2019 CARIS 1 70x30 Scenario Development

Benjamin Cohen Sr. Planning Environmental Er

Sr. Planning Environmental Engineer

Electric System Planning Working Group

September 6, 2019

NEW YORK INDEPENDENT SYSTEM OPERATOR

DRAFT – FOR DISCUSSION PURPOSES ONLY

©COPYRIGHT NYISO 2019. ALL RIGHTS RESERVED

Agenda

- Background
- 70x30 Scenario Development and Assumptions
- Discussion and Suggestions

Renewable and Clean Energy Mandates

- 2025 6,000 MW Behind-the-meter PV (BTM-PV):
 - NY-Sun 3,000 MW BTM-PV by 2023
- 2025 185 TBtu site-energy savings Energy Efficiency (EE) Target
 - 600 TBtu primary-energy savings by 2030
- 2029 Zero Emission Credits (ZECs) eligible to upstate nuclear through March
- 2030 70% Renewable Energy (RE)
- 2030 3,000 MW Energy Storage Resources (ESR)
 - Energy Storage 1,500 MW by 2025
- 2035 9,000 MW Offshore Wind (OSW)
 - 2,400 MW by 2030
 - 2018 OSW Solicitation resulted in 1,696 MW procurement

Emission Reductions Not Considered

- 2030 40% economy-wide GHG reduction
- 2040 "zero emission" power sector
- 2050 85% economy-wide GHG reduction (and up to 15% additional as offsets)
 - "Sources in the electric generation sector shall not be eligible" to offset emissions

RAFT – FOR DISCUSSION PURPOSES ONLY

2019 Power Trends (2016 data),

NYS DEC Air Regulations

- DEC proposed "Peaker Rule" Part 227-3 could impact ~3,300 MW peaking generation in Zone J and Zone K
- DEC final Part 251 precludes coal-firing in 2021

Getting to 70x30: From the CARIS Base Case

- 70x30 Scenario will be developed from the 2019 CARIS 1 base case 2028 model year
- Following slides summarize current thoughts on various potential changes to the base case
- The NYISO seeks comments on the assumptions outlined

Getting to 70x30: Base Case Adjustment

- Load Forecast/Shape
- Neighboring system assumptions
- Modeling Energy Storage Resources (ESR)
- NYCA Nuclear and Fossil Fleet Operations
- RE Amounts, Locations and Modeling

Load Forecast/Shape

- High Load scenario as initial input assumption for 70x30 scenario load to reflect limited degree of electrification as an emissions reduction strategy that is yet to be defined
- Modify load to accommodate 185 TBtu site-energy savings target
 - Adjust forecast for "sub-target Electric Site Savings" of 30,000 GWh by 2025
 - Assume CES EE savings of 2,227 GWh/yr incremental for 2026-2030

Neighboring system assumptions

- Policy expectations in other states/provinces directionally align with NY seeking lower emissions and increasing RE generation
 - RE resource fleets in neighboring pools modeled as in base case
 - Ontario nuclear operations modeled as in base case
- Imports of Canadian Hydro/HVDC additions counted towards 70x30
 - Generic HVDC 1,250 MW with HQ schedule to Zone J
- Assume average RE% content and emission rate of system mix associated with energy transfers between pools

Modeling of Energy Storage Resources in MAPS

- Capacity additions driven by state mandate of 3,000 MW
- Potential options for modeling ESR in MAPS
 - <u>MAPS's "pumped storage" model</u>: ESR scheduled to minimize production cost against thermal generation commitment cost curve and corresponding load curve while satisfying ESR constraints
 - Each ESR must be placed at an individual bus
 - Assigned to given load, daily/weekly cycle, initial state of charge
 - Assumed capacity (energy and power) and efficiency
 - <u>Hourly Resource Modifier</u>: integrate ESR dispatch profile to bus level as is done for BTM-PV
 - Utilize approach to minimize net load deviations on a daily basis satisfying ESR power, energy, and round-trip efficiency constraints to compute ESR dispatch

Modeling ESR Methodologies Pros and Cons

	MAPS's "pumped storage" model	Hourly Resource Modifier
P R O	 endogenous dispatch calculation solves ESR constraints simplifies workflow for running cases 	 distribute to all busses as BTM-PV and/or selected bus as a project multiple ESR objectives possible more flexible and controllable requires zonal capacity distribution
C O N	 sole objective to minimize system production cost dispatches ESRs in order listed in input file requires more resource level assumptions 	 requires off-line data processing and I/O method exogenous in-house optimization algorithm developed and maintained

Implement Hourly Resource Modifier as described on prior slide

NYCA Nuclear and Fossil Fleet Operations

- Upstate nuclear units eligible for ZECs under the CES through March 2029
- Extend upstate nuclear operations

Nuclear Unit	Zone	NP (MW)	DMNC_SUM (MW)	2015 - 2018 Average Gold Book Net Energy (GWh)	2015 - 2018 Maximum Gold Book Net Energy (GWh)	Online Date	Announced Retirement / NRC Operating License Expiration Date
Indian Daint O		1 000	1.010	7 004	0.040	0 /4 /4072	4 (20 (2020
indian Point 2	п	1,299	1,016	7,804	8,812	8/1/1973	4/30/2020
Indian Point 3	Н	1,012	1,038	7,993	9,076	4/1/1976	4/30/2021
Nine Mile Point 1	С	642	632	5,168	5,377	11/1/1969	8/22/2029
R E Ginna 1	В	614	581	4,808	5,063	7/1/1970	9/18/2029
James A Fitzpatrick							
1	С	882	845	6,510	7,382	7/1/1975	10/17/2034
Nine Mile Point 2	С	1,399	1,288	10,576	11,054	8/1/1988	10/31/2046
			DRA	FT – FOR DISCUSSION	PURPOSES ONLY		

2019. ALL RIGHTS RESERVED

Gold Books, https://www.nrc.gov/reactors/power.html

Fossil Fleet Operations

- Assume all coal plants retired by 2021
 - Somerset in the base case, removed in 70x30 scenario
- Assume "peaker" rule replacements corresponding to local Compensatory MW additions identified in 2019-2028 CRP
 - 660 MW in Zone J and 620 MW in Zone K
 - Assume GT replacement to secure for long durations of deficiencies identified

RE Amounts

- Assume 6,000 MW of OSW in 2030
 - 50/50 split between Zone J and Zone K
- First determine net effect of the mandated resources in the CL&CPA and then calculate annual energy required from Utility PV (UPV) and Land Base Wind (LBW) to achieve 70x30
 - Assume RE content of imported electricity
 - Assumed energy split 50/50 between UPV and LBW

RE Locations

- Capacity additions of UPV and LBW calculated at annual NYCA level to achieve 70% RE requirement must then be ultimately distributed to the bus level to be modeled
- Developed capacity distribution schedule based on UPV and LBW capacity shares by zone from the 2017 and 2018 CES REC solicitation awards and the interconnection queue
- Capacity schedule shown will as a first step assign UPV and LBW capacity values to each zone
- Further refinement to place at individual buses in assigned zone

Nameplate Capacity Distribution							
	UPV	LBW					
Α	27%	40%					
В	3%	0%					
С	20%	28%					
D	0%	7%					
E	10%	25%					
F	25%	0%					
G	15%	0%					
н	0%	0%					
1	0%	0%					
J	0%	0%					
K	0%	0%					
NYCA	100%	100%					

RE Modeling

- Incremental RE resources will be modeled as follows
 - BTM-PV: scaling base case BTM-PV to desired output level
 - UPV: NREL Solar Power Data for Integration Studies
 - OSW: NREL Wind Toolkit
 - LBW: modeled consistent with new LBW additions in the base case
- Additional information on NREL wind and solar data included in appendix to this presentation

Feedback/Comments?

Email additional feedback to: BCohen@nyiso.com

DRAFT – FOR DISCUSSION PURPOSES ONLY © COPYRIGHT NYISO 2019. ALL RIGHTS RESERVED.

The Mission of the New York Independent System Operator, in collaboration with its stakeholders, is to serve the public interest and provide benefits to consumers by:

- Maintaining and enhancing regional reliability
- Operating open, fair and competitive wholesale electricity markets
- Planning the power system for the future
- Providing factual information to policy makers, stakeholders and investors in the power system

www.nyiso.com

Appendix – NREL Data

DRAFT – FOR DISCUSSION PURPOSES ONLY © COPYRIGHT NYISO 2019. ALL RIGHTS RESERVED.

NREL Wind and Solar Data

- Wind and Solar profiles obtained from NREL's Wind Toolkit and Solar Power Data for Integration Studies
 - Databases were developed specifically to model wind and solar resources in renewable integration studies
 - Data is freely available to the public
- Wind Toolkit <u>https://www.nrel.gov/grid/wind-toolkit.html</u>
 - 5-minute profiles for sites in the US (to be aggregated to hourly level)
 - Land Based Wind (LBW) and Offshore Wind (OSW) available

Solar Power Data for Integration Studies - <u>https://www.nrel.gov/grid/solar-power-data.html</u>

- 5-minute 'actual' profiles (to be aggregated to hourly level)
- Distributed (DPV) and Utility PV shapes at site level available
- Each site defined by unique capacity, location, DPV/UPV and output profile
- Corresponding hourly Day Ahead and 4-hr ahead forecasts available

New York Utility PV in NREL Database

 NREL database contains UPV shapes representing 62 sites in NY totaling 3,798 MW

DRAFT

NREL NY Utility PV Profiles

©COPYRIGHT NYISO 2019. ALL RIGHTS RESERVED

NREL OSW Database

- Selected sites in the NREL database approximating location of announced OSW projects
 - South Forks (130 MW over 14 sites)
 - Empire (816 MW over 15 sites)
 - Sunrise (880 MW over 18 sites)
- Aggregated hourly profiles to OSW project level - scaled to project capacity
- Additional OSW capacity added up to assumed 6,000 MW

https://www.nyserda.ny.gov/All-Programs/Programs/Offshore-Wind/Offshore-Wind-Solicitations/Generators-and-Developers/2018-Solicitation , https://maps.nrel.gov/wind-prospector/

