2019 CARIS 1 70x30 Scenario - Energy Storage Modeling

Benjamin Cohen

Sr. Planning Environmental Engineer

Electric System Planning Working Group

October 4, 2019

NEW YORK INDEPENDENT SYSTEM OPERATOR

DRAFT – FOR DISCUSSION PURPOSES ONLY

©COPYRIGHT NYISO 2019. ALL RIGHTS RESERVED

Agenda

- Methodology Explanation and Comparison for Energy Storage Resources ("ESR")
- Results Comparison
- Discussion and Suggestions

Methodology Comparison

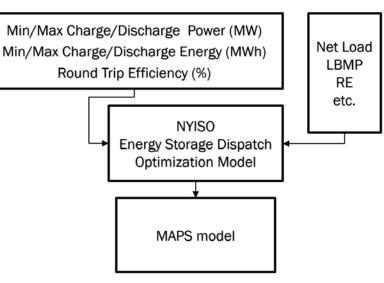
DRAFT – FOR DISCUSSION PURPOSES ONLY © COPYRIGHT NYISO 2019. ALL RIGHTS RESERVED.

ESR Input Parameters and Objective

Parameter	MAPS Pumped Storage ("PS") model	Hourly Resource Modifier ("HRM")
ESR Specifications	 generating and recharging rates (MW) storage capacity (MWh) cycle efficiency (%) unit name and ownership location (bus) starting energy (initial state of charge – MWh) assigned company, area, or system load may be different than location of ESR 	 power capacity (±MW) energy capacity (MWh) round trip efficiency (%)
Objective	 MAPS thermal unit cost commitment – global objective to minimize system production cost ESR objective is to find arbitrage opportunities along the initial thermal unit cost commitment curve (prior to final thermal unit commitment) 	 minimize daily net-load deviations other objectives possible (e.g., load, net load, arbitrage revenue (LBMP), congestion, emissions, renewable energy (RE), local transmission issues)

ESR Modeling Process and Results

Methodology	MAPS PS model	Hourly Resource Modifier
Process	 initial thermal unit commitment performed and thermal unit cost curve constructed for each week based on committed units' characteristics available ESR scheduled against this cost curve and appropriate load curve indirectly includes information on RE load modifiers user specified order of ESR scheduling option to recommit thermal units between each ESR 	 ESR dispatched against given shape (net load, LBMP) while respecting the battery constraints optimized ESR dispatches input to MAPS as Hourly Resource Modifier/distributed resources
	 thermal unit commitment performed including 	g ESR schedules impact on bus level loads
Result	internal calculation of ESR dispatch and impact all within MAPS COPYRIGHT NYISO 2019. ALL RIGHTS RESERVED	 externally calculated ESR dispatch integrated within MAPS optimization


Exogenous ESR Dispatch Optimization

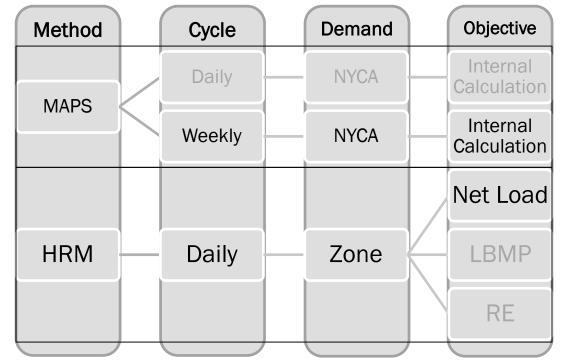
- Implemented in MATLAB Optimization Toolbox
- Solved on an independent daily basis
- Objective is to:
 - Minimize net load fluctuations from average net load
 - Maximize zonal energy arbitrage revenues
 - Optimize timing of RE injections

Exogenous ESR Dispatch Optimization

Subject to constraints:

- Power (ESR dispatch) level
- Energy (state of charge) level
- Round Trip Efficiency losses (upon charging)
- No new higher peak in demand created

Comparison Testing Assumptions


- Based off 2019 CARIS 1 Base Case (2028)
- All ESR have 4-hour duration capacity and 85% efficiency
- Preliminary zonal ESR capacity distribution based on NYSERDA Energy Storage Roadmap, for initial comparison testing purposes only
- ESR dispatch priority order for MAPS methods assigned based on decreasing zonal ESR capacity prior to dispatching pumped storage (e.g., Gilboa)
- For MAPS methods, assume one ESR per zone placed at highest load bus in each zone

8

Zone	MW
Α	120
В	60
С	60
D	60
E	60
F	420
G	240
н	60
I	120
J	1,350
К	450
S	3,000

Comparison Testing Overview

- Performed tests for several methodological parameters in MAPS and using HRM approach for comparison purposes
 - To accommodate objective of MAPS ESR model, NYCA load was used

Results Comparison

Example ESR dispatch results available as an appendix to this presentation

DRAFT – FOR DISCUSSION PURPOSES ONLY © COPYRIGHT NYISO 2019. ALL RIGHTS RESERVED.

CARIS Metrics NYCA Comparison – Base Case Deltas

NYCA 2028 Base Case Metric Deltas	MAPS-Daily	MAPS-Weekly	HRM-NL	HRM-LBMP
Production Cost	0.7%	0.6%	-1.3%	-1.2%
Demand Congestion	-3.3%	-7.9%	-7.8%	-9.1%
Generation Payment	-0.2%	-0.8%	-0.1%	-0.2%
Load Payment	-0.5%	-1.5%	0.1%	-0.1%
Generation	0.2%	0.3%	-0.7%	-0.7%
Net Imports	-1.7%	-2.0%	4.8%	4.4%
CO ₂ Emissions	0.7%	1.0%	-1.0%	-0.9%

Modeling ESR Methodologies Pros and Cons

	MAPS's "pumped storage" model	Hourly Resource Modifier
P R O	 Endogenous dispatch calculation solves ESR constraints Simplifies workflow for running cases Accounts for operating reserves from unused ESR capacity 	 Distribute to all busses as BTM-PV and/or selected bus as a project Requires zonal capacity distribution Multiple ESR objectives possible More flexible and controllable No initial state of charge assumption required Typically higher ESR utilization (MWh injected/year) observed
C O N	 Global objective to minimize system production cost Dispatches ESRs in order listed in input file Requires more resource level assumptions Scheduling ESR units against pool load instead of area load potential disconnect between location of ESR dispatched and thermal re-dispatch in congested systems thermal commitments decrease with increased RE 	 Exogenous in-house optimization algorithm developed and maintained Requires off-line data processing and input-output method

ESR Modeling Recommendation

- Initial testing utilizing the Base Case provides roughly comparable NYCA ESR dispatch results
 - HRM ESR performed to expectations at zonal level
- In the 70x30 Scenario, NYISO recommends modeling both MAPS Weekly and HRM Net Load methodologies given the dramatically differing system assumptions
 - Compared to MAPS Daily cycle, MAPS Weekly cycle utilized the ESR more
 - Allows continued testing/comparison of ESR modeling methodologies to be performed

Feedback/Comments?

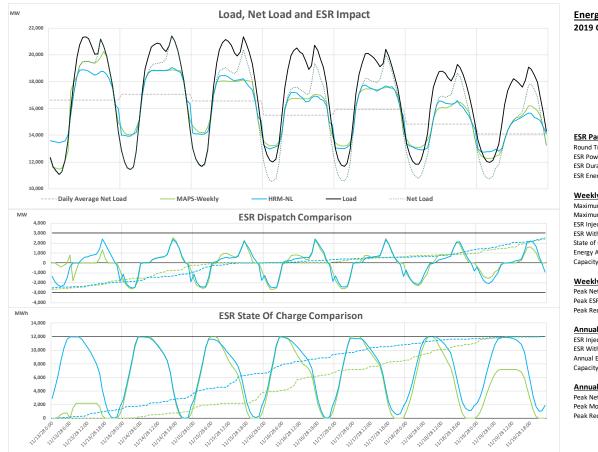
Email additional feedback to: BCohen@nyiso.com

The Mission of the New York Independent System Operator, in collaboration with its stakeholders, is to serve the public interest and provide benefit to consumers by:

- Maintaining and enhancing regional reliability
- Operating open, fair and competitive wholesale electricity markets
- Planning the power system for the future
- Providing factual information to policy makers, stakeholders and investors in the power system

www.nyiso.com

Appendix – Example Week ESR Dispatch Comparison



DRAFT – FOR DISCUSSION PURPOSES ONLY © COPYRIGHT NYISO 2019. ALL RIGHTS RESERVED.

MAPS Weekly Cycle vs. HRM Net Load

 \rightarrow

MAPS-Weekly vs. HRM-NL

Energy Storage Methodology Comparison 2019 CARIS Base Case - 2028 - Zone S

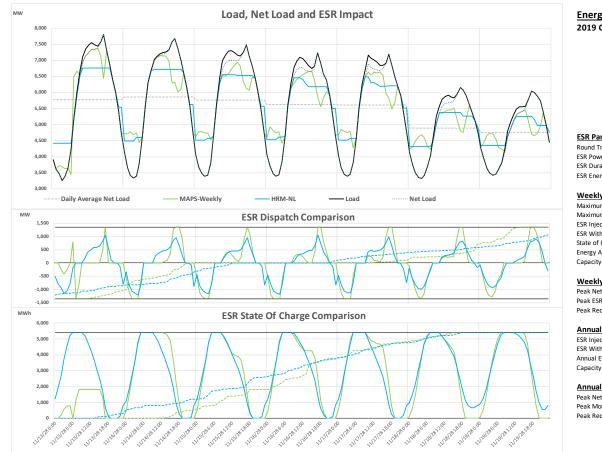
+++

buse case 2020 20ne 5

MAPS-Weekly HRM-NL

Case Results Ratio

ESR Parameters	
Round Trip Efficiency (%)	100%
ESR Power Capacity (MW)	100%
ESR Duration Capacity (hours)	100%
ESR Energy Capacity (MWh)	100%
Weekly ESR Metrics	
Maximum ESR Injection (MW)	106%
Maximum ESR Withdrawl (MW)	106%
ESR Injection Total (MWh)	87%
ESR Withdrawl Total (MWh)	87%
State of Charge Range (MWh)	100%
Energy Arbitrage Profits (k\$)	91%
Capacity Factor	87%


Weekly Net Load Impact Metrics

Peak Net Load (MW)	100%
Peak ESR Modified Net Load (MW)	106%
Peak Reduction (MW)	49%

Annual ESR Metrics

Capacity Factor	72%
Annual Energy Arbitrage Profits (M\$) Capacity Factor	76% 72%
ESR Withdrawl Total (MWh)	72%
ESR Injection Total (MWh)	72%

Peak Net Load (MW)	100%
Peak Modified Net Load (MW)	102%
Peak Reduction (MW)	74%

Energy Storage Methodology Comparison

2019 CARIS Base Case - 2028 - Zone J

Case Results Ratio

MAPS-Weekly	
HRM-NL	

ESR Parameters

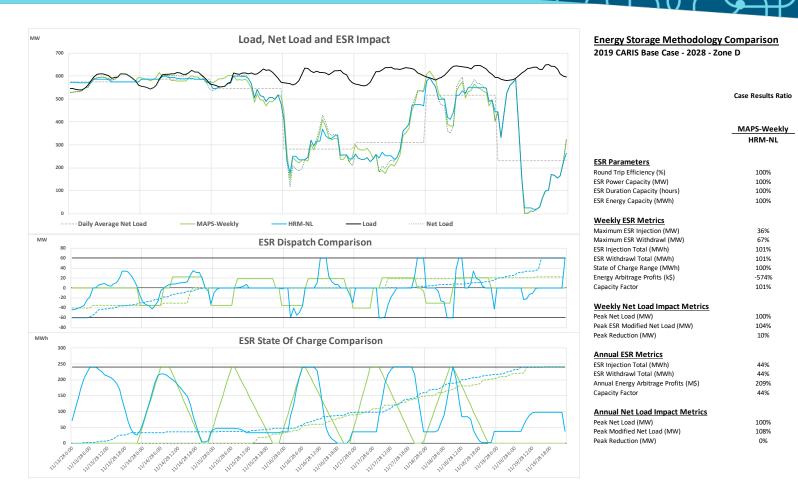
+++

ound Trip Efficiency (%)	100%
SR Power Capacity (MW)	100%
SR Duration Capacity (hours)	100%
SR Energy Capacity (MWh)	100%

Weekly ESR Metrics

Aaximum ESR Injection (MW)	129%
Aaximum ESR Withdrawl (MW)	112%
SR Injection Total (MWh)	96%
SR Withdrawl Total (MWh)	96%
tate of Charge Range (MWh)	100%
nergy Arbitrage Profits (k\$)	117%
apacity Factor	96%

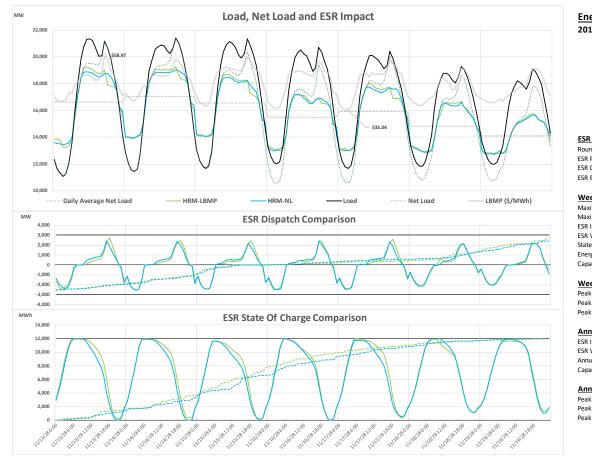
Weekly Net Load Impact Metrics


Peak Net Load (MW)	100%
Peak ESR Modified Net Load (MW)	109%
Peak Reduction (MW)	39%

Annual ESR Metrics

ESR Injection Total (MWh)	88%
ESR Withdrawl Total (MWh)	88%
Annual Energy Arbitrage Profits (M\$)	99%
Capacity Factor	88%

Annual Net Load Impact Metrics


Peak Net Load (MW)	100%
Peak Modified Net Load (MW)	104%
Peak Reduction (MW)	45%

┶┶┹

HRM LBMP vs. HRM Net Load

HRM-LBMP vs. HRM-NL


Energy Storage Methodology Comparison

2019 CARIS Base Case - 2028 - Zone S

┶┶┵┥

Case Results Ratio

	HRM-LBMP
	HRM-NL
ESR Parameters	
Round Trip Efficiency (%)	100%
ESR Power Capacity (MW)	100%
ESR Duration Capacity (hours)	100%
ESR Energy Capacity (MWh)	100%
Weekly ESR Metrics	
Maximum ESR Injection (MW)	114%
Maximum ESR Withdrawl (MW)	102%
ESR Injection Total (MWh)	99%
ESR Withdrawl Total (MWh)	99%
State of Charge Range (MWh)	99%
Energy Arbitrage Profits (k\$)	106%
Capacity Factor	99%
Weekly Net Load Impact Metrics	
Peak Net Load (MW)	100%
Peak ESR Modified Net Load (MW)	101%
Peak Reduction (MW)	92%
Annual ESR Metrics	
ESR Injection Total (MWh)	94%
ESR Withdrawl Total (MWh)	93%
Annual Energy Arbitrage Profits (M\$)	110%
Capacity Factor	94%
Annual Net Load Impact Metrics	
Peak Net Load (MW)	100%
Peak Modified Net Load (MW)	102%
Peak Reduction (MW)	78%

Energy Storage Methodology Comparison

2019 CARIS Base Case - 2028 - Zone J

┶┶╋

Case Results Ratio

	HRM-LBMP
	HRM-NL
Parameters	
nd Trip Efficiency (%)	100%
Power Capacity (MW)	100%
Duration Capacity (hours)	100%
Energy Capacity (MWh)	100%
ekly ESR Metrics	
imum ESR Injection (MW)	123%
imum ESR Withdrawl (MW)	99%
Injection Total (MWh)	99%
Withdrawl Total (MWh)	99%
e of Charge Range (MWh)	100%
gy Arbitrage Profits (k\$)	105%
acity Factor	99%
ekly Net Load Impact Metrics	
Net Load (MW)	100%
ESR Modified Net Load (MW)	104%
Reduction (MW)	76%
nual ESR Metrics	
Injection Total (MWh)	94%
Withdrawl Total (MWh)	94%
ual Energy Arbitrage Profits (M\$)	108%
acity Factor	94%
nual Net Load Impact Metrics	
Net Load (MW)	100%
Modified Net Load (MW)	102%
Reduction (MW)	80%