be regulated and assumed deactivated by 2025
- Based on the 2018 NYISO Gold Book, Total Generation Summer Capability will be decreased on Long Island:

Year	Total Long Island Generation (MW)	
2018	5301	
2023	3 4344	
2028	3955	

Generation Subject to DEC Regulation (Nameplate MW)							
Year Affected	Total	West of Newbridge	Central	East of Holbrook			
2023	1021	251	68	701			
2025	406	168	0	239			
Total	1427	419	68	940			

Study Assumptions

- PSEG Long Island performed a five year and a ten year analysis consistent with PSEG Long Island transmission planning practice.
- Generators impacted by the regulation have been assumed deactivated in the study.
- Zone K load used in this study is taken from the 2018 Gold book for 50/50 coincident summer peak load and 90/10 extreme weather peak load. Off peak load is calculated based on 70% of summer peak load.

Ye	ear	Normal Weather Peak Load 50/50 (MW)	Extreme Weather Load 90/10 (MW)	Off Peak Load (MW)
20)23	5176	5634	-
20	28	5253	5718	3678

Study Assumptions (Continued)

- Transmission security analysis has been performed on the entire LIPA System (NYCA Zone K) for both Bulk Power Transmission Facilities (BPTF) and non-BPTFs.
- Load Pocket Analysis has been performed for the following Load Pockets:
 - Barrett
 - West Glenwood
 - Smithtown
 - South West Suffolk
 - West Brookhaven
 - East Brookhaven
 - East End (North and South Forks)
- N-1-1 analysis has been performed on the LIPA system in line with TPL-001-4 NERC standard.
- Compensatory MW has been modeled interconnecting into the substations where generators affected by the proposed regulation are connected.

2023 LIPA System Impact

- Thermal and voltage violations have been observed in N-1 and N-1-1 study
 - Worst N-1 violations generally occurred when studying the East End load pocket due to its forecasted load growth and assumed generator deactivations.
 - Majority of the N-1 violations occur in the East Brookhaven and East End areas from lack of eastern resources after the loss of a high capacity path.
 - Similarly, N-1-1 Violations occur in the East Brookhaven and East End areas due to the lack of eastern resources after the loss of two transmission paths.
 - Extensive voltage violations are observed across the system and are especially prevalent in the East End load pocket.
- The result concluded that a total of ~320 MW of compensatory MW* with reactive power capability that meets the PSEG Long Island Interconnection requirements is required to solve all post contingency N-1 and N-1-1 violations across LIPA system.

*MW deficiencies shown above are not intended to relate to a specific type of solution.

2028 LIPA System Impact

- Thermal and voltage violations have been observed in N-1 and N-1-1 study
 - Similar to the 2023 results, the worst N-1 violations generally occurred when studying the East End load pocked due to its forecasted load and lack of resources East of Holbrook.
 - Barrett Load pocket shows an N-1 violation due to lack of local generation resource.
 - Additional N-1 violations are observed from the large power transfer west to east due to the eastern Long Island generation assumed deactivated by 2025.
 - Similar to the 2023 results, N-1-1 violations in East End and East Brookhaven Area are observed in study year 2028. Additional N-1-1 violations are observed considering the loss of interties connecting to adjacent Areas due to a generation deficiency on Long Island.
 - Extensive voltage violations are observed across the system and are especially prevalent in the East End load pocket.
- The result concluded that additional ~300 MW for a total of ~620 MW of compensatory MW* with reactive power capability that meets the PSEG Long Island Interconnection requirements is required to solve all post contingency N-1 and N-1-1 violations across LIPA system.

 \star MW deficiencies shown above are not intended to relate to a specific type of solution.

2028 Load Cycle By Area

Each area requires their compensatory MW to be dispatched for different durations on a peak day

- The East End is the longest cycle requiring 15 hours of dispatch
- East of Holbrook compensatory MW requires 10 hours of dispatch
- Barrett load pocket requires the shortest dispatch at 6 hours.

System Operations Impact

Detrimental Impact to the system restoration plan,

- This will eliminate the LIPA restoration plan Black Start units.
- Potential deactivation of the auxiliary power generators for Power Stations.
- The near complete loss of 10 minute and 30 minute quick start resources.
 - Without these resources, PSEGLI would be extremely limited at LIPA system load pick up until the return of base load steam or combined cycle units.
- Loss of the identified units would render the system unable to secure for the loss of gas supply (NYSRC Rule G.3).
 - Dispatch of the affected units are required to alleviate thermal violations post contingency and Recover system voltage to pre-contingency limits.
 - Without these units, additional use of oil at the Northport site will be required to secure pre-contingency.
- Reduced flexibility in dispatch to alleviate pre and post contingency violations.

System Operations Impact (Continued)

- Reduced capacity could result in a higher probability for the use of emergency control actions (Ex. Emergency support, voltage control, load shed).
- Increase in the potential for activating under voltage load shedding scheme in the East End.
- Reduced maintenance capability in the Off-peak shoulder months.
- Distribution System Impact due to deactivation of specific distribution connected generation.
- Potential System Protection Impact
 - System Grounding and Relay Protection

Summary

- Potential deactivation of the peaking Units in LIPA system will result in a total of ~620MW deficiency by 2028.
- Majority of the deficiency is due to the forecasted load growth in the East End pocket and assumed generator deactivations.
- 2028 N-1-1 analysis shows that the remaining Long Island generation and LIPA tie line import capability will not meet the peak load demand of Zone K for loss of two supplies.
- It should be noted that MW deficiency identified in the study may be addressed through alternative means, including but not limited to Non-Firm LTP system upgrades.
- Potential deactivation of the peaking units will reduce the capability for operations to secure the transmission system on a daily basis and would significantly impact the flexibility to accommodate system maintenance or outages.

Thank you

